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ABSTRACT

Artifact removal is an integral component of cinematic scientific vi-
sualization, and is especially challenging with big datasets in which
artifacts are difficult to define. In this paper, we describe a method
for creating cloud artifact masks which can be used to remove arti-
facts from satellite imagery using a combination of traditional image
processing together with deep learning based on U-Net. Compared
to previous methods, our approach does not require multi-channel
spectral imagery but performs successfully on single-channel Dig-
ital Elevation Models (DEMs). DEMs are a representation of the
topography of the Earth and have a variety applications including
planetary science, geology, flood modeling, and city planning.

1 INTRODUCTION

Cloud detection in satellite imagery is a problem that has plagued
scientists for decades (e.g. [7, 8, 19, 20, 23]). Whether a scientist’s
area of research is the clouds themselves or the land beneath them,
it is useful to separate the two classes of objects, though a universal
method for doing so remains elusive. Various methods have been
proposed depending on the type of data (e.g. spectral [10, 18], time-
evolving [5, 17]) and the specific research objective.

However, as of this writing no current cloud detection meth-
ods exist for when the objective is not scientific data analysis, but
rather cinematic scientific visualization which aims to create aes-
thetically pleasing imagery for a general audience. A visualization
created for outreach purposes requires a different focus in the un-
derlying data processing in order to create a result that is not only
understandable, but also visually appealing to the general public.
Aesthetically-pleasing visualizations are both more educational [3]
and are perceived to be more credible than those which are not [16].

Our work differs from other cloud detection methods primarily in
two ways – the underlying data, which is limited to a 1-dimensional
elevation model rather than 3+-dimensional spectral imagery; and
the general purpose. The aim of our work is not data cleaning for
purposes of data analysis, but rather to create a cinematic scien-
tific visualization which enables effective science communication
to broad audiences. Great care must be applied in visualizations of
complex data for lay audiences, and additional data processing, cam-
era choreography, and different methods of rendering are required
to achieve a goal of clear communication [15].

The CloudFindr method described here can be used to algorithmi-
cally mask the majority of cloud artifacts in satellite-collected DEM
data by visualizers who want to create content for documentaries,
museums, or other broad-reaching science communication mediums,
or by animators and visual effects specialists who want to use such
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Figure 1: A 3D visualization of a DEM region without cloud artifact re-
moval, showing large spikes where the height of the land is incorrectly
labelled with the height of a cloud.

DEM data to create realistic landscapes and backdrops in otherwise
fictional computer-generated movie scenes.

1.1 Cinematic Scientific Visualization in Atlas of a
Changing Earth

When creating a public-facing outreach visualization for broad pub-
lic distribution via films shown in giant immersive theaters (e.g.
planetarium domes, IMAX screens), it is critical that data must be
artifact-free. If the dataset in question is a digital elevation model
(DEM) of land, clouds are considered to be artifacts and must be
removed. A single cloudy DEM pixel, reprojected into 3D, would
result in an unacceptable massive spike in the landscape that is sure
to draw audience attention away from the immersive experience of
the story (see Figure 1), especially on a 75+ foot screen.

The Advanced Visualization Lab (AVL) at the National Center for
Supercomputing Applications encountered this problem when work-
ing on a documentary, Atlas of a Changing Earth, which features
three locations visualized from the ArcticDEM dataset [13]. The mo-
tivation for the work described in this paper was the time-consuming
manual cloud removal that was required in order to create a seam-
less, smooth, artifact-free cinematic visualization of the DEM data.
Though some basic automatic cloud-removal techniques were used
during the making of the documentary, they were not satisfactory,
and the process still required weeks of manual review.

1.2 Cloudy DEMs

Digital elevation model data is represented as imagery, where each
pixel holds a value for the elevation at that location. DEM data is
often gathered by satellite, and in these cases, clouds become an
issue. The annual global mean cloud cover is approximately 66%
[21], so Earth-facing satellites which aim to study the land collect
noisy or incorrect data when clouds obstruct their view. Making
this data more usable requires significant data cleaning. For many
scientific purposes, it is useful to retain as much of the collected data
as possible during data cleaning, even if there is a small number of
artifacts. In other words, there is higher value in the precision of
the data than in the recall. For purposes of cinematic visualization,
the opposite is true - recall is more important than precision. It is
preferable to lose some correct data in the process of data cleaning
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Figure 2: Final cloud-free cinematic rendering of the Jakobshavn
glacier used in the Atlas of a Changing Earth documentary.

to ensure the removal of the artifacts, which are not only visually
unappealing but also inaccurate representations of the data.

The ArcticDEM dataset covers all land north of 60°, and it rede-
fined the arctic from the worst to one of the best-mapped regions of
the Earth [12]. The data is collected by the WorldView 1-3 satellites
and GeoEye-1 satellite, and is processed to remove clouds and other
errors, with an absolute error of <0.5 meters [13]. The ArcticDEM
project makes their derived DEMs readily available, but intellec-
tual property considerations prevent release of the original optical
imagery, hence the need for the innovations in this paper. The Arc-
ticDEM data is collected in “strips”, with each strip being a snapshot
of a particular area. This can be thought of as a puzzle piece. Over
time, the various puzzle pieces are gathered, and eventually there
are enough to put together a complete puzzle. Because the strips are
gathered at different points in time, putting them together does not
create one single, seamless, final mosaic, but rather, puzzle pieces
are periodically updated and replaced. This is where the puzzle
analogy starts to break apart - a strip may cover some of the same
area as a previous strip, but does not exactly “replace” a previous
puzzle piece, as it may not have the same shape and coverage.

To build a cloud-free, complete mosaic for the Atlas of a Changing
Earth documentary, cloud masks were manually created for each
strip (described in Section 3.1) and multiplied against the data to
remove the artifacts. The cloud-free strips were then accumulated to
build up the mosaic, at which point the visualization video begins.
The strips continue to update throughout the visualization.

Cloud detection was a manual, time-consuming process during
the documentary production, however, it produced a valuable output
in addition to the visualization itself - a large collection of labelled
data. Detecting clouds in DEM data has a unique set of challenges:
clouds may be be a small cluster of pixels or may cover the whole
strip and beyond; strips that have hard edges may cut through fea-
tures, so there is no guarantee that even a cumulus cloud is complete
and has an organic, recognizable outline; haze and clouds that are
low to the ground may be difficult to distinguish from land and may
create noise which is not otherwise identifiable as “clouds”; and
there is only a single channel of data per pixel, unlike in multispec-
tral imagery, which is most commonly used for cloud detection [11].

2 RELATED WORK

Cloud detection is a specific application of the broader field of
anomaly detection with methods spanning different techniques
and applications. Techniques range from information theoretic to
classification-based to statistical; applications span cyber-intrusion
detection to image processing to sensor networks [6]. Deep learn-
ing methods can be applied to anomaly detection using algorithms
that are supervised, unsupervised, hybrid, or one-class neural net-
works [4]. An issue when attempting anomaly detection with spa-

Figure 3: Example showing the inputs (left, middle) used to output
a hand-drawn mask (right) for one sample timestep. Top row shows
individual strips, bottom row shows accumulated buildup of strips. Left
column shows DEM data, middle column shows artificially shaded
preview, right column shows resulting mask (repeated in both rows).

tiotemporal data is that there is often a lack of a clear boundary
between normal and abnormal cases [2] – in the case of cloud detec-
tion, it can be difficult to determine if a pixel contains a cloud, or a
snow-peaked mountain.

Much research on cloud detection in particular focuses on spectral
imagery as input data, rather than DEM input. Cloud detection
methods for these data are based on cloud optical properties and may
detect cloud/no-cloud, cloud/snow, and/or thin/thick cloud regions
of an image [11]. Fmask [23] is a popular algorithm for detecting
both clouds and cloud shadows in spectral imagery. A recent paper
by Wu, et al [18] uses DEM data, but for validation of their spectral
cloud-finding results, rather than for the detection directly.

The method described in this paper uses deep learning image
segmentation to detect and mask out cloud regions. This is based on
the popular U-Net algorithm [14], initially developed for medical
image segmentation but which has since been adopted for use in
other fields that require classifying image pixels. The RS-Net [10]
and MC-Net [20] methods also use U-Net for cloud detection, but
once again on spectral imagery rather than DEM data. Other notable
recent machine learning image segmentation papers based on U-
Net include a method for identifying vortex boundaries in scientific
visualizations [1] and a method for removing clouds in 3-channel
RGB spectral imagery with generative adversarial networks [22].

3 METHOD

3.1 Ground Truth Mask Creation
The labelled dataset used as the ground truth in training was cre-
ated as a byproduct of the work toward the documentary Atlas of a
Changing Earth, co-produced by Thomas Lucas Productions and
the Advanced Visualization Lab at the National Center for Super-
computing Applications. The artifacts were masked and removed
manually in order to fit the timeline of the film production, and these
resulting masks served a secondary purpose as the inputs to our
machine learning model.

The first step in acquiring the data was identifying an area of
interest and downloading a subset of the data at a suitable resolu-
tion. A 3473x2840 pixel region was initially selected around the
Jakobshavn glacier, a 110,000-square km glacier in Greenland, and
serves as our dataset. GEOTIFF images were downloaded from the
ArcticDEM website and aligned using the georeferenced imagery,
so that each new data strip would be in the correct pixel location
within our selected region of interest. Several derivative versions of
the data were created: (1) images that show one strip at a time and
leave the rest of the frame blank; (2) images that are an accumulation
of strips up until the current timestep; (3) images where each pixel
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corresponds to the time that an accumulated pixel was added; and
(4) images that are artificially-shaded using gdaldem’s “hillshade”
mode1 for easier visual inspection; among others.

A multimedia specialist on the team used the software Nuke2 to
visually inspect the individual DEM strips, comparing them with
strips gathered immediately before and after to identify and manually
mask out areas that appeared to be artifact-ridden. Using a visual
effects technique called rotoscoping, in which a vector mask is
created in one image frame and filled in with imagery from another,
the expert drew the masks for each new data strip by comparing
the various images described above over time, interactively making
adjustments to image intensity as needed for better visual acuity.
Figure 3 shows a sample of types of inputs into this manual process
as well as the output mask for a single timestep.

The hand-drawn masks were not pixel-precise, but were over-
drawn for reasons of convenience - e.g. if 90% of a strip was cloud-
covered, it was more time-efficient to mask out the whole strip rather
than finding the individual pixels that were valid. This was satisfac-
tory for purposes of the documentary, but would not be suitable for a
machine learning task. We therefore created a second set of “motion
masks” where each pixel contained a 1 only if the pixel had been
updated (moved) in that current timestep, and 0 otherwise, based on
derivative data version (3) described above. Multiplying these two
masks together clipped the expert-created overdrawn masks to only
pixels that were present in the strip at that timestep. The resulting
masks are both expert-driven and pixel-precise.

3.2 Data Pre-Processing
Data must be processed prior to being used for training in order
to optimize training time and results. First, each image and its
corresponding ground-truth mask is subdivided into patches of size
224x224 pixels. This size was chosen in order to divide cleanly into
whole numbers when downsampled with the U-Net algorithm. Other
patch sizes were tested parameter tuning, ranging from roughly
100x200 - 600x600, and this size was chosen for having a good
ratio of processing speed to manageable number of output images.
Patches were set to overlap one another by 50 pixels to account for
artifacts around the borders of the image, which are known to occur
with many Convolutional Neural Network-based image processing
algorithms [10]. This also had the result of creating more training
data with different patch croppings. The value of 50 pixels was
selected by visually inspecting a sampling of predicted output masks
and determining the region of consistently-inaccurate predictions
around the borders. Because clouds are more rare than non-clouds in
the data and they are the subject of interest, only the patches that had
at least one pixel of cloud (as determined by the ground-truth mask)
were saved. There were originally 978 images of size 3473x2840,
which were converted into 4399 patches of size 224x224. Scripts
were developed for splitting the full-sized image into patches and
for reassembling the patches into a full-size image.

Our initial machine learning model used these images as training
data, but produced poor results where many discontinuous, individ-
ual pixels were identified as clouds rather than broad, connected
areas. To resolve this issue, an additional second order textural
analysis pre-processing step was added to create derivative data that
considers the spatial relationship among the image pixels. A Gray
Level Co-occurrence Matrix (GLCM) [9] is an image representation
which keeps track of different combinations of pixel values (gray
levels) as they occur in an image, identifying various image texture
features such as contrast, dissimilarity, homogeneity, and entropy.
Figure 4 shows three of these features over different types of land
covers. Calculating the GLCM requires specifying two parameters
- the window size to use around each pixel, and the relationship
direction, which is the distance vector between the reference pixel

1https://gdal.org/programs/gdaldem.html
2https://www.foundry.com/products/nuke

Figure 4: GLCM features for three main types of land covers.

Figure 5: The CloudFindr architecture, based on U-Net [14].

and the neighborhood pixel (often taken as a single unit distance
in each of the 4 directions left, right, up, and down). In order to
consider both small-scale and large-scale texture features, 3-, 5-, and
15-pixel window sizes were used to create three derivative datasets,
to be used in an ensemble method of cloud mask prediction. Each of
these datasets consisted of 4399 52-channel textural “images”. After
the GLCM calculations, the images were normalized to be between
0-1, as a best practice for machine learning.

3.3 Deep Learning for Cloud Prediction
U-Net was selected as the basis for CloudFindr. Other architectures
were considered - notably RS-Net [10] and MC-Net [20] - which are
specialized use cases of the more basic underlying U-Net algorithm
and are optimized for different use cases: RS-Net for spectral and
MC-Net for multi-channel satellite imagery. U-Net was chosen
as it is more generalized and allows for customization at a lower
level. The CloudFindr architecture is outlined in Figure 5. The
downstream branch consists of four convolutional blocks, each being
a combination of two convolution and ReLU operations, followed
by a maxpool to reduce the dimensions of the image by a factor of
two (with stride 2 and kernel size 2). At the end of the downstream
branch, the input is reduced to a size of width/16 by height/16 by
512 features. The upstream branch consists of four upsampling
convolutional blocks. Each block first upsamples the input by a
factor of two using up-convolution followed by a ReLU operation,
increasing the size of the input again by a factor of 16. A final
convolutional layer is applied to convert the resulting 16 channels
into 2, followed by a softmax to obtain a probability for each class,
“cloud” versus “non-cloud”. The resulting image contains a pixel-
wise confidence between 0-1 for whether that pixel contains a cloud
or not. This image is thresholded to produce discrete 0 or 1 values in
the final output mask to give a prediction of “cloud” or “no cloud”.

The dataset has a 60-20-20 split between training-validation-
testing. The hyperparameters of loss function, optimizer, learning
rate, regulation, and number of epochs were tuned via control ex-
periments. A combined evaluation of IoUs and segmentation results
was performed after each experiment to determine if current variable
value would be retained for next experiments. The optimal combi-
nation of parameters is found as: loss function weights = [0.3,0.7]
to account for the imbalance between number of instances for each
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Figure 6: One example patch where it would be difficult for a casual
observer to identify clouds, but the expert and machine learning
prediction have closely-aligned results. From left to right: Input DEM
patch, ground truth mask hand-drawn by an expert, confidence of
prediction after ensemble voting, final thresholded predicted mask.

Figure 7: Confusion matrix showing the success of the predictions
after all processing.

class, Adam optimizer with learning rate of 0.005, no dropout regu-
lation, and 200 epochs. Both Adam and SGD optimizers were tested
with learning rates between 0.005 and 0.001. The best results came
from the use of Adam with a learning rate of 0.005.

Initially, the model was run on derivative datasets with GLCM
window sizes of 3, 5, and 15 with the aim of finding a single optimal
window size. As designed, all resulting predictions skewed toward
higher recall rather than higher precision and tended to over-label
areas as “clouds” rather than under-labelling them. However by
visually analyzing the output masks, it became clear that the three
methods tended to agree with one another about the areas correctly
identified as clouds, but disagreed about the areas labelled incor-
rectly. This inspired the use of an ensemble method for gathering
the final result. The final prediction combines results from all three
runs by multiplying the outputs together. The effect of this is that the
overall confidence value is significantly reduced, but if any one of the
runs predicts a 0 value (predicting that there are no clouds present),
this overrides any other predictions and a 0 value is placed in the
final output mask. The multiplied confidence is thresholded with
a value of 0.1 to create the final binary cloud/non-cloud prediction.
Figure 6 shows one example patch prediction.

When a cloud is mislabelled as a non-cloud, this most often
appears around the perimeter of a correctly-labelled cloudy area.
To account for this, a final post-processing step is applied to dilate
the image masks with a kernel of size (5,5). This reduces the error
around the edges of cloud regions, and creates masks that are slightly
“overdrawn” similarly to how the human expert performed manual
rotoscope labelling.

4 RESULTS

The neural network was trained on a GM200GL Quadro M6000
NVIDIA GPU for approximately 12 hours. In the final result, the
model was able to correctly identify cloudy DEM pixels 92% of
the time. The mean average precision of the optimal model de-
scribed above is 87.1% and the mean IoU is 81.9%, with a further
breakdown for each class shown in Figure 7.

The output of the described algorithm is 4399 patches of size
224x224 with values of 1 where there are likely clouds present, and
0 where there are not. These patches are stitched back together
to create 978 masks of size 3473x2840 which can be multiplied
against the 978 DEMs of size 3473x2840 around the Jakobshavn
area. The DEM strips and masks are then accumulated to create the

Figure 8: Images showing the same single frame of a final 3D render.
Top: using no cloud mask. Middle: using cloud mask created via the
method described here. Bottom: using masks created manually by a
rotoscoping expert. Red boxes draw attention to areas with especially
visible clouds; yellow boxes show that the clouds have been mostly
removed; green boxes show that they have been entirely removed.

final DEMs to be used in the 3D cinematic rendering. Figure 8 shows
how our result compares to the ground truth in final 3D rendered
imagery, as well as what the render looks like without cloud removal.
These renderings are created with the software Houdini3, where the
DEM values are used to drive both the height and the color of the
land. In this figure, the vast majority of the cloud artifacts have been
removed, and the ones that have been missed are not as visually
disturbing as the more prominent spikes.

5 CONCLUSION AND FUTURE WORK

In this paper, we describe CloudFindr, a method of labelling pixels
as “cloud” or “non-cloud” from a single-channel DEM image. We
first extract textural features from the image with varying window
sizes. We feed this derived data into a U-Net based model, trained
on labelled data created by an expert, to create image segmentation
predictions. The results have high accuracy as demonstrated both by
metrics and by a 3D rendering created from the data.

In the future, we will plan a large hyperparameter tuning study
including features at different sizes, learning rate, momentum, and
batch size to optimize our results. Additionally, we would like to
apply this method to other DEM datasets outside the Jakobshavn
region of the ArcticDEM dataset, and also incorporate the time
dimension into the training to differentiate between strips that are
updating a previously-seen area from strips covering a new region.
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