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Abstract—Our understanding of COVID-19 pandemic epi-
demiology has many gaps, with many challenges arising on a
global scale. This paper looks at the problem at a smaller geo-
graphical scale, the extent of the campus of a large organization.
Equipped with an asymptomatic testing program and rough
location data from the campus wireless network, we make the
case that epidemiological models may be informed from this new
source of data, which offers fidelity at the temporal resolution of
seconds and spatial resolution of a Wi-Fi cell size, in particular
for the tasks of pinpointing clusters of cases and contexts of
infection transmission. We sketch the design of a system that
fuses the two foregoing information streams and explain how the
result can be incorporated into standard epidemiological models
of communicable disease, both for better parameter estimation
in elementary models, as well as for providing spatial inputs
into more sophisticated models. We conclude with logistical and
privacy considerations we have encountered in an associated
ongoing study, to inform similar efforts at other organizations.

Index Terms—COVID-19, SARS-CoV-2, contact tracing, Wi-
Fi, privacy, epidemiology.

I. INTRODUCTION

While the ongoing COVID-19 pandemic has highlighted

the importance of contact tracing, it has also exposed the

challenges of performing epidemiological analysis and con-

tact tracing for a virus that transmits asymptomatically and

propagates in an airborne manner. Further exacerbating these

challenges is the fact that in general, traditional contact tracing,

which involves primarily human effort in identifying and

communicating with the close contacts of a confirmed case,

has suffered from low compliance rates in the US [1] and large

budgets in, for example, the UK [2]. However, over the past

year, two notable organizational trends have emerged in the

US, Europe, and other countries, in particular.

First, in the past and particularly during the ongoing pan-

demic, people in the US have spent and will likely spend the

majority of their time on a corporate or academic campus.

As users roam about campus, their smart phones connect to

a series of hotspots that comprise the campus Wi-Fi network.

Once configured by a user, this securely-authenticated con-

nection mechanism is automatic, and data concerning such

connections is logged on the campus wireless network servers.

With knowledge of each hotspot’s deployed building and room

location, this data captures users’ rough room-level locations,

as well as the corresponding window of time during which

the user is connected to a certain hotspot. Data is therefore

available for the location of the Wi-Fi hotspot, beginning

and ending time of the user’s association, and average signal

strength between access point and mobile client during the

association. There is good reason to believe that this room-

level data may be of better use than simple “as the crow

flies” distance between two mobile devices, as it may correlate

better than simple distance with two users sharing or not

sharing the same room air space. Therefore, a number of

researchers [3]–[6] and at least one Wi-Fi infrastructure vendor

[7] have proposed leveraging this Wi-Fi infrastructure for

contact tracing.

Second, corporations and universities have begun to set

up in-house or contracted asymptomatic COVID-19 testing

programs, in order to open their campuses and workplaces

more safely. Some pharmacies are offering these services as a

product to corporations. This means that in addition to rough

room-level location data, corporations and universities will and

in some cases already do have asymptomatic testing results

also available in house. This is expected to aid the operational

process of reopening and managing the pandemic in the near

and mid-term future, allowing greater numbers of people to

return to campus and/or reducing the COVID-19 caseload, thus

potentially saving lives.

This paper aims to make the case that the “join” of the

two foregoing sources of data may serve as a new source of

information for epidemiological models, particularly for those

models that are attempting to pinpoint clusters to disease trans-

mission, and those models attempting to understand SARS-

CoV-2 transmission in various indoor spaces, with varying

levels of ventilation and other safety measures.

Current medical consensus indicates that SARS-CoV-2 is

transmitted through contact surfaces, droplets, and aerosols

(airborne transmission), and that risk of transmission through

the latter two modes, in particular, may increase with increased

duration of close contact to a positive case. As SARS-CoV-

2 spread requires contact between people, understanding the

contact between members of the organization is important.

Construction of a realistic contact network identifying the

time, duration, and location of contact between individuals

is therefore useful.

We propose mathematical and statistical modeling ap-

proaches to infer contact patterns from de-identified Wi-Fi

network data and characterize the spread of SARS-CoV-

2. Integrating contact and location information with weekly

viral testing results from the organization can give a unique
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perspective to identify locations where transmission is more

frequent, as well as potential super-spreading events, which

can, in turn, help prevent onward transmission.

The rest of this paper is structured as follows. Section II

presents further details on our study design and information

flow. Section III details several different ways the study data

can inform some of the leading disease models in the literature.

We explain our algorithm on identifying risky spaces, and

how can it facilitates mitigating the disease transmission in

Section IV. Section VII and Section V introduces the potential

usage of Wi-Fi data in contact tracing systems, and the

principles for improving subjects’ privacy, respectively. We

discuss other wireless technologies for contact tracing and

proximity prevention in Section VI.

II. STUDY DESIGN

While we describe the design of the system we have con-

structed at Princeton University, most other organizations with

their own campuses have similar wireless networks, and many

others have similar asymptomatic COVID testing programs.

A. Principal Actors

To allow other investigators to create similar studies, we

begin with a list of the principal actors involved in our own

study, and describe their roles in the research.

1) Health authority: Our study is conducted with the

consultation and collaboration with the organizational health

department, which has a primary interest in keeping the

employees and students associated with the organization safe

and healthy at work. In our organization, the health authority

runs the organization’s asymptomatic testing program with an

on-site lab, whose results flow into the IT department servers.

This affords easy access to data as well as improving privacy

and data security considerations, as discussed in Section V.

2) Researchers: As the work is multidisciplinary by nature,

it is essential to involve epidemiologists, computer scientists,

and medical clinicians. It is also useful to consult with the or-

ganization’s health authority and occupational safety authority

for real-world context, which is vital to accurately interpret

the data.

3) Information Technology department: In most organiza-

tions, the IT department runs the campus wireless network,

whose servers contain the Wi-Fi association data that studies

of this type require. In the case of our study, we have worked

with the IT department to ensure certain privacy properties as

discussed in Section V.

4) Research oversight bodies: As studies of this type work

with human subjects, academic institutions generally have

an Institutional Review Board (IRB) that approves research

studies. While IRB review protects human subjects, it does

not consider other institutional compliance issues, and so at

Princeton, data access is governed at the functional unit level.

This institutional review identifies conditions, articulated in a

Data Use Agreement, that ensure that any data made available

to researchers be used in a manner that is consistent with

institutional policy and state and federal regulations.

5) Research subjects: While consent from study partici-

pants obtained on a case by case basis, obtaining a sense of

“buy in” from the greater community at large is important to

encourage participation. Explaining the benefits of the study

to the community as well as to our knowledge of infectious

disease helps in this regard, through the use of press releases

and communications to the community at large.

B. Design Overview

In this section we describe the data sources our study uses,

as well as the mechanisms our study uses to move data to the

right locations within our organization to enable the analysis

we describe in the remainder of the paper.

1) Campus wireless network data collection: Our campus

wireless network uses a system provided by Aruba Net-

works, Inc., of which a subsystem called AirWave collects

and correlates information from several components of the

network, including hotspots, back-end “controller” servers,

and authentication servers.

The data collected consists of a series of tuples containing

the following data:

1) A unique user identifier in the organization;

2) the average signal strength (measured in dBm units) of

the connection;

3) access point (AP) name, which uniquely identifies the AP

the user connects to;

4) connect time: time of day and date the user connected;

5) disconnect time: time of day and date the user discon-

nected.

Information collected via the AirWave subsystem is stored

in a securely-encrypted form in a secure virtual machine

located on physical server machines owned by our IT depart-

ment, and located at a data center nearby.

2) Asymptomatic COVID test data collection: Our study

also uses the results of the on-campus testing for active

infection via saliva sampling. This is an RT-PCR test adminis-

tered by self-collection of a saliva sample in private and then

submitted to our organization via drop boxes or delivery to an

on-campus location.

3) Researcher access: The two foregoing data streams

are de-identified as described in Section V, and filtered to

include only participants who have voluntarily consented to

the research. Then the data are presented to the researchers in

de-identified form on a virtual machine accessible only to the

researchers via the organization’s single sign-on authentication

mechanism, which employs two-factor authentication. At no

time do the researchers have access to identifiable data, and

under the terms of the Data Use Agreement, the researchers

are explicitly prohibited from attempting to identify or contact

any individual who might be included in the data.

III. MODEL INTEGRATION OF WI-FI/COVID TEST DATA

In this section we consider multiple different ways of inte-

grating Wi-Fi and asymptomatic COVID testing program data

into various models of epidemiological disease spread, a key

tool in the arsenal of techniques epidemiologists use to study
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1) For each positive COVID test with study identifier x:

a) Construct a list of study ids Nx in the same room as

x for at least time Tmct within transmission window
days Wt around x’s positive test result date.

b) For each y ∈ Nx, query y’s test results within a

incubation window of time Wi after each encounter.

2) Estimate ĉ as the fraction of positives in Step 1b.

Fig. 1. Estimation of the rate constant c in the SIR model, the rate at which
susceptible individuals are infected after meeting infected individuals.

communicable diseases. We begin with the simplest models

and consider progressively more complex models, comparing

their advantages and limitations given the granularity and

amount of data likely to be available to hand.

A. SIR Model Integration

The classic SIR model [8] describes the number of sus-

ceptible (S), infected (I), and recovered (R) individuals in a

population, over time:

Ṡ = −cSI

İ = cSI − wI

Ṙ = wI

(1)

where rate constants c and w describe the rate at which

susceptible individuals get the disease when meeting infected

individuals, and infected individuals recover from the disease,

respectively. This model assumes that recovered people are

immune to the disease.

1) Estimation of SIR rate parameters: Even in this simple

model, we may be able to estimate rates c and w in the

following way, as shown in Figure 1. To estimate the rate

at which susceptible individuals get the disease when meeting

infected individuals (ĉ), we iterate over the study identifiers

of positive COVID tests, and consider the close contacts of

each within a transmission window of the respective positive

COVID test, a period of time around the positive COVID

test during which infection could plausibly take place. We

then query COVID test results of that set of close contacts

over a time window that reflects plausible incubation time of

the disease (incubation window), and estimate ĉ as the total

fraction of positives over all these queries.

The foregoing ĉ estimation algorithm relies on several time

window parameters that are informed by the literature and

public health advice, and hence may be updated as the current

advice changes. We suggest a minimum contact time Tmct =
10 minutes based on US CDC guidelines as of publication.

The transmission window Wt should be set to three days

before, through to one day after the positive COVID test

result. The beginning edge of the transmission window in

the past covers the potential for asymptomatic shedding and

transmission prior to the positive test result, while the trail-

ing edge of the transmission window accounts for the time

between a positive test collection and the quarantine of the

individual due to any laboratory processing and contact tracing

delays. This window’s settings are therefore informed by

the organization’s testing, tracing, and quarantine protocol: at

Princeton individuals who test positive in the asymptomatic

testing program are required to quarantine away from others

on campus.

The incubation window Wi should be set to three days

after, through to nine days after the encounter between the

two individuals. These figures represent an incubation window

that covers about 80% of all incubation times, and can be

adjusted as medical knowledge improves or virus variants

impact incubation time.

To estimate the rate at which infected individuals recover

from the disease (ŵ), we can again select from the data all

positive viral test results, and for each (again with study

identifier x), query the next negative viral test result. By

analyzing the distribution of these recovery times we expect

to see a significant amount of noise in the upper quartiles

of the distribution representing extended quarantine times and

some amount of delay in administering a follow up viral

test. The information contained in the lower quartiles of this

distribution, however, trace an estimate of the distribution of

recovery times, whose mean can be used to estimate w.

2) Spatial parameterization of the SIR model: An issue

with SIR model is that it assumes healthy and infected persons

are distributed homogeneously in space, which is not true

in reality and the heterogeneous distribution has significant

influence on a pandemic. Even for the simple SIR model,

it may be possible to subdivide the model into multiple

smaller models, each covering different regions of the campus

being studied. While conceptually straightforward, each such

division reduces the amount of data collected by the sub-

model size, and so data fidelity may suffer if the subdivision

is performed at a fine granularity: we take this issue up next.

B. SIR-DDFT Model Integration

Since the SIR model has no formal notion of space a
priori, Vrugt et al. combine the SIR model with a dynamical

density functional theory (DDFT) to model social distancing

and isolation behavior. This SIR-DDFT model [9] models the

time evolution of a density field with free energy F as follows:

∂tS = ΓS
�∇ ·

(
S�∇ δF

δS

)
− cSI

∂tI = ΓI
�∇ ·

(
I �∇ δF

δS

)
+ cSI − wI

∂tR = ΓR
�∇ ·

(
R�∇ δF

δS

)
+ wI

(2)

The model admits different mobilities ΓS , ΓI , and ΓR to

model the mobility of susceptible, infected, and recovered

individuals, respectively. We propose to estimate the mobility

coefficient via a query of the Wi-Fi hotspot association time

series. Specifically, for each individual, we have the location

information of the associated Wi-Fi hotsopts, and the corre-

sponding time stamps. Within a mobility time window Wmob,

the velocity of the user V is:

V = (LS − LE)/Wmob (3)
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where LS and LE are the locations of the initially and lastly

connected Wi-Fi hotspots, respectively, during the mobility

time window Wmob. By considering the accuracy requirements

of mobility and the collected Wi-Fi data granularity, we set

the mobility time window Wmob = 1 minute. After we obtain

individuals’ mobility estimation, we further separate them into

the three respective SIR-DDFT categories and averaged over

all the individuals in each category.

In this model, the free energy F is given by

F = Fid + Fexc + Fext. (4)

The first term Fid is the ideal gas free energy, which can be

calculated from the time evolution of a crowd density field

[9]. We propose to estimate the density field via the location

distribution of all users, where we use the associated APs’

locations to approximate users’ locations. The second term

Fexc is called excess free energy, which captures the effect

of interactions among people, it incorporates the effects of

social distancing and self-isolation on crowd density, which

can be seen as a repulsive potential between different persons.

Social distancing corresponds to a repulsive potential between

healthy persons, and self-isolation refers to a repulsive poten-

tial between infected persons and other persons. The last term

is the external potential, it corresponds to externally imposed

restrictions on crowd movements, including travel bans or the

isolation of a region with high rates of infection. This term

can be neglected in our campus scenario.

IV. IDENTIFYING RISKY SPACES

Since the focus is on public spaces, we may be able to

retrospectively identify “risky” spaces, and therefore facilitate

mitigating transmission.

One possible algorithm for scoring the risk level of a

particular space is as follows. First, enumerate all of the

locations in our study by AP, i.e., {l1, l2, . . . , lL} if there are

L APs in the entire campus. Then, we iterate first over all

the positive viral test results and then over all the locations

of the positive user existing within the transmission window

period of time Wt (cf. Section III-A1: this basic structure of

the algorithm is similar). With this list of AP locations where

positive users have shown up, we construct a list of potentially

exposed users with study IDs Nx in the same room as positive

users for at least time Tmct within transmission window days

Wt around positive users’ positive test result date. We further

query each potentially exposed users’ test results within an

incubation window of time Wi. If the viral test is positive, we

identify this as a probable transmission event from one user

to another, and then extract the location of that transmission

event lt (t ∈ [1, L]) and increment a risk count vector variable

rl. In this way a risk map can be constructed at the same

granularity as the AP deployment in the campus Wi-Fi network

that characterizes space risk; Figure 2 specifies this algorithm.

Our study may benefit society by increasing the understand-

ing of the characteristics of high-risk environments that can

inform pandemic responses in other areas, including other

universities and similar workplace campuses. Much future

1) For each positive COVID test with study identifier x:

a) Construct a list of study ids Nx in the same room as

x for at least time Tmct within transmission window
days Wt around x’s positive test result date.

b) For each y ∈ Nx:

i) Query y’s test results within a incubation window
of time Wi after each encounter.

ii) Increment risk count variable rl if the viral test

(whose location is l) is positive

2) Report the location risk distribution {r1, . . . , rL}.

Fig. 2. Risk scoring of different locations based on the frequency of estimated
probable transmission events in each space.

analysis taking air flow, ventilation, and other safety mech-

anisms is possible to follow up this approach.

V. PRIVACY AND SUBJECT PROTECTION

The proposed fusion of epidemiological modeling, location

data, and asymptomatic testing program data is unique to our

best knowledge, and so certain privacy issues arise.

The first and perhaps most notable hazard is the publication

of individual location information. A reasonably foreseeable

risk to the subject as a result of participation is the theoretical

risk of breach of privacy of user location and COVID test result

data. This risk is mitigated by the de-identification of all user

data at the source of the data within the organization itself.

Even if de-identified, there is another foreseeable risk because

of the theoretical possibility of re-identifying users based on

the data and real-world observation, for example. To mitigate

this concern, data must be aggregated, and differential privacy

techniques should be applied to any aggregated data before it is

published in order ensure that statistically, individuals cannot

be identified.

Beyond data publication itself, in an April 2020 webinar

[10], Felten of Princeton’s Center for Information Technology

Policy identified several principles for improving subjects’

privacy in the context of contact tracing apps, many of which

overlap with our own proposed list for micro-epidemiology:

a) Principle: Use study identifiers, and recognize their
limitations.: All individual identities are encrypted before use

for the research purpose, with the encryption key stored at

the data source (Office of Information Technology for wireless

network data; University Health Services for COVID test result

data). The study should ask for users informed consent to

use these data, with all University netids, PUIDs, and subject

names therein encrypted and anonymized,

b) Principle: Keep data in situ: In general, there is

concern over the location of users’ data and any sale of such

data. To mitigate such concerns, we suggest keeping the data

in situ to the greatest amount possible.

c) Principle: Informed consent: As part of the IRB

process, studies like the present are required to gain informed

consent from participants. As such, our organization has
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instructed our IT department not provide to the research study

data from individuals who decline to consent, or who have

not viewed the consent form. Our IT department filters the

data feed it provides to the study to include solely data from

individuals who have consented.

d) Principle: Consider scoping data: both in space and

time. In space: with the data redacted and scoped to include

solely ”public” locations (”public” locations defined to exclude

all Residential College buildings, dormitories, and on-campus

faculty/staff/student housing), In time: Use from a point in

time beginning 90 days prior to today and continuing until

the closure of the study.

e) Principle: Use study ids and recognize limitations: In

our ongoing study, we de-identify user location and COVID

test data that is stored on IT department servers in the

following way.

Our IT department assigns each user a study ID, a unique

identifier assigned for the purposes of the study that is separate

from other identifiers such as email, employee identifier, name,

etc. A separate key file the IT department holds in secure

storage links study IDs to employee IDs, the purpose being the

ability to delete the key file once the study concludes so that

no one has access to personal identifiers. We have instructed

our IT department to encrypt study IDs in the location data

feed, and provide the research server with a full data feed

but containing solely these encrypted study IDs. We have also

instructed our IT department to work with University Health

Services to map names to study IDs, then apply the same

encryption function to the data subsequently stored on the

research server.

The researchers will not publish any data tied to individuals,

and will apply differential privacy techniques to aggregated

data that is published, to ensure that that aggregated data

cannot be tied to any individuals.

VI. RELATED WORK

a) Contact tracing systems: Contact tracing is widely

used to slow down the spread of COVID-19 [11]. Traditional

contact tracing involves labor-intensive case investigation and

thus is time-consuming and unscalable. Such methods have

also suffered from low compliance rates in the US [1] and

large budgets in, for example, the UK [2]. To make contract

tracing practical, many technology-empowered cost-effective

solutions have been proposed to automate this process.

Location-based contact tracing systems [12]–[15] track the

social distance between citizens using GPS locations of mobile

devices people carry. Tracking the exact location of citizens,

however, raises serious concerns about the user privacy, signifi-

cantly hindering its wide deployment. Proximity-based contact

tracing solutions that directly estimate the proximity between

citizens using Bluetooth Low Energy (BLE) beacons have

been proposed by both the research community [6], [16]–

[19] and commercial companies, like MSR [20], Google and

Apple [21], [22], which preserves user privacy by hiding the

absolute user location and thus is widely adopted by diverse

organizations and governments of many countries [12], [13].

Our Wi-Fi data and COVID test data could help to streamline

and increase the accuracy of existing contact tracing efforts.

b) Proximity prevention systems: A number of systems

have been devised whose goal is to help people maintain

social distancing measures that health authorities worldwide

recommend or require. They vary in their design, using Wi-

Fi probes [23], Bluetooth beacons [24]–[26], ultra wideband

(UWB) probes [27], or a combination of Bluetooth beacons

and UWB probes [27], [28] to estimate the proximity between

mobile users. When close-contact, i.e., distance smaller than

six feet, is identified according to the proximity, the proximity

prevention system signals an audible or tactile alert to one or

more persons’ wearable devices that they are too close.

c) Mathematical theory of epidemiology: Mathematical

theory has been widely used to analyze the epidemiological

disease spread, and containment. [29] has adopted a analytical

model to explore the relationship between the level of in-

fection, vaccination and community immunity. [30] leverages

epidemiological models to explore estimates for the magni-

tude and timing of future COVID-19 cases, given different

assumptions regarding the protective efficacy and duration of

the adaptive immune response to SARS-CoV-2, as well as its

interaction with vaccines and nonpharmaceutical interventions.

The widely used susceptible-infected-recovered (SIR) model

[8] can take externally imposed restrictions into account by

varying the spreading rate and recovery rate. However, a

drawback of this model is that it assumes healthy and infected

people are homogeneously distributed in space. In facing of

spatial diversities, some disease-spreading theories [31]–[35]

extend the SIR model to reaction–diffusion equations. An

issue with the reaction–diffusion equations is that they do not

take crowd interactions into account, including the effect of

social distancing and self-isolation. To make a more accurate

estimation of the epidemiological disease spread, we apply our

data on the SIR-DDFT model [9], which is a general form of

the reaction–diffusion equations.

VII. ONGOING AND FUTURE WORK

Currently, our project is recruiting subjects, to reach a

dataset size sufficient for performing experiments and fitting

the parameters of those models. Operationally, Wi-Fi and

COVID test data may in future help to streamline and increase

the accuracy of the contact tracing efforts of health authorities.

Such efforts may assist the health authority and the organiza-

tion’s administration to understand the pandemic’s evolution

on their campus, thus to make more informed decisions on

mitigation measures in future pandemics or outbreaks of the

current pandemic.
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[34] N. Bacaër and C. Sokhna, “A reaction-diffusion system modeling the
spread of resistance to an antimalarial drug,” Mathematical Biosciences
& Engineering, vol. 2, no. 2, p. 227, 2005.

[35] R. Peng and S. Liu, “Global stability of the steady states of an
sis epidemic reaction–diffusion model,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 71, no. 1-2, pp. 239–247, 2009.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP


