
Sponge Examples: Energy-Latency Attacks on Neural Networks

Ilia Shumailov
University of Cambridge, UK
ilia.shumailov@cl.cam.ac.uk

Yiren Zhao
University of Cambridge, UK

yiren.zhao@cl.cam.ac.uk

Daniel Bates
University of Cambridge, UK
daniel.bates@cl.cam.ac.uk

Nicolas Papernot
University of Toronto

and Vector Institute, Canada
nicolas.papernot@utoronto.ca

Robert Mullins
University of Cambridge, UK
robert.mullins@cl.cam.ac.uk

Ross Anderson
University of Cambridge, UK
ross.anderson@cl.cam.ac.uk

Abstract—The high energy costs of neural network training
and inference led to the use of acceleration hardware such
as GPUs and TPUs. While such devices enable us to train
large-scale neural networks in datacenters and deploy them
on edge devices, their designers’ focus so far is on average-
case performance. In this work, we introduce a novel threat
vector against neural networks whose energy consumption
or decision latency are critical. We show how adversaries can
exploit carefully-crafted sponge examples, which are inputs
designed to maximise energy consumption and latency, to
drive machine learning (ML) systems towards their worst-
case performance. Sponge examples are, to our knowledge,
the first denial-of-service attack against the ML components
of such systems.

We mount two variants of our sponge attack on a wide
range of state-of-the-art neural network models, and find
that language models are surprisingly vulnerable. Sponge
examples frequently increase both latency and energy con-
sumption of these models by a factor of 30×. Extensive exper-
iments show that our new attack is effective across different
hardware platforms (CPU, GPU and an ASIC simulator) on
a wide range of different language tasks. On vision tasks, we
show that sponge examples can be produced and a latency
degradation observed, but the effect is less pronounced. To
demonstrate the effectiveness of sponge examples in the
real world, we mount an attack against Microsoft Azure’s
translator and show an increase of response time from 1ms
to 6s (6000×). We conclude by proposing a defense strategy:
shifting the analysis of energy consumption in hardware from
an average-case to a worst-case perspective.

Index Terms—availability attacks, adversarial machine learn-
ing, adversarial examples, sponge examples, latency attacks,
denial of service

1. Introduction

The wide adoption of machine learning has led to
serious study of its security vulnerabilities. Threat vectors
such as adversarial examples [1], [2], data poisoning [3],
[4], membership inference [5]–[7] and fault injection
attacks [8] have been extensively explored. These attacks
either target the confidentiality or integrity of machine
learning systems [9], [10]. So what about the third leg

of the security triad: their availability? In this paper, we
introduce an attack that increases the power drawn by
neural networks and the time they take to make decisions.
An adversary may mount our attack on a datacenter
providing ML-as-a-Service to cause disruption, i.e. denial-
of-service [11]. Increasing the energy consumption of edge
devices such as smartphones can drain their batteries and
make them unavailable [12]. Perhaps even more seriously,
an attack that slows down decisions can subvert safety-
critical or mission-critical systems.

Our key observation is that different inputs of the same
size can cause a deep neural network (DNN) to use very
different amounts of time and energy: this energy-latency
gap is the vulnerability we exploit. The gap exists because
of specific optimisations in hardware (e.g. leveraging input
sparsity) and algorithms (e.g. a variable number of passes
through the network for an input of the same size).

Our attack can be even more effective against the
growing number of systems that use GPUs or custom hard-
ware. Machine learning in general, and neural networks in
particular, command workloads heavy in matrix algebra.
GPUs were fundamental to the AlexNet breakthrough
in 2012 [13]; in response to increasing demand, Google
introduced TPUs to facilitate inference – and training – in
its datacenters [14], while Apple introduced the Neural
Engine to make its smartphones more energy-efficient
for on-device deep learning [15]. Hardware engineers
explicitly target the Operations per Watt (OPs/W) perfor-
mance of DNN processing. But by increasing complexity,
optimisations tend to increase the attack surface. There is
ample precedent elsewhere in computer engineering for
optimisations widening the gap between average-case and
worst-case performance in ways that a capable attacker can
exploit: a recent example is Spectre [16], which exploits
hardware speculation to launch a powerful timing side-
channel attack. Security engineers therefore need to pay
close attention to worst-case performance. In this paper,
we start this process for the optimisations used to speed up
modern machine learning in both hardware and algorithms.

Sponge examples are designed to soak up energy
consumed by a given neural network, forcing the under-
lying hardware system running DNN inference towards
its worst-case performance. We present two ways of
generating sponge examples, one gradient-based and one
using genetic algorithms. The gradient-based approach

212

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Ilia Shumailov. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00024

20
21

 IE
EE

 E
ur

op
ea

n 
Sy

m
po

siu
m

 o
n 

Se
cu

rit
y 

an
d 

Pr
iv

ac
y 

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
24



requires access to DNN model parameters, while the
genetic algorithm only sends queries to the model and
evolves inputs based on energy or latency measurements.
These two attack methods cover both White-box and Black-
box attacks, and our extensive experiments demonstrate
the effectiveness of sponge examples under both scenarios.
When considering modern ML-as-a-Service in a Black-box
setting, our genetic algorithm successfully produces sponge
examples that consistently increase the service response
time and thus the energy consumption of the remote server.

In this paper we make the following contributions:

• We introduce a novel threat against the availability
of ML systems based on energy and latency. Our
sponge examples are designed to cause inference
to take as long as possible and consume as much
energy as possible.

• We show that sponge examples cause increased
energy consumption and longer run-time for a wide
range of vision and language models. Sponge ex-
amples are particularly powerful against language
models.

• We demonstrate the portability of sponge examples,
by showing they are not only transferable across
hardware platforms (CPUs, GPUs, and an ASIC
simulator) but also across model architectures.

• We show that modern ML-as-a-Service is vulner-
able to sponge attacks. With a 50-character input
to Microsoft Azure translator, we can increase the
latency from 1ms up to 6s: a 6000× degradation.

• We present a simple defense against sponge ex-
amples in the form of a worst-case performance
bound for some models. This can also prevent
unexpected increases in energy consumption in the
absence of adversaries, potentially reducing the
carbon footprint of models deployed for inference
at scale.

2. Motivation

Artificial Intelligence and Machine Learning have
enabled real progress in automation, unleashing greater
productivity and potential economic growth. Yet modern
machine learning has become extremely power-hungry.
It is estimated that the energy consumed in training a
single transformer model is equivalent to 60% of a car’s
lifetime carbon emissions [17]. And the energy cost doesn’t
stop there – each inference consumes significant energy
and happens ever more often1. Energy is the lifeblood of
modern machine learning, as energy-efficient inference
and training are needed to scale machine learning to
more use cases. In this paper we explore the adversarial
manipulation of energy and latency in ML models, services
and applications.

Modern hardware exploits many different optimisation
techniques to maintain a high ratio of useful work to
energy consumed. This often involves predicting future
workloads and scheduling resources according to dynamic
needs. Prediction and speculation occur at a number of
levels in the stack, widening the gap between average-
case and worst-case scenarios. This is particularly an

1. For example, OpenAI greatly limits number of queries one can do
to the GPT3 model.

issue in time or energy sensitive tasks, such as time
series forecasting for automatic trading [18] and activity
recognition on wearable devices [19]. In such applications,
hitting worst-case performance could cause failures in
decision making or deplete the batteries of user devices. In
safety-critical and real-time systems, such as autonomous
vehicles which depend on scene understanding with tight
latency constraints, service-denial attacks can pose a threat
to life.

In this paper, we show that a capable attacker can
exploit the performance dependency on hardware and
model optimisations to launch a number of different attacks.
We find that they can negate the effects of hardware opti-
misations, increase computation latency, increase hardware
temperature and massively increase the amount of energy
consumed. To make things worse, they can do this with
very few assumptions, making attacks scalable in the real
world. We further highlight the realism of sponge examples
in a case study with Microsoft Azure translator, where we
degraded latency up to a factor of 6000×.

On a number of occasions, despite the hardware
protection provided by GPU engineers, we were able to
increase temperature so that it passed the throttling point
and sometimes even crashed the GPU drivers. The energy
consumed by sponge examples on a machine learning
model can therefore affect the underlying hardware if its
power management software or hardware is not designed
with adversaries in mind.

3. Background

3.1. Hardware Acceleration for Deep Learning

Deep Neural Network (DNN) inference is both
compute-intensive and memory-intensive. Common hard-
ware products such as CPUs and GPUs are now being
adapted to this workload, and provide features for acceler-
ating it. Intel’s Knights Mill CPU provides a set of SIMD
instructions [20], while NVIDIA’s Volta GPU introduces
Tensor Cores to facilitate the low-precision multiplications
that underpin much of deep learning [21].

Hardware dedicated to deep learning is now pervasive
in data centers, with examples including Big Basin at
Facebook [22], BrainWave at Microsoft [23], and racks
of TPUs at Google [14], [24]; the underlying hardware
on these systems are either commodity hardware (Big
Basin), re-configurable hardware (FPGAs for BrainWave),
or custom silicon (TPUs). The latter two are specifically
designed to improve the number of Operations per Watt
of DNN inference. Careful modeling of average hardware
efficiency allows ML-as-a-Service providers to price their
services per query, rather then per energy used. As we
discuss later, custom and semi-custom hardware will
typically exploit sparsity in data and the adequacy of low-
precision computations for DNN inference, reducing both
arithmetic complexity and the amount of DRAM traffic,
to achieve significantly better power efficiency [25]–[27].
Our attack targets these optimisations among others.

3.2. Attacks on Energy

Operations per Watt are an important indicator of the
efficiency of cloud infrastructure [28]. Power oversubscrip-

213



tion is a popular method for cloud services to handle
provisioning, but it leaves datacenters vulnerable to power
attacks [29]–[32]. If malicious users can remotely generate
power spikes on multiple hosts in the data center at the
same time, they might overload the system and cause
disruption of service [11], [29]. Energy attacks against
mobile devices usually aim to drain the battery more
quickly [12], [33], although energy management in mobile
devices can also be used to perform deterministic fault
injection [34]. The possible victims of energy attacks on
mobile systems range from autonomous vehicles to sensors
with constrained computing abilities [35]. Higher energy
consumption also increases hardware temperature, which
in turn increases the failure rate. For example, Anderson
et al. note that an increase of 15◦C causes component
failure rates to go up by 2× [36]. Modern hardware
throttles to avoid overheating; while short-term power
savings may be possible through such voltage scaling, the
overall energy consumption increases [37]. This creates
nonlinear dependencies between energy and latency.

3.3. Security of Machine Learning

Machine learning has been shown to be vulnerable
to a number of different attack vectors [38]. Adversarial
examples can cause a system to classify inputs incor-
rectly [1], [2]. Adversarial examples can be found in the
White-box setting through gradient-based optimization [1],
[2] while in the Black-box setting, the adversary can
transfer adversarial examples from another model [39]
or approximate gradients with finite differences [40] when
they can observe the model’s confidence as well as the
output label. Data can be poisoned to manipulate future
performance [3], [4]. Run-time bit-errors can be introduced
to greatly reduce performance [8]. These attacks either
target the confidentiality or integrity of machine learning
systems [9], [10].

Here, we explore availability, i.e. timely and reliable
access to information [41], and introduce a new form
of service denial with samples that act as a sponge for
time or energy. Service-denial attacks are well known in
the context of computer networking [42], [43], but have
been overlooked so far in ML. The current NIST draft on
adversarial machine learning touches upon availability, but
does not provide any examples of attacks [38].

Poisoning can perhaps be seen as an availability attack.
If an attacker can poison data so that the machine learning
model stops training or does so with reduced accuracy,
this may be seen in some contexts as reducing availability.
For example, Erba et al. presented such an attack against
Industrial Control Systems [44]. However, the attacks
presented in this paper do not poison data, but target
either the hardware or the algorithmic complexity of the
model.

4. Methodology

4.1. Threat Model

In this paper we assume an adversary with the ability
to supply an input sample to a target system, which
then processes the sample using a single CPU, GPU or

ASIC. We assume no rate limiting, apart from on-device
dynamic power control or thermal throttling.2 We assume
no physical access to the systems i.e. an attacker cannot
reprogram the hardware or change the configuration.

We consider three threat models. The first is a White-
box setup: we assume the attackers know the model
architecture and parameters. The second considers an
interactive Black-box threat: we assume attackers have
no knowledge of the architecture and parameters, but
are able to query the target as many times as they want
and to time operations or measure energy consumption
remotely. The third is the blind adversary: we assume
no knowledge of the target architecture and parameters,
and assume no ability to take direct measurements. In this
setting, the adversary has to transfer previously-discovered
sponge examples directly to a new target – without prior
interaction.

Our adversary models loosely capture ML-as-a-Service
deployments and on-device data processing. A simple
example could be a dialogue or a translation system. Users
interact continuously by sending queries and can measure
energy consumption, or when that is not possible by the
response time (see Section 5). Indeed, in Section 5.5 we
show on an example of a Microsoft Azure translator that
modern ML-as-a-Service is vulnerable to sponge attacks
which only rely on the adversary’s ability to observe
response latency—even in presence of networking delay.

4.2. The Energy Gap

The Energy Gap is the performance gap between
average-case and worst-case performance, and is the target
for our sponge attacks. To better understand the cause
of this gap, we tested three hardware platforms: a CPU,
a GPU and an ASIC simulator. The amount of energy
consumed by one inference pass (i.e. a forward pass in a
neural network) depends primarily on [45]:

• the overall number of arithmetic operations re-
quired to process the inputs; and

• the number of memory accesses e.g. to the GPU
DRAM.

The intriguing question now is:

is there a significant gap in energy consumption for
different model inputs of the same dimension?

As well as fixing the dimension of inputs, i.e. not
increasing the number of characters in a text sample or the
pixel dimension of an image, we also do not consider inputs
that would exceed the pre-defined numerical range of each
input dimension. If models do have a large energy gap
between different inputs, we describe two hypotheses that
we think attackers can exploit to create sponge examples,
that is, inputs trigger the worst-case performance and have
abnormally high energy consumption.

4.2.1. Hypothesis 1: Computation Dimensions. Aside
from data sparsity, modern neural networks also have
a computational dimension. Along with variable input

2. Thermal throttling refers here to the deliberate slow-down of device
performance when cooling is no longer able to dissipate the heat generated
by a workload.

214



and output shapes, the internal representation size often
changes as well – for example, in the Transformer-based
architectures for machine translation [46]. The model is
autoregressive in this case; both the input and output are
sequences of words and internal computation depends on
both of them. Before text gets to the model it has to go
through a number of stages. First, individual components
are separated within the sentence, removing punctuation
and keeping useful words. Next, each word is represented
as a number of tokens whose shape depends on the
richness of input and output dictionaries. Because we
cannot represent words mathematically, we need to map
them to some numerical form. Yet we cannot build a
mapping with all possible words, because that greatly
increases model complexity, so in practice dictionaries
with most-popular sub-words are used. Once tokenized,
individual tokens are then projected into the embedding
space (e.g. word2vec [47]), a high-dimensional space
where knowledge about individual tokens is encoded.
As computation progresses, each inference step depends
on the embeddings of all of input tokens and output
tokens produced so far. For example, imagine encoding the
word ‘Athazagoraphobia‘. With commonly used English
dictionaries, it will get assigned 4 tokens for its input
size of 16: ‘ath‘, ‘az‘, ‘agor‘, ‘aphobia‘. If a user makes
a typing mistake, say ‘Athazagoraphpbia‘, then suddenly
its representation turns into 7 tokens for the same size of
16: ‘ath‘, ‘az‘, ‘agor‘, ‘aph‘, ‘p‘, ‘bi‘, ‘a‘. An adversary
can exploit it and construct large token representations.
For example, ‘A/h/z/g/r/p/p/i/‘ will be 16 separate tokens.
Ultimately, unknown words both in the input and output
spaces will lead to a much larger sentence representation
and many more inference runs.

Consider an input sequence x and an output sequence y.
We denote the input and output token sizes (i.e. the number
of individual tokens extracted from an input sentence and
produced for the output sentence) with ltin and ltout. Each
of the words in a sequence is embedded in a space of
dimensionality lein, for the input, and leout, for the output.
Algorithm 1 contains the pseudocode for a Transformer’s
principal steps. In red, we annotate the computational
complexity of the following instruction. As can be seen,
several quantities can be manipulated by an adversary to
increase the algorithm’s run time: 1) token size of the input
sentence ltin; 2) token size of the output sentence ltout;
and 3) size of the input and output embedding spaces (lein
and leout). All of the above can cause a non-linear increase
in algorithmic complexity and thus heavily increase the
amount of energy consumed. Note that perturbing these
quantities does not require that the adversary modify the
dimension of input sequence x; that is, with no changes
to the input length, the adversary can increase energy
consumption non-linearly.

4.2.2. Hypothesis 2: Data Sparsity. The rectified linear
unit (ReLU), which computes x �→ max(0, x), is the de
facto choice of activation function in neural network archi-
tectures. This design introduces sparsity in the activations
of hidden layers when the weighted sum of inputs to
a neuron is negative. A large number of ASIC neural
network accelerators consequently exploit runtime data
sparsity to increase efficiency [48]–[50]. For instance,
ASIC accelerators may employ zero-skipping multipli-

Algorithm 1: Translation Transformer NLP
pipeline

Input: Text sentence x
Result: y
↓ O(ltin)

1 xtin = Tokenize(x);
2 ytouts = ∅;
↓ O(lein)

3 xein = Encode (xtin);
↓ O(ltin × lein × ltout × leout)

4 while ytout has no end of sentence token do
↓ O(leout)

5 yeout = Encode (ytout);
↓ O(lein × leout)

6 yeout = model.Inference(xein, yeout, ytouts);
↓ O(leout);

7 ytout = Decode(yeout);
8 ytouts.add(ytout);
9 end
↓ O(ltout);

10 y = Detokenize(ytouts)

cations or encode DRAM traffic to reduce the off-chip
bandwidth requirement. The latest Xilinx AI compiler
provides optimisations [51] for automatically deploying
sparse models to their FPGA devices, promoting the use of
model sparsity in production systems. On the algorithmic
level, there is a recent surge of interest in using dynamic
coarse-grained sparsity for accelerating GPU inference
[52], [53]. Hence, inputs that lead to less sparse activations
will increase the number of operations and the number of
memory accesses, and thus energy consumption.

4.3. The Laws of Physics

Before getting to the details of the attack, we need
to understand what affects energy consumption and what
the attacker can reliably influence. Energy E is the total
consumed static power Pstatic and dynamic power Pdynamic

for an interval of time t. This energy formulation can
be analysed in more detail; we show how to do this in
Section B of the Appendix.

E =(Pstatic + Pdynamic)× t

=
(
[
∑

Is × (

︷ ︸︸ ︷
e

qVd
kT −1

overheat or increase overall consumption

)× Vcore]

+ [ α︸︷︷︸
more activity of the board

×C × V 2
core ×

throttle or exploit load predictor︷︸︸︷
f ]

)× t︸︷︷︸
run for longer or exploit the predictor

.

(1)

The salient elements from Equation (1) are that an
attacker can affect energy use through four parameters: T
(temperature), α (activity ratio), f (frequency) and t (time).
Our sponge examples directly exploit the activity ratio α
and execution time t, since these two parameters are tightly
linked to the number of operations and memory accesses
performed by model inference. Although frequency f
and temperature T will be influenced indirectly through
optimisations performed by the underlying hardware, these
are not our direct targets. We hypothesise these parameters

215



(f and T ) can also be exploited to create hardware level
availability attacks on ML systems, e.g. forced throttling
or heating of devices, but they are beyond the scope of
this paper.

4.4. Attack Methods and Setups

Having presented the intuition behind our attacks, we
now introduce strategies for finding sponge examples
corresponding to the threat models described in Section 4.1.

4.4.1. Genetic Algorithms in White-box and Black-box
Settings. Genetic algorithms (GA) are a powerful tool
for adversaries [54]. They can optimise a diverse set of
objectives, and require no local gradient information. They
are a particularly good fit for adversaries who only have
access to the model’s prediction in a Black-box setting.
The general pipeline of a GA is presented in Algorithm 2
in Appendix. We start with a pool of randomly generated
samples S. These are images for computer vision models,
or sentences for NLP tasks. We then iteratively evolve the
population pool as is depicted in Figure 1.

• For computer vision tasks, we sample two parents
A and B from the population pool, and crossover
the inputs using a random mask A ∗mask+ (1−
mask) ∗B.

• For NLP tasks, we sample two parents A and B,
and crossover by concatenating the left part of
parent A with the right part of parent B. We then
probabilistically invert the two parts.

We explain the reasons for these choices in Section C of
the Appendix. Next, we randomly mutate (i.e. perturb) a
proportion of the input features (i.e. pixels in vision, words
in NLP) of the children. To maintain enough diversity
in the pool, where applicable we preserve the best per-
class samples in the pool. We obtain a fitness score P
for all pool members, namely their energy consumption.
We then select the winning top 10% of samples Ŝ,3,
and use them as parents for the next iteration. This
genetic algorithm is simple but effective in finding sponge
examples. Parameter choice is explained in Section A in
the Appendix. In Section C, we further explain the domain-
specific optimisations of the GA algorithm on NLP and
CV tasks for achieving a better attack performance.

Although following the same algorithm described
above, we form two variants of GA for Black-box and
White-box attacks respectively, each differing the way we
measure fitness:

• White-box GA: We access the parameters of the
neural networks and provide an estimated energy
cost based on the run-time sparsity, i.e. number of
operations based on the structure and parameters
of the neural networks.

• Black-box GA: We do not access any of the neural
network internals, and use purely the measured
hardware cost as the fitness, i.e. latency or energy
consumption.

3. As the sample pool is large, selecting the top 10% makes the process
more tractable.

4.4.2. L-BFGS in the White-box Setting. We now con-
sider an adversary with access to the model’s parameters.
Rather than a genetic algorithm, we use L-BFGS [55] to
optimise the following objective:

−
∑
al∈A

‖al‖2 (2)

where A is the set of all activation values and al the
activations of layer l. This generates inputs that increase
activation values of the model across all of the layers
simultaneously. Following Objective 1 outlined above,
the increase in density prevents hardware from skipping
some of the operations, which in turn increases energy
consumption. We only evaluate the performance of sponge
examples found by L-BFGS on computer vision tasks
because of the discrete nature of the NLP tasks, which
prevents differentiating the objective in Equation (2)4.

4.4.3. Cross-model and Cross-hardware Transferabil-
ity for Blind Adversaries. When adversaries are unable to
query the model, they cannot directly solve an optimisation
problem to find sponge examples, even using the interactive
Black-box approach, i.e. the GA. In this blind-adversary
setting, we exploit transferability across both models and
hardware. Indeed, in Section 5.4 and Section 6.3 in the
Appendix, we show that sponge examples transfer across
models. We examine three hardware platforms in our
evaluation:

• CPU: The platform is an Intel(R) Xeon(R) CPU
E5-2620 v4 with 2.10GHz clock frequency. We
use the Running Average Power Limit (RAPL) to
measure energy consumption of the CPU. RAPL
has been thoroughly evaluated and found to reflect
actual energy consumption, as long as the counters
are not sampled too quickly [56], [57].

• GPU: We use a GeForce 1080 Ti GPU with a 250.0
Watts power limit, a 96◦C slowdown temperature
and a 84◦C throttling temperature. We use the
NVIDIA Management Library (NVML) to measure
energy consumption. NVML was previously found
to capture energy quite accurately, with occasional
instability for high-low patterns and high sampling
rates [58].

• ASIC: We also developed a deterministic ASIC
simulator, which monitors and records the runtime
operations and number of DRAM accesses assum-
ing a conservative memory flushing strategy. We
then use measurements by Horowitz to approximate
energy consumption [45]: at 45nm technology
and 0.9V, we assume 1950 pJ to access a 32 bit
value in DRAM and 3.7 pJ for a floating-point
multiplication.

We show in Section 5.4 that sponge examples transfer
across these types of hardware.

4. It is worth noting that for NLP tasks given knowledge of the
dictionary an attacker can design the worst possible input and output token
sequences. In this paper we make no assumptions about the dictionary
or the model deployed, instead we optimise directly over energy or time.

216



NLP

availa bility

exploi tation
avail tation

Random mutation

avail nation

CV

Combine randomly

Evolving best samples according
to energy or latency

Interactive Sponge construction

Evolve a pool of best 
sponges over time

Overheating underlying hardware

Overconsuming energyMeasure energy or 
latency of a response

Figure 1: Availability adversary constructs sponge examples using a genetic algorithm. The adversary tries samples
against the model and measures either latency or energy consumed, mixing the best performing samples in the pool.
Eventually, the attacker identifies potent sponge examples.

5. Sponge Examples on Language Models

5.1. Models and Datasets

We first evaluate our sponge example attack on a range
of NLP models provided by the FairSeq framework [59].
The models we consider have achieved top performance
at their respective tasks and are used heavily in the real
world to analyse data at scale. We report the performance
of the RoBERTa [60] model, an optimised BERT [61],
on three GLUE benchmarks designed to assess language
understanding [62]. The datasets we considered include
tasks in the SuperGLUE benchmark plus a number of
machine-translation tasks. The SuperGLUE benchmark
follows the style of GLUE but includes a wider range of
language-understanding tasks including question answering
and conference resolution [62], [63]. Further, we evaluate
the attack on a number of translation tasks (WMT) using
Transformer-based models [64]–[66]. Both translation and
language comprehension are fundamental to human society
and form a bridge between computers and humans. They
are built into virtual assistants and many other applications
in the real world that are used on a day-to-day basis.

Consider the pipeline for handling text. Before getting
to the models, the text goes through several preprocessing
steps. First, words get tokenized in a manner meaningful
for the language. We used the tokenizer from the Moses
toolkit [67], which separates punctuation from words and
normalises characters. Next, tokenized blocks get encoded.
Until recently, unknown words were simply replaced with
an unknown token. Modern encoders improve performance
by exploiting the idea that many words are a combination

of other words. BPE is a popular approach that breaks
unknown words into subwords it knows and uses those as
individual tokens [68]. In that way, known sentences get
encoded very efficiently, mapping every word to a single
token, and the number of computations is greatly reduced.

5.2. White-box Sponge Examples

In this section, we look at the White-box GA attack (as
explained in Section 4.4.1) for generating sponge examples.
In this setup, we access to the parameters and run-time
information of the neural networks. The GA optimisation
relies on the estimated number of operations of the neural
network inference.

Table 1 shows the energy consumption of different
models in the presence of our generated White-box sponge
examples. For different input sequence sizes and a wide
range of NLP tasks, we show the energy costs of sponge
examples on both GPUs (GPU Energy) and the ASIC
simulator (ASIC Energy). We use natural, random and
sponge to represent the energy measured on data from the
evaluation dataset, randomly formed strings and sponge
examples. In addition, we also report the latency of running
these samples on GPUs. Due to the limitation of the ASIC
simulator, we cannot have faithful time measurements and
these numbers are not reported.

We have made several important observations:

• The energy cost of sponge examples is always the
highest on both GPUs and ASICs. In the best-case
scenario for the attacker, sponge examples increase
energy consumption by 26×.

217



GPU Energy [mJ] ASIC Energy [mJ] GPU Time [mS]
Input size Natural Random Sponge Natural Random Sponge Natural Random Sponge

SuperGLUE Benchmark with [60]

CoLA

15
2865.68 3023.705 3170.38 504.93 566.58 583.56 0.02 0.02 0.02
1.00× 1.06× 1.11× 1.00× 1.12× 1.16× 1.00× 0.92× 0.92×

30
3299.07 4204.121 4228.22 508.73 634.24 669.20 0.03 0.03 0.02
1.00× 1.27× 1.28× 1.00× 1.25× 1.32× 1.00× 0.93× 0.82×

50
3384.62 6310.504 6988.57 511.43 724.48 780.57 0.03 0.04 0.04
1.00× 1.86× 2.06× 1.00× 1.42× 1.53× 1.00× 1.23× 1.27×

MNLI

15
3203.01 3573.93 3597.3 509.19 570.10 586.43 0.03 0.03 0.03
1.00× 1.12× 1.12× 1.00× 1.12× 1.15× 1.00× 1.01× 0.95×

30
3330.22 4752.84 5045.25 514.00 638.78 672.07 0.03 0.03 0.03
1.00× 1.43× 1.51× 1.00× 1.24× 1.31× 1.00× 1.06× 1.03×

50
3269.34 6373.507 7051.68 519.51 728.82 783.18 0.03 0.04 0.04
1.00× 1.95× 2.16× 1.00× 1.40× 1.51× 1.00× 1.28× 1.30×

WSC

15
4287.24 13485.49 38106.98 510.84 1008.59 2454.89 0.04 0.07 0.20
1.00× 3.15× 8.89× 1.00× 1.97× 4.81× 1.00× 2.02× 5.51×

30
4945.47 36984.44 79786.57 573.78 2319.05 5012.75 0.04 0.20 0.46
1.00× 7.48× 16.13× 1.00× 4.04× 8.74× 1.00× 4.89× 11.04×

50
6002.68 81017.01 159925.23 716.96 5093.42 10192.41 0.05 0.46 0.93
1.00× 13.50× 26.64× 1.00× 7.10× 14.22× 1.00× 10.16× 20.56×

WMT14/16 with [64]

En→Fr 15
9492.30 25772.89 40975.78 1793.84 4961.56 8494.36 0.10 0.24 0.37
1.00× 2.72× 4.32× 1.00× 2.77× 4.74× 1.00× 2.51× 3.89×

En→De 15
8573.59 13293.51 238677.16 1571.59 2476.18 48446.29 0.09 0.13 2.09
1.00× 1.55× 27.84× 1.00× 1.58× 30.83× 1.00× 1.46× 24.18×

WMT18 with [65]

En→De 15
28393.97 38493.96 874862.97 1624.05 2318.50 49617.68 0.27 0.33 7.25
1.00× 1.36× 30.81× 1.00× 1.43× 30.55× 1.00× 1.20× 26.49×

WMT19 with [69]

En→Ru 15
33181.43 91513.13 876941.24 1897.19 5380.20 47931.11 0.31 0.77 7.19
1.00× 2.76× 26.43× 1.00× 2.84× 25.26× 1.00× 2.46× 22.85×

TABLE 1: Energy is reported in milli joules. We use the White-box GA attack to produce sponge examples and measure
the performance on different platforms. The GPU readings are from NVML. GA was run for 1000 epochs with a pool
size of 1000. A detailed explanation of the results is in Section 5.2. Standard deviation for ASIC measurements are
shown in Table 5.

• Randomly generated samples are more energy-
consuming than natural samples.

• When the task is quick to execute, sponge ex-
amples do not show big performance degradation
in terms of GPU Time, but they increase latency
significantly when the task takes more time (up to
30×).

The main reason for performance degradation appears
to be the increased dimension of the computation, as
described in Algorithm 1. First, for a given input sequence
size, the attack maximises the size of the post-tokenisation
representation (xtin), exploiting the tokeniser and sub-word
processing. Words with which the model is less familiar
are represented inefficiently, forcing the network to do
more work. Imagine holding an email conversation with
an academic from another field, who uses specific technical
terms. Every time an unfamiliar term appears you have
to look it up in a dictionary or search engine. Second,
the attack learns to maximise output sequence length,
since this links directly to the computation cost. Third,
internal computation coupled with output sequence length
and post-tokenisation length give a quadratic increase in
energy consumption. These reasons explain why sponge
examples can significantly increase both energy and latency

of language models. Do note that in this paper we use
relatively small input sizes and in practice the effect will
be a lot more pronounced for larger texts. Indeed as we
later show in Section 5.5, in a Black-box setup with 50-
character long text inputs an attack on Azure Language
Translator caused 6000× degradation.

Interestingly, we observe that randomly generated
samples significantly reduce the performance of NLP tasks.
This can be attributed to the fact that natural samples are
efficiently encoded, whereas random and attack samples
produce an unnecessarily long representation, meaning that
random noise can be used as a scalable Black-box latency
and energy attack tool. Otherwise put, many ML systems
are vulnerable to simple barrage jamming.

It is also worth noting that the short execution of
inference on GPUs makes it hard to provide an accurate
measurement even with iterative runs. We further explain
how this measurement is difficult due to a variety of
hardware problems in Section 6.2.

In the upcoming sections, we turn to Black-box variants
of the attack based on energy and latency measurements
of the individual samples. We mentioned previously that
modern hardware optimises Operations per Watt (OPs/W),
making sure that energy is only actively consumed when

218



useful work is being done. In our experiments we see
that the relationship between degradation factors of energy
and time ranges between 1.15 and 1.62 (see Table 4 in
Appendix), with energy scaling faster5.

5.3. Interactive Black-box Sponge Examples

In this section, we show the performance of the attacks
running in an interactive Black-box manner against NLP
tasks. In this setup, we launch the Black-box GA attack
as described in Section 4.4.1. This interactive Black-box
setup assumes that attackers cannot access to the neural
network parameters but have the abilities to measure the
energy or latency remotely. In addition, they can query
the service as many times as they like, so there is no rate
limiting. We evaluate two Black-box attacks, and they use
GPU Time and GPU Energy as the optimisation targets
for the GA. We also present results for a White-box GA
attack in the third setup as a baseline, which is the same
attack used in Section 5.2.

Figure 2 shows sponge example performance against
a WMT14 English-to-French Transformer-based translator
with an input of size 15 and pool size of 1000. In Figure 2,
we use the name GPU Energy Attack, GPU Time Attacker
and White-box Attacker to represent these different attacks.
In addition, we report measurements of every iteration
of the GA for these different attackers on GPU Energy,
GPU Time and ASIC Energy respectively. In Figure 2,
the legends represent attackers with different measurement
proxies; and we show that these interactive Black-box
attacks are transferable across hardware platforms and
measurement proxies. For instance, an attack targeting
GPU Time transfers well when used to increase the energy
cost of the ASIC simulator.

It can be seen that although the attackers have no
knowledge of any neural network internals or datasets, they
are able to successfully increase the energy and time costs.
The experiment further highlights the difference between
using time and energy as fitness functions. While time is
noisy and depends on the current state of the hardware,
energy remains relatively stable during the attack. As was
explained previously, that can be attributed to the hardware
switching its performance modes to keep the ratio of useful
work to energy constant.

5.4. Blind Black-box Sponge Examples and Hard-
ware Transferability

In this section, we turn to the question of transfer-
ability across hardware and different models in a blind
Black-box manner. As we’ve described in Section 4.1, in
the blind Black-box setup the attacker blindly transfers
the previously discovered sponge examples to the target.
Table 2 shows the results across different models, tasks
and hardware platforms. The first column is the source
task that we used to produce sponge examples. We then
later launch these sponge examples to the target tasks
shown in the second column. We report the performance

5. Interestingly, we observe a net energy increase for the task if
throttling happens. Although throttling decreases the running frequency
and the voltage, it significantly increases the execution time so that the
overall energy consumption has increased.

of both sponge and natural examples on the targeting task
in Table 2. Since the ASIC simulator is coarse-grained, it
does not produce faithful execution time estimation, we
thus only report the estimated energy cost. In general, in
Table 2, we observe a significant increase in energy and
time in comparison to natural samples on all hardware
platforms. However, the blind Black-box attacks fail to
achieve the same level of energy or latency degradation
when taking the White-box case as a baseline.

5.5. A Case Study: Microsoft Azure Translation

We evaluated sponge attack performance against an
actually deployed service that is available on demand. We
present a Black-box attack against this production system
without any assumptions about its internals. As with the
experiment setup in Section 5.3, we interactively evolve
the pool of samples in a Black-box setting using latency as
a fitness function. Note that, in this case, observed sample
fitness is noisy as it includes communication latency. That
in turn makes it harder to perform the attack.

We used the Microsoft Azure Translation system
located on the same continent as the requesting server.
We fixed the input to be 50 characters long, with a pool
size of 500, and ran the attack for 50 epochs. We report four
different attack runs, each running immediately when the
previous attack finishes. The attacks are run sequentially,
so Azure only translates a single sample at a time. It should
be noted that we hold no assumptions about the actual
system and do not possess any information about what
architecture or dataset is used. Furthermore, we possess
no information on whether Azure employs query-caching
strategies or other optimisation techniques.

Figure 3 shows the performance of the attack as
observed by the requesting server and reported by Azure.
The server’s reported numbers are larger as they include
additional noise from communication latency. It can be
clearly seen that all four separate runs of GA were
capable of converging to samples that were consuming
considerably more time to process – up to a maximum
degradation factor of 6000×. Although we have no way
of telling the amount of energy that was consumed by
the computation, results from Section 5 suggest that the
energy consumption increase should also be in the range
of thousands. Interestingly, we find that performance varies
greatly within the pool during the attack. We suspect this
is due to Azure’s caching mechanism, where previously
performing samples get almost constant time computation
and the pool has to adapt quickly. For all individual runs,
we see an up–down pattern that we do not observe with
experiments on our own hardware. Interestingly, Azure
translator assigns high confidence scores > 0.9 to the
sponge example predictions.

Sponge examples against translators strongly resemble
Denial-of-Service (DoS) attacks observed in the wild. DoS
attacks aim to make computer systems unresponsive and
unavailable via excess connections or data requests. Instead
of overwhelming the victim’s bandwidth as in the vast
majority of DoS attacks [70], we target the application
layer. In particular, we target the most expensive parts of
the translator to get an extraordinary amplification factor
by sending specifically crafted requests. For example with
Azure and an input of length 50, we were getting translated

219



ASIC GPU CPU
From To Energy [mJ] Time [S] Energy [mJ] Time [S] Energy [mJ]

Black-box

WMT16en→de [64]

WMT14en→fr [64]
Sponge 3648.219 0.174 17251.000 1.048 51512.966
Natural 1450.403 0.053 6146.550 0.537 23610.145

2.52× 3.27× 2.81× 1.95× 2.18×

WMT18en→de [65]
Sponge 2909.245 0.414 47723.500 3.199 181936.595
Natural 1507.364 0.253 27265.250 1.344 71714.201

1.93× 1.64× 1.75× 2.38× 2.54×

WMT19en→ru [66]
Sponge 3875.365 0.652 67183.100 4.409 247585.091
Natural 1654.965 0.215 25033.620 2.193 121210.376

2.34× 3.03× 2.68× 2.01× 2.04×

White-box

WMT16en→de [64] WMT16en→de [64]
Sponge 48447.093 2.414 260187.900 13.615 781758.680
Natural 1360.118 0.056 6355.620 0.520 23262.311

35.62× 42.98× 40.94× 26.20× 33.61×

TABLE 2: Energy values are reported in milli Joules and time is reported in seconds. GA was run for 100 epochs
with a pool size of 1000. More results are available in Appendix. The first column shows source task that we generate
sponge examples, and the second column shows the target task to launch these sponge examples. The performance of
the sponge examples are evaluated on three hardware platforms (ASIC, GPU and CPU).

0 10 20 30 40 50

Epoch

16000

18000

20000

22000

To
p
1
0
%

s
a
m
p
le

fi
tn
e
s
s
[m

J]

White-box Attacker

GPU Energy attacker

GPU Time attacker

(a) GPU Energy

0 10 20 30 40 50

Epoch

0.13

0.14

0.15

0.16

0.17

0.18

0.19

To
p
1
0
%

s
a
m
p
le

fi
tn
e
s
s
[s
]

White-box Attacker

GPU Energy attacker

GPU Time attacker

(b) GPU Time

0 10 20 30 40 50

Epoch

3250

3500

3750

4000

4250

4500

4750

5000

To
p
1
0
%

s
a
m
p
le

fi
tn
e
s
s
[m

J]

White-box Attacker

GPU Energy attacker

GPU Time attacker

(c) ASIC Energy

Figure 2: Black-box attack performance of sponge examples on different hardware metrics against English-to-French
translation model [65]. We show two Black-box attackers (GPU Energy and GPU Time attacker) and one White-box
attacker, all using GA as the optimisation for finding sponge examples.

responses spanning thousands of characters. This finding
bridges ML to the field of classic computer security and
suggests that decades of experience with managing service-
denial attacks can be applied here.

Ethics: Having established the similarity of Sponge
examples to DoS attacks, it is appropriate to discuss the
ethics of the experiments. First, we paid for the translation
service and used only legitimate and well-formed API calls.
For experiments and testing, we performed around 200k
queries. Second, to minimise the impact of sponge exam-
ples on Azure and CO2 production, we chose relatively
small input and pool sizes. Although the maximum input
size that Azure accepts is 10000 characters per request,
we used only 50. We expect that the impact of sponges
can be further increased by running GA with a larger
input size [71]. Third, we ran the experiment at night in
the data-center timezone, when it is easier to cool the
servers and energy costs are lower. Fourth, to minimise the
interaction of sponges between each other we executed a
single sample at a time. Finally, we followed our standard

responsible disclosure process: we notified Microsoft of
the vulnerability of their Translator to sponge examples
and shared a draft of the paper with the Microsoft Azure
team. We want to stress that sponges are not specific to
Microsoft Azure, and other ML-as-a-Service providers
will be affected by the same attack. Microsoft Azure was
chosen because of our experience with the Azure platform.
Since the discovery, in a joint effort with Microsoft, sponge
examples have been added to the MITRE attack framework
for AI security6.

5.6. Section summary

In this section, we demonstrate the effectiveness of
sponge examples in different attack setups (White-box,
Interactive Black-box and Blind Adversary). We consider
a set of state-of-the-art sequence learning models, such
as BERT [61] and RoBERTa [60]; and a wide variety

6. https://github.com/mitre/advmlthreatmatrix

220



0 10 20 30 40 50

Epoch

0

1

2

3

4

5

6

7

8

9

L
a
te
n
c
y
[s
]

GA observed latency

max(run 0)

max(run 1)

max(run 2)

max(run 3)

baseline

(a) Requesting server measured

0 10 20 30 40 50

Epoch

0

1

2

3

4

5

6

7

8

9

L
a
te
n
c
y
[s
]

Azure reported latency

max(run 0)

max(run 1)

max(run 2)

max(run 3)

baseline

(b) Azure reported

Figure 3: Maximum latency of the Microsoft Azure Translator model as is observed on the requesting server (a); reported
by Azure servers (b). Azure servers were located on the same continent as the requesting server. Natural data mean
baseline is at 1ms. We report multiple attack runs to show that the attack performs consistently with multiple restarts
and the performance is not specific to the throttling of the user account.

of tasks. The performance of sponge examples are task-
dependent and also model-dependent, however, all of the
evaluated models and tasks show significant latency and
energy increase when they are under attack. In addition,
we demonstrate the transferability of sponge examples
not only across hardware platforms but also across model
architectures. Finally, we demonstrated how sponge exam-
ples can be generated in a Black-box manner on existing
ML-as-a-service platforms, greatly increasing the response
latency.

6. Sponge Examples on Vision Models

6.1. Models and Datasets

We evaluate the sponge example attack on a range of
vision models provided in the TorchVision library. We show
the performance of ResNet-18, ResNet-50 and ResNet-101
[72], DenseNet-121, DenseNet-161, DenseNet-201 [73],
and MobileNet-V2 [74]. Networks span a range of sizes
from 3.4M parameters (MobileNet-V2) to 49M (ResNet-
101). The considered networks also have a relatively large
architectural diversity, where MobileNet-V2 is designed
to run on modern battery-powered mobile devices. All of
the networks classify a canonical computer vision task –
ImageNet-2017, since the ImageNet challenge serves as a
golden baseline in the computer vision community.

6.2. White-Box Sponge Examples

Following objectives in Section 4.2.1 and Section 4.2.2,
we can increase energy consumption by increasing ei-
ther computation dimension or data density. Although
theoretically we can provide larger images to increase
the computation dimension for computer vision networks,
very few modern networks currently deal with dynamic
input or output. Usually preprocessing normalizes variable-
sized images to a pre-defined size by either cropping or

scaling. Therefore, for computer vision models, we focus
on increasing energy and latency via data density.

Table 3 shows the performance of sponge examples on
CV models, and we focused on using White-box attacks to
maximise energy consumption. We use both the White-box
GA and White-box L-BFGS to generate sponge examples
(named sponge and sponge LBFGS in Table 3). Since the
energy consumption is lower per inference, it is challenging
to get a true measurement of energy given the interference
of the GPU’s hardware temperature control, and that energy
inspection tools lack the resolution. We then show the
ASIC Energy readings and the Energy Ratio in the first
two columns. The Energy Ratio term refers to the cost on
an ASIC with data sparsity optimisations compared to the
cost on an ASIC without any optimisations. We considered
data sparsity optimisations including compressed DRAM
accesses, zero-skipping multiplications. These optimisation
techniques are widely adopted in many proposed ASIC
accelerators [26], [49], [75], and there are now real
implementations of these techniques in hardware. We then
further look at the internals of neural networks and show
how their data density is changing with different types
of samples. We calculate the theoretical upper bounds of
data density using Interval Bound Propagation (IBP) [76].
Although originally developed for certifiable robustness, we
adopt the technique to look at internal network bounds that
only take value 0 (i.e. lower bound = upper bound = 0)
for the whole natural image range7. We also look at
data densities after the ReLU function (Post-ReLU) and
the overall densities. The results for density and energy
suggest that both attacks can successfully generate sponge
examples that are marginally more expensive in terms
of energy. To be precise, we were able to get a 1 − 3%
increase in energy consumption when compared to natural
samples. Interestingly we observe that more of the density
impact comes in the first few layers. To better understand

7. Note that we assume full floating point precision here. In practice,
emerging hardware often uses much lower quantization which will result
in a lower maximum data density.

221



Energy Density
ASIC Energy [mJ] Energy ratio Post-ReLU Overall Maximum

ImageNet

ResNet-18

Sponge LBFGS 53.359 ± 0.004 0.899 0.685 0.896

0.981
Sponge 51.816 ± 0.271 0.873 0.599 0.869
Natural 51.745 ± 0.506 0.871 0.596 0.869
Random 49.685 ± 0.008 0.837 0.480 0.834

ResNet-50

Sponge LBFGS 164.727 ± 0.062 0.863 0.619 0.885

0.998
Sponge 160.887 ± 0.609 0.843 0.562 0.868
Natural 160.573 ± 1.399 0.842 0.572 0.867
Random 155.819 ± 0.016 0.817 0.483 0.845

ResNet-101

Sponge LBFGS 258.526 ± 0.028 0.857 0.597 0.873

0.994
Sponge 254.182 ± 0.561 0.842 0.556 0.861
Natural 253.004 ± 1.345 0.839 0.545 0.857
Random 249.026 ± 0.036 0.825 0.507 0.846

DenseNet-121

Sponge LBFGS 152.595 ± 0.050 0.783 0.571 0.826

0.829
Sponge 149.564 ± 0.502 0.767 0.540 0.814
Natural 147.247 ± 1.199 0.755 0.523 0.804
Random 144.366 ± 0.036 0.741 0.487 0.792

DenseNet-161

Sponge LBFGS 288.427 ± 0.087 0.726 0.435 0.764

0.811
Sponge 287.153 ± 0.575 0.723 0.429 0.761
Natural 282.296 ± 2.237 0.711 0.404 0.751
Random 279.270 ± 0.065 0.703 0.387 0.744

DenseNet-201

Sponge LBFGS 237.745 ± 0.156 0.756 0.505 0.788

0.863
Sponge 239.845 ± 0.522 0.763 0.519 0.794
Natural 234.886 ± 1.708 0.747 0.487 0.781
Random 233.699 ± 0.098 0.743 0.479 0.777

MobileNet v2

Sponge LBFGS 87.511 ± 0.011 0.844 0.692 0.890

0.996
Sponge 84.513 ± 0.386 0.815 0.645 0.868
Natural 85.077 ± 0.683 0.821 0.646 0.873
Random 80.807 ± 0.022 0.779 0.567 0.844

TABLE 3: We report the performance of two White-box attacks, Sponge and Sponge LBFGS against a number of
computer vision benchmarks. They are optimised using the the GA and LBFGS respectively for finding sponge examples.
We show the energy readings from the ASIC simulator and the Energy ratio. The Energy ratio is a ratio between the
estimated energy of an ASIC optimised for sparse matrix multiplication and an ASIC without such optimisations. To
further illustrate the internals of neural networks, we show data densities that are post-ReLU, across the entire neural
network, and also the maximum possible density calculated using interval bound propagation (IBP). Details are described
in Section 6.2.

the difference in performance please refer to Section D
in Appendix. We show a statistical analysis across a
wide range of CV models and describe the difficulties
of precisely showing performance on CPUs and GPUs in
Section D.

For computer vision models, we also find that different
architectures will have similar class-wise computation
densities and sponge examples can increase densities across
model architectures.

6.3. Transferability of Attacks

We observe that sponge examples are transferable and
can be used to launch a blind Black-box attack. Figure 4
shows the density difference of transferred sponge samples.
For all networks but one (MobileNet), the sponge samples
increased the internal data density despite not having
any knowledge of what natural samples look like or any

architectural and parameter information of the targeted
neural networks. All of the sponge samples outperformed
random noise, suggesting that sponge samples target
specific features of the data set and can be applied in
a blind Black-box fashion.

6.4. Class-Wise Natural Data Density

Figure 5 shows the densities of natural samples from
the ImageNet dataset. On the horizontal axis, we show the
1000 classes of ImageNet and the vertical axis displays
the run-time data densities for samples in that class. It can
be clearly seen that there are per-class similarities between
data densities of natural samples. These are particularly
pronounced within ResNet and DenseNet architectures
hinting that similar architectures will learn similar features
so that samples of the same class have similar run-time
densities across architectures. Finally, Figure 5.c shows

222



res
ne

t18

res
ne

t50

res
ne

t10
1

de
nse

ne
t12

1

de
nse

ne
t16

1

de
nse

ne
t20

1

go
og

len
et

mob
ilen

et_
v2

To

resnet18

resnet50

resnet101

densenet121

densenet161

densenet201

googlenet

mobilenet_v2

F
ro
m

0.02 0.01 0.01 0.02 0.01 0.01 -0.00 -0.01

0.01 0.01 0.00 0.01 0.01 0.01 -0.00 -0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.00 -0.01

0.01 0.00 0.00 0.02 0.01 0.02 -0.00 -0.01

0.01 0.00 0.00 0.01 0.01 0.01 -0.00 -0.01

0.00 0.00 0.00 0.01 0.01 0.00 0.00 -0.01

0.01 0.00 0.00 0.01 0.01 0.01 0.00 -0.01

-0.01 -0.01 -0.00 0.00 0.00 0.01 -0.01 0.02

Transferability of Sponge LBFGSB attacks

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

(a) Sponge density - Normal density

res
ne
t18

res
ne
t50

res
ne
t10

1

de
nse

ne
t12

1

de
nse

ne
t16

1

de
nse

ne
t20

1

go
og
len

et

mob
ilen

et_
v2

To

resnet18

resnet50

resnet101

densenet121

densenet161

densenet201

googlenet

mobilenet_v2

F
ro
m

0.06 0.04 0.02 0.03 0.03 0.02 0.01 0.02

0.05 0.04 0.02 0.03 0.02 0.02 0.01 0.02

0.05 0.03 0.03 0.03 0.02 0.02 0.01 0.02

0.05 0.03 0.02 0.03 0.02 0.02 0.01 0.02

0.05 0.03 0.02 0.03 0.02 0.02 0.01 0.02

0.04 0.03 0.02 0.03 0.02 0.01 0.01 0.02

0.05 0.03 0.02 0.03 0.02 0.02 0.01 0.02

0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.05

Transferability of Sponge LBFGSB attacks

0.01

0.02

0.03

0.04

0.05

0.06

(b) Sponge density - Random density

Figure 4: Transferability of sponge examples across different computer vision benchmarks.

0.86

0.88

resnet50

0.85

0.86

resnet101

0 200 400 600 800 1000

0.86

0.88

resnet18

(a) ResNet family

0.80

0.81

densenet121

0.74

0.75

0.76

densenet161

0 200 400 600 800 1000

0.77

0.78

densenet201

(b) DenseNet family

0.87

0.88
mobilenet

0.94

0.95

googlenet

0 200 400 600 800 1000

4.90

4.95

all summed

(c) Other networks

Figure 5: Class-wise average densities of natural samples from the ImageNet validation dataset. Some classes are a lot
more densely represented internally than others. X-axis shows the class numbers, whereas Y-axis shows densities.

the summed per-class densities across all of the tested
networks. There are classes that are consistently more
dense than others. This test is helping us to summarise that,
in computer vision tasks, there exist natural samples that
are producing more computation because of the increased
data densities. This intrinsic property suggests that an
adversary may send natural samples resulting in higher
activation density to drain the energy of targeted devices.

6.5. Section summary

In this section, we report the results of sponge examples
on computer vision models. We observe that sponge
examples can successfully decrease the run-time sparsity
of CV models, thus generating marginally more energy-
consuming samples for ASICs that utilise data sparsity. The
generated hardware differences are too small to be reliably
observed on GPUs, however, we show that the GPU
energy readings are statistically different between normal
and sponge samples in Section D.1. The computation
of CNN inference is more structured and normally only
handles fixed-sized inputs. This structured computation
flow provides fewer opportunities for sponge examples,
and only hardware devices utilising fine-grained sparsity
are vulnerable to sponge attacks.

7. Discussion

7.1. Lessons from Sponge Examples

In this paper, we demonstrated novel service-denial
attacks on ML components. In their current form, our
attacks work best against NLP models, whose internal
complexity makes domain-specific optimisations necessary.
We showed that our attacks can also target hardware
optimisations, suggesting that the capable attacker will
always be capable of exploiting different optimisations
across the stack.

Our attacks will have a significant impact on how
future ML pipelines will be deployed. The integration
of different ML components can only lead to higher
complexity, which will in turn be even more vulnerable to
the sponge attacks described here. They may lead to ML
deadlocks or livelocks, of which another precursor may
be semi-trained RL agents that forever walk in circles.

The attacks presented in this paper assume that a
single sample is processed at a time. This enables simple
demonstrations but these are only a starting point. More
complex attacks could involve samples that interact with
each other. Indeed, in the world of Federated Learning,
aggregators that experience delays in presence of network

223



failure are likely to find this leads to significant increases in
overall latency. Coordinated attacks on federated systems
are a natural frontier for future research.

Our attacks also used two main optimisation strategies,
but others can be tried. In our attack on the Microsoft
Azure Translator, it appears that a caching mechanism
was making previously potent samples perform poorly in
subsequent runs, but we still managed, using a genetic
algorithm, to find powerful sponge examples.

Our attacks were used offensively in this paper, but such
examples should also be used routinely in safety testing.
Worst-case examples may also turn up by happenstance,
so it is prudent to use adversarial techniques to find them
in advance. Furthermore, our methodology can be used
to automatically discover timing side-channels and other
latent dependencies between interacting components in
both ML and traditional processing pipelines.

Finally, sponge examples show that commonly de-
ployed API rate limiting defences are not enough to
protect the availability of the underlying machine learning
system. Indeed, the attacker can use sponges to increase
consumption of the overall system per sample without
increasing the rate at which the system is queried.

7.2. Defending against Sponge Examples

Sponge examples can be found by adversaries with
limited knowledge and capabilities, making the threat
realistic. We further showed that sponge examples work
against a deployed system that is available on demand. We
now propose a simple defence to preserve the availability of
hardware accelerators in the presence of sponge examples.

In Table 1, we observe a large energy gap between
natural examples and random or sponge examples. We
propose that before deploying the model, natural examples
get profiled to measure the time or energy cost of inference.
The defender can then fix a cut-off threshold. This way,
the maximum consumption of energy per inference run
is controlled and sponge examples will simply result in
an error message. In this way, their impact on availability
can be bounded.

This will often be sufficient to deal with the case where
the threat model is battery drainage. Where the threat is
a jamming attack on real-time performance, as with the
vision system of an autonomous vehicle, the system will
need to be designed for worst-case performance, and if
need be a fallback driving mechanism should be provided.
Current draft safety standards call for a self-driving car that
becomes confused to slow to a stop in the same lane while
alerting the human driver. This may be a good example
of the appropriate response to an attack.

No single solution can tackle all of the possible
abuse cases where an attacker can introduce errors into
a machine-learning system. Depending on the setup both
defence [77], [78] and detection [79], [80] mechanisms
may be required. That problem space may be as large as
the human conflict itself. At the level of technical research,
serious work is needed to assess what impact different
hardware platforms (e.g. TPUs that do not exploit sparsity)
have on susceptibility to sponge examples. Above all, it
is vital to take a whole system view when engineering for
security or safety; to consider what threats and hazards are
realistic; and to provide appropriate defences or mitigation.

In the case of attacks that cannot be prevented, the optimal
strategy may often be attack detection.

7.3. Energy and Machine Learning

Most of the prior research on the carbon footprint of
machine learning focuses on the energy required to train
large neural network models and its contribution to carbon
emissions [17], [81], [82]. This work shows that we need
to study energy use at small scales as well as large. As
with side-channel attacks on cryptographic systems, the
fine-grained energy consumption of neural networks is a
function of the inputs. In this case, the main consequence
is not leakage of confidential information but a denial-of-
service attack.

First, sponge examples can aim to drain a device’s
batteries; the operations and memory access in inference
account for around a third of the work done during a
complete backpropagation step, but inference happens at a
much higher frequency and scale compared to training once
a model is deployed. Our research characterizes the worst-
case energy consumption of inference. This is particularly
pronounced with natural-language processing tasks, where
the worst case can take dozens of times more energy than
the average case.

Second, the sponge examples found by our attacks can
be used in a targeted way to cause an embedded system to
fall short of its performance goal. In the case of a machine-
vision system in an autonomous vehicle, this might enable
an attacker to confuse the scene understanding mechanisms
and crash the vehicle; in the case of a missile guided by
a neural network target tracker, a sponge example might
break the tracking lock. The lesson is that system engineers
must think about adversarial worst-case performance and
test it carefully.

8. Reproducibility

It should be noted that the performance of our attacks
will vary greatly across different hardware platforms and
even weather outside. When running experiments in a
Black-box setup on two servers with similar configurations
in some cases we found the energy and latency varied by
up to a factor of 10. To help reproducibility, we release
the sponge examples we found, the attack code-base we
used and the ASIC simulator8.

9. Conclusion

We introduced energy-latency attacks, which enable an
adversary to increase the latency and energy consumption
of ML systems to deny service. Our attacks use specially-
crafted sponge examples and are effective against deep neu-
ral networks in a spectrum of threat models that realistically
capture current deployments of ML – whether as a service
or on edge devices. They can be mounted by adversaries
whose access varies from total to none at all. As proof of
concept, we showed that we can slow down translation
in Microsoft Azure by a factor of several thousand. Our
work demonstrates the need for careful worst-case analysis
of the latency and energy consumption of computational
systems that use deep learning mechanisms.

8. https://github.com/iliaishacked/sponge_examples

224



Acknowledgment

We thank the reviewers for their insightful feed-
back. We want to explicitly thank Nicholas Carlini, Flo-
rian Tramèr, Adelin Travers, Varun Chandrasekaran and
Nicholas Boucher for their help and comments. This work
was supported by CIFAR (through a Canada CIFAR AI
Chair), by EPSRC, by Apple, by Bosch Forschungsstiftung
im Stifterverband, by NSERC, and by a gift from Microsoft.
We also thank the Vector Institute’s sponsors.

References

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[3] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein,
U. Saini, C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter.” LEET, vol. 8, pp. 1–9, 2008.

[4] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and
B. Li, “Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 19–35.

[5] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[6] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” arXiv
preprint arXiv:1806.01246, 2018.

[7] C. A. C. Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only
membership inference attacks,” arXiv preprint arXiv:2007.14321,
2020.

[8] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal
brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 497–514. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/hong

[9] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp.
317–331, 2018.

[10] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards
the science of security and privacy in machine learning,” arXiv
preprint arXiv:1611.03814, 2016.

[11] F. Palmieri, S. Ricciardi, U. Fiore, M. Ficco, and A. Castiglione,
“Energy-oriented denial of service attacks: an emerging menace
for large cloud infrastructures,” The Journal of Supercomputing,
vol. 71, no. 5, pp. 1620–1641, 2015.

[12] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-of-service
attacks on battery-powered mobile computers,” in Second IEEE
Annual Conference on Pervasive Computing and Communications,
2004. Proceedings of the. IEEE, 2004, pp. 309–318.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017, pp. 1–12.

[15] C. V. M. L. Team, “An on-device deep neural network for face
detection,” in Apple Machine Learning Journal, 2017.

[16] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[17] E. Strubell, A. Ganesh, and A. McCallum, “Energy and pol-
icy considerations for deep learning in nlp,” arXiv preprint
arXiv:1906.02243, 2019.

[18] A. Bernal, S. Fok, and R. Pidaparthi, “Financial market time
series prediction with recurrent neural networks,” State College:
Citeseer.[Google Scholar], 2012.

[19] M. Edel and E. Köppe, “Binarized-blstm-rnn based human activity
recognition,” in 2016 International conference on indoor positioning
and indoor navigation (IPIN). IEEE, 2016, pp. 1–7.

[20] I. Intel, “Intel architecture instruction set extensions programming
reference,” Intel Corp., Mountain View, CA, USA, Tech. Rep, pp.
319 433–030, 2016.

[21] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,”
in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2018, pp. 522–531.

[22] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,” in
2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 2018, pp. 620–629.

[23] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman et al.,
“Serving dnns in real time at datacenter scale with project brainwave,”
IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[24] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for
and evaluation of the first tensor processing unit,” IEEE Micro,
vol. 38, no. 3, pp. 10–19, 2018.

[25] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 292–308, 2019.

[26] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep
neural network,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 3, pp. 243–254, 2016.

[27] Y. Zhao, X. Gao, X. Guo, J. Liu, E. Wang, R. Mullins, P. Y.
Cheung, G. Constantinides, and C.-Z. Xu, “Automatic generation
of multi-precision multi-arithmetic cnn accelerators for fpgas,” in
2019 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2019, pp. 45–53.

[28] L. A. Barroso, “The price of performance,” Queue, vol. 3, no. 7,
pp. 48–53, 2005.

[29] C. Li, Z. Wang, X. Hou, H. Chen, X. Liang, and M. Guo,
“Power attack defense: Securing battery-backed data centers,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 493–505,
2016.

[30] G. Somani, M. S. Gaur, D. Sanghi, and M. Conti, “Ddos attacks
in cloud computing: Collateral damage to non-targets,” Computer
Networks, vol. 109, pp. 157–171, 2016.

[31] Z. Xu, H. Wang, Z. Xu, and X. Wang, “Power attack: An increasing
threat to data centers.” in NDSS, 2014.

[32] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 929–944.

[33] U. Fiore, F. Palmieri, A. Castiglione, V. Loia, and A. De Santis,
“Multimedia-based battery drain attacks for android devices,” in 2014
IEEE 11th Consumer Communications and Networking Conference
(CCNC). IEEE, 2014, pp. 145–150.

[34] A. Tang, S. Sethumadhavan, and S. Stolfo, “{CLKSCREW}:
exposing the perils of security-oblivious energy management,” in
26th {USENIX} Security Symposium ({USENIX} Security 17),
2017, pp. 1057–1074.

[35] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network
security: a survey,” IEEE Communications Surveys & Tutorials,
vol. 11, no. 2, pp. 52–73, 2009.

225



[36] D. Anderson, J. Dykes, and E. Riedel, “More than an interface-scsi
vs. ata.”

[37] R. Efraim, R. Ginosar, C. Weiser, and A. Mendelson, “Energy
aware race to halt: A down to earth approach for platform energy
management,” IEEE Computer Architecture Letters, vol. 13, no. 1,
pp. 25–28, 2014.

[38] E. Tabassi, K. J. Burns, M. Hadjimichael, A. D. Molina-Markham,
and J. T. Sexton, “A taxonomy and terminology of adversarial
machine learning.”

[39] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia conference on computer
and communications security, 2017, pp. 506–519.

[40] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo:
Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models,” in Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, 2017,
pp. 15–26.

[41] M. Nieles, K. Dempsey, and V. Pillitteri, “An introduction to infor-
mation security,” National Institute of Standards and Technology,
Tech. Rep., 2017.

[42] P. Ferguson and D. Senie, “rfc2827: network ingress filtering:
defeating denial of service attacks which employ ip source address
spoofing,” 2000.

[43] J. Bellardo and S. Savage, “802.11 denial-of-service attacks: Real
vulnerabilities and practical solutions.” in USENIX security sympo-
sium, vol. 12. Washington DC, 2003, pp. 2–2.

[44] A. Erba, R. Taormina, S. Galelli, M. Pogliani, M. Carminati,
S. Zanero, and N. O. Tippenhauer, “Real-time evasion attacks
with physical constraints on deep learning-based anomaly detectors
in industrial control systems,” CoRR, vol. abs/1907.07487, 2019.
[Online]. Available: http://arxiv.org/abs/1907.07487

[45] M. Horowitz, “1.1 computing’s energy problem (and what we
can do about it),” in 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2014, pp. 10–14.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[48] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically composable ar-
chitecture for accelerating deep neural network,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2018, pp. 764–775.

[49] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,”
ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp.
27–40, 2017.

[50] M. Nikolić, M. Mahmoud, A. Moshovos, Y. Zhao, and R. Mullins,
“Characterizing sources of ineffectual computations in deep learning
networks,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2019, pp.
165–176.

[51] V. Kathail, “Xilinx vitis unified software platform,” in The 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2020, pp. 173–174.

[52] X. Gao, Y. Zhao, Ł. Dudziak, R. Mullins, and C.-z. Xu, “Dynamic
channel pruning: Feature boosting and suppression,” arXiv preprint
arXiv:1810.05331, 2018.

[53] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh,
“Channel gating neural networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 1886–1896.

[54] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in
Proceedings of the 2016 network and distributed systems symposium,
vol. 10, 2016.

[55] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM Journal on
scientific computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[56] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 3, pp. 13–17, 2012.

[57] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou,
“Rapl in action: Experiences in using rapl for power measurements,”
ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 3, no. 2,
Mar. 2018. [Online]. Available: https://doi.org/10.1145/3177754

[58] S. Sen, N. Imam, and C. Hsu, “Quality assessment of gpu power
profiling mechanisms,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2018, pp.
702–711.

[59] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstrations,
2019.

[60] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly op-
timized bert pretraining approach,” arXiv preprint arXiv:1907.11692,
2019.

[61] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

[62] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural
language understanding,” arXiv preprint arXiv:1804.07461, 2018.

[63] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. Bowman, “Superglue: A stickier benchmark for
general-purpose language understanding systems,” in Advances in
Neural Information Processing Systems, 2019, pp. 3261–3275.

[64] M. Ott, S. Edunov, D. Grangier, and M. Auli, “Scaling neural
machine translation,” arXiv preprint arXiv:1806.00187, 2018.

[65] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding
back-translation at scale,” arXiv preprint arXiv:1808.09381, 2018.

[66] N. Ng, K. Yee, A. Baevski, M. Ott, M. Auli, and S. Edunov,
“Facebook fair’s WMT19 news translation task submission,”
CoRR, vol. abs/1907.06616, 2019. [Online]. Available: http:
//arxiv.org/abs/1907.06616

[67] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens et al.,
“Moses: Open source toolkit for statistical machine translation,”
in Proceedings of the 45th annual meeting of the association for
computational linguistics companion volume proceedings of the
demo and poster sessions, 2007, pp. 177–180.

[68] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909,
2015. [Online]. Available: http://arxiv.org/abs/1508.07909

[69] N. Ng, K. Yee, A. Baevski, M. Ott, M. Auli, and S. Edunov,
“Facebook fair’s wmt19 news translation task submission,” arXiv
preprint arXiv:1907.06616, 2019.

[70] R. Barnett, “The dark side of apis: Denial of service
attacks.” [Online]. Available: https://blogs.akamai.com/sitr/2018/08/
the-dark-side-of-apis-denial-of-service-attacks.html

[71] M. Azure, “Request limits for translator.” [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/cognitive-services/
translator/request-limits

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[73] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[74] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 4510–4520.

226



0 10 20 30 40 50

Epoch

0.4

0.6

0.8

1.0

1.2

E
n
e
rg
y
A
S
IC
o
f
to
p
1
0
%

o
f
s
a
m
p
le
s
[p
J]

1e12 GA convergence for WSC task with different pool sizes

Pool 100

Pool 300

Pool 500

Pool 700

Pool 900

Figure 6: GA performance with WSC task from GLUE
Benchmark running on GPUs. Words of size 29 are
evaluated with pool sizes of 100, 300, 500, 700 and 900.

[75] D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware
hardware architecture of convolutional neural network,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1462–1467.

[76] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “On the effectiveness of
interval bound propagation for training verifiably robust models,”
arXiv preprint arXiv:1810.12715, 2018.

[77] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” International Conference on
Learning Representations (ICLR), 2015.

[78] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free:
Revisiting adversarial training,” 2020.

[79] S. Chen, N. Carlini, and D. Wagner, “Stateful detection of
black-box adversarial attacks,” in Proceedings of the 1st ACM
Workshop on Security and Privacy on Artificial Intelligence,
ser. SPAI ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 30–39. [Online]. Available:
https://doi.org/10.1145/3385003.3410925

[80] I. Shumailov, Y. Zhao, R. Mullins, and R. Anderson, “Towards
certifiable adversarial sample detection,” in Proceedings of the
13th ACM Workshop on Artificial Intelligence and Security, ser.
AISec’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 13–24. [Online]. Available: https://doi.org/10.
1145/3411508.3421381

[81] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky,
and J. Pineau, “Towards the systematic reporting of the en-
ergy and carbon footprints of machine learning,” arXiv preprint
arXiv:2002.05651, 2020.

[82] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quanti-
fying the carbon emissions of machine learning,” arXiv preprint
arXiv:1910.09700, 2019.

[83] B. Goel, S. A. McKee, and M. Själander, “Techniques to measure,
model, and manage power,” in Advances in Computers. Elsevier,
2012, vol. 87, pp. 7–54.

[84] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Es-
timation of energy consumption in machine learning,” Journal of
Parallel and Distributed Computing, vol. 134, pp. 75–88, 2019.

[85] J. A. Butts and G. S. Sohi, “A static power model for architects,”
in Proceedings 33rd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-33 2000. IEEE, 2000, pp. 191–201.

Algorithm 2: Sponge samples through a Genetic
Algorithm

Result: S
initialise a random pool of inputs;

1 S = {S0, S1, ..., Sn};
2 while i < K do

Profile the inputs to get fitness scores; ⇒
latency or energy

3 P = Fitness(S);
Pick top performing samples;

4 Ŝ = Select(P , S);
5 if NLP then
6 S = MutateNLP(Ŝ);

Concatenate samples A, B;
⇒ S = LeftHalf(A) + RightHalf(B);
⇒ S = RandomlyMutate(S);

7 end
8 if CV then
9 S = MutateCV(Ŝ);

Concatenate samples A, B, and a random
mask;

⇒ A ∗mask + (1−mask) ∗B;
10 end
11 end
12 ;

Appendix A.
Parameter Choices

We have thoroughly evaluated different parameter
choices for the sponge attack and found that a small pool
size and a relatively short number of GA iterations should
be sufficient for a large number of tasks.

Figure 6 shows the performance of sponge samples on
the RoBERTa model for the Winograd Schema Challenge
(WSC) with different pool sizes and varying input sequence
length. The horizontal axis shows the number of GA
iterations. In terms of pool size of the GA, although there
is an increase in performance for larger pool sizes, the
increase is marginal. Also, smaller pool sizes significantly
reduce the runtime for the attack. From the hardware
perspective, using a large pool size might trigger GPUs
to throttle, so that the runtime will be further increased.
We observed that the convergence is consistently faster
for smaller input sequences. This is mainly because the
complexity of the search is less. In practice, we found
almost all input sequence lengths we tested plateau within
100 GA iterations; even going to over 1000 iterations gives
only a small increase in performance. For these reasons, for
the experiments presented below, we report the results of
the attack with a pool size of 1000 for GLUE and Computer
Vision benchmarks and 1000 for translation tasks. We
use 1000 GA iterations for all benchmarks tested. When
displaying results, we normally use sponge for sponge
examples produced using the GA and use sponge L-BFGS
to identify sponge examples generated using L-BFGS.

227



Appendix B.
Energy Cost Factors

Energy cost is a combination of static and dynamic
energy.

E = (Pstatic + Pdynamic)× t

Static power refers to the consumption of the circuitry
in an idle state [83] there are multiple models to es-
timate this depending on the technology [83]–[85]. In
this paper, we follow a coarse-grained approach. Cycle-
accurate hardware simulation incurs a large run-time, but a
coarse-grained energy simulator provides enough resolution
to indicate the energy-consuming samples while using
significantly less time per round of simulation.

Pstatic =
∑

Ileakage × Vcore =
∑

Is × (e
qVd
kT − 1)×Vcore

(3)
where Is is the reverse saturation current; Vd is the

diode voltage; k is Boltzmann’s constant; q is the electronic
charge; T is temperature and Vcore is the supply voltage.

Dynamic power refers to consumption from charging
and discharging the circuitry [84].

Pdynamic = α× C × V 2
core × f (4)

Here, α refers to the activity factor i.e. components that
are currently consuming power; Vd is the source voltage;
C is the capacitance; f is the clock frequency. Ultimately
an attacker attempts to solve an optimisation problem

maxE, where E =
(
[
∑

Is × (

︷ ︸︸ ︷
e

qVd
kT −1

overheat or increase overall consumption

)× Vcore]

+[ α︸︷︷︸
more activity of the board

×C × V 2
core ×

throttle or exploit load predictor︷︸︸︷
f ]

)× t︸︷︷︸
run for longer or exploit the predictor

.

(5)

For all parameters considered in the equation, only
four can be manipulated by the adversary described in Sec-
tion 4.1: T , α, f and t. Of these, frequency and temperature
cannot be controlled directly, but are affected through
optimisations performed by the computing hardware. As
we assume a single GPU, CPU or ASIC, we focus on the
activity ratio α, the time t and the switching power from
flipping the state of transistors. The execution time t and
activity ratio α link tightly to the number of operations and
memory accesses performed. In the temporal dimension,
attackers might trigger unnecessary passes of a compute-
intensive block; in the spatial domain, attackers can turn
sparse operations into dense ones. These temporal and
spatial attack opportunities can significantly increase the
number of memory and arithmetic operations and thus
create an increase in α and t to maximise energy usage.

Appendix C.
Domain Specific Optimisations

In Section 4.4 we outlined the genetic algorithm we
used to find sponge samples. That approach is generic. Here

we describe how we can improve the effectiveness of the
genetic algorithm through domain-specific optimisations.

First, for NLP tasks, the greatest impact on performance
was acquired from exploiting the encoding schemes used.
While the genetic algorithm was fast to pick up this
vulnerability, it struggled with efficiency around the mid-
point, where the parents were concatenated. For example,
when trying to break down individual sub-words to more
tokens, we observed the GA inserting backslashes into
the samples. When concatenated, we saw cases where
two non-backslashes followed each other, meaning the
GA was losing on a couple of characters. As a solution,
we probabilistically flipped the halves and saw a slight
improvement.

For CV tasks, we observed that random samples
were always classified as belonging to the same class.
Furthermore, random samples had very low internal density.
We hypothesize that this has to do with the fact that
on random samples there are very few class features, as
opposed to what is observed in natural samples. As the
GA improvement largely depends on randomness, that
meant that we often observed that after merging two highly
dense parents, uniform randomness across all pixels was
decreasing sparsity to the level of random samples. In other
words, uniform randomness was diluting class features. To
counter this phenomenon, instead of applying uniform
randomness across all pixel values, we resorted to diluting
only 1% of them. That led to a bigger improvement in
the whole population pool. Furthermore, after observing
that the density is class-dependent, it became apparent that
to preserve diversity in the pool it was important to keep
samples from multiple classes. For this, we tried to ensure
that at least 20 different classes were preserved in the pool.

We attempted to use domain knowledge and tried
adding operations like rotation, transposition and re-scaling
into the mutation process, yet we found that these did not
lead to significant improvements.

Appendix D.
Understanding Sponges and Their Perfor-
mance

To better understand the results, we present Figure 7
which shows per-class density distributions of natural,
random and sponge samples. There are 50,000 random and
natural samples respectively and 1,000 sponge samples,
with the bars normalised to form a probability density.

The first thing that becomes apparent is that randomly
generated samples on CV models cost significantly less
energy because many activations are not on. On average,
random samples result in a sparser computation – around
4% more sparse for ResNet18 – and our simulator costs for
natural samples are around 4−7% higher than the costs of
random samples. Second, a surprising finding is that the
most and least sparse samples are clustered in a handful of
classes. In other words, certain classes have inputs that are
more expensive than others in terms of energy. For ResNet-
18, the most sparse classes are ‘wing’ and ‘spotlight’ while
the least sparse are ‘greenhouse’ and ‘howler monkey’.
We observe a similar effect for larger ResNet variants
and also DenseNets, although the energy gap is smaller
on DenseNets. Interestingly, we see that energy-expensive

228



0.82 0.84 0.86 0.88 0.90 0.92

Mean per-class resnet18 density

0

200

400

600

800

1000
Natural

Random

Sponge samples

0.72 0.73 0.74 0.75 0.76 0.77 0.78

Mean per-class densenet161 density

0

200

400

600

800

1000

1200

1400

1600 Natural

Random

Sponge samples

Figure 7: Per-class mean density of samples evaluated on ResNet18 and DenseNet161. The natural samples are from the
validation set and are compared to 50 000 randomly generated samples and 1000 Sponge GA samples. The scales are
normalised to form a probability density.

classes are consistent across different architectures, and
we further demonstrate this class-wise transferability in
Section 6.4. Ultimately, this phenomenon implies that it is
possible to burn energy or slow a system without much
preparation, by simply bombarding the model with natural
samples from energy-consuming classes. Finally, we see
that the sponge samples are improving the population
performance and tend to outperform natural sample. We
observe that it is easier for sponge to outperform all natural
samples for DensNets of different size, yet it struggles
to outperform all of the ResNets. We further measure the
energy performance statistically in Section D.1.

D.1. Measuring Difficulties and Statistical Analy-
sis

Although we have presented in Section 6.2 that sponge
attacks cause ASIC energy consumption to rise for com-
puter vision tasks, it is still unclear what this translates to
real life.

If one were to directly measure the CPU or GPU
load per adversarial sample, interpreting it would be
hard, especially when one talks about the energy cost
improvements in the order of around 5% for ResNet18
and 3% as for DenseNet101. As is mentioned in Section 4.3
the main energy costs include the frequency of switching
activities, voltage and clock frequency. Due to the heat
impact from voltage and clock frequency, a large number
of different optimisations are deployed by the hardware.
Here, the optimisations try to balance multiple objectives
– they try to be as performant as they can, whilst being as
energy efficient as possible and also maintain reliability.
Modern CPUs and GPUs have several performance modes
between which the hardware can switch. For example, of-
ficial Nvidia documentation lists 15 different performance
modes.

Figure 8 shows measurements taken during the sponge
GA attack running against ResNet-18. The x-axis shows
the number of epochs, with each epoch the internal density
is increasing from 0.75% to 0.8%. In (a), the right y-axis
shows mean energy readings per sample, whereas left y-

axis shows mean power readings per-sample. In (b) the
left y-axis shows mean latency values per-sample.

The amount of power consumed is strongly correlated
to the amount of time taken by each sample. When the GPU
speeds up, it consumes more energy but requires less time,
but the rise in temperature causes the hardware then to go
to a more conservative mode to cool down. We observe this
heating and cooling cycle with all tasks running on GPUs,
making it hard to measure the absolute performance and the
attack impact. We can however measure the performance
statistically. First, we turn to a question of

Can we detect energy differences between Natural,
Random and Sponge samples?

To investigate the relationship between the samples we
use Mann-Whitney-Wilcoxon U test (U-test), a nonparamet-
ric test for the difference between distributions. With three
classes of samples, we need three pairwise comparisons.
For each one, the null hypothesis that the distributions
of energy consumed by the samples are identical. The
complement hypothesis is that of a difference between
distributions.

The U-test is based on three main assumptions:

• Independence between samples;
• The dependent variable is at least ordinal;
• The samples are random.

The first assumption is fulfilled since no sample belongs
to more than one category i.e. natural, random and sponge.
The second assumption is satisfied by the fact that both time
and energy are cardinal variables. The third assumption,
however, is harder to satisfy.

The cause of this lies in the closed nature of hardware
optimisations: although some of the techniques are known,
the exact parameters are unknown. Furthermore, it is
hard to achieve the same state of the hardware even
through power cycling. As was mentioned in Section 4.3
temperature affects energy directly, and it is hard to make
sure that the hardware always comes back to the same
state.

To minimise temperature effects we apply the load
of natural, attack and random samples and wait until the

229



0 20 40 60 80 100

Epoch

7400

7600

7800

8000

8200
M
e
a
n
E
n
e
rg
y
[p
ic
o
jo
u
le
s
]

112000

113000

114000

115000

116000

117000

P
o
w
e
r
[m

il
li
w
a
tt
s
]

Mean Energy [picojoules]

Power [milliwatts]

(a) Energy vs Power

0 20 40 60 80 100

Epoch

7400

7600

7800

8000

8200

M
e
a
n
E
n
e
rg
y
[p
ic
o
jo
u
le
s
]

0.062

0.064

0.066

0.068

0.070

M
e
a
n
T
im

e
[s
e
c
o
n
d
s
]

Mean Energy [picojoules]

Mean Time [seconds]

(b) Energy vs Time

Figure 8: ResNet-18 solving ImageNet-2017 without any rate limiting with increasing internal density.

0 100 200 300 400 500

Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

P
-v
a
lu
e

Natural < Sponge

Random < Sponge

(a) First 5000 samples discarded

0 100 200 300 400 500

Number of observations

0.0

0.2

0.4

0.6

0.8

1.0

P
-v
a
lu
e

Natural < Sponge

Random < Sponge

(b) First 30000 samples discarded

Figure 9: Mann-Whitney test on CPU measured Mobilenet execution. Number of observations is shown on x-axis and
p-value on the y-axis.

temperature stabilises. That takes approximately 30000
samples. The order of the samples is random, and at this
point, it can be assumed that all of the data and instruction
caches are filled. Finally, because the samples are randomly
shuffled, all of the predictive optimisations will work with
the same probability for each of the classes.

For these reasons, we believe it is safe to assume
that the samples themselves are random in that the effect
of hardware optimisations is random so that the last
assumption of the Mann-Whitney test is fulfilled.

Using this test we can do a pairwise comparison of the
natural, random and sponge samples. The test indicates that
the three types of samples generate energy consumption
distributions that are statistically different (one-sided test,
p-value=0.000) for mobilenet executed on a CPU. On a
practical level, the amount of energy consumed by sponge
samples is 1.5% higher on a CPU and >7% on ASIC. We
could not evaluate the energy recordings on a GPU, as the
standard deviation was over 15% which becomes worse
as temperature increases. Figure 9 shows the confidence

of the Mann-Whitney test with mobilenet measured on
the CPU as a function of the number of observations. The
number of observations is on the x-axis, and the p-value on
the y-axis. As can be seen, in a stable environment i.e. the
temperature has stabilised, after about 100 observations per
class, the differences become statistically significant at any
reasonable confidence level. A similar trend is observed
for unstable temperature environment, but around three
times more data is required. That means that in practice,
about 100–300 observations per class are sufficient to
differentiate between classes with high confidence.

Appendix E.
Energy–Time Relationship of Sponge Exam-
ples

230



GPU Energy [mJ] GPU Time [mS]
Input size Natural Sponge Natural Sponge Time × / Energy ×

SuperGLUE Benchmark with [60]

CoLA
15 1.00× 1.11× 1.00× 0.92× 1.21
30 1.00× 1.28× 1.00× 0.82× 1.56
50 1.00× 2.06× 1.00× 1.27× 1.62

MNLI
15 1.00× 1.12× 1.00× 0.95× 1.26
30 1.00× 1.51× 1.00× 1.03× 1.46
50 1.00× 2.16× 1.00× 1.30× 1.66

WSC
15 1.00× 8.89× 1.00× 5.51× 1.61
30 1.00× 16.13× 1.00× 11.04× 1.46
50 1.00× 26.64× 1.00× 20.56× 1.29

WMT14/16 with [64]

En→Fr 15 1.00× 4.32× 1.00× 3.89× 1.11
En→De 15 1.00× 27.84× 1.00× 24.18× 1.15

WMT18 with [65]

En→De 15 1.00× 30.81× 1.00× 26.49× 1.16

WMT19 with [69]

En→Ru 15 1.00× 26.43× 1.00× 22.85× 1.15

TABLE 4: We use the White-box GA attack to produce sponge examples and measure the performance on different
platforms and calculate how energy improvement factor relates to time improvement factor. The GPU readings are from
NVML. GA was ran for 1000 epochs with a pool size of 1000. A detailed explanation of the results is in Section 5.2.

ASIC Energy [mJ]
Input size Natural Random Sponge

SuperGLUE Benchmark with [60]

CoLA
15 504.93± 1.07 566.58± 2.74 583.56± 0.00
30 508.73± 1.87 634.24± 4.06 669.20± 0.00
50 511.43± 3.64 724.48± 5.12 780.57± 0.59

MNLI
15 509.19± 1.45 570.10± 2.82 586.43± 0.00
30 514.00± 2.07 638.78± 3.89 672.07± 0.00
50 519.51± 2.79 728.82± 5.26 783.18± 0.75

WSC
15 510.84± 8.84 1008.59± 192.22 2454.89± 68.06
30 573.78± 140.12 2319.05± 502.31 5012.75± 154.24
50 716.96± 223.75 5093.42± 1020.34 10192.41± 347.32

WMT14/16 with [64]

En→Fr 15 1793.84± 356.29 4961.56± 1320.84 8494.36± 166.22

En→De 15 1571.59± 301.69 2476.18± 1586.95 48446.29± 0.06

WMT18 with [65]

En→De 15 1624.05± 352.99 2318.50± 296.09 49617.68± 0.02

WMT19 with [69]

En→Ru 15 1897.19± 607.30 5380.20± 2219.24 47931.11± 0.00

TABLE 5: We use the White-box GA attack to produce sponge examples and measure the consistency of ASIC results.
GA was ran for 1000 epochs with a pool size of 1000. A detailed explanation of the results is in Section 5.2.

231


		2022-08-24T17:33:52-0400
	Preflight Ticket Signature




