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Abstract— In recent years, modeling neurons and neuronal
collections with high accuracy have become central issues
of neuroscience. The development of efficient algorithms for
their simulation as well as the increase in computational
power and parallelization need to keep up with the quantity
and complexity of novel recordings and reconstructions
reported by the experimental neuroscientists. The extraction
of low-order equivalents that capture the essential aspects
of the high-accuracy models is an essential part of the
simulation process. The complexity of these models require
the use of black-box data-oriented reduction approaches.
We create a detailed model of the nervous system of a
very known organism, C. Elegans, and show that it can
be reduced using a modified data-driven model reduction
method up to the order of 4 with very little loss in accuracy.
The reduced model is able to predict the behaviour of the
original for time ranges beyond the data used for the reduction.

I. INTRODUCTION

Caenorhabditis Elegans (C. Elegans) is a transparent ne-
matode of about 1 mm in length. Extensive research has
been done for a deep understanding of the behavioral and
structural biology of this worm. This almost unprecedented
scientific interest in C. Elegans is built upon the fact that the
animal is able to solve basic problems such as feeding, mate-
finding and predator avoidance with a rather small nervous
system, of less than 1000 cells across all sexes and around
15000 synapses [14]. Another reason is that the nervous
system of nematodes is almost invariant across individuals
(every individual possesses the same number of neurons,
they occupy fixed positions in the organism and the synaptic
connection structure is preserved). The idea is to extend
the knowledge, methods and instruments developed for C.
Elegans to more complex nervous systems.

The pursuit of a deep, thorough understanding of C.
Elegans biology has resulted in comprehensive databases of
genetics and genomics [8], [1], electron micrographs and
associated data [16], online books [9] and atlases [15].

The connectome (also called ”wiring diagram” or ”connec-
tivity graph”) is a map of the neural connections in the brain,
described as a neuronal network or graph (where the nodes
are the neurons and the edges represent the synapses). For C.
Elegans there have been published complete connectomes for
the adult hermaphodite containing 302 neurons [27], partial
connectomes for the adult male – the posterior nervous
system with 144 neurons [19] and recently the complete
connectomes for the two adult sexes – having 385 neurons
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for the male [14], but for the latter the respective 3D
reconstructions are not yet published [17].

While reconstructing the wiring diagrams of the nervous
system is an important step in its exploration, solely knowing
the static connections in the brain is not enough to connect
it to its function. The inherent complexity of the biologi-
cal mechanisms calls for a multi-scale and multi-algorithm
approach, based on digitally reconstructed neurons in 3D,
which are available in open-source databases [4], [6], [5].
Collaborative solutions such as [2] will provide robust and
flexible environments for the simulation of generic complex
biological systems. OpenWorm is trying to build a compu-
tational model of C. Elegans and has made available the
full connectome of C. Elegans hermaphrodite in NeuroML
format. NeuroML is an XML-based specification language,
therefore platform-independent; the program that is tradition-
ally associated with NeuroML files is neuroConstruct. The
open-source nature of the software and its integration with
dedicated neuronal simulators opens the door for different
specializations to investigate the dynamics of the C. Elegans
nervous system.

A second-layer containing the biophysical processes of
neural responses and interactions needs to be added to the
static first-layer (the connectome) to make it into a dynamical
model (the interactome) [22]. The connectome in [22] is an
interactive network, but the underlying neurons are compact
models with no geometrical distribution whereas the neural
responses are modeled with graded potentials.

With an interest in computational aspects of modeling
and simulation and model order reduction, our approach
is slightly different. We start from a very detailed model,
both geometrically and physically, and we are interested
in determining to which extent the model description can
be compressed without loss of accuracy. Model reduction
techniques are used in neuroscience for large-scale networks
to extract coherent features which are not apparent at the
level of individual neurons [20]. The intrinsic nonlinearity
of the nervous system requires the development of new
model reduction approaches, more specifically black-box
techniques, which don’t require prior knowledge of the orig-
inal system’s structure and equations. These are data-driven
methods that only look at the system’s behaviour towards
a particular input signal and attempt to preserve the input-
output behaviour of the original model. Different versions
of Dynamic mode decomposition (DMD) [11], Proper Or-
thogonal Decomposition (POD) [21] and Discrete Empirical
Interpolation (DEIM) [24] have been applied to neuronal
networks with various levels of morphologic accuracy. Our
goal is to use the detailed C. Elegans model as a benchmark
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for testing and developing data-driven reduction methods
for morphologically realistic models and to possibly infer
the findings for larger-scale networks. We use a version of
POD to reduce the original model in a black-box setting,
from snapshots of the states’ evolution over time and we
approximate the low-order model with a linear/quadratic
mathematical system. The reduced model of order 4 extracted
piecewise is able to accurately predict the behaviour of the
original system for time spans beyond the range used for the
reduction. The ultimate goal is to extract the connectivity,
coefficients and/or parameters of a smaller network that cor-
responds to the reduced model extracted from the snapshots
of the original model.

II. THE NETWORK
A. Model Definition

We define a complete model of the C. Elegans
hermaphrodite, built upon detailed 3D reconstructions of
neurons. The model is described in Python and NEURON
[13], one of the traditional neural simulators that achieves
high efficiency in simulating large-scale networks while
having support for biologically realistic multicompartmen-
tal models of neurons due to its built-in neuronal-oriented
algorithms and methods.

The network contains all of the 302 neurons of the C.
Elegans hermaphrodite, the biophysical properties and the
connectivity data from [27]. A 3D reproduction is extracted
from NEURON in Fig. 1. With the NeuroML reconstructions
from OpenWorm, we attempted to import the descriptions
into NEURON with pyNeuroML. PyNeuroML is a Python
package unifying scripts for reading, writing, simulating and
analysing NeuroML / LEMS models. LEMS (Low Entropy
Model Specification language) [3] is an XML-based lan-
guage used for specifying generic models of hybrid dynami-
cal systems. We start from the NeuroML files associated with
the neurons and network structure of C. Elegans, representing
the connectome and add biophysical properties thus creating
the associated interactome. The NeuroML files are further
wrapped inside LEMS files, so that they can be manipulated
by pyNeuroML.

However, pyNeuroML only handles LEMS files describing
single-compartment models of cells [18], [28]. We created
our workaround for this issue: we use pyNeuroML to gen-
erate the Python file using the LEMS definitions for cells
with only one segment, we then generate the NEURON .hoc
files directly from the NeuroML files with pyNeuroML and
finally we modify the Python file to use the new .hoc files,
which contain all segments. The Python file is then executed
in NEURON and the outputs are exported automatically and
processed in an external software (Matlab). In this setting,
the network can be easily regenerated with modified neuronal
and/or synaptic parameters.

Despite the fact that our approach has its own starting
point and conception, it turned out being relatively similar
with the one used in the c302 modeling framework for C.
Elegans, presented in [18]. One of the features of the c302
framework is that it allows the creation of the model for the

Fig. 1. The C. Elegans nervous system described in NEURON.

C. Elegans nervous system using LEMS and the pyNeuroML
package [7]. However, the two approaches differ from a
programming standpoint and were independently developed.

B. Validation against Scenarios

We validate the correct definition of the C. Elegans net-
work against four scenarios, described in [22].

1) Forward Crawling Motion
We apply constant stimulus on the touch sensitive
sensory neurons and the interneurons known to be
part of the forward movement circuit (1.4 nA for
PLM neurons, 2.3 nA for AVB interneurons) and we
check the activity of the motor neurons associated with
forward locomotion.
We observe activity in 170 (56%) of the total number
of neurons in the network, out of which 81 are motor
neurons. The most responsive motor neurons are VB*
and DB* (Ventricular and Dorsal type B) and AS07.
The interneurons with the largest activity are AVB,
DVA, LUA, PVC and PVR, which is in accordance
with the results reported in the literature. As in [22],
we also obtained strong responses from LUA and PVR
neurons.

2) Ablation of AVB interneurons + Forward Crawling
Motion
It is known that removing the AVB interneurons im-
pedes forward locomotion. In this scenario we remove
AVB from the network and repeat the Forward Crawl-
ing Motion (stimulus only on the PLM neurons). We
should see much less activity in most neurons.
We indeed confirm that the number of neurons with
any activity dropped from 170 (56%) to 33 (10%). We
observe strong responses in only 16 neurons, out of
which only 3 are motor neurons.

3) Ablation of AVA interneurons + Forward Crawling
Motion
The elimination of the AVA interneurons does not im-
pact forward motion. We therefore repeat the Forward
Crawling Motion simulation with the AVA neurons
previously removed from the network. We should
see no significant differences in the neurons activity
compared to the first scenario.
The comparison shows that the Forward Crawling
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Fig. 2. The relative energies of the POD modes.

Fig. 3. The evolution of one state over time. The blue continuous line
represents the original model. The red markers show the linear low-order
model r = 4. The yellow markers show the quadratic low-order model
r = 8, estimated for a time range truncated before the singularity at t = 0.1
sec.

Motion simulations with and without the AVA in-
terneurons produce comparable results in terms of
neurons activity overall, as the latter shows very strong
responses in 61 neurons and average activity in 150
neurons.

4) Nictation (the worm stands on its tail and waves its
head in three dimensions)
The nictation behaviour is regulated in C. Elegans by a
specific set of neurons, the IL2 cells [23]. By applying
stimuli of 4.8 nA for IL2DL/IL2DR, IL2L/IL2R and
IL2VL/IL2VR neurons, we should be able to observe
activity mostly in the neurons associated with the head
muscles: RMG, RMH, RME (RMEL, RMER, RMED)
and SMD motor neurons.
In our case, as expected the most responsive neu-
rons do not include the ones associated with for-
ward/backward locomotion, but from the motor neu-
rons that are known to inervate head muscles we

observe strong responses only in RME, RMG, RMH.
The overall behaviour of the model against the four

scenarios proves its correctness. The network confirms the
patterns reported in the literature for neurons correlated to
particular dynamics, such as the touch response (the first
three scenarios) and nictation (the fourth scenario). Note that
the validation is only partially quantitative, as we are not
interested at this point in the exact peak amplitude of certain
neurons, but in the overall relative activity in the network.

III. MODEL REDUCTION

We simulated in NEURON the model in the scenario
corresponding to the Forward Crawling Motion for 200
ms, with n = 16 outputs and m = 2001 time moments,
generating a matrix of snapshots A ∈ R16×2001. The POD
method is based on the decomposition of the snapshots
matrix into modes (a set of basis functions that spans the
collection of samples) and ranking them according to their
energy content, in order to preserve only the most important
ones, which bring new information to the model [29]. One of
the optimal methods to find the POD modes is Singular Value
Decomposition (SVD). The singular values give information
on the linearly independent character of the samples matrix.
SVD allows the identification and elimination of the ”almost
singular” part of the matrix, the lines that are almost linearly
dependent.

The samples matrix A ∈ Rn×m = {ak, k = 1,m} is
decomposed into singular values:

A = UΣVT,

where Σ = diag(σi) is a rectangular diagonal matrix with
the singular values on the diagonal and the columns of
U ∈ Rn×n and V ∈ Rm×m are the corresponding left and
right singular vectors. The POD modes φj are the columns
of U and the relative energy of the POD mode i is given
by σ2

i /
∑n

j=1 σ
2
j . The decomposition is then truncated by

keeping only the r < n < m first most important POD
modes, so that φred ∈ Rn×r. Note that in contrast to many
industry applications where n � m, in neuroscience many
recordings can be extracted during a simulation [20], so also
in our case the number of snapshots is much greater than the
number of states.

The snapshots can be represented as a linear combina-
tion of the truncated POD modes φj , j = 1, r with their
corresponding POD coefficients αj . These are computed by
projecting the snapshots matrix onto the POD modes

αj = φTj ak, in matrix form α = φTredA. (1)

The r-order approximation ared,k of ak is given by

ared,k =

r∑
j=1

αj,kφj , in matrix form Ared = φredα. (2)

However, the reduced model should be able to predict the
behaviour for a time range beyond the one used to compute
the POD subspace. To go beyond this time span we need
to make some assumptions about the reduced model [12],
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Fig. 4. The coefficients of the first four POD modes, αi, i = 1, 4, vs. time. The blue dotted line represents the modal coefficients computed with (1)
from the original snapshots matrix. The red markers show the approximate modal coefficients obtained by integrating (5) for the piecewise linear reduced
models.

[10] and to extract a mathematical description. With the
POD modes and their coefficients already computed from
the snapshots matrix, we proceed with fitting this low-order
model with an approximation with a known mathematical
form.

We follow the main idea in [10], hence we only give
here the information relevant for our problem. We consider
a linear-quadratic approximation for the low-order model,
whose evolution is thus described by a linear system of
equations

ẋ = a + Bx (3)

or by a quadratic one

ẋ = a + Bx + xTCx, (4)

where a ∈ Rr×1, B ∈ Rr×r and C ∈ Rr×r×r.
We project (3) and (4) on the subspace spanned by the

POD modes to obtain a low-order model that lies in the
POD basis coordinate system, whose mathematical form is
now, for a fixed i = 1, r:

dαi

dt
= ai +

r∑
j=1

bijαj (5)

or in the quadratic case

dαi

dt
= ai +

r∑
j=1

bijαj +

r∑
k=1

r∑
j=1

cijkαjαk, (6)

so its dynamics is described by the evolution of the modal
coefficients α. In these expressions α – computed with (1)
and their derivatives – computed with finite differences from
(1) are known. To find the mathematical expression of the
low-order model we solve an inverse problem, where the
unknowns are the coefficients ai, bij and cijk.

Solution of (5) and (6) can be determined numerically
using appropriate time discretization methods leading to a
system of algebraic equations at each of the m time points.
For a sufficiently large m the systems (5) and (6) are
overdetermined, with (m − 1) × r equations and r2 + r
unknowns (r3 + r2 + r for the quadratic case). As in [10],
we solve the systems in a least-squares sense to obtain the
coefficients of the low-order model. We then use ai, bij and
cijk as coefficients of the reduced model, whose evolution is
represented by the solution of the differential linear/quadratic
system of equations (5) or (6) with now known coefficients.
Our goal is to compare the response of the two systems for
a time range beyond the one used to obtain the reduction.

IV. RESULTS AND CONCLUSIONS

The relative energies of the POD basis functions are shown
in Fig. 2. Note that these are identical with the energies of
the eigenvalues of the covariance matrix R = 1

mATA. The
relative energies of the POD modes are in the order of 10−6

already from the 5th mode, indicating that their contributions
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Fig. 5. The evolution of one state over time for 100 ms. The snapshots for
the first 50 ms are used to extract the approximate low-order model. The
reduced model predicts the original behaviour beyond the given time range,
for another 50 ms.

Fig. 6. The evolution of one state over time for 200 ms. The approximate
low-order model is extracted piecewise from the first 150 ms and is used
to predict the response for the next 50 ms.

are less significant. This is also proved by the very small
deviations, of 0.2%, between the algebraic computation of
Ared for the time span considered. All the relative errors in
this study are computed as maxni=1

(
||ai−ared,i||2
max(ai)

√
m

)
, where i

is a row in A or Ared.
We show in this section the evolution of one state over

time, the sensory neuron PHCL (the other states show rel-
atively similar variations from the reduction point of view).
Due to the distinctive shape of the neuronal signals, the
linear approximation (5) is defective, as shown in Fig. 3
for r = 4. Moreover, the singularity at t = 100 ms impedes
the quadratic time integration (6). Even for the time range
ending before the singularity and for a larger number of POD
modes, the approximation shows oscillations (Fig. 3).

To obtain an adequate fitting we remove the singularities
by partitioning the time domain and approximate by parts

Fig. 7. The evolution of one state over time for 400 ms, beyond the
snapshot given range of 200 ms. The blue continuous line represents the
original model. The red markers show the linear reduced model of order 4,
obtained by approximation by parts.

with a linear model. This sectioning approach has previously
been applied with success in building piecewise reduced
models in other contexts [26], [25].

The singularities are identified as the points where the
second derivative of the snapshots has very large absolute
values (the second derivative is easily approximated using the
snapshot information itself). Fig. 4 shows the coefficients of
the four POD modes over time, where the original snapshots
are separated in two parts by the removal of the singularity
at t = 100 ms and each section is approximated by a
linear low-order model. The blue dotted line represents
the modal coefficients computed with (1) from the original
snapshots matrix. The red markers show the approximate
modal coefficients obtained by integrating (5) for the piece-
wise linear reduced models, with the coefficients ai and
bij previously computed in a least-squares sense for each
section. The modal coefficients are good approximates for
their original counterparts suggesting good accuracy for the
states’ variations as well.

Moreover, the low-order model extracted this way has
good prediction capabilities, as it accurately approximates
the snapshots for a time range beyond the initial span. This
is apparent in Fig. 5 where the snapshots for the first 50
ms are used to extract the approximate low-order model and
then the latter is evaluated for an interval of 100 ms. In
this case there was no need for sectioning, as the response
has no singularities within the given time span. The case
where the original snapshots contain a singularity is shown
in Fig. 6. Here, the reduction procedure makes a piecewise
approximation of 150 ms and the low-order model is used
to predict the response for the next 50 ms. In both cases,
the low-order model accurately predicts the behaviour of the
original beyond the given time range.

The prediction of periodically repeated input is shown
in Fig. 7 where the low-order subspace is obtained from
the snapshots for 200 ms and the computed coefficients are
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subsequently used to simulate a time range of 400 ms. The
relative error at order r = 4 is 2% for the initial time
span and 5.2% for the prediction beyond the time range of
the initial data. There is no indication that this error would
increase for an extended time span. The particular shape of
the neuronal signal generates a singularity at every spike
resulting most probably in two sections. Then the piecewise
sub-models extracted from the initial time span are used
to estimate the behaviour for the rest of the time domain.
Therefore, extending the time domain should not increase
the error nor add much to the overall cost, since it only
contributes to the online phase, of evaluations of the low-
order model. Even if a larger number of sections is needed,
the identification of the singularities in the online phase does
not boost the overall cost since the sections are automatically
determined at constant cost with the local estimation of the
derivatives.

With a sectioning approach such as the one proposed, one
can efficiently simulate with precision the behaviour of the
C. Elegans network with different internal parameters, to a
variety of different stimuli and under various scenarios, using
piecewise linear models and the accurate identification of the
dominant time constants in each section.

The next step will be to create a small network of neurons
with states and parameters now corresponding to the reduced
model extracted and implement it in NEURON. This entails
an analysis of the correct formulation of the inverse problem
corresponding to extracting the topology, coefficients and
internal parameters of a sub-circuit from given snapshots
of an unknown nonlinear system. This endeavour can bring
insight into the neuronal pattern redundancy in empirically
observed behaviours and the identification and prediction of
low-dimensional subspaces upon which the brain functions.
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[20] Bülent Karasözen. Model Order Reduction in Neuroscience. In
Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi
Rozza, Wilhelmus H. A. Schilders, and Luis Miguel Silveira, editors,
Handbook Of Model Order Reduction, volume 3 Applications, pages
237–250. De Gruyter, 2020.

[21] Anthony R Kellems, Derrick Roos, Nan Xiao, and Steven J Cox. Low-
dimensional, morphologically accurate models of subthreshold mem-
brane potential. Journal of Computational Neuroscience, 27(2):161,
2009.

[22] Jimin Kim, William Leahy, and Eli Shlizerman. Neural interactome:
Interactive simulation of a neuronal system. Frontiers in computational
neuroscience, 13:8, 2019.

[23] Harksun Lee, Myung-kyu Choi, Daehan Lee, Hye-sung Kim, Hyejin
Hwang, Heekyeong Kim, Sungsu Park, Young-ki Paik, and Junho
Lee. Nictation, a dispersal behavior of the nematode Caenorhabditis
elegans, is regulated by IL2 neurons. Nature neuroscience, 15(1):107,
2012.
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