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Abstract— Time-of-flight (TOF) magnetic resonance 

angiography is a non-invasive imaging modality for the 

diagnosis of intracranial atherosclerotic diseases (ICAD). 

Evaluation of the degree of the stenosis and status of posterior 

and anterior communicating arteries to supply enough blood 

flow to the distal arteries is very critical, which requires accurate 

evaluation of arteries. Recently, deep-learning methods have 

been firmly established as a robust tool in medical image 

segmentation, which has been resulted in developing multiple 

customized algorithms. For instance, BRAVE-NET, a context-

based successor of U-Net—has shown promising results in MRA 

cerebrovascular segmentation. Another widely used context-

based 3D CNN—DeepMedic—has been shown to outperform U-

Net in cerebrovascular segmentation of 3D digital subtraction 

angiography. In this study, we aim to train and compare the two 

state-of-the-art deep-learning networks, BRAVE-NET and 

DeepMedic, for automated and reliable brain vessel 

segmentation from TOF-MRA images in ICAD patients. Using 

specially labeled data—labeled on TOF MRA and corrected on 

high-resolution black-blood MRI, of 51 patients with ICAD due 

to severe stenosis, we trained and tested both models. On an 

independent test dataset of 11 cases, DeepMedic slightly 

outperformed BRAVE-NET in terms of DSC (0.905±0.012 vs 

0.893±0.015, p: 0.539) and 95HD (0.754±0.223 vs 1.768±0.609, p: 

0.134), and significantly outperformed BRAVE-NET in terms of 

Recall (0.940±0.023 vs 0.855±0.030, p: 0.036). Qualitative assessment 

confirmed the superiority of DeepMedic in capturing the small 

and distal arteries. While BRAVE-NET consistently reported 

higher precision, DeepMedic generally overpredicted and could 

better visualize the smaller and distal arteries. In future studies, 

ensemble models that can leverage best of both should be 

developed and tested on larger datasets. 

 

Clinical Relevance— This study helps elevate the state-of-the-

art for brain vessel segmentation from non-invasive MRA, which 

could accelerate the translation of vessel status-based 

biomarkers into the clinical setting. 

I. INTRODUCTION 

Intracranial atherosclerotic disease (ICAD) is responsible 
for 8-10% of all strokes and is particularly prevalent in Black, 
Hispanic, and Asian populations.[1] Luminal imaging 
techniques, specifically non-invasive time-of-flight magnetic 
resonance angiography (TOF-MRA) is routine clinical 
procedure for the diagnostis and evaluation of the stenotic 
lesion. However, as MRA visualizes the flow within the 
vessels, its accuracy and reliability in the visualization of 
lesion might be compromised in regions with slow or turbulent 
flow characteristics, in particular small arteries, carotid siphon, 
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and stenotic regions. Therefore, delineation of the lesion 
(lumen) and smaller vessel requires neuroradiologists to 
manually segment the images, which is time-consuming and 
introduces uncertainties and subjectivity. Therefore, tools that 
can automatically segment and provide accurate and reliable 
representation of vasculature, especially smaller arteries, can 
help to improve management of ICAD patients.  

Efforts have been made to develop tools for 
cerebrovascular segmentation, but they were semi-automatic, 
utilizing hand-crafted features, and were insufficiently 
validated on independent datasets [2, 3]. More recently, with 
the advent of deep learning (DL) and its application to medical 
image segmentation, multiple DL methods have emerged [4-
6]. From these DL methods, the current state-of-the-art is a 3D 
convolutional neural network (CNN)—BRAVE-NET [5], that 
mainly excelled due to the extra contextual information it 
provides to the CNN architecture over its predecessor—U-Net 
[4, 7]. DeepMedic is another context-based 3D CNN that has 
been used in the recent past for various medical segmentation 
applications ranging from brain lesion segmentation [8] to 
cerebrovascular segmentation of finer 3D digital subtraction 
angiography (DSA) [6]. Interestingly, DeepMedic has been 
shown to be significantly superior to U-Net for 
cerebrovascular segmentation from 3D DSA images [6]. 

 To that end, we aim to do a comparative study between 
the two state-of-the-art context-based 3D CNNs for brain 
vessel segmentation from MRA. We train, and independently 
test the two models on a dataset of 51 retrospectively collected 
TOF-MRA images from patients with ICAD. Furthermore, for 
more accurate ground truth generation, mostly in small 
arteries, carotid siphon, and stenotic regions, we employ high-
resolution black-blood MRI. We performed thorough 
qualitative and quantitative assessment to assess the 
performance of both the models on independent testing cohort. 

II. MATERIALS AND METHODS 

A. Patient selection and Imaging 

This study was approved by the institutional review board 
(IRB) at the University at Buffalo (Study00004370). All 
methods were carried out in accordance with the approved 
protocol and consent was waived by the IRB. We 
retrospectively collected MRA and black-blood MRI from 51 
ICAD patients from the Dent Neurologic Institute (Amherst, 
NY, USA). MRI scans were acquired at the Dent Neurologic 
Institute (Amherst, NY, USA) on a 3T Philips Ingenia Elition 
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X scanner. The axial MRA covered vessel from the skull base 
to the top of corpus callosum, reconstructed voxel size 
0.6x0.7x1.1mm, scan time was 6:05 minutes.  The axial 
VISTA sequence coverage was 8cm, with the center slice 
positioned over the Circle of Willis. Voxel size was 
0.5x0.5x0.5mm, scan time was 8:30 minutes. 

B. Ground truth generation and Pre-processing 

Figure 1 demonstrates a representative case for the 
generation of labels from multi-model MR images as ground-
truth. A radiologist (N.P) with 10 years of experience in 
reviewing MR neurovascular images segmented the 
intracranial vasculature visible in the head-and-neck MRA. 
Specific caution was exercised in the reconstruction of Pcom, 
Acom, stenotic lesion, and ICA siphon, leveraging black-
blood MRI. MRI data were registered using the BRAINS 
registration algorithm available in the open-source software 
3D Slicer (www.slicer.org). Furthermore, as a pre-processing 
step, to avoid inhomogeneity in the MRA dataset, we 
performed N4-ITK MR Bias correction on the MRA images 
using the open-source tool 3D Slicer. 

C. Deep-Learning architectures 

The architectures implemented for this study have been 
illustrated in detail in Fig 2. Both the CNN architectures are 
context-driven with dual pathways—high- and low-resolution. 
The detailed local appearance of vascular structures is 
captured in the high-resolution input whereas the higher-level 
features such as the connectivity of the vascular network are 
learned in the low-resolution pathway. 

The BRAVE-NET architecture is the current state-of-the-
art for TOF-MRA brain vessel segmentation, recently used by 
Hilbert et al. [5]. This CNN improves upon the conventional 
U-Net by adding contextual information around the patch to 
be segmented, and by borrowing the concept of ‘deep-
supervision’ introduced to avoid the problem of exploding or 
vanishing gradients.  

DeepMedic implemented for this study is similar to the 
original architecture [8]. The overall architecture contains 11 
fully un-padded convolutional layers. The low- and high-
resolution inputs first go through 4 independent layers each of 
fully connected convolutions. 

D. Training scheme  

All models were implemented in Python using the Keras 
Deep Learning library (https://github.com/fchollet/keras) with 
Tensorflow deep learning framework as the backend [9]. The 
learning rates for individual architectures were set to their 
prescribed values [5, 8]. The complete dataset of 51 was 
divided into training (n=32), validation (n=8) and testing 
datasets (n=11). Depending on the GPU memory footprint, 
each model was prescribed their respective batch sizes, 
BRAVE-NET: 30, and DeepMedic: 50. Similar to the original 
studies, training was performed in patches, with 2000 patches 
extracted from each image in the training/validation datasets, 
resulting in a total of 80,000 patches split up into training and 
validation cohorts in 80%:20% split. The models were trained 
by optimizing the loss function defined as a hybrid binary-
crossentropy and Dice Similarity Coefficient (DSC) [10], 
optimized using the ADAM optimizer. All models were 
trained using the EarlyStopping criteria. 

E. Model evaluation 

Qualitative comparison was performed to observe the 
extent of missing vessels, missing vasculature connections, 
and quality of segmentation of vessels for all segmentation 
methods, for assessing the overall segmentation quality. To 
assist with visualization, for each case, all predicted voxels 
were assigned true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) labels, visualized by 
overlaying TP, FP and FN. Furthermore, for quantitative 
assessment of the CNN models, dice similarity coefficient 
(DSC), precision, recall and 95 percentile hausdrauff distance 
(95HD) were computed [5]. 

III. RESULTS 

Quantitative results on the independent testing cohort 
(n=11) is reported in Table 1. Deepmedic model performed 
better than the current state-of-the-art MRA cerebrovascular 
segmentation CNN BRAVE-NET in terms of DSC 
(0.905±0.012 vs 0.893±0.015, p: 0.539) and 95HD 
(0.754±0.223 vs 1.768±0.609, p: 0.134). DeepMedic 
significantly outperformed the BRAVE-NET model in recall 
(0.940±0.023 vs 0.855±0.030, p: 0.036). Precision was higher 
in BRAVE-NET as compared to DeepMedic (0.884±0.028 vs 
0.947±0.071, p: 0.087). 

Overall quantitative comparison on the independent testing 
cohort showed a similar trend. Overall quantitative 
comparison on the independent testing cohort showed a similar 
trend. With significantly high recall, as expected, DeepMedic 
showed clear overprediction of distal vessels in the anterior 
and posterior circulation. 

TABLE I.          RESULTS ON THE INDEPENDENT TESTING COHORT (N=11) 

Features DeepMedic BRAVE-NET p-value 

DSC (mean±SE) 0.905±0.012 0.893±0.015 0.539 

95HD (mean±SE) 0.754±0.223 1.768±0.609 0.134 

Precision (mean±SE) 0.884±0.028 0.947±0.071 0.087 

Recall (mean±SE) 0.940±0.023 0.855±0.030 0.036* 
*Indicates significant difference using the 2-sample t-test (5% significance level) 

 

Figure 1.  Ground truth label generation. From a representative case 

included in the training dataset, A) MRA, B) Co-registered Black 
Blood MRI, C) 3D Visualization of the segmented geometry, with 

representative zoomed stenotic ACA and healthy PCOM.  
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 Qualitative comparison on 3 representative cases from the 
independent testing cohort is illustrated in Figure 3. Case 1 
shown in Fig. 3 magnifies the overall trends observed in the 
testing cohort. BRAVE-NET missed the right ACOM, 
significant portions of left and right vertebral arteries, and 
smaller distal vessels, all of which was captured by the 
segmentation output of DeepMedic.  Case 2 shows missing 
portions of ACOM and ACA missed by BRAVE-NET, 
whereas parts of both PCOMs were missed by both models. 

Case 3 shown in Fig. 3 illustrates why the DeepMedic 
model yielded a significantly higher Recall than BRAVE-
NET. In 4/11 testing cases, a considerable overprediction in 
terms of distal vessels from the anterior and posterior from 
DeepMedic. These vessels were considered non-
essential/missed during the ground-truth development. This in 
turn led to a significantly higher recall from DeepMedic. 

IV. DISCUSSION AND CONCLUSIONS 

In this study, we presented a comparative analysis 
between the state-of-the-art for cerebrovascular segmentation 
of MRA images—BRAVE-NET, with DeepMedic—a 3D 
CNN shown to outperform U-Net for 3D DSA cerebrovascular 
segmentation. Our results indicate that in terms of Recall, DSC 
and 95HD, DeepMedic outperforms BRAVE-NET, whereas 
BRAVE-NET outperformed DeepMedic in terms of Precision. 
Further qualitative investigation showed that the reason behind 
such as trend was overprediction by DeepMedic, of distal 
vessels that were deemed non-essential/missed out during 
ground truth generation. 

DeepMedic outperformed BRAVE-NET in terms of 
segmentation of smaller distal vessels, yet important for ICAD 

evaluation. Moreover, DeepMedic in most instances 
overpredicted smaller distal vessels as seen by the significantly 
higher Recall but a lower precision. There are two major 
reasons why we believe DeepMedic outperforms BRAVE-
NET in small vessel segmentation. Firstly, the receptive field 
available for DeepMedic is larger than BRAVE-NET. 
DeepMedic inputs a larger high-resolution patch (403 vs 323) 
for a smaller output patch size (243 vs 323) compared to 
BRAVE-NET. Such a difference in input and output patch 
sizes can be explained as a pseudo-overlap in patches, 
allowing DeepMedic to have more context than BRAVE-
NET. Secondly, DeepMedic only uses convolutions in its 
high-resolution pathway, whereas a BRAVE-NET uses 
convolution followed by max-pooling. Studies have shown 
previously how pooling and strided convolutions can 
negatively affect the contextual information, by halving the 
resolution after every other convolution [11]. This has also led 
to researches developing more innovative schemes such as 
dilated convolutions that systematically aggregate multi-
modal contextual information without losing resolution [11]. 

While this study can help the current state-of-the-art to 
move forward, several limitations/improvements can be 
addressed in the future. Firstly, a larger dataset for testing the 
performance model is required in the future.  Secondly, while 
BRAVE-NET  is  a  significant  step  up  to the  conventional 
U-Net, next generation U-Nets designed for brain vessel 
segmentation such as the Iter-NET [12] should be looked into 
in the future. Future studies can also try to add contextual 
information to the Iter-NET and extend the work for 
segmentation of 3D cerebrovascular segmentation. Thirdly, 
ensemble models, shown to outperform single models [13], 

Figure 2.  Context driven CNN architectures. Top-DeepMedic. Bottom-BRAVE-NET. Both networks designed to employ contextual information from 

the low-resolution pathway to maintain connectivity in vascular segmentation.  

3922



  

that leverage the 
best of fully 
convolutional model 
such as DeepMedic, 
and modern U-Net 
successors such as 
BRAVE-NET 
should also be 
developed. 

In conclusion, 
this preliminary 
works shows 
DeepMedic to be a 
viable option to the 
current state-of-the-
art for brain vessel 
segmentation from 
TOF-MRA images, 
due to its various 
advantages over 
BRAVE-NET. The 
study demonstrates 
how DeepMedic 
excels in prediction 
of smaller 
intracranial vessels 
as well as more 
distal smaller 
vessels compared to 
BRAVE-NET on a 
smaller dataset. 
Future studies on 
larger datasets are 
required to further 
the state-of-the-art 
and bring it closer to 
clinical translation. 
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Figure 3.  Three representative cases from the independent testing cohort predicted by BRAVE-NET and DeepMedic 
compared against the ground truth. In the predictions Red indicated true positives, Green indicated false positives and Blue 

indicates false negatives. Case 1: small yet important artery ACA, and other more distal vessels indicated by purple arrows 

missed by BRAVE-NET. Case 2: part of ACA and ACom, indicated by purple arrows missed by BRAVE-NET whereas 
PComs missed by both networks. Case 3: DSC indicates a better performance of the BRAVE-NET compared to DeepMedic 

against the ground-truth, but qualitative comparison shows overpredictions of distal vessels indicated by golden arrows. 
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