
Remote Non-Intrusive Malware Detection for PLCs
based on Chain of Trust Rooted in Hardware
Prashant Hari Narayan Rajput†, Esha Sarkar†, Dimitrios Tychalas†, Michail Maniatakos∗

†NYU Tandon School of Engineering, ∗New York University Abu Dhabi
{prashanthrajput, esha.sarkar, dimitris.tychalas, mihalis.maniatakos}@nyu.edu

Abstract—Digitization has been rapidly integrated with man-
ufacturing industries and critical infrastructure to increase
efficiency, productivity, and reduce wastefulness, a transition
being labeled as Industry 4.0. However, this expansion, coupled
with the poor cybersecurity posture of these Industrial Internet
of Things (IIoT) devices, has made them prolific targets for
exploitation. Moreover, modern Programmable Logic Controllers
(PLC) used in the Operational Technology (OT) sector are
adopting open-source operating systems such as Linux instead of
proprietary software, making such devices susceptible to Linux-
based malware. Traditional malware detection approaches cannot
be applied directly or extended to such environments due to
the unique restrictions of these PLC devices, such as limited
computational power and real-time requirements. In this paper,
we propose ORRIS, a novel lightweight and out-of-the-device
framework that detects malware at both kernel and user-level by
processing the information collected using the Joint Test Action
Group (JTAG) interface. We evaluate ORRIS against in-the-
wild Linux malware achieving maximum detection accuracy of
≈99.7% with very few false-positive occurrences, a result com-
parable to the state-of-the-art commercial products. Moreover,
we also develop and demonstrate a real-time implementation of
ORRIS for commercial PLCs.

Index Terms—Rootkit, Malware Detection, Hardware Perfor-
mance Counters, Hardware Root-of-Trust, JTAG

I. INTRODUCTION

In the last few years, industries from various facets of

manufacturing, such as the automotive sector, machinery, and

aeronautics, as well as critical infrastructures, like desalination

plants and smart grid facilities, have been steadily adopting

Industrial Internet of Things (IIoT) devices to facilitate their

Operational Technology (OT) sector. This rapid digitization

results from the robust integration of Cyber-Physical Systems

(CPS) and IIoT, dubbed as Industry 4.0. It is a current trend

of automation and data exchange in the OT sector to increase

productivity and reduce cost by using predictive maintenance

scheduling, establishing the foundations of a smart factory [1].

This trend of embracing digitization has grown from 33% in

2016 to about 72% of manufacturers in 2020 [2].

Furthermore, the Industrial Control Systems (ICS) market

is estimated to grow from $13.2 billion in 2019 to $18.053
billion by 2024 [3]. The growth of ICS combined with the

hasty adoption of IIoT devices has brought along with itself

all of its associated vulnerabilities to the OT sector, making it a

lucrative target for adversaries [4]. A 2019 survey conducted

by Ponemon Institution on 701 OT organizations concluded

that 90% of the respondents experienced at least one damaging

cyberattack, and 62% of them experienced two or more [5].

ICS has also been a target of cyberattacks in the past. For

instance, consider the 2008 attack on oil pipelines. The adver-

saries compromised Programmable Logic Controllers (PLCs)

at valve stations to increase its pressure, culminating in an

explosion. This attack resulted in a spill of over 30,000
barrels of oil, costing British Petroleum $5 million a day in

transit tariffs [6]. Alternatively, the infamous Stuxnet attack

of 2010, which reprogrammed PLCs to modify the operation

of the centrifuges for tearing themselves apart [7]. Due to

the increase in frequency and scale of such cyberattacks,

worldwide expenditure on cybersecurity is forecasted to reach

$133.7 billion by 2022 [8].

These cybersecurity incidents follow a typical pattern com-

mencing with a reconnaissance phase to identify an entry

point, resulting in malware delivery and followed by a pay-

load launch that exploits uncovered vulnerabilities for remote

access [9]. After this, the adversary can perform privilege

escalation, create backdoors to maintain persistent access,

modify the system for hiding their presence and exfiltrate

information from the compromised system. Modern malware,

such as Stuxnet, comprises various components, including

worms, trojans, ransomware, and rootkits. A rootkit is the

primary enabler of malware installed by an adversary to

maintain continued and privileged access to the system while

concealing its presence. Rootkits can be broadly divided, based

on the privilege level they compromise, into user-level and

kernel-level. Rootkits are a select type of malware designed

to be stealthy and must be handled separately.

While malware detection techniques have been studied

extensively in literature [10], [11], [12], this research re-

mains dormant in the context of PLCs, which brings with

itself a unique set of restrictions limiting the use of tradi-

tional solutions. In general, PLCs have less computing power

when compared to general-purpose computers. Consider an

industrial automation PFC200 controller from WAGO, which

encompasses a mere 256 MB of main memory and a 600
MHz Cortex A8 CPU [13]. Furthermore, these PLCs adhere to

strict real-time requirements while controlling critical physical

processes, unable to support the overhead of conventional

malware detection methods. The operating system (OS) on

these PLC devices rarely gets updated and often contains

vulnerabilities that are patched in later versions; WAGO still

uses Linux kernel 3.18. Moreover, the deployment of Linux in

automation controllers is also increasing due to its openness

and versatility, evident by its adoption in devices such as

369

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Prashant Hari Narayan Rajput. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00033

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
33

Opto 22 EPIC edge programmable industrial controller, PAC-

Systems Rx3i CPL400, Wind River devices, etc. [14]. These

constraints on Linux-based PLCs require a specialized solution

towards malware detection, yet to be discussed extensively in

the literature.

Driven by the unique restrictions put forth by PLCs and

a lack of specialized malware detection solutions, we present

ORRIS, a framework for protecting against rootkits and mal-

ware. Here, static analysis utilizes data from the binary of

the rootkit and integrity verification of critical data structures.

On the other hand, the behavior-based approach uses semantic

and microarchitectural information. ORRIS uses the Joint Test

Action Group (JTAG) to collect relevant data from Linux-

based PLCs. The use of JTAG facilitates the implementation

of ORRIS outside the protected PLC, making the framework

more resilient towards tampering attempts by an adversary

while not influencing its real-time requirements. Moreover, the

use of JTAG establishes a chain of trust rooted in hardware

and ensures elevated trust in our framework. For ORRIS to

be applicable, JTAG should be accessible (i.e., not locked by

the manufacturer). In summary, the main contributions of this

paper are:

1) A novel methodology for detecting rootkits and malware

on Linux-based PLCs using the JTAG interface as root-

of-trust. The JTAG interface enables external and non-

intrusive monitoring, allowing ORRIS not to affect the

real-time requirements of the target device. Also, hard-

ware breakpoints are added to prevent disabling JTAG

from kernel-space malware.

2) Implementation of ORRIS as a real-time malware detec-

tion service for a Linux-based PLC controlling part of a

desalination plant simulation model.

3) Analysis of the impact in the accuracy of ORRIS due to

unseen malware samples and spatial bias.

4) A new dataset of 1,150 malware samples either ported

from x86 or collected from multiple sources. We had

to develop our own dataset since there are currently no

public repositories for ARM rootkits and malware. The

dataset does not include actual PLC malware; instead,

malware ported from PC. Both ORRIS and the dataset

will be open-sourced.

II. PRELIMINARIES

A. Rootkits

Malware is a blanket term for malicious software such as

worms, viruses, or any harmful software. Early rootkits were

simplistic and worked solely at the user-level, manipulating

the log files [15]. More advanced rootkits, such as t0rnkit,
replaced legitimate system binaries like ls, netstat, and

ps with malicious variants with supplementary logic [16],

and were easily detected by tools such as Chkrootkit [17].

Kernel-level rootkits. These operate in the kernel space

(Ring 0) and modify the kernel text section to alter regular

execution flow. These rootkits are injected into the kernel

as Loadable Kernel Modules (LKM), which facilitates

on-the-fly soft kernel modifications. It is important to

implement kernel-level rootkits as LKM to gain writing

privileges into the kernel text section. Such a modification

in the syscall table is named system call hooking. An

example is Diamorphine, a kernel-level rootkit which

hooks to sys_getdents, sys_getdents64 and

sys_kill system calls. It hides directories that contain

a MAGIC PREFIX (diamorphine secret) and does not

kill the processes with the task flag of PF INVISIBLE

(0x10000000).

User-level rootkits. These operate in the user space (Ring

3) by leveraging the preloading technique for injecting

themselves between the kernel and shared libraries. File

/etc/ld.so.preload contains the absolute path of all

the shared libraries to be preloaded by the dynamic linker

before any other libraries mentioned in the relocation table

of a binary. Moreover, Linux allows multiple definitions for

symbols in shared libraries, enabling the user-level rootkit to

preload its malicious implementations before the legitimate

ones, completely modifying normal execution flow in the

userspace. An example is Umbreon, a cross-platform user-level

rootkit first detected by Trend Micro in September 2016 [18]

that preloads its definition of approximately 101 symbols,

including chown. This modification returns ENOENT (Error

NO ENTry) for any operation on the malicious files by a

legitimate user, effectively hiding it.

B. Join Test Action Group Interface
JTAG is an IEEE 1149.1 standard for debugging and testing

interconnects in printed circuit boards. It facilitates direct

communication and low-level access to the embedded System

on Chip (SoC). Software such as OpenOCD and Lauterbach

Trace32 enable the use of JTAG for performing hardware-

assisted software debugging [19]. ORRIS utilizes JTAG to

gather semantic information and syscall table information

by leveraging non-intrusive memory read functionality and

microarchitectural event count by using real-time tracing.

Here, semantic information refers to system-level counters that

capture system operation attributes and performance figures.

It also uses JTAG for setting hardware watchpoints over the

protected memory region/data structure.

C. Process Control Blocks (PCB)
PCB of the type struct task_struct defines every

process in Linux, stored in a circular doubly linked list data

structure known as task list. This data structure contains all

the information needed by the kernel to manage currently

executing processes. The head of this list can be queried from

System.map file or /proc/kallsyms. Our framework

collects necessary semantic information directly from the task

list by utilizing JTAG.

D. Embedded Trace Macrocell (ETM)
ETM is an ARM debug solution with real-time trace capa-

bilities that provide information about the operation of the

370

Fig. 1: Chain of trust established by ORRIS.

processor, configurable by the JTAG interface. ORRIS can

write the collected trace information to an external host non-

intrusively. This approach also allows ORRIS to allocate a

buffer on an external host instead of the embedded device,

reducing its impact on the protected PLC [20]. ETM counters

can count microarchitectural events but are limited in their

size and availability. Cortex A8 offers only two 16 bit ETM

counters, requiring additional processing logic on the host,

adding to the malware detection latency.

E. Spatial Bias

It refers to the unrealistic assumption about the ratio of

goodware (benign applications) to malware in the dataset.

This ratio is concrete to a particular domain; for instance,

in Android, malware represents approximately 10% of the

total benign applications [21]. In literature, malware detection

experiments are often performed without considering spatial

experimental bias, which produces results that are not repre-

sentative of a real-world scenario.

III. THREAT MODEL

This work targets malware detection on Linux-based ARM

PLCs that are steadily gaining popularity [14]. We assume

that an adversary has compromised the information technology

or the operational technology network and has gained remote

access to the PLC device, similar to Stuxnet [7] (malware

reached the Windows HMI connected to the Siemens PLC) or

to the 2015 attack on the Ukraine power grid attack, where the

adversary utilized spear-phishing to gain access to the business

network [22]. The adversary can exploit vulnerabilities in

the PLC OS and software to obtain kernel-level or user-

level privilege for command execution. For example, CVE-

2020-6081, known since 01/07/2020, results in remote code

execution using specially crafted network requests due to a

vulnerability in PLC_Task of CODESYS Runtime 3.5.14.30.

TABLE I: ETM versions in various ARM processors.

ETM
Version Processor

ETMv1 ARM7, ARM9

ETMv3
ARM9, ARM11, Cortex-M3/M4, Cortex-M23,

Cortex-R4, Cortex-R5, Cortex-A5, Cortex-A7, Cortex-A8

ETMv4
Cortex-M7, Cortex-M33, Cortex-R7/R8, Cortex-R52,

Cortex-A3x, Cortex-A5x, Cortex-A7x
PTM Cortex-A9, Cortex-A15, Cortex-A17

IV. ORRIS METHODOLOGY

In this work, we present ORRIS, an out-of-the-device

framework for protecting Linux-based ARM PLCs against

malware by forming a chain of trust rooted in hardware. As

illustrated in Fig. 1, ORRIS creates a chain of trust beginning

at the hardware level with JTAG, which protects the kernel

space against rootkits. This protected kernel space becomes

the next link in the chain to protect the userspace against user-

level rootkits and malware. Each layer depends on the layer

below for protection and, in turn, protects the layer above it,

establishing a chain of trust.

A. Prerequisites

ORRIS utilizes the JTAG interface for setting hardware

watchpoint, extracting critical static data structures such as the

syscall table from the main memory for integrity verification.

Moreover, it also gathers semantic and microarchitectural

information for malware detection.

A broad set of processors, such as Cortex-

A5/A8/A7/A9/A15, among others, allow external debuggers

access to the Debug Access Port (DAP), enabling real-

time JTAG access without halting the CPU. This initial

connection enables ORRIS to start monitoring all the critical

registers required for the uninterrupted functionality of JTAG,

ensuring reliable connection henceforth. Often, JTAG is

disabled in software at boot and might require changes in

the kernel source code. Furthermore, for real-time access to

microarchitectural event counts, ORRIS relies on the support

of ETM in ARM. Table I shows a summary of the ETM

versions supported by various ARM processors [23]. Finally,

we also assume that ORRIS knows the address init_task
which points to the task_struct of the Swapper/Idle

process (PID = 0). This address does not change and can be

extracted by querying /proc/kallsyms. It helps ORRIS

to identify the head of the task list and aids in collecting

semantic information from PCBs of all the currently running

processes.

Protecting JTAG against adversaries. A question naturally

arises, whether kernel-privileged malware can disable the

JTAG interface, effectively disabling ORRIS. The ARM de-

bugging model, since ARMv7, allows memory-mapped access

to debug registers to enable DAP access for the on-chip

processor. This allows an on-chip processor to act as a debug

host for another processor [24]. An adversary with privileged

access can lock debug register access to other debug monitors

371

TABLE II: Monthly distribution of malware dataset.

Year 2016 2017 2018 2019

Month
A

p
r

M
ay

Ju
n

Ju
l

O
ct

N
o
v

M
ar

M
ay

Ju
n

A
u
g

S
ep O
ct

Ja
n

F
eb

M
ar

A
p
r

M
ay

Ju
n

Ju
l

S
ep O
ct

N
o
v

D
ec

M
ar

A
p
r

M
ay

Ju
n

Ju
l

A
u
g

O
ct

N
o
v

Count 8 33 84 36 2 87 1 1 1 9 118 5 3 15 140 5 8 72 191 5 24 34 18 8 40 124 9 3 2 1 47

TABLE III: Summarized malware dataset.

Threat Family Variants
a∗ b∗ c∗ d∗ e∗ f∗ n∗ y∗ Other

B
ac

k
d

o
o

r

Mirai 43 340 15 - - 7 108 - 6
Gafgyt 239 80 - 32 11 - - - 26
Dofloo - - 15 45 - 4 - - 1

Tsunami - 12 - - - - - - 1
Hajime - 5 - - - - - - -
LuaBot - 3 - - - - - - -

HideNSeek - - - - - - - - 1

T
ro

ja
n Ddostf 21 - - - - - - - -

DnsAmp - - 8 - - - - - -
Agent - - - - - - - - 1

Miscellaneous 11
Total 1,135

‘ * ’: Encompasses all the variants beginning with the preceding character.
For instance Mirai.au, and Mirai.ad are counted under the variant a∗.

by writing 0xC5ACCE55 to Lock Access Register, preventing

write to the debug registers, except for the ones generated

by the external debugger (does not affect ORRIS). On the

other hand, writing 0xC5ACCE55 to Operating System Lock

Access Register (OSLAR) can terminate debug access even

for the external debuggers [25]. The modern Linux kernel

does not allow an LKM to overwrite these crucial memory-

mapped registers even with kernel privileges, a fact we verified

for our Linux kernel. This kernel-level protection prevents

an adversary with kernel privilege from disabling external

debugger access by using an LKM. Still, the attackers may

find another way to exploit the OS. To address this, ORRIS

allocates a hardware watchpoint to monitor memory-mapped

addresses of Watchpoint Control (0x180), Watchpoint Value

(0x1C0) and OSLAR (0x300) registers, which are mapped

consecutively. Memory locations in between these registers

are marked as read as all zeroes (RAZ), allowing ORRIS to

allocate a single watchpoint to monitor them all [26]. Any

attempt at altering these protected memory locations halts the

CPU and returns control to ORRIS, effectively blocking any

attempted write operation. This enables reliable JTAG access

to the target embedded device, further securing our hardware

root of trust. Such a watchpoint-based approach requires an

established JTAG connection to the device before an attack

initiation by the adversary. This assumption allows ORRIS to

enable the watchpoint to protect critical debug registers from

malicious modifications by the adversary.

B. Dataset and Preprocessing

Goodware and malware. In literature, malware research

predominantly focuses on Windows or Linux OS running

on x86 64 and Android on ARM. Due to the limited in-

terest in malware detection for Linux on ARM, we did not

come across any prior openly available dataset of ARM

ELF malware samples, limiting the overall dataset size. We

manually collected 1,135 malware ELFs from VirusTotal [27]

and VirusShare [28]. All the malware ELF files were processed

TABLE IV: Ported rootkits and their functionality.

Rootkit Type Functionality
UL KL BD HID REC REE CLE

Azazel • • • • •
Bdvl • • • • • •
Beurk • • • • •

Umbreon • • • • • •
AFkit • • • •

Basic-rootkit • • • •
Deadlands • • •

Diamorphine • • • • •
Randkit • •
Rk.erb • • •
Sutekh • • •

Suterusu • • • • •
Toorkit • • •
Toykit • • • • •

Uber-rootkit • • • • •
UL: User-level KL: Kernel-level BD: Backdoor HID: Hiding

REC: Reconnaissance REE: Reentry CLE: Clean on exit

on VirusTotal to retrieve metadata information, allowing us to

perform additional analyses. The metadata collected consists

of timestamp information, first seen, the date on which the

VirusTotal scanners first saw a specific malware as presented

in Table II. This additional information enables us to create

a dataset based on the monthly release of the malware and

study the performance of ORRIS against previously unseen

malware samples. Furthermore, the metadata has enabled us

to classify the malware dataset into various families, as shown

in Table III. This dataset is a diverse collection of malware

belonging to various families, each family containing numer-

ous variants. On the other hand, we use 884 goodware Linux

applications such as git, nano, vim, and some common

Linux binaries such as ps, ls, cat, and more.

Also, the availability of ARM rootkits is further limited,

forcing us to port a diverse set of x86-based rootkits we

found available in online repositories. Porting user-level

rootkits required changes in the installation script, whereas

x86-based kernel-level rootkits demanded modifications in

the syscall table hooking mechanism. Table IV presents more

information about the type of system calls targeted and their

modified functionality. The limited number of samples of

rootkits is due to the lack of their source code availability.

We require the source code of these rootkits to make them

compatible with ARM, and therefore compiled binaries

(present in x86 rootkit datasets) were not suitable for our

experimentation. In total, we have 425 shared libraries, 4
user, and 11 kernel-level rootkits in our dataset. We want to

emphasize that the collected malware samples target Linux on

ARM, an environment actively utilized by deployed PLCs in

the field as shown in [29] and do not specialize in attacking

industrial process logic (not PLC malware).

Collecting traces. As mentioned previously, we assume that

the adversary can escalate their privilege on the compromised

PLC and execute malicious binaries. This requires ORRIS

372

to utilize hardware (trusted), protect the kernel-level from

rootkits, build trust, and then use the kernel-level information

to protect against malware running at the user-level.

For kernel-level rootkits, ORRIS monitors write opera-

tions on the static code region of the Linux kernel. In

our dataset, kernel-level rootkit samples target the syscall

table, which redirects the execution flow of regular system

calls to their malicious counterparts. An exception is raised

each time an entity attempts to write in this region. This

event is captured by relying on hardware watchpoints. On

the other hand, user-level rootkits write their absolute path

to /etc/ld.so.preload. This file is then read by the

dynamic linker each time a new userspace process is exe-

cuted, preloading the user-level rootkit for all the subsequent

processes. To protect against user-level rootkit injection, we

track it at the kernel level by monitoring system calls such as

open, read, write, close and delete_module. It is

important to monitor the open system call to acquire the file

descriptor assigned to /etc/ld.so.preload. It should be

noted that the detection is only triggered when sys_write
is called on /etc/ld.so.preload file.

We run Lauterbach Trace32, our software debugger of

choice, on an external host and connect JTAG to the test

device for malware detection. We collect semantic information

from the PCB at the kernel level and microarchitectural event

counts from ETM. Due to the limited availability of ETM

counters, two in our case, and its 16-bit limited size, we only

obtain counts for two events at a time and repeat the same

data collection process for all the available microarchitectural

events. ORRIS identifies anomalies in the overall system

operation rather than on a specific test application. So, we

collect information about the entire system and perform

preprocessing on it.

Manual scrubbing. ORRIS appropriates information such

as the number of segments, dynamically linked functions in

the Procedure Linkage Table (PLT), boolean value for the

presence of symbol resolution functions dlsym and dlvsym,

function count, function degree, cumulative instruction count,

instructions per function, load, store, move, shift and branch

instruction count data collected by a disassembly tool, in our

case, Radare2, aiding in the detection of user-level rootkits.

On the other hand, we collect counts of all the 49
microarchitectural events available for malware detection

and perform a manual scrubbing to shortlist promising

candidates of semantic features. Following in the footsteps

of previous work such as [30], we remove candidates that

do not provide any insight into the activities of a process,

for instance, parameters such as constants, static identifiers,

parameters with value zero, process identifiers, and memory

addresses. This process of elimination resulted in a total

of 54 selected semantic parameters, some of which are

se_vruntime (runtime of a thread), majFlt (major page

faults), minFlt (minor page faults), and ioac_syscr
(number of read syscalls). Some microarchitectural events

are ERETURN (exception return instruction), DUNALIGNED

(unaligned data access), NEONWORK (integer unit not idle),

and UNALIGNEDREPLAY (replay events from unaligned

access). All the features and their brief explanations are

presented in the Appendix, Table IX and Table X. After

selecting the attributes, we take the average values of the

events aggregated over measurement cycles. We normalize

the average values for the number of processes running at the

time of data collection and remove any recorded measurement

of less than 1 second since a small quantity can misguide the

training process.

Pre-processing technique. The attributes discussed before

have widely different numerical ranges. Therefore, we ap-

ply standard data pre-processing schemes applicable to such

integer-valued functions to empirically find the best pre-

processing technique. Standard scaling (s) performs the best

for our dataset, which involves removing the mean of the

training data from each data-point and dividing it with its

standard deviation. Additionally, we also perform Principal

Component Analysis (PCA) on the 13 features collected for

user-level rootkit detection. We prepare the data into training

and testing sets with an 80-20 ratio to evaluate our malware

detection methodology. There are a total of 103 features

considering both high-level and low-level features.

C. Detection Methodology

Approach. For kernel-level rootkits, ORRIS protects the

syscall table from being modified by setting a hardware

watchpoint over the address range of the syscall table, in-

structing the Memory Management Unit (MMU) to establish

the memory pages containing the monitored address range as

write-protected. MMU raises an exception when a kernel-level

rootkit attempts to write in this address range. ORRIS then

calculates the address of the attacked system call and the hook

address. This calculation is intrusive because it halts the CPU

for reading memory and registers.

Whereas, the sys_write condition on

/etc/ld.so.preload triggers the protection against

the injection of user-level rootkits, performing outlier

detection. It uses Radare2 to perform static analysis for

extracting features from the binary. We use the top 3 principal

components in one-class SVM (OCSVM) for outlier detection.

It should be accentuated that we only use in-the-wild rootkits

for our experiments, resulting in limited samples for user-level

rootkits. We use one-class SVM outlier detection instead

of traditional machine learning approaches to counter the

imbalance in samples available for shared libraries and

user-level rootkits. Such techniques have also been used in

literature for malware detection [31]. In general, one-class

techniques are used in severely skewed class distribution,

fitted on the input examples from the majority class in the

training dataset, and evaluated on a test dataset. The model

uses a Radial Basis Function (RBF) kernel, commonly used

with SVM classifications. This model serves as the signature

for legitimate shared libraries, and all the classified outliers

are considered user-level rootkits.

373

TABLE V: A summary of best performing models.

Pre-
processing

ML
algorithm

Feature
extraction Dataset No. of

features
Test

accuracy FNR

Standard SVM No statistic Sem + HPC 103 0.997525 0.004484
Standard SVM No statistic HPC 49 0.987624 0.013453
Standard SVM No statistic Sem 54 0.928218 0.044843
Standard SVM MI Sem + HPC 64 0.997525 0.004484
Standard SVM f-score Sem + HPC 103 0.997525 0.004484
Min-Max logreg MI Sem + HPC 71 0.980198 0.017937
Max-Abs logreg f-score Sem + HPC 79 0.977723 0.026906
Max-Abs GNB f-score HPC 12 0.851485 0.03139
Max-Abs GNB MI Sem + HPC 13 0.881188 0.049327

Min-Max logreg χ2 Sem + HPC 103 0.980198 0.013453

We force the ML model to learn different malware and

goodware features using Support vector machines (SVM)

with a linear kernel for malware detection. We also report

the False Negative Rate (FNR) as it captures the percentage

of malware deemed genuine, causing damage. Other statistics

like false-positive rates determine whether benign software

was detected as malware, which hampers usability but does

not damage the system.

Best pre-processing technique. Standard scaling performs

the best to detect malware, providing the highest accuracy

of 99.75%, followed by max-abs and min-max scaling with

the best test accuracy of 98.01%. Therefore, in our dataset,

standard-scaling makes the two clusters more distinguishable.

We perform t-distributed Stochastic Neighbor Embedding

(t-SNE) to visualize the data. Fig. 2a shows that when the

features are unprocessed, it is challenging to have a clear

decision boundary between the malware and goodware.

However, when we standardize the data and sort it according

to mutual information score, the resulting transformation of

the data aids in classification, as shown in Fig. 2b.

Base architecture. We choose OCSVM for user-level rootkit

detection after extensively testing other outlier detection ap-

proaches. Isolation Forest (ISO), Minimum Covariance De-

terminant (MCD) (in this case, Elliptic Envelope implemen-

tation), and Local Outlier Factor-based approaches do not

perform well when deployed. ISO, MCD, and LOF give an

accuracy of 88.4%, 82.9%, and ≈88%, respectively.

For detecting malware, we apply three statistical scores,

namely Mutual Information (MI), f-score (F), and chi-squared

(χ2) statistic, to select k best features before training a

machine learning model. We deploy three supervised ML

classification algorithms commonly used in classification

tasks: Support Vector Machine (SVM), Logistic Regression

(LR), and Gaussian Naive Bayes (GNB). We report the

best performing models with different combinations of

pre-processing techniques, ML algorithm used, underlying

feature-extraction methods taking microarchitectural/hardware

performance counter (HPC) events, and semantic features,

individually and together in Table V. We achieve the

maximum test accuracy of 99.75% with SVM even without

using an underlying feature extraction technique (row 1).

However, applying MI between output labels and features

(a) TSNE on un-processed data. (b) TSNE of scaled features sorted ac-
cording to mutual information scores.

Fig. 2: Dataset visualization using TSNE.

Fig. 3: Change in test accuracy and FNR as a function of

standard scaled features.

reduces the feature set by 39 while achieving the same

maximum test accuracy, decreasing the latency in detection.

While comparing the different models chosen to perform

malware detection, we observe that SVM and logistic

regression perform similarly with the best test accuracy as

99.75% and 98.01%, respectively. However, the performance

of GNB is significantly lower, with its best being 88.11%.

Best feature extraction approach. The smallest number of

features required for fast detection is with the combination of

mutual information and GNB, but the highest test accuracy

achieved with this technique is 85.14%. The lowest value of

FNR, 0.484%, is accomplished using SVM. MI and f-score

perform the best with 99.75% and 0.484% as test accuracy

and FNR, respectively, while the best test accuracy achieved

by χ2-statistic is 98.01%. Considering the number of features,

MI outperforms the f-score by 39 fewer features.

Dominant feature type. For malware detection, we observe

that a model performs better in terms of higher test accuracy

and lower FNR when high-level and low-level features are

taken together instead of individually. We achieve the highest

test accuracy and the lowest FNR of 99.75% and 0.484%,

respectively, with standard-scaled features using SVM. How-

ever, if we consider the HPC or the semantic features alone, the

performance drops to 98.76% and 92.82% for test accuracy,

and 1.34% and 4.48% for FNR, respectively. Individually,

HPCs perform better than the semantic features, which ex-

374

Fig. 4: Accuracy of ORRIS compared to commercial products.

plains their popularity in the literature. According to this

experiment, the top 27 features based on their scores are

microarchitectural event counts, followed by sparingly few

semantic features. Nevertheless, in this study, we observe that

a malware detection algorithm performs the best when the

microarchitectural and the semantic features are combined. We

depict the increase in test accuracy and decrease in FNR as a

function of using relevant features in Fig. 3.

D. ORRIS vs. Commercial Products

As shown in Fig. 4, our framework ORRIS is comparable in

accuracy with the best performing commercial malware detec-

tion solutions. For instance, ORRIS, Kaspersky, ZoneAlarm,

and ESET-NOD32 all have a high test accuracy of ≈99.75%.

It should be mentioned that DrWeb and Avast give an accuracy

of 100% but do not process all the 404 test samples; instead,

they handle only 400 and 398 samples, respectively. Due to

this drawback, DrWeb and Avast are not the top-performing

malware detection solutions in our result comparison. While

the signatures of commercial malware detectors are regularly

updated, the results on VirusTotal are calculated once (when

the malware appears on the scanner for the first time) and

returned upon a query unless explicitly specified by the user

rescan a particular file. This behavior is evident from the

results where some malware detectors cannot detect specific

dated malware samples. So, such a comparison with com-

mercial malware detectors helps us understand how ORRIS

compares to the state-of-the-art solutions and is worthwhile.

E. Proof-of-Concept Real-time Implementation

For kernel-level rootkit, ORRIS utilizes a hardware watch-

point set directly through JTAG on the syscall table and

calculates information such as a hooked system call address.

This solution prevents kernel-level rootkit injection into the

kernel space, sanitizing it and creating the first link in the

chain of trust from hardware to the kernel level.

Whereas for protecting against user-level rootkits, OR-

RIS runs in the kernel space of the PLC. We envision

this solution as a Linux kernel component, including the

Radare2 binary and the required outlier detection libraries.

Nevertheless, for rapid prototyping, we implement it as an

LKM. All the system calls to be monitored are hooked by

the LKM, which include open, read, write, close,

delete_module and dup2. When sys_write condi-

tion is satisfied on /etc/ld.so.preload, ORRIS creates

a kernel helper thread for executing userspace processes.

This process spawns with the UMH WAIT PROC condition,

which waits to complete the client process to finish before

returning control. This prevents the initial sys_write on

/etc/ld.so.preload until the analysis concludes. More-

over, we also assume that the adversary might gain kernel

privilege for injecting rootkits. This consecutively also enables

the adversary to remove the LKM by using the rmmod
command. To prevent the removal of our proof-of-concept

(PoC), the LKM also hooks to delete_module syscall.

Upon deletion, it throws EBUSY: device busy or locked error

to the adversary, preventing its injection. In the final product,

user-level rootkit detection in ORRIS should ship as a part of

the kernel and not as an LKM, to prevent its removal.
� �
User-level Protection Injected ...
SYS_OPEN: /etc/ld.so.preload fd: 3
SYS_DUP2: /etc/ld.so.preload Old fd: 3 New fd: 1
SYS_WRITE: /lib/bdvl-UIBDEr5hJgUU.so.armv7l
User-level Client Spawning
User Level Message: Hello
User Level Message: MALICIOUS
User-level Rootkit Detected
RM: File Deletion Process - /lib/bdvl-UIBDEr5hJgUU.

↪→ so.armv7l /etc/ld.so.preload
User-level Protection Removed ...
� �

Listing 1: Debug messages from user-level rootkit protection.

Listing 1 shows the sequence of events that occur inside

the LKM. As shown, ORRIS tracks calls to sys_open for

the file /etc/ld.so.preload. It spawns a client process

in userspace upon detection of sys_write on this file. The

client then communicates with the LKM, gets the file path for

the user-level rootkit binary, and returns the final result. If it

is detected as malicious, the LKM deletes both the user-level

rootkit (in this case /lib/bdvl-UIBDEr5hJgUU.so.armv7l) as

well as the file /etc/ld.so.preload.

Since the PoC implementation for user-level rootkits re-

quires syscall table hooking for tracking write system calls

on /etc/ld.so.preload, it will not function alongside

kernel-level rootkit detection. We introduce a formal nota-

tion that allows modifying some basic initial values such as

watchpoint address range and individual system call addresses,

making ORRIS extensible and easy to use.
� �
[sys_write]
exception = enable
address = read_memory
� �

Listing 2: Formal notation for specifying syscall exceptions.

We use this functionality to integrate user-level and kernel-

level rootkit protection, as shown in Listing 2. We spec-

ify the system call whose default signature is modified

375

Fig. 5: Experiment setup with the external host running ORRIS

and JTAG connection utilized for data collection.

(sys_write). Specifier exception can be either set to enable
or disable for each system call. Finally, the specifier address

instructs ORRIS on how to modify this signature. System call

addresses can be hard-coded in the specification, or none, for

directing ORRIS to ignore this system call entirely during

detection. It can also be read memory where ORRIS uses

JTAG (without halting the CPU by using processor memory

bus) to fetch the current system call handler address from the

syscall table, enabling both solutions to operate in conjunction.

As mentioned before, our malware dataset consists of trace

values collected during malware execution, utilized for training

the SVM-based ML model. Sampling rate and the number
of features to be collected are the two critical parameters

recognized for real-time implementation. Here, the sampling

rate refers to the interval between subsequent trace collec-

tion, contributing to the detection latency. Real-time mal-

ware detection requires swift data collection and processing

without significant intrusiveness on the protected device. We

observed that microarchitectural/HPC features contribute more

than semantic ones toward detecting malware. As mentioned

before, the top 27 features selected per MI experiment are low-

level event counts. Moreover, gathering semantic information

accrues a higher latency for a real-time mode of operation.

This is because ORRIS traverses through the PCB of all the

individual processes running on the test device. Based on

the feature scores of microarchitectural event counts and the

latency requirement for deployment, we decided to use only

microarchitectural event counts in PoC implementation. We

varied the sampling rate from 0.5 seconds to 10 seconds,

increasing it by 0.5 seconds and studying malware detection

accuracy by gradually increasing the number of features sorted

based on MI. Such an exploratory study allowed us to create

different ML models for a diverse sampling rate and the

number of features collected.

V. RESULTS

A. Experimental Setup

For our experiments, we replicated a Linux-based PLC

by using a BeagleBone Black Rev C (BBB) loaded with

CODESYS PLC stack running a custom JTAG enabled real-

time Linux kernel. BBB carries the TI AM335x chipset and

can run Linux OS, a combination commonly available in

industrial automation devices, for instance, WAGO PFC100

Controller. Furthermore, BBB provides us with a readily

available and accessible JTAG port.

To utilize the JTAG connection, we use Lauterbach Trace32

running on the external host as our software debugger of

choice, paired with Power Debug Pro as the JTAG adapter. We

Fig. 6: Impact of ORRIS on a desalination plant.

use Lenovo T440s with Intel Core i7-4600U CPU running at

a base clock of 2.10 GHz and a RAM of 8 GB as the external

host for our experiments. To facilitate the development of

ORRIS, we created a wrapper around the Python API provided

for Trace32, aiding the communication with JTAG.

As shown in Fig. 5, Trace32 connects to Power Debug

PRO with a USB connection, which facilitates communication

to the BBB with a JTAG connection. Here, BBB represents

the PLC device to be protected against malware attacks. To

study the impact of intrusive operations performed by kernel-

level rootkit protection on real-world OT devices, we modify

a Hardware-in-the-loop (HIL) setup for the Multi-Stage Flash

(MSF) desalination plant model as used in [32]. The primary

objective is to test the effect of the intrusive operations on

a critical control function of a 22 stage thermal desalination

plant model. This safety control monitors the steam flow to

the brine heater and maintains a safe operating temperature.

B. Kernel-level Rootkit Protection

ORRIS detected all the 11 tested kernel-level rootkits. This

process takes an average of around 94.5 ms. This latency

is due to the calculation of the malicious hook and targeted

system call addresses. Latency further decreases to 8.64 ms

by skipping this information-gathering step. On the other

hand, when decompiling the malicious hooked function, the

latency increases to 527.18 ms.

Quantifying intrusiveness. Finally, we also analyze the im-

pact of intrusive operations in ORRIS on a HIL model of an

MSF desalination plant. There is safety control on the steam

input to the brine heater for closing its valve when the top brine

temperature increases or decreases below a certain threshold.

The regular operation of this model with this safety control

implemented in HIL on a BBB running CODESYS control is

as shown in subplot 1 of Fig. 6. Point a in subplot 1 shows

the instance where safety control is activated to shut off the

valve leading to a graceful decrease in the brine level. We run

ORRIS on a remote host and connect to the JTAG interface

of BBB running the safety control. Finally, Diamorphine, a

kernel-level rootkit, is injected simultaneously when the safety

control is triggered. This instance is shown by point b in

subplot 2 of Fig. 6, and as seen, ORRIS does not affect the

real-time requirements of the device while preventing rootkit

injection.

376

Fig. 7: Outlier detection to identify user-level rootkits.

C. User-level Rootkit Protection

We extract static features from binaries of 425 shared

libraries, 4 user-level rootkits and run the OCSVM algorithm

for detecting outliers. We get an average accuracy of 96.3%
with a true positive rate (TPR) of 100% and a true nega-

tive rate (TNR) of 96.2%. A TPR of 100% implies precise

identification of all the tested user-level rootkit samples. In

contrast, a TNR of 96.2% emphasizes that 3.8% of legitimate

shared libraries were detected as outliers (user-level rootkits),

≈16 out of 425 shared library samples. According to our

hypothesis, user-level rootkits are identified as outliers as

they are functionally different from legitimate shared libraries,

culminating in particular changes in their static features. Fig. 7

visualizes the results for our user-level rootkit detection. As

shown, shared libraries form a cluster (shown in blue circles).

In contrast, user-level rootkits are grouped close together

(shown in red X) and distant from shared libraries. Some

shared libraries are detected as outliers and are considered

false positives, a common drawback of classification, also

evident in modern antivirus solutions. For instance, according

to a recent report published by AV Comparatives, half of the

12 products tested gave high false positives, including products

from Microsoft and Trend Micro [33]. ORRIS removes these

user-level rootkits after detection.

D. Malware Protection

We study different combinations of sampling rate and the

number of features to present a snapshot of the result in Fig. 8a

with a maximum of 10 features considered at a time. From

the results, we make some critical observations that guide our

approach towards real-time malware detection.

1) All the presented sampling rates reach an accuracy of

more than 90% when considering at least 10 features.

2) Sampling rate of 6 seconds (represented by black in

Fig. 8a) achieves the best performance with a limited

number of features. This accrued latency might not be

acceptable in real-time malware detection, so instead, we

choose a sampling rate of 2.5 seconds, which provides

the right balance between performance and latency.

Furthermore, to maintain the non-intrusive operation of

ORRIS, we chose to use ETM instead of the performance

TABLE VI: Latency for real-time malware detection.

Sampling
Rate (TS)

Processing
Latency (TM)

Prediction
Latency (TP)

Total
(TS+TM+TP)

0.5 0.258698 0.158736 0.917434
1 0.226739 0.166595 1.393334

1.5 0.227891 0.170549 1.89844
2 0.258784 0.164858 2.423642

2.5 0.208440 0.238542 2.946982
3 0.227576 0.150379 3.377955

3.5 0.201644 0.153658 3.855302
4 0.173599 0.161399 4.334998

4.5 0.409511 0.166679 5.07619
5 0.253542 0.145607 5.399149

5.5 0.228152 0.157058 5.88521
6 0.257622 0.146325 6.403947

6.5 0.240420 0.164183 6.904603
7 0.207519 0.180537 7.388056

7.5 0.246482 0.204154 7.950636
8 0.221263 0.192079 8.413342

8.5 0.229527 0.205732 8.935259
9 0.220742 0.148972 9.369714

9.5 0.272092 0.152298 9.92439
10 0.238663 0.170186 10.408849

Average 0.2404453 0.1699263 -

monitoring unit (PMU) counters, restricting the feature set to

just two microarchitectural event counts. We create different

ML models for various configurations, ready to be utilized

based on the requirements, enabling ORRIS’s diverse appli-

cation. Based on the configuration, ETM counters generally

vary between one to four for ARM processors; on the other

hand, modern Intel CPUs support three fixed and four pro-

grammable counters per core. ORRIS supports such distinct

configurations by creating separate ML models for various

available microarchitectural counters. The sampling rate of

2.5 seconds performs well while accruing reasonable latency

with only two microarchitectural features and is chosen for

our requirements. From our experiments, we ascertain that

microarchitectural events NEONWORK (NEON and integer unit

not idle) and AXIWRITE (AXI write active), when used

together, give reasonable accuracy for a sampling rate of 2.5
seconds with limited features. Using these two features, we

train the SVM model with the collected traces.

Accuracy of malware detection. We deploy the model

trained with NEONWORK and AXIWRITE microarchitectural

traces sampled at a rate of 2.5 seconds, achieving a testing

accuracy of 85.64% with a true positive rate of ≈0.90 and a

true negative rate of ≈0.81.

Latency in real-time malware detection. Microarchitectural

traces are collected after every TS seconds, dubbed as the

sampling rate. A buffer on the external host stores these

trace values, adding to the latency by TM . These traces are

pre-processed and passed to the trained SVM model for

prediction. TP denotes the time taken for pre-processing and

prediction. So, the processing latency for online module can

be roughly given by TS + TM + TP . Both TM and TP are

dependent on the configuration of the external host. The

values presented here apply to our configuration and might

differ for other systems. Table VI presents the average latency

for all the tested sampling rates. Our selected model takes a

total of ≈2.95 seconds for detecting malware in real-time.

377

(a) Exploring ML models for real-time detection.
SR represents the sampling rate in seconds.

(b) Points A, B, C, and D represent the points with
accuracy drop.

(c) Accuracy for the dataset by varying malware to
goodware ratio, studying spatial experimental bias.

Fig. 8: Studying real-time malware detection models, performance on unseen malware, and Spatial experimental bias analysis

Performance against previously unseen malware. For study-

ing the performance of the SVM model against unseen

malware, we divide the malware dataset according to the

timestamp metadata. The timestamp used in our study is called

first seen, which corresponds with the date when VirusTotal

online malware scanners first saw a particular malware. Ta-

ble II shows a snapshot of this dataset, divided according to

the timestamps.

We use an incremental learning approach [34] that updates

the ML model upon the arrival of new test samples, adding

to all the other prior samples. To aid this experiment, for

each month, we divided the samples into two groups: one

containing samples up to a particular month of a year used

for training and the other one that encompasses samples from

that specific month utilized for testing. Consider 2017-5, where

all the samples before May are training the SVM model, and

all the samples collected in May are for validation. However,

goodware applications are distributed equally across all the

months. This experiment represents the real-world scenario

where new malware and the variants of previously known

malware release at regular intervals. Such situations might lead

to a decrease in the accuracy of an untrained ML classifier.

As shown in Fig. 8b, points A, B, C and D are the months

that cause significant accuracy dip, requiring model retraining.

We manually analyzed the test datasets corresponding to these

points and present a summary of our findings in Table VII.

Although accuracy deteriorates at points A, B, C, and

D, the overall accuracy of malware detection does not drop

below 91.6%. This consistency in the performance of ORRIS

is because our solution does not rely on static binary features

that change significantly between different malware and their

variants. Instead, it utilizes system behavior on the kernel and

microarchitectural levels for malware detection. This behavior

might remain consistent across malware variants, culminating

in reduced degradation of the ML model.

Studying spatial bias. For studying spatial experimental bias,

we need to estimate the malware to goodware ratio for

Linux on ARM. Statistics about the percentage of malware

to goodware have been reported in the literature for Android

environments. Unfortunately, such studies do not exist for

TABLE VII: Summary of reasons for accuracy decrease.

Drift Point Reason Malware

A Limited training on
test malware variant

Mirai.N

B New malware
variants

Dofloo.D, Mirai.Au, Gafgyt.Az,
Gafgyt.Ak, Mirai.Ax, Gafgyt.Aj,

Dofloo.F and Tsunami.Bh
New malware Mirai.B and DnsAmp.C

C New malware variant Tsunami.Br

D Limited training on
test malware variants

Tsunami.Bh and Mirai.Au

Linux on ARM. As a result, in this analysis, we vary the

malware-to-goodware ratio from 0.01 to 1 and study the

accuracy of the ML model for each step.

As shown in Fig. 8c, when the ratio is small, the classifier is

mostly guessing the label of the executing sample. As a result,

the accuracy fluctuates with considerable variations between

96% and 100%. We note that the accuracy decreases when

introducing more malware samples into the dataset relative to

the goodware samples. We used a moving window average

(MWA) with a window size of 5 to observe the average

accuracy. As evident, the MWA accuracy stays relatively im-

pervious to spatial experimental bias, between 98% to 100%.

VI. EXTENDING ORRIS

A. Non-intrusive Rootkit Detection

Similar to [35] and [36], any proactive rootkit protection

mechanism needs to be intrusive to some extent to stop the

rootkit injection in the first place. Reactive solutions (i.e.,

detection of an already injected rootkit) suffer from the fact

that kernel rootkits aware of the detection mechanism can

disguise themselves accordingly (a moving target). In any case,

intrusive behavior might sometimes not be desirable. Here, we

also discuss an alternative reactive approach to kernel-level

rootkit protection with decreased latency and non-intrusive

operations.

We create a golden model of the syscall table, described by

the system call number, system call name, memory address,

and system call handler address. The solution then scans the

memory region of the syscall table using JTAG for a reactive

detection of kernel-level rootkits. This method is non-intrusive

since JTAG does not halt the CPU for regularly scanning

378

the syscall table memory region as it can directly access the

CPU memory bus. This is only possible for ARM processors

such as Cortex-A5/A7/A8/A9/A15 and more, supporting built-

in DAP on the chip with a memory bus connection. After

the extraction of the memory region, this content is matched

with the golden model of the syscall table. When an integrity

violation is detected, the analysis module can traverse through

the syscall table to identify the exact modified system call.

The approach mentioned above is reactive because it does

not prevent the initial hooking of system calls; instead, it

only detects it after successful rootkit injection. We also

implement syscall table patching via JTAG to remove the

injection of the kernel-level rootkit. The average time taken

by the reactive approach for detecting kernel-level rootkits

is around 4.7 ms. In contrast, when patching the syscall

table is enabled, it increases significantly to about 145.5 ms.

This increase in latency when compared to the default non-

intrusive reactive detection approach is due to the halted CPU

required for patching the syscall table by modifying memory

content. While this approach provides low latency detection

of a rootkit, it does not prevent the initial injection of the

kernel-level rootkit into the kernel space. This shortcoming

makes reactive approaches vulnerable to skillful attacks from

rootkits targeting OSLAR register to disable JTAG access.

B. Rootkit Detection Generalization

In this research effort, we did not come across kernel-

level rootkits that modify dynamic kernel data structures. So,

ORRIS focuses on kernel-level rootkits that modify static

regions in kernel memory, specifically ones that hook to the

syscall table. However, there are variations of these rootkits

that hook to other critical static components of the Linux

kernel, for instance, the Exception Vector Table (EVT). This

type of kernel-level rootkit tries to modify the execution flow

of a system call before it reaches the syscall table by hooking

to the EVT. To test the extensibility of ORRIS on kernel-

level rootkits, we decided to analyze it on the EVT-based

rootkit arm-evt, which is available online. This rootkit modifies

the SWI exception vector to branch to a specific address

that stores the adversary’s backdoor. When triggered, this

backdoor checks for the content of the R7 register, and if

it matches 0xb0000000, it elevates the privilege level of the

calling process. This type of kernel-level rootkit also writes

to the kernel text section for modifying execution flow and is

detected by ORRIS.

VII. DISCUSSION

Limitations of ORRIS. Malware detection in ORRIS

utilizes a combination of semantic and microarchitectural

event counts. However, malware with an LKM counterpart

can unlink itself from the PCB, removing its footprint

from the semantic features. Its operations will still impact

the microarchitectural state being recorded by ORRIS.

Furthermore, it can also miss certain user-level rootkits that

utilize the LD_PRELOAD technique, an environment variable

that preloads shared libraries. However, this affects only

the current process, not impacting the entire system, and

consequently, we did not find any such user-level rootkits

in-the-wild. Finally, Kernel Address Space Randomization

(KASLR) can create complications in obtaining the address

of init_task, hindering the collection of semantic event

counts. Pre-4.8 KASLR shifts physical and virtual addresses

with the same random offset, whereas 4.8 and later utilize

variable offset, which can also be determined, a feature

already available as a plugin in Volatility [37].

Advantages and limitations of JTAG. JTAG allows the

malware detection process to be extended to legacy devices

without significant modifications since JTAG is an IEEE

standard. It also enables ORRIS to run out-of-the-device

without relying on any other physical connection to the

protected PLC. Utilizing a different port might require

continuous supported OS updates from the manufacturer.

Sometimes peripheral connections might become inaccessible

in legacy devices due to a lack of software updates.

Nonetheless, JTAG can still be used for establishing a

connection with the device due to its low-level interface and

minimal dependence on OS if already enabled in software.

Moreover, JTAG also allows us to create a malware detection

framework with a minimum overhead on the protected

device, as it offloads the computation to an external device.

On the other hand, JTAG ports are sometimes disabled

physically in production devices or software by disabling

certain debug flags in the kernel source code, necessitating

manufacturer support. For instance, in BBB, we enabled

DEBUGSS module clock in the kernel source code to

allow communication through the JTAG interface. However,

JTAG has been accessed in commercial off-the-shelf PLCs

in [38] for Allen Bradley CompactLogix 5370 and [39] for

Honeywell Experion C200.

Challenges of in-the-wild dataset. Rather than relying

on synthetic malware, we experimented with in-the-wild

samples, which limited the dataset’s size. During the dataset

creation, we encountered numerous problems. ORRIS requires

samples that can execute on ARM architecture, while most

of the openly available rootkit datasets consist of compiled

binaries for the x86 64 architecture. As evident in Table VIII,

in general, rootkit datasets are not massive. Furthermore,

the availability of compiled binaries in these datasets also

limits the porting of these rootkits to the ARM architecture.

Therefore, we manually collected rootkit samples for x86 64

with available source code and ported them to the ARM

architecture, which required modification to the syscall

hooking mechanism. Furthermore, these collected rootkits

only utilized the syscall hooking mechanism and did not

modify any other dynamic kernel data structure. It affirms

the fact that rootkits targetting the syscall table are more

prominent than their counterparts.

Advantages over a pure software approach. Studies in

literature utilize software techniques for collecting traces, as

379

TABLE VIII: A summary of malware detection mechanisms proposed in the literature.

Work [40] [41] [42] [43] [44] [45] [46] [47] [48] [35] [36] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [30] [60] [61] [62] [63] [10] [12] [64] [65] [47] [66] [48] [67] [68] [69] [70] [71] [21] This
Work

X �Plat-
form R �

W �
L �OS
A �
K �
U �Target
M �
I �Deploy-

ment E �
T �
P �
V �
S �
O �
H �
J �
C �

Method-
ology

D �
Virtual-
ization � � � � � � �/� �

G 0 56 30 0 123,453 0 0 12,214 2,081 467 NA† 0 20 0 0 NA† 180 NA‡ 21,116 116,993 884
K 25 311 8 NA∗ 37 3 23 100 8 8 10 23 10∗ NA∗ NA∗ NA∗ NA∗ 1 1 1 2,200 0 0 0 0 9 5 0 0 0 0 5 0 8 0 0 0 0 0 0 11
U 0 4

Dataset
Size

M 0 42 30 22 5,560 0 0 17,366 91 1,087 NA† 0 11 0 8 NA† 253 NA‡ 23,033 12,735 1,135
Exp. w/

unseen mal. �
Spatial-

Bias �
K 96 ≈96.2 100 NA∗ 100 100 100 ≈99.91 100 100 100 100 100∗ NA∗ NA∗ NA∗ NA∗ 100 100 100 98.15 - - - - 100‡ 100‡ - - - - ≈99.9 - 100‡ - - - - - - 100
U - ≈96.3

Acc.
(%) M - ≈97 93 100‡ 94 - - 96 ≈95 ≈92 99.5 - ≈96.9 - 100‡ 100 95.2 99.8 ≈93.2 78 ≈99.7

X: x86 64 R: ARM W: Windows L: Linux A: Android K: Kernel-level Rootkits U: User-level Rootkits M: Malware I: Internal E: External T: Taint Analysis
P: Machine Learning V: Guest View Casting S: Integrity Verification O: Objective Oriented Association H: Threshold Based J: JTAG D: Data Invariant

C: Control Flow Checks/Symbolic Execution NA: Not applicable ‘∗’: Solution can be extended for rootkit protection ‘†’: Not mentioned in text�: Parameter is studied or utilized ‘‡’: High accuracy due to limited test dataset size Blue Rows (3,8,18,24,26,27,29): Important contributions of this work

shown in Table VIII. Some methods isolate the protected

device using virtualization, for instance, [67], leading to an

overhead of about 1.5%, which is not desirable for PLC

devices, limiting its applicability. Some approaches run their

solution on the same device, which might enable a cunning

adversary to design malware with evasion capabilities.

Therefore ORRIS utilizes JTAG to extract data without

adding significant overhead and moving the computation out

of the device. Furthermore, using JTAG, an IEEE standard,

makes the approach extensible.

Advantages of using semantic and microarchitectural
information. Malware detection approaches relying solely

on semantic (high-level) data can be evaded by targeted

malware [72]. For instance, solutions that rely only on static

analysis of malware binary are circumvented by inserting

dead-code, subroutine reordering, code encryption, and

code compression. To prevent such evasion techniques,

researchers employ microarchitectural event counts. While

malware can evade the solutions that rely on semantic

information, it is difficult to erase or modify its footprint

on the microarchitectural level. Unfortunately, solutions that

only rely on microarchitectural features disregard context-

aware information that is available with higher abstraction.

As evident in Table V, microarchitectural and semantic

information together gives an accuracy of 99.5%, more than

when considered individually.

Shortcomings of a broader sampling window. Real-time

implementation of ORRIS utilizes a sampling rate of 2.5
seconds, implying that the microarchitectural features are

collected every 2.5 second. A longer sampling window

enables an adversary to perform malicious actions during the

sampling window and pause its activities before acquiring

microarchitectural event counts. Such activities might not

significantly impact the feature values, limiting ORRIS from

identifying malware that executes and exits quickly.

Using PMU instead of ETM. Using the performance

counter allows ORRIS to use four features instead of two

features available with ETM, resulting in better performance.

However, using PMU instead of ETM requires ORRIS to halt

the CPU of the protected device to extract microarchitectural

features, resulting in intrusive behaviors. Such an approach

might perform better but not be suitable for application in

PLC devices due to their real-time processing requirements.

So, for malware detection in ORRIS, we decided to go with

ETM instead of the PMU.

Protection against mimicry attacks. In literature, the

introduction of secret randomization has been used in ML

models to prevent mimicry attacks [73]. In the context of our

real-time malware detection approach, multiple models are

created with a combination of features (microarchitectural and

semantic), arbitrary sampling rates. Due to randomization,

the adversary is unaware of the specific model employed to

identify the protected device’s malware activities. Evading

such a situation would require an adversary to know the

ML model currently used. Alternatively, change the malware

source code every time the model changes, which is not

scalable for widespread attacks.

Correct malware labels. Authors in [74] found out that

malware labels from VirusTotal stabilize in about a year and

can lead to misclassification. To avoid such a situation, we

only consider malware samples observed till 2019, goodware

applications preinstalled in various Linux variants, such as

git, nano, vim, and some system binaries.

380

VIII. RELATED WORK

A comprehensive summary of all the proposed approaches

in literature with specifics on supported OS, architecture,

technique, dataset size, performance result is presented in

Table VIII.

A. Kernel-level Rootkit Protection

A wealth of literature exists for protection against kernel

rootkits. Petroni Jr et al. propose a state-based control flow

integrity (SBCFI) technique in which a state-based monitor

periodically audits the state of a system, compares with a

golden image, and successfully detected 24 out of the 25
test rootkits (96%) [40]. Whereas, [46] introduces Gibraltar,

which utilizes data structure invariants (properties that must

remain unchanged during their lifetime) to automatically de-

tect undesirable changes in the state of the kernel, indicating a

presence of a kernel-level rootkit. It detected all the tested 23
rootkits, with 20 seconds latency and a 0.49% performance

overhead. [47] and [48] utilize HPC observations, [63] pro-

poses manual integrity verification of critical memory regions

and [50] with PoKeR routing all the kernel instruction fetches

to shadow memory. In contrast, all the other memory access is

performed via standard memory. Finally, [58], and [41] which

use binary analysis and control flow graph-based techniques,

respectively.

B. User-level Rootkit Protection

To the best of our knowledge, there has only been limited

work on detecting user-level rootkits. A patent by Douglas et

al. [75] compares command outputs from user space with cor-

responding low-level functions in kernel space. Discrepancies

between these results indicate the presence of a hidden user-

level rootkit. This approach assumes that the adversary does

not hold kernel-privilege, an invalid assumption, effectively

enabling an adversary to manipulate output from kernel space

and render the solution ineffective.

Another approach put forth in [76] targets user-level rootkits

in Windows, relying on API interception for achieving stealth.

This work utilizes a diff-based approach by comparing the

output gathered while enumerating files and registry entries

through infected APIs and a clean system. This work does not

focus on user-level rootkits utilizing preloading techniques in

Linux. These limitations make ORRIS the only solution that

can protect against both user-level and kernel-level rootkits in

Linux.

C. Malware Detection

Semantic Information. Panorama, as presented in [59]

performs taint analysis with fine-grained information

flow tracking, [30] utilizes mined information from PCB,

VMwatcher [60] uses guest view casting to systematically

reconstruct internal aspects of a virtual machine (VM) and

check for irregularities. [61] proposes the static analysis

of dex code, Fluorescence [62] relies on a signature-based

approach, [77] with negative-day malware detection and [78]

which detects attack from log analysis.

Microarchitectural Information. Ozsoy et al. proposed a

Malware Aware Processor augmented with a hardware-based

online malware detector [64]. HPCMalHunter [66] performs

real-time behavioral detection at the hardware level. [65] pro-

pose an anomaly-based hardware malware detector utilizing

signatures from low-level events. [47], [79], [80] and [81]

where the authors study the feasibility of using performance

counters, detection of kernel rootkits in [48], [82], malware

detection in [67], [68], and [69] and DDoS attack detection

in [70].

D. Comparison
As evident in Table VIII, x86 64-based Windows and

Linux platforms dominate malware detection research. These

techniques require virtualization, complex data collection tech-

niques, localized presence in the protected host, and much

more. ORRIS, on the other hand, only requires an acces-

sible JTAG port to gather all the information, isolate itself

externally, and do not use virtualization, making it a perfect

fit for less powerful PLC-type devices while achieving high

accuracy. It offloads the malware detection mechanism to an

external host, only minimally impacting the PLC device while

employing the JTAG interface features.
PLCs need specialized malware detection solutions that

have only been touched upon lightly in literature. Konstantinou

et al. proposed a primitive method for detecting malicious

modification in the firmware of bare-metal embedded devices

with JTAG [83]. Zonouz et al. utilized symbolic execution

and model checking to recognize violations in process code

running on a PLC [84]. Nevertheless, both approaches failed

to create a comprehensive malware detection solution for PLC

devices.

IX. CONCLUSION

In this research, we put forth ORRIS, a malware detection

framework utilizing static data structure integrity verification,

static binary analysis, semantic and microarchitectural features

in Linux-based PLC. ORRIS uses only the JTAG connection

to collect all the required information from the kernel and

hardware level to detect malicious activities on a system. Our

framework combines a software implementation and commod-

ity hardware to form a chain of trust that proactively responds

to malware targetting PLC devices. It keeps processing out

of the device with minimal performance overhead on the

protected device. We tested ORRIS against in-the-wild user-

level rootkits and malware samples on a BBB as a test PLC

device while achieving the highest accuracy of 96.3% and

99.75%, respectively. We also analyze our ML model against

unseen malware and spatial experimental bias, confirming its

resilience.

ACKNOWLEDGMENT

This research was supported by the NYU Abu Dhabi

Global Ph.D. Fellowship. ORRIS can be found at

github.com/momalab/orris.

381

REFERENCES

[1] I-Scoop. (2020) Industry 4.0: the fourth industrial revolution – guide to
industrie 4.0. [Online]. Available: https://www.i-scoop.eu/industry-4-0/

[2] L. Columbus. (2016) Industry 4.0 is enabling a new era of
manufacturing intelligence and analytics. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2016/08/07/industry-4-
0-is-enabling-a-new-era-of-manufacturing-intelligence-and-analytics/
#11b2a3257ad9

[3] Markets and Markets. (2019) Industrial control systems (ics)
security market by solution - global forecast to 2023.
[Online]. Available: https://www.marketsandmarkets.com/Market-
Reports/industrial-control-systems-security-ics-market-1273.html

[4] G. Murray, M. N. Johnstone, and C. Valli, “The convergence of it and
ot in critical infrastructure,” 2017.

[5] Cybersecurity in Operational Technology: 7 Insights You Need to Know,
Ponemon Institute, March 2019.

[6] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.-R. Sadeghi,
M. Maniatakos, and R. Karri, “The cybersecurity landscape in industrial
control systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1039–
1057, 2016.

[7] M. B. Line, A. Zand, G. Stringhini, and R. Kemmerer, “Targeted attacks
against industrial control systems: Is the power industry prepared?” in
Proceedings of the 2nd Workshop on Smart Energy Grid Security, 2014,
pp. 13–22.

[8] Gartner. (2018) Gartner forecasts worldwide information security
spending to exceed $124 billion in 2019. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-
gartner-forecasts-worldwide-information-security-spending-to-exceed-
124-billion-in-2019

[9] P. Networks. (2015) How to break the cyber attack lifecycle.
[Online]. Available: https://www.paloaltonetworks.com/cyberpedia/
how-to-break-the-cyber-attack-lifecycle

[10] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: Intelligent malware detection
system,” in Proceedings of the 13th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 2007, pp. 1043–1047.

[11] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2008, pp. 207–227.

[12] J. Sahs and L. Khan, “A machine learning approach to android malware
detection,” in 2012 European Intelligence and Security Informatics
Conference. IEEE, 2012, pp. 141–147.

[13] WAGO-I/O-System 750 750-8202 PFC200 RS Manual, WAGO, 2012.
[14] D. Greenfield. (2018) Why is linux trending? [On-

line]. Available: https://www.automationworld.com/products/control/
blog/13318571/why-is-linux-trending

[15] B. T. Affair, “Hiding out under unix,” Phrack Magazine, vol. 3, p. 25,
1989.

[16] A. Bunten, “Unix and linux based rootkits techniques and countermea-
sures,” in 16th Annual First Conference on Computer Security Incident
Handling, Budapest, 2004.

[17] N. Murilo and K. Steding-Jessen. (2007) Chkrootkit v. 0.43. [Online].
Available: http://www.chkrootkit.org/

[18] F. Merces. (2016) Trend micro. pokemon-themed um-
breon linux rootkit hits x86, arm systems. [Online].
Available: https://blog.trendmicro.com/trendlabs-security-intelligence/
pokemon-themed-umbreon-linux-rootkit-hits-x86-arm-systems/

[19] P. H. N. Rajput and M. Maniatakos, “Jtag: A multifaceted tool for
cyber security,” in 2019 IEEE 25th International Symposium on On-
Line Testing and Robust System Design (IOLTS). IEEE, 2019, pp.
155–158.

[20] A. Infocenter. (2011) About embedded trace macrocells.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ihi0014q/I83164.html

[21] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 729–746. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury

[22] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,”
Electricity Information Sharing and Analysis Center (E-ISAC), vol. 388,
2016.

[23] ARM-ETM Training, Lauterbach, 2020.

[24] Z. Ning and F. Zhang, “Understanding the security of arm debugging
features,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 602–619.

[25] A. Developer. (2019) Cortex-a8 technical reference manual: Apb inter-
face access permissions. [Online]. Available: http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0344h/Babdgjfh.html

[26] A. Developer. (2019) Cortex-a8 technical reference manual: Memory-
mapped registers. [Online]. Available: https://developer.arm.com/docs/
ddi0344/b/debug/debug-register-interface/memory-mapped-registers

[27] VirusTotal, “Virustotal,” 2020. [Online]. Available: https:
//www.virustotal.com/gui/home

[28] VirusShare, “Virusshare.com,” 2020. [Online]. Available: https://
virusshare.com/

[29] D. Tychalas and M. Maniatakos, “Iffset: in-field fuzzing of industrial
control systems using system emulation,” in 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2020, pp.
662–665.

[30] F. Shahzad, S. Bhatti, M. Shahzad, and M. Farooq, “In-execution
malware detection using task structures of linux processes,” in 2011
IEEE International Conference on Communications (ICC). IEEE, 2011,
pp. 1–6.

[31] E. Burnaev and D. Smolyakov, “One-class svm with privileged infor-
mation and its application to malware detection,” in 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW). IEEE,
2016, pp. 273–280.

[32] P. H. N. Rajput, P. Rajput, M. Sazos, and M. Maniatakos, “Process-
aware cyberattacks for thermal desalination plants,” in Proceedings of
the 2019 ACM Asia Conference on Computer and Communications
Security, 2019, pp. 441–452.

[33] A. Comparatives. (2019) False alarm tests. [Online]. Available:
https://www.av-comparatives.org/testmethod/false-alarm-tests/

[34] F. A. Pinage, E. M. dos Santos, and J. M. P. da Gama, “Classification
systems in dynamic environments: an overview,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 6, no. 5, pp. 156–
166, 2016.

[35] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits
through binary analysis,” in 20th Annual Computer Security Applications
Conference. IEEE, 2004, pp. 91–100.

[36] H. Yin, P. Poosankam, S. Hanna, and D. Song, “Hookscout: Proactive
binary-centric hook detection,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2010, pp. 1–20.

[37] B. Neuburger. (2017) Implementing kaslr detection in volatility.
[Online]. Available: https://bneuburg.github.io/volatility/kaslr/2017/05/
16/KASLR3.html

[38] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed,
and S. A. Zonouz, “Hey, my malware knows physics! attacking plcs with
physical model aware rootkit.” in NDSS, 2017.

[39] M. D. Schwartz, J. Mulder, J. Trent, and W. D. Atkins, “Control
system devices: Architectures and supply channels overview,” Sandia
Report SAND2010-5183, Sandia National Laboratories, Albuquerque,
New Mexico, vol. 102, p. 103, 2010.

[40] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 103–115.

[41] J. Wilhelm and T.-c. Chiueh, “A forced sampled execution approach
to kernel rootkit identification,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 219–235.

[42] Z. Wang, X. Jiang, W. Cui, and X. Wang, “Countering persistent kernel
rootkits through systematic hook discovery,” in International Workshop
on Recent Advances in Intrusion Detection. Springer, 2008, pp. 21–38.

[43] M. Schmidt, L. Baumgartner, P. Graubner, D. Bock, and B. Freisleben,
“Malware detection and kernel rootkit prevention in cloud computing
environments,” in 2011 19th International Euromicro Conference on
Parallel, Distributed and Network-Based Processing. IEEE, 2011, pp.
603–610.

[44] A. Baliga, X. Chen, and L. Iftode, “Paladin: Automated detection
and containment of rootkit attacks,” Department of Computer Science,
Rutgers University, 2006.

[45] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating dynamic data kernel
rootkit attacks via vmm-based guest-transparent monitoring,” in 2009
international conference on availability, reliability and security. IEEE,
2009, pp. 74–81.

382

[46] A. Baliga, V. Ganapathy, and L. Iftode, “Detecting kernel-level rootkits
using data structure invariants,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 5, pp. 670–684, 2010.

[47] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the
detection of kernel-level rootkits using hardware performance counters,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 483–493.

[48] X. Wang and R. Karri, “Numchecker: Detecting kernel control-flow
modifying rootkits by using hardware performance counters,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2013, pp. 1–7.

[49] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2008, pp.
1–20.

[50] R. Riley, X. Jiang, and D. Xu, “Multi-aspect profiling of kernel rootkit
behavior,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 47–60.

[51] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested kernel: An operating system architecture for intra-kernel priv-
ilege separation,” in Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2015, pp. 191–206.

[52] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring
using hardware virtualization,” in Proceedings of the 16th ACM confer-
ence on Computer and communications security, 2009, pp. 477–487.

[53] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, 2007, pp. 335–350.

[54] X. Xiong and P. Liu, “Silver: Fine-grained and transparent protection
domain primitives in commodity os kernel,” in International Workshop
on Recent Advances in Intrusion Detection. Springer, 2013, pp. 103–
122.

[55] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “Secpod:
a framework for virtualization-based security systems,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, Jul. 2015, pp. 347–360.
[Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/wang-xiaoguang

[56] S. Sparks and J. Butler, “Shadow walker: Raising the bar for rootkit
detection,” Black Hat Japan, vol. 11, no. 63, pp. 504–533, 2005.

[57] X. Xie and W. Wang, “Rootkit detection on virtual machines through
deep information extraction at hypervisor-level,” in 2013 IEEE Confer-
ence on Communications and Network Security (CNS). IEEE, 2013,
pp. 498–503.

[58] S. A. Musavi and M. Kharrazi, “Back to static analysis for kernel-
level rootkit detection,” IEEE Transactions on Information Forensics
and Security, vol. 9, no. 9, pp. 1465–1476, 2014.

[59] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security, 2007, pp. 116–127.

[60] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based” out-of-the-box” semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security, 2007, pp. 128–138.

[61] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[62] R. Li, M. Du, D. Johnson, R. Ricci, J. Van der Merwe, and E. Eide,
“Fluorescence: Detecting kernel-resident malware in clouds,” in 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
({RAID} 2019), 2019, pp. 367–382.

[63] M. Guri, Y. Poliak, B. Shapira, and Y. Elovici, “Joker: Trusted detection
of kernel rootkits in android devices via jtag interface,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 65–73.

[64] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. Ponomarev, “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, vol. 65, no. 11,
pp. 3332–3344, 2016.

[65] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International

Workshop on Recent Advances in Intrusion Detection. Springer, 2014,
pp. 109–129.

[66] M. B. Bahador, M. Abadi, and A. Tajoddin, “Hpcmalhunter: Behavioral
malware detection using hardware performance counters and singular
value decomposition,” in 2014 4th International Conference on Com-
puter and Knowledge Engineering (ICCKE). IEEE, 2014, pp. 703–708.

[67] X. Wang, S. Chai, M. Isnardi, S. Lim, and R. Karri, “Hardware
performance counter-based malware identification and detection with
adaptive compressive sensing,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 1, pp. 1–23, 2016.

[68] A. Garcia-Serrano, “Anomaly detection for malware identification us-
ing hardware performance counters,” arXiv preprint arXiv:1508.07482,
2015.

[69] H. Peng, J. Wei, and W. Guo, “Micro-architectural features for mal-
ware detection,” in Conference on Advanced Computer Architecture.
Springer, 2016, pp. 48–60.

[70] V. Jyothi, X. Wang, S. K. Addepalli, and R. Karri, “Brain: Behavior
based adaptive intrusion detection in networks: Using hardware per-
formance counters to detect ddos attacks,” in 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID). IEEE, 2016, pp. 587–588.

[71] F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, and
A. Gregio, “The need for speed: An analysis of brazilian malware
classifiers,” IEEE Security Privacy, vol. 16, no. 6, pp. 31–41, 2018.

[72] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” black Hat, 2017.

[73] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly
detector resistant to mimicry attack,” in International workshop on
recent advances in intrusion detection. Springer, 2006, pp. 226–248.

[74] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Reviewer
integration and performance measurement for malware detection,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 122–141.

[75] D. R. Beck and Y.-M. Wang, “Detecting user-mode rootkits,” Jan. 18
2011, uS Patent 7,874,001.

[76] Y.-M. Wang and D. Beck, “Fast user-mode rootkit scanner for the
enterprise.” in LISA, 2005, pp. 23–30.

[77] L.-P. Yuan, W. Hu, T. Yu, P. Liu, and S. Zhu, “Towards large-scale hunt-
ing for android negative-day malware,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses ({RAID} 2019), 2019,
pp. 533–545.

[78] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog:
High-fidelity attack investigation via transparent multi-layer log analy-
sis,” in Network and Distributed System Security Symposium, 2020.

[79] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 559–570, 2013.

[80] M. Kazdagli, L. Huang, V. Reddi, and M. Tiwari, “Morpheus: Bench-
marking computational diversity in mobile malware,” in Proceedings of
the Third Workshop on Hardware and Architectural Support for Security
and Privacy, 2014, pp. 1–8.

[81] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based
malware detectors,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[82] X. Wang and R. Karri, “Reusing hardware performance counters to
detect and identify kernel control-flow modifying rootkits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 3, pp. 485–498, 2015.

[83] C. Konstantinou, E. Chielle, and M. Maniatakos, “Phylax: Snapshot-
based profiling of real-time embedded devices via jtag interface,” in
2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 869–872.

[84] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
vol. 12, no. 6, pp. 40–47, 2014.

383

APPENDIX A

SUMMARY OF FEATURES

TABLE IX: A summary of microarchitectural features.

Type Feature Description

M
ic

ro
ar

ch
ite

ct
ur

al

ERETURN Exception Return Instructions
DUNALIGNED Unaligned Data Accesses
NEONWORK NEON and Integer Unit not idle

UNALIGNEDREPLAY
Replay Events from
Unaligned Access

DCACCESSNEON Data Cache accesses by NEON
ETMEXTOUT1 ETM Signal ETMEXTOUT1

L2STORE L2 Cache Stores
ITLBMISS Instruction TLB Misses

DCHITNEON Data Cache Hits by NEON
L2ACCESSNEON L2 Cache accesses by NEON

DTLBMISS Data TLB Misses
L2MERGE L2 Cache Stores Merged

DCHASHMISS Data Cache Misses by Hash
CONTEXT Context Switch Instructions
L2ACCESS L2 Cache Accesses
RETURN Return Instructions
ECALL Exception Call Instructions

DWRITE Data Write Accesses
DREAD Data Read Accesses

BPREDICTABLE Predictable Branch Instructions
RSTKMISS Return Stack Misses

L2MISS L2 Cache Misses
BINST Immediate Branch Instructions

L2HITNEON L2 Cache Hit by NEON

BPREDTAKEN
Branch Instructions predicted

to be taken
CLOCKCYCLES Clockcycles

BPEXECTAKEN
Predictable Branch Instructions

taken
DCACCESS Data Cache Accesses

IIDLE Instruction Buffer Idles
PCINST PC Change Instructions
REPLAY Replay Events

BPCONDMIS
Branch Instructions Condition

Mispredicted
AXIWRITE AXI write active

BPMIS
Branch Instructions Mispredicted

or not Predicted
DCALIAS Data Cache page coloring aliases
ICMISS Instruction Cache Misses

AXIREAD AXI read active
OPERATION Operations Issued

INST Instructions
IISSUE Instructions Issued

NEONSTALL Stalls from NEON
NEONWAITS Waits for NEON access

ICACCESS Instruction Cache Accesses
DCMISS Data Cache Misses
WBFULL Write Buffer Full

ICHASHMISS Instruction Cache Misses by Hash
SOFT Software increment

ETMEXTOUT0 ETM Signal ETMEXTOUT0

ETMEXTOUT01
ETM Signal ETMEXTOUT0

+ ETMEXTOUT1

TABLE X: A summary of semantic features.

Type Feature Description

Se
m

an
tic

prio
Priority of a process used

when scheduled
vruntime Runtime of a thread
min flt Minor page faults

wakee flips For task wake up
maj flt Major page faults
stime System time

pcount
Number of times a process

ran on a CPU
nvcsw Context switch counts

sum exec runtime Total time spent on the CPU
utime Time spent in user mode
syscr Number of read syscalls

prev sum exec runtime Previous execution time
nr failed migrations hot Failed process migration statistics

rchar Number of bytes read
wchar Number of bytes written

wakee flip decay ts Delay in process wake up
acct rss mem1 Accumulated RSS usage

priority Real-time priority
timeslice Execution time slice

acct vm mem1 Accumulated virtual memory usage
block max Maximum block I/O size

nivcsw Context switch counts
run delay Time spent waiting on a runqueue

syscw Number of write syscalls
wakeups Number of wake up

wakeups passive Number of passive wake up

nr failed migrations running
Failed running process

migration statistics

usage
Reference count on the task

structure of a process
wakeups idle Number of idle wake ups
iowait count I/O wait counter

weight Process weight for load balancing
slice max Maximum time slice
wait max Maximum wait time

nr forced migrations Number of forced migrations
wakeups local Number of local wake ups

wakeups affine attempts Number of wake up affine attempts

dl bw dl runtime
dl period

sleep start Sleep start timestamp
wait count Wait count
wait start Waiting start timestamp
wait sum Total wait time

flags Specifying scheduler behavior
exec max Maximum execution time

sum sleep runtime Total sleep time during runtime
iowait sum Total I/O wait time
sleep max Maximum sleep time

dl density dl runtime
dl deadline

wakeups affine Total affine wake ups
wakeups remote Total remote wake ups
wakeups migrate Total migrate wake ups

block start Block I/O start timestamp
nr failed migrations affine Number of failed affine migrations

nr migrations cold Number of cold migrations
wakeups sync Number of sync wake ups

384

		2022-08-24T23:09:05-0400
	Preflight Ticket Signature

