
Aim, Wait, Shoot: How the CACHESNIPER Technique Improves Unprivileged
Cache Attacks

1st Samira Briongos
NEC Laboratories Europe

samira.briongos@neclab.eu

2nd Ida Bruhns
Universität zu Lübeck

ida.bruhns@uni-luebeck.de

3rd Pedro Malagón
Universidad Politécnica de Madrid

malagon@die.upm.es

4th Thomas Eisenbarth
Universität zu Lübeck

thomas.eisenbarth@uni-luebeck.de

5th José M. Moya
Universidad Politécnica de Madrid

josem@die.upm.es

Abstract—Microarchitectural side channel attacks have been
very prominent in security research over the last few years.
Caches proved to be an outstanding side channel, as they
provide high resolution and generic cross-core leakage. All
major cryptographic libraries provide countermeasures to
hinder key extraction via cross-core cache attacks by now.
In this paper, we analyze implementations protected by
prefetch-based countermeasures aimed at preventing well-
known cache attacks, and highlight the circumstances caus-
ing them to remain vulnerable. Further, we craft a novel
attack technique that precisely synchronizes the attacking
and the victim processes, enabling the attacking process to
evict the target data from the cache at the desired instants.
One key improvement of our approach is that it provides
unprivileged attackers with a method to remove specific data
from the cache with a single memory access and in absence
of shared memory by leveraging the transient capabilities
of TSX and relying on the L3 replacement policy. We show
the feasibility of our approach by extracting an RSA key
from the latest wolfSSL library and an AES key from the
T-Table and S-Box implementations included in OpenSSL
with CACHESNIPER. Both libraries implement prefetch-
based methods as a protection against cache attacks.

1. Introduction

In the age of cloud computing and online services,
multiple processes run simultaneously on shared hard-
ware. For example, many tenants can run their virtual
machines on a single host. The execution of any appli-
cation interacts with the microarchitectural elements of
the processor, changing their state. Since it is possible to
measure and influence this microarchitectural state, it can
be used as a side-channel to infer the secrets of a victim
process [1]–[8].
Among all the microarchitectural elements that can

be exploited to break security assumptions, such as the
isolation between processes, the cache memory plays one
of the most significant roles. It is a shared resource that
provides fine-grained temporal and spatial information.
Cache attacks have been very prominent in research over

This research was supported by DFG (Projects 427774779 and
439797619) and by the Spanish MINECO under grant PID2019-
110866RB-I00.

the last few years. They target cryptographic implementa-
tions, retrieving ECDSA, RSA and AES keys, and break
the isolation between virtual machines (VMs) [9]–[17].
Other attacks infer keystrokes, spy on user behavior, steal
SGX enclave keys and many more [18]–[20].
As a direct response to the threat imposed by microar-

chitectural attacks, many different countermeasures have
been proposed. Preemptive countermeasures try to help
in the hard task of designing leakage free code [21]–
[24]. Hardware based countermeasures either design or
take advantage of hardware features to avoid the leakage.
Finally, detection based countermeasures accept that vul-
nerable applications exist and try to determine whether
there is an attack going on by analyzing the state of the
system [25]–[30]. In this paper, we will focus on the
preemptive countermeasure of prefetching.
Prefetching or cache warming is used as a strategy

to improve performance as well as preventing attackers
from observing the cache state in cache attacks [12], [31]–
[34]. For example, a prefetching strategy was included
in the AES S-Box implementation of OpenSSL 1.0.0a
and beyond: The S-Box is loaded into the cache before
executing each round [35], [36]. If the attacker tries to
retrieve information from the cache lines holding the S-
Box during the execution of any intermediate round or
after the encryption, she will only observe cache hits. Con-
sequently, she would not be able to distinguish whether
those accesses occurred due to the actual utilization of the
line or due to the load in the prefetch stage [35].
While prefetching as a countermeasure against cache

attacks may not be generally considered completely ef-
fective by researchers [37], it is still widely deployed in
real-world applications. To the best of our knowledge,
no previous work has proved that it can be completely
bypassed by unprivileged cache attacks. Many promi-
nent and current publications have either exploited the
intra-core resource sharing of simultaneous multithread-
ing (SMT) [8], [38]–[40] or the ability of privileged
attackers to interrupt the execution of SGX enclaves to
attack different cryptographic implementations [41]–[44].
While these scenarios match a cloud setting or a trusted
execution environment threat model, these attackers are
so powerful that several cryptographic libraries, including
OpenSSL, now ignore them: The cost of protecting against
them is exuberant and arguably not justified in scenarios

683

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Samira Briongos. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00051

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
51

where the attacker already controls the OS (which may
simply be worse than the attacks) [45]. On the contrary,
CACHESNIPER requires no elevated user privileges or
system setup, and thus poses a real threat to running
cryptographic service using state of the art libraries.

Contribution. In this work, we show that a classic user-
level cache adversary can overcome a prefetch protection
by solving four challenges: (1) The attacker needs to be
able to detect when the victim is running the target algo-
rithm. (2) She has to determine the time window between
the detection of the target algorithm and the utilization
of the target data. (3) At exactly the right instant, she
needs to evict the target data from memory. (4) As in
previous attacks, she then needs to recover the information
about a potential access of the victim algorithm. Our work
contributes the following:

• We analyze different methods to tackle these chal-
lenges and evaluate which work best by testing with
a synthetic benchmark.

• We then use the outcomes of the analysis to craft
CACHESNIPER, a novel attack technique that allows
a user level attacker to leverage tiny windows of
opportunity.

• CACHESNIPER achieves high precision by combin-
ing a TSX transaction to precisely determine the vic-
tim process’s state, the corresponding abort handler
to directly conduct the attack, and fast and accurate
eviction techniques to get data from the cache.

• We show in realistic experimental setups the fea-
sibility of side channel last-level cache attacks
against prefetch-protected implementations by re-
trieving keys from AES and RSA implementations,
both from real world libraries.

We demonstrate the success of CACHESNIPER by retriev-
ing keys from protected AES and RSA implementations,
both from real world libraries. This shows that last-level
cache attacks against protected implementations are still
possible even without special privileges. The code for
CACHESNIPER and our benchmark experiments is avail-
able at https://github.com/greenlsi/CacheSniper.

Disclosure. We responsibly disclosed to both wolfSSL
and OpenSSL on June 22nd and 23rd respectively.
OpenSSL did not issue a CVE since CACHESNIPER falls
outside their threat model [45], eventually the commu-
nication stopped after we analyzed their proposal of an
alternative AES software implementation. WolfSSL im-
mediately issued CVE-2020-15309 and proposed a fix for
the vulnerability, which we tested and acknowledged. It
will be part of the next wolfSSL release.

2. Preliminaries
This section introduces some basic concepts on cache

memory, cache attacks and transactional execution that are
of key importance in order to understand the proposed
technique and its differences to previous approaches.

2.1. Cache architecture

Caches are small memory blocks located between the
processor and the main memory, specially designed to re-
duce the gap between processor and memory throughput.

Modern processors include caches that are hierarchically
organized; low level caches (L1 and L2) are core private,
smaller and closer to the processor (with reduced latency),
whereas the last level cache (LLC or L3) is bigger and
shared among all the cores. Intel processors traditionally
have L3 inclusive caches, in order to simplify the im-
plementation of cache coherency: All the data which is
present in the private low-level caches has to be in the
shared L3 cache.

Most modern processors include w-way set-associative
caches; a trade-off between directly mapped caches, usu-
ally with high cache miss rates, and fully associative
caches, with a very complex logic. The cache is organized
into multiple sets (s), each of them containing w lines
of usually 64 bytes of data. Many caches additionally
group the sets into slices. The location of each memory
block is derived from its physical address. The address
bits are divided into offset (usually the lowest-order 6 bits
used to locate data within a 64 byte line), index (log2(s)
consecutive bits starting from the offset bits that address
the set) and tag (remaining bits that identify whether the
data is cached). The slice number is computed by a hash
function f , which usually depends on some fixed bits of
the data. Slice selection mechanisms are often not public,
and effort has gone into reverse engineering them [46].

There is a noticeable timing difference between data
retrieved from the cache hierarchy (cache hit) and data that
has to be fetched from main memory (cache miss). In the
event of a cache miss, the new block has to be placed
in the cache. In this case, the replacement policy decides
which block is evicted from the cache set and thus, the
location of the new block within the set. A good replace-
ment policy is crucial for achieving good performance and
most manufacturers do not publish the implementation of
their replacement policies. In the case of Intel, their latest
replacement policy is known as “Quad-Age LRU” [47].
There have been several efforts to gain more insight into
the replacement policy of Intel processors [48]–[50] or
to study eviction strategies in order to improve cache
or memory fault injection attacks [51], [52]. Recently,
more concrete details about the replacement policy of all
the cache levels of modern Intel processors have been
published [53]–[55]. These works highlight that Intel’s
LLC replacement policy is deterministic: The eviction
candidate depends on the location of the data within the set
and the accesses to the blocks in the LLC. If data is loaded
from the L1 or L2 cache, the LLC eviction candidate does
not change.

2.2. Cache attacks

Cache memory was first mentioned as a side channel
in 1992 [56]. Since then, many different techniques have
been developed: Osvik et al. proposed the widely known
Evict+Time and Prime+Probe attacks, revealing the cache
sets accessed by the victim, and Gullasch et al. and
Yarom et al. developed a powerful attack that exploits
shared memory, which was later named Flush+Reload
[57]–[60]. From these attacks, the latter two are widely
used. Flush+Reload is popular due to its high resolution
and accuracy and Prime+Probe has very low requirements
regarding the attack scenario.

684

The Flush+Reload technique requires shared memory,
which means that the victim and attacker use the same
data during their respective execution. This can be met
by both using the same shared library, which is often
the case for libraries shipped with the operating system.
The attacker uses one instruction, such as clflush in
Intel processors, to flush the desired lines from the cache,
making sure the victim process needs to load them from
memory to use them. She then waits for a certain period
of time, giving the victim process time to execute. Then
the attacker reloads the data, measuring the time this
takes. If the victim process used the data, the reload time
observed by the attacker will be short. This attack is easy
to implement and provides precise information about the
data the victim process uses at cache-line granularity. As
for cryptographic implementations, this attack has suc-
cessfully retrieved AES, RSA and ECDSA keys [12],
[15], [59], [60]. After some successful attacks [12], [16],
[61], [62] showed how to recover secret information from
co-resident VMs, cloud vendors realized shared memory
poses a security risk and disabled it on their machines.
Lacking shared memory or a flush instruction, e.g.

when attacking from JavaScript [63] or in the afore-
mentioned cloud scenario, an attacker can leverage
Prime+Probe to extract sensitive information [9], [10].
Prime+Probe does not require special OS features, so it
can be applied to virtually any system. As a preparation
step for a Prime+Probe attack, the attacker needs to
construct an eviction set (a group of w different addresses
that map to one specific set in w-way set-associative
caches). Constructing eviction sets and dealing with miss-
ing address information as well as slice selection mecha-
nisms has been discussed extensively in the literature [9],
[14], [17], [52]. Both the Flush+Reload and Prime+Probe
techniques require precise timers, thus limiting the at-
tacker’s capacity to access these timers was considered a
valid countermeasure. This notion was proven incorrect
by Disselkoen et al., who designed a timer-less attack
that exploits TSX to retrieve the same information as
Prime+Probe attacks [64].

2.3. Transactional memory and Intel TSX

Intel TSX is an instruction set extension for x86
that supports Transactional memory and is available on
several CPUs starting with the Haswell microarchitecture.
Transactional memory enables optimistic execution of the
transactional code regions specified by the programmer.
The processor executes the specified sections assuming
that there is no conflict with other threads or CPU cores,
which might access or modify the same data. Trans-
actional memory reduces the need of mutual exclusion
mechanisms, using a local version of data and registering
a hardware-based callback mechanism in case a conflict
with other threads is detected. If the execution ends suc-
cessfully, the processor commits all the changes as if they
had occurred atomically, becoming visible to the remain-
ing processes. Otherwise, the transaction is canceled, all
memory changes are discarded and a callback function is
called. This process is known as an abort, and the callback
is known as an abort handler.
There are various reasons why a transaction may abort

in Intel TSX, but we particularly focus on the cache

Figure 1. Diagram of the considered scenario for the attack against
protected cryptographic implementations. The only connection between
the attacker and the victim is the shared hardware.

related ones. Namely, a transaction aborts if data from
its “write set” is evicted from the L1 cache or if data
from its “read set” is evicted from the L3 cache [64],
[65]. These properties of the transactions have been suc-
cessfully exploited to carry cache attacks in cases where
timers are not available [64] or to break kernel address
space layout randomization (KASLR) without generating
interrupts from the operating system [66], [67]. They have
been leveraged to protect processes against cache attacks
[68] or even to prevent data input modification and thus
protect against the exploitation of double fetch bugs [69].
As a result of the discovery of the TSX Asynchronous

Abort (TAA) vulnerability [4], [70], different mitigations
were issued [71], [72]. TAA is similar to Microarchitec-
tural Data Sampling (MDS) and affects the same buffers.
It exposes data from either the current logical processor or
from the sibling logical processor when certain loads spec-
ulatively pass that data to dependent operations while the
asynchronous abort condition is pending in a transaction.
The MDS mitigation helps address the TAA vulnerability,
and starting with 8th and 9th Generations of Intel Core
processors it is mitigated in hardware [72]. Not all CPUs
are affected and therefore, not all of them need mitigation,
if they do, two options are possible; either TSX is disabled
or the CPU buffers are cleared. If TSX is disabled, root
privileges are required to enable it [71], [72].
In this work, we further explore the capabilities of

TSX for detection and synchronization of processes. This
makes TSX an enabler for some cache attacks against
implementations protected by prefetch-based countermea-
sures. Note that we focus on the LLC, thus clearing the
buffers does not affect our approach.

3. Attacker scenario

The scenario we consider for the analysis of the ef-
fectiveness of the countermeasures and to carry out the
different experiments is depicted in Figure 1. It tries to be
as realistic as possible and includes the following agents:

Server Executes the target process (encryption/decryp-
tion) upon a request from a client. While this is a simpli-
fied version of a real server process, it is enough to create
a realistic scenario for the attacks.
Client Sends requests to the server every 500μs plus a
random time Δ ∈ [0..100μs]. This process tries to emulate
the behavior of a real network.
Attacker Monitors the cache to detect the exact times
when the target process (an encryption process) is running
so it can launch a precise attack.

685

1:
2: function VICTIM FUNCTION

3:
.
.
.

4:
5:
6: load table[secret]
7: end function

1: � Eviction target T1
2: function VICTIM FUNCTION

3:
.
.
.

4: load table
5: � Eviction target T2
6: load table[secret]
7: end function

Figure 2. Example for (a) vulnerable and (b) protected algorithm

Our main assumption is that the attacker and the victim
are using the same machine. The attacker has user-level
access to the server and no special rights or privileges,
She does not receive any input from the clients referring to
the instants they make the requests. She cannot physically
interfere with the machine or slow down or stop the victim
process. As our attack targets the LLC, the attacker and
victim may run on different physical cores.

4. Protected implementations as target

In this work we consider applications that prefetch
data in the cache or implement always-load strategies as
a countermeasure against cache attacks. The idea of both
approaches is the same: The developer tries to ensure that
an attacker cannot distinguish between data that is in the
cache because the application loads it as a precaution and
data that is in the cache because it is actually used.

4.1. Prefetch protected implementations

As explained in Subsection 2.2, an attacker in a cache
side channel attack tries to infer secrets from observed
cache access patterns. Prefetching helps to obliterate these
patterns by loading data or instructions regardless of their
actual utilization. When the time elapsed between prefetch
and the vulnerable access is actually lower than the time
required to measure the cache state, it makes virtually
impossible for an attacker to discern whether the observed
access is due to the prefetch or due to the (subsequent)
secret-dependent use by the victim.
To illustrate this idea we provide a simple exam-

ple scenario in Figure 2. The victim runs the function
victim function, which executes some operations before
performing a secret-dependent access to a table. Assuming
table spans several cache lines, the attacker can gain
information about the secret by observing which cache
lines are accessed by the victim process. In the protected
version, the entire table is loaded into the cache in line 4
before the secret dependent access is performed in line 6.
Thus, each cache line spanned by the table is accessed at
least once, independently of the secret.
As a more realistic example, in the case of an un-

protected AES T-Table implementation, the attacker could
easily remove one line of the table from the cache, let the
whole encryption run, and later test the cache. Since the
probability of using that line is around 92%1, the infor-
mation about its actual utilization leaks information about
the secret key. On the contrary, as stated by a Red Hat
security blog the probability of not using one line of the

1. The probability of using a single line from the T-Table increases
depending on the number of rounds the AES uses, which in turn depends
on the key size and it is given as (1− (16/256))Rounds∗4.

S-Box implementation should be 10−20. In the particular
case of OpenSSL, such probability is indeed zero because
the S-Box is fully prefetched before the execution of
each round [73]. As a result, they later conclude that this
implementation should not be vulnerable to cache attacks.
Note that the existence of this prefetch does not elimi-

nate the existence of leaky patterns in the code. However,
applications protected this way are still considered secure
against user-level cache attacks for the following reasons:

• If there is no shared memory, the Prime+Probe
attack will require to probe the whole set to evict
the prefetched data. This operation sometimes takes
longer than the execution of the protected application.

• If there is shared memory, a Flush+Reload attack
monitoring the cache will detect the presence of the
data in the cache with high accuracy, but it lacks a
mechanism to infer whether this observation is due
to the prefetch or to the actual utilization of the data.

Mainly, in both cases, the temporal resolution of the
attacks is usually assumed to be too low to distinguish the
prefetch access from the subsequent secret-dependent ac-
cess. This is particularly true in the common synchronous
attack scenario where the attacker evicts the observed
target, then lets the victim run the encryption, and then
accesses the observed target again to see if it is in the
cache, or when the spy process continuously observes the
cache seeking for consecutive high frequency accesses.
Since the protected code theoretically still leaks infor-

mation, the objective of this work is to study and analyze
whether a regular attacker can exploit that code, and under
which circumstances. For this analysis we have designed
a synthetic benchmark that tries to mimic one of these
protected applications. We provide further details about
this set of experiments in Section 5.

4.2. Attack challenges

In a cache attack against an implementation without
prefetching, it is usually sufficient to remove the target
data from the cache before the victim process starts exe-
cuting, then checking for the target data in the cache after
the victim process terminates. Measuring close to the end
of the victim process will reduce noise, but the exact point
of the observation is not critical. This attack scheme does
not work for implementations that use prefetching.
To overcome the prefetch-based countermeasure, tim-

ing is everything. The attacker needs to evict the data
precisely after the prefetch, but before utilization. This
corresponds to between line 4 and line 6 in our example.
Since we assume no synchronization between the victim
and the attacker, the attacker does not know when the
victim is running the targeted application, neither does she
know when data is prefetched in the cache. Thus, in order
to evict the data at exactly the right instant, the attacker
needs to solve the following challenges:

1) Detect the victim’s execution of the target algorithm.
2) Determine the state of the target after detection.
3) Calculate the remaining time until data is prefetched.
4) Evict the target data from the LLC at the desired
instant.

To clarify this idea, we use the example given in
Figure 2: The attacker would try to detect the execution

686

of the function victim function. Since the victim process
continues to execute during the detection, a certain amount
of time will have passed until the attacker actually knows
the target function is running. To tackle the third chal-
lenge, she then needs to determine where in the target
function the victim is, and thus how much time will pass
until the prefetch in version (b) line 4. Last she needs to
find a way to evict the data and retrieve the information.

5. Overcoming the challenges

To find out whether an attacker can gain any infor-
mation from protected applications, we design a minimal
worst-case application that implements the countermea-
sure. It is based on the example we have been using so
far, so we continue the pseudocode in Figure 2 version
(b). With this application, we can

• control the number of operations executed since the
beginning of the application until the prefetch.

• decide whether the data is used after the prefetch and
store that information.

• collect information about the exact instants when the
process starts, prefetches the data and when it ends.

Once our test code runs, it executes a variable num-
ber of xor operations (line 3) before prefetching a table
spanning four cache lines (line 4). This prefetch is fol-
lowed by a single access, where a secret bit secret
determines which of the four cache lines is accessed a
second time (line 6). Note that this example shows the
worst case scenario for the attacker: the secret related data
is accessed immediately after the prefetch, so the size of
the time window during which the attacker could evict
data from the cache to gain information is minimal. Other
scenarios with bigger tables and additional computation
will increase this window and simplify the attack.
For the posterior analysis, we also collect timestamps

at different points of the execution of this application.
Namely before executing the first instruction of the func-
tion (line 2), before the prefetch (line 4), and once the
function has completed its execution (line 7). This allows
us to reason about which of the existing approaches is
more accurate for detection, about the information refer-
ring to the state of the application we have after detection
and about the requirements for the posterior eviction of
the target that could allow exploitation of the leakage.

5.1. Detection approaches

We study Flush+Reload, Prime+Probe and a TSX-
based approach to detect the execution of the victim’s
function victim function. Once this is the case, vic-
tim function will appear in the cache. Thus, we monitor
the cache line that contains the call to the function itself.
We call this the target for detection, or T1.
The Flush+Reload [60] technique is considered one

of the most reliable sources of information in cache at-
tacks, especially when compared to the noisier and slower
Prime+Probe technique [9], [12]–[14]. The main reason
is that, in the former case, observations are made on a
shared memory block, whereas in the latter case, any other
process running in the machine could force an eviction and
the attacker would not be able to distinguish the origin

of the eviction. When using the Flush+Reload technique
we repeatedly flush T1 from the cache, wait for around
20 cycles (this value was empirically determined for our
scenario, values lower than 20 cycles reduce the detection
rate) and then reload again. Once the reload time indicates
T1 has been retrieved from the cache instead of from
the main memory, we know the victim has started the
execution. We then take note of the detection time.
For both Prime+Probe and TSX-based detection, first

of all we have to build an eviction set A mapping to
the same sets as our detection target T1. We enabled
hugepages to construct eviction sets as Liu et al. did in
[9], although it is possible to use the reverse-engineered
mapping function [46], [74] or a different approach that
does not require the use of hugepages [52], [75]. The
way eviction set are built does not have an impact on
the detection. Assuming that hugepages are enabled in
the server simplifies the construction of the eviction sets
without changing the attacker model for the actual attack.
Due to the pseudo-LRU replacement policy imple-

mented in Intel’s L3 cache [53], [55], always accessing
the elements in our eviction set in the same order ensures
that we are always about to access the block that our
application will evict as soon as it starts to run. This is
easily implemented through pointer-chasing. It also means
when using Prime+Probe, we can avoid accessing the
whole set and just measure the access time after accessing
one of the blocks in the eviction set, which is faster. Once
we detect a cache miss we assume the victim has begun
its execution and collect that timestamp for the posterior
analysis. Since we accessed all blocks in the current set
recently, this also allows us to estimate the ages of the
blocks at this point.
Finally, for TSX-based detection we leverage the fact

that, whenever a process is running inside a TSX transac-
tion, the process can either be completed and commit the
results or suffer an abort when suffering a L3 cache miss
and rollback the computations. The Prime+Abort attack
[64] deliberately causes conflicts in the L3 cache, leading
to an abort of the attacker’s process, to determine whether
the victim process has used certain data. This results in a
timer-free attack similar to Prime+Probe. We assume we
have access to timers and use the abort as a signaling
mechanism instead. We access all the elements in the
eviction set during the transaction and, in case it aborts,
we consider that the victim process has started and use
the abort handler to store the timestamp.
In all cases, we collect information referring to

100,000 executions of the target process. We collect infor-
mation on both sides, victim and attacker. The experiments
were performed on a Intel core i5-7600K, the details of
the platform are summarized in Table 2 ind the Appendix.
The correctly detected executions are: 99% for

Flush+Reload 94,6% Prime+Probe and 97,3% for TSX.
As previous researchers have shown, the Flush+Reload
approach shows great accuracy [69], [76]. Also the results
obtained for both TSX and Prime+Probe are good enough
for detection purposes. Note that in the case of TSX the
undetected executions are most likely due to the situations
where the data is being loaded inside the transaction while
the victim is already running.
While the detection capability is important, it is not

the main requisite for carrying out the precise attack that

687

500 1,000 1,500 2,000

5 · 10−2

0.1

0.15

0.2

Detection cycles

P
ro
b
ab
il
it
y

Flush+Reload

TSX

Prime+Probe

Figure 3. Histogram of the times elapsed between the beginning of the
execution of the victim process that takes 780 cycles in mean to execute,
until it is detected with the different approaches

is needed to infer secrets from an implementation with
prefetching. To achieve accurate evictions, we additionally
require the detection time to be almost constant. That
means we also need to check the time elapsed between
the start of the target execution and the detection and
the time between the detection and the prefetch for the
correctly detected processes. Figure 3 shows the histogram
of the detection times compared with the beginning of the
execution of the target. Our sample application runs in
almost constant time (about 600 cycles). Even though the
detection causes a cache miss, the execution time does
not show great variance and stays around 780 cycles.
Times elapsed between detection and prefetching show
similar behavior: both distributions are complementary.
The exception is the Prime+Probe approach: most of the
times the detection time exceeds the execution time (780
cycles) and thus we could not evict our target later.
Thus by themselves, Flush+Reload or Prime+Probe

have severe limitations. For instance Flush+Reload shows
quite a lot of variation for detection, which means low
reliability for the posterior eviction. The Prime+Probe
results not only have a large variation but also too much
delay. Apparently, since we are continuously reading from
the cache, and accessing the eviction candidate, there are
many race conditions between the target and the candidate.
Even when detected in time, and although the attacker
knows the state of the cache, she does not have any control
over it as the victim executes further. As a result, she
cannot accurately predict how long she has to wait to evict
the target, because this time depends on the location of the
target within the set, which in turn determines the number
of memory accesses required to evict it. In comparison,
TSX only shows a slightly smaller detection rate than
Flush+Reload. We believe that during the “undetected”
executions we were loading the data inside the transac-
tional region concurrently or just after the execution of
the victim process, or an unrelated process accidentally
evicted our data.
Based on these measurements, we state that the TSX

technique accurately informs about the execution of the
victim and that the attacker receives the abort as soon
as the conflict happens. As a result, we further explore
the eviction approaches assuming we can use TSX for
detection. The measured times include the time it takes
the CPU to retrieve T1 from the main memory. That is,
the transaction aborts once the data has been effectively
loaded into the cache and the attacker’s data is removed.
While a heavy system load leads to additional aborts that

are not related to the execution of the victim application,
it does not influence the detection time. The TSX-based
detection approach by itself solves three of the challenges
for the attacker, who this way knows with great accuracy
the state of the target process when she detects it. She can
additionally use measurements like the ones we performed
here to profile the target application on a machine similar
to the server. This way, the attacker can determine the
time t she should ideally wait to achieve an eviction.

5.2. Eviction approaches

After the detection step, the attacker’s code will be
executing the abort handler with quite exact knowledge
of the cache state. She also knows the wait time t from
profiling the target application, and she can use the abort
handler to manipulate the cache and gain information. The
attacker’s objective now is to evict the prefetched data or
instructions after the prefetch but before they are used in
the execution of the victim process. We call the prefetched
data or instructions target for eviction or T2. In this
section, we study two different approaches to evict T2.
In the following, we introduce method 1 for when there
is shared memory between the victim and the attacker,
and method 2 when there is not.
As we will show, the methods differ in the way the

cache set is filled during the transaction, in the value of
the wait time t (even if the target is the same), in the way
this target T2 is evicted from the cache and finally in
the way the information about the actual access to the
data is inferred. The following subsections explain the
particularities of both methods.

5.2.1. Method 1 – Remove T2 by flushing. As we
have already stated, this method relies on the existence
of shared memory. Once the victim’s access to T1 is de-
tected, the attacker waits for the wait time t and then evicts
the eviction target T2. Since there is shared memory, T2
is simply evicted by using the clflush instruction and the
information is later retrieved by measuring the time it
takes to read it (reload). This is a traditional Flush+Reload
attack carried out by an abort handler, which allows for
very precise timing of the flush instruction: If the prefetch
is executed n cycles after detection, then the flush should
be triggered at approximately n− 40, the minimum value
for n being around 60 cycles. Note that since the detection
target T1 has to be loaded from main memory, it intro-
duces some variation in the execution time of the victim
and, as a result, this last eviction may not be as accurate as
the detection. These values were determined empirically
and may vary between machines.

5.2.2. Method 2 – Remove T2 with memory accesses.
If there is no shared memory or the data has to be
retrieved from a non shared variable, it is still possible
to achieve the desired eviction accurately. The attacker
needs to leverage the replacement policy implemented in
the LLC. The replacement policy described in previous
works [53]–[55] shows that data is linearly inserted into
the cache set and each block is assigned an age value that
will change depending on accesses and evictions. In this
work, the following properties are the most relevant:

• Data is evicted from the cache at age 3.

688

A B C D E F G HContent

2 2 2 2 2 2 2 2Age
Stage 1

A B C D E F G HContent

2 1 1 1 1 1 1 1Age
Stage 2

T2 B C D E F G HContent

2 2 2 2 2 2 2 2Age
Stage 3

A B C D E F G HContent

2 3 3 3 3 3 3 3Age
Stage 4

Access B to H

Target process starts

Access A

Figure 4. Process required to evict the data from the cache with just one
access. This is required for method 2

• Only access to the LLC update the values of the
ages of the elements in the LLC. The age of a
block decreases when it is accessed or increases if
necessary to select an eviction candidate.

• Once the data is inserted into the cache set, two
different ages above age 0 can be distinguished.

The attacker has to construct an eviction set B for T2.
The point in the attack algorithm at which the elements of
B are accessed and how they are accessed depend on two
time windows: The first one is the time between T1 and
T2, while the second window is between the prefetch of
T2 and the utilization of it. The attacker needs to adapt her
approach to the size of these windows. We consider that a
large window is one that leaves enough time for an entire
Prime+Probe cycle, while the span of small window is
any time less than that.
The most interesting and challenging scenario is the

one where the second window is small: It means the
attacker has to reduce the time required for the eviction of
T2. We manage to do so by manipulating the ages of the
cache blocks. The method is based on the Reload+Refresh
attack from [53]. While we use the same technique to age
the cache elements, we do not use the known ages of
the cache elements to infer a victim access, but to evict
T2 accurately with a single access. The entire process is
depicted in Figure 4. The cache is prepared in stage 1
by accessing all elements (A-H) of the eviction set. The
attacker then accesses elements B-H again in stage 2 to
change their age. That makes A the eviction candidate. In
stage 3, the prefetch of T2 evicts A. T2 instantly becomes
the eviction candidate as it is the first entry with the
highest age. Even if the victim uses it more than once,
it will retrieve T2 from the first and second level caches,
not changing its age, so T2 stays the eviction candidate.
In stage 4, the attacker evicts T2 by accessing A.
If the first window is large, stage 1 and stage 2 are

performed before the transaction, to avoid detecting T2
instead of T1. If T1 and T2 are the same, stage 1 and
2 are performed during the transaction. After the abort,
the attacker waits for wait time t, when stage 3 should be
present in the cache. She then evicts T2.
If we have a small first window in addition to the

small second window, stage 1 and stage 2 are performed in
the transaction. Note that all the code inside a transaction
is executed transiently. While after an abort happens the
operations executed are not visible for the program and the
previous logical state is recovered, the microarchitectural

changes remain: The blocks accessed during the transac-
tion will remain in the cache, and they will keep their
ages. After the abort, the attacker waits for wait time t,
when stage 3 happens and T2 is present in the cache.
If the second window is large, the size of the first

window is not important and a regular Prime+Probe
approach to evict T2 from the cache will suffice.
As we did in the previous case, we have conducted

some experiments to compute the minimum time elapsed
between the execution of T1 and T2 in which the attacker
is still able to achieve the accurate eviction with just one
access. In this scenario or when T1 and T2 are the same,
the cache state is assumed to be the one depicted in the
stage 2. For this analysis, we have performed some experi-
ments changing the number of operations executed before
the prefetch in our test application to test the different
times and evaluate the accuracy of the technique. Note
that, even when T2 has to be loaded from main memory
for the prefetch and the execution time increases, the time
between detection and prefetch only changes slightly.
In these experiments we started observing the leakage

for times greater than 260 cycles, but the best results were
obtained when these times are greater than 300 cycles.
The main reason for the difference between this scenario
and the one described in the method 1 is the fact that,
in this case, the eviction is only possible when A has
been effectively loaded from main memory (cache miss),
whereas in the other it is only necessary to wait for the
execution time of the flush. This also means that the
attacker should access the block A at time n − 280 to
achieve the eviction at time n.
When trying to force all the elements in the set to

get the ages depicted in the stage 2 of Figure 4, we
accessed the corresponding blocks B to H as a linked list
(to avoid pipeline effects as much as possible). In theory,
this way all the data would be retrieved from the LLC
and, as a result, the ages of all the elements would be
updated. To test this hypothesis, we measured the times
it takes to read each of the blocks when accessing them.
Surprisingly, the experimental results show that some of
them were retrieved from the L1 cache. In fact, we only
observed this behavior in a processor whose LLC is 12-
way associative (Intel i5-7600K in Table 2), whereas the
L1 and the L2 caches are 8-way and 4-way associative
respectively. However, we performed the same test in a
different processor (Intel i7-6700K) with a 16-way asso-
ciative cache, and all the data was retrieved from the LLC.
This is due to the L1 replacement policy as described in
[54], [55]. Reordering the linked list with regard to the L1
replacement policy solved the problem. We include a more
detailed explanation to ease the use of CACHESNIPER for
other researchers in Appendix A.

5.3. Dealing with noise

The accuracy for detecting the execution of the victim
and evicting T2 from the cache determines the number of
samples that the attacker needs to collect. In the detection,
the attacker would see false positives if the transaction
aborts from a different cause than the execution of the
target. TSX gives information about the cause of each
abort in the eax register. The attacker could use that
information to discard some of the traces. However, we

689

shared non-shared

0

20

40

60

80

100

D
et
ec
te
d
ex
ec
u
ti
o
n
s
in
%

(a) Detection with TSX (shared and non-shared memory)

shared non-shared

0

20

40

60

80

100

A
ch
ie
v
ed
ev
ic
ti
o
n
s
in
%

(b) Achieved evictions per correctly detected executions

0

20

40

60

80

100

F
al
se
p
o
si
ti
v
es
in
%

(c) False positives in detection no shared memory

Baseline apache cachebench cassandra cloudsuite-ws mnn sqlite ai-benchmark

Figure 5. Detection, eviction and false positive rate when running the sample victim code in parallel to different benchmarks to generate noise.

enforced cache conflicts and observed the values of eax.
Interestingly, the value of eax did not always correspond
to L3 cache miss. That means by ignoring traces with the
wrong value in eax, false positives can be lowered, but
false negatives may be introduced.

The state of the system, and in particular the CPU load
and its memory utilization has an effect on the accuracy of
the detection and eviction phases. To evaluate the extend
of this effect, we have conducted a series of experiments
running different memory intensive benchmarks of the
Phoronix benchmark suite [77] in parallel with an attack
on our sample victim application described in Section 5
mimicking our client-server-scenario. We executed bench-
marks that represent typical server loads, including mnn,
apache, cachebench, cassandra, cloudsuite-ws, sqlite, and
ai-benchmark. For the experiments we distinguish be-
tween the same two cases as in the shoot-phase: there
is shared memory or not. We executed the victim process
100 000 times per benchmark. We measured the amount of
correctly detected traces, and from these traces the accu-
racy of the posterior eviction. The results are summarized
in Figure 5. All experiments with shared memory use one
value of t, the ones without shared memory need another
t. Both values are determined beforehand.

If there is shared memory, we only consider a trace
valid if T1 can be detected in the cache, in the abort
handler. This means adding an extra step to the attack
and implies an adaption of t, but it completely avoids false
positives. Without shared memory, we have measured the
access time to A at the time of forcing the eviction in the
shoot phase (see Figure 7). If this time is low (A is in
the cache), then the abort was not due to a relevant cache
conflict, and the sample needs to be discarded. If A has
been evicted, the attacker considers the sample as valid as
she cannot distinguish if the eviction was caused by the
victim or by an unrelated process.

As Figure 5(a) shows, detection is equally affected
by noise in both scenarios. If there are many aborts the
attacker loses detection accuracy. The three benchmarks
(apache, mnn and ai) that have the gravest effect on
detection and lead to false positives if there is no shared
memory (Figure 5(c)) do not only use the memory heavily,
but also try to use all the available CPU. These two condi-
tions reduce the attacker capabilities. The eviction is also
affected by the noise (Figure 5(b)), but comparatively less
than the detection. Note that after detecting the execution
of the victim and before the access, another process has
to use exactly the same cache set to impede the eviction.
As expected, access based evictions are affected by noise
more than flush based evictions, but not significantly.

Attacker
Stakeout (offline)

Find a suitable target for detection T1

Measure time t that elapses between T1 and T2

Attack (online)

Aim: Detect the execution of the victim process.
Put T1 into TSX transaction and craft abort handler

Wait for the time t determined in stakeout

Shoot: Evict the target T2 accurately
by using one of the following methods

Is there shared memory?

Method 1 Method 2

Yes No

Infer victim access (load T2, measure access time)

Post-processing (offline)

Align traces, recover key from vicitm accesses

Victim

instruction 0
instruction 1
.
.
.
� Target for detection, T1
instruction i
instruction i+1
.
.
.
� Target for eviction, T2
instruction k
instruction k+1
.
.
.

Figure 6. Overview of the offline and online attack steps. The online steps
are repeated multiple times to collect sufficient traces for key recovery.

Further analysis of the false positives during the de-
tection phase reveals that they happen in bursts. This is a
known phenomenon for some workloads. If these bursts
happen to use the same cache regions as the victim, the
measurements get noisier. The attacker can identify these
situations because the expected distributions of cache hit-
s/misses changes. She can then do one of two things to
still launch a successful attack: Take more measurements
or wait for a short period, hoping the burst will pass as
the noise generating process terminates.

6. CACHESNIPER: Crafting the attack

We use the knowledge gained from the previous anal-
ysis to build an attack. It includes a stakeout phase of
offline preparation where the attacker has to analyze the
victim process. The CACHESNIPER then aims at his target
in the detection phase and waits for a good moment in
the execution using the information from stakeout. At the
right moment, the sniper shoots the correct entry from
the cache, evicting it accurately. The attack overview
including these steps is depicted in Figure 6.
The stakeout phase is similar to the profiling we per-

formed in Section 5. The goals are to find an appropriate
region of the code that can serve as target for detection
T1 and to determine the wait time t for the second attack
step. The main requirement for T1 is that it is executed
long enough before the target T2. It should also not be
used too often to avoid false positives. When T1 has been

690

determined, the attacker finds the set and slice where it
maps and builds the corresponding eviction set.
In addition, the attacker has to determine or estimate

the wait time t for the second attack step. This can be
done, for example, by instrumenting the victim code and,
as we will show later, t can be changed dynamically
depending on the expected hit/misses ratio and the ob-
servations, which also means this ratio can be used for
finding a reasonable value of t. The stakeout can thus be
performed offline, although ideally it should be performed
on a machine similar to the target machine.
Note that the location of T1 and T2 within the cache

is determined once the victim process is executed. In case
there is shared memory, the attacker could determine the
set where the victim code maps using its own data. If
not, profiling the cache while running the victim code is
required. This has been discussed in many Prime+Probe
attacks, and the usual approach works fine here. The
information from the aborts can also be used to find the
cache set of interest [64].
Assuming that the attacker has been able to measure

the time it takes the process to execute the code between
the point that serves for detection (T1) and the point at
which the attacker can gain information from the evicted
data (T2), she has to consider the time it takes to execute
the clflush on T2 or to evict the block out of the cache
memory by accessing it. That is, the waiting time is then
determined by subtracting these times from the measured
time in the instrumented code during the stakeout phase.
If the attacker cannot determine the waiting time t in

advance or the target system does not behave the same
way as the profiling system, she can still determine t
online if she knows some characteristics of the process
that she can observe. For example, around 1% of cache
misses will be ideally observed if we hit exactly the last
round of the AES encryption or around 50% of the bits are
expected to be 1 in an RSA secret key. In this case, the
value for t can be retrieved automatically by analyzing
the number of hits and misses observed when inferring
the victim accesses (line 10 in Figure 7) and modifying its
value accordingly. Even further, the attacker can define an
initial value for t and update or adapt it dynamically based
on the comparison between the actual and the expected
observations at the cost of an increase in the number of
samples required to derive the secret information. Recall
that this estimation of the value t is valid while the server
with the victim code is running.
For example, back to the algorithm shown in Figure 2,

we would expect to observe 50% of cache hits if the
eviction is accurately achieved. If the eviction is not
achieved at the right instant, we see a different ratio. If
we force the eviction before the prefetch, then we only
see cache hits. If, on the contrary we force the eviction
after the data has been actually used, we only see cache
misses. Thus, we define an observation window of size
w to compute the statistics. Once we have collected the
w samples, we observe the hit/misses ratio and either
increase or decrease t. The value of t gets stable after
some iterations (depending on how bad was the original
estimation, and the size of the window). The best scenario
turned out to be the one where the value t is properly
selected, and only minor adjustments are made on runtime.
To do so, we increased the size of the observation window.

Input: Address(T2),
Eviction set A, � Eviction set for T1
t � Waiting time determined in stakeout

Output: X0 � Information about the access

1: function START TRANSACTION()
2: fill cache set(A);
3: � Aim: Abort handler detects the access
4: function ON ABORT()
5: time interrupt=timestamp()+t;
6: while(timestamp() ≤ time interrupt) {};
7: evict from cache(T2) � Shoot
8:

9: Wait until encryption ends
10: infer victim access to(T2)
11: if has accessed(T2) then
12: X0 [t] = 1; � Data used
13: else
14: X0 [t] = 0;
15: end if
16: end function
17: return X0;
18: end function

Figure 7. Generic attack pseudocode for the TSX-based detection sce-
nario, eviction using method 2, case 2.

The pseudocode in Figure 7 shows the online phase
procedure. We generate an eviction set for T1, then use it
as input to our algorithm. The other inputs are the address
of T2 and the waiting time t which has been determined
during the offline preparation.

7. Practical evaluation

In this section we explain how we recover AES and
RSA secret keys, demonstrating that not only the im-
plemented countermeasures to prevent cross-core LLC
attacks can be circumvented, but also that some previous
approaches can benefit from the accurate eviction of the
data. All the experiments were performed in the machine
described in Table 2. Note that the replacement policy on
which this attack relies is implemented in the Intel Core
processors starting from the 6th generation.

7.1. CACHESNIPER against AES

AES [78] is a commonly used symmetric block cipher
that operates with data in blocks of 16-bytes. It consists of
different operations (AddRoundKey, SubBytes, ShiftRows
and MixColumns) that are repeated each round. To speed
up execution, tables with values that are used repeatedly
are precomputed in many implementations. We analyzed
the well-known T-Table implementation and an S-Box
implementation. The T-Table is available in OpenSSL
1.0.2k when compiled with the no-asm flag, and it is also
available in newer OpenSSL versions. If the no-asm flag is
not used, then the S-Box implementation is used instead.
Note that this particular version is the one included by
default in our CentOS system, and is shared among all the
processes. We have checked that CentOS uses the native
OpenSSL implementation for AES.
When OpenSSL is called from the command line, it

will use AES-NI for encryption. However, if the C API
of OpenSSL is used, a call to AES encrypt would call

691

TABLE 1. PARAMETERS USED FOR THE ATTACK OF OPENSSL’S
PREFETCH-PROTECTED T-TABLE AND S-BOX IMPLEMENTATIONS

Parameter T-Table S-Box

Detection target T1 AES encrypt S-Box (Prefetch
in first round)

Eviction target T2 Tei[0] S-Box (After
prefetch in last
round)

Samples required method 1 300 ≈ 500000
Samples required method 2 360 ≈ 500000

the S-Box implementation until version 1.0.2k, while a
developer wishing to use the default AES-NI instructions
(as in the command line) has to use a different instruction
to execute the encryption. During our communication with
OpenSSL they informed us that they have removed the
S-Box from the latest 1.1.1 version. However, we found
that in this case the C API calls instead use the even more
vulnerable T-Table implementation.

T-Table-based implementation. The T-Table implemen-
tation uses four tables (T-Table) with pre-computed values
of the SubBytes, ShiftRows and MixColumns operations.
That is, it transforms the aforementioned operations into
look up operations in order to improve the performance of
the encryption and decryption processes. The accesses to
the tables are key dependent and not all of them are used
during the encryption process. This fact has been exploited
multiple times to recover the keys [12]–[14], [62].

All of these approaches assume that the attacker mon-
itors the cache before and after the execution of the victim
process. As a result the target cache line, which holds 16
T-Table values, can be used at any round of the encryption.
This approach generates false positives, ant the attacks
requires mores samples until eventually one of the key
candidates can be clearly distinguished from the others.
With our CACHESNIPER technique we can accurately
hit the last round and recover the secret key faster. The
information we collect is more likely to refer exclusively
to the last round. Indeed, using the same approach to
compute the key that other works suggest [13], we can
reduce the samples required to retrieve the whole key from
3000 to 300. The settings for this attack are described in
Table 1.

S-Box-based implementation. The S-Box software im-
plementation of AES replaced the previously used T-Table
implementation in many cases, not only in the case of
OpenSSL. The S-Box is the table that holds the data
for the SubBytes operation, concretely 256 byte values.
As opposed to the T-Table implementation, the S-Box
implementation does not merge different operations into
one. The S-Box is used 16 times each round. Considering
a cache line size of 64 bytes, such table uses 4 cache
lines. If we compute the probability of not accessing one
of these cache lines and assume a key size of 128 bits,
and as a result 10 rounds, such probability is almost equal
to 0, as shown in Equation 1 and observed in [73]. As
a consequence, an attacker observing the cache before
and after the encryption process will not gain sufficient
information from that observation.

Pr[no access S-Box in encryption] =

(
1− 64

256

)10∗16
� 0

(1)

Pr[no access S-Box in round] =

(
1− 64

256

)16

= 0.01 (2)

In contrast, Equation 2 shows that observing each
round individually would give a 0.01 chance of not access-
ing one of the lines. To enforce this probability to become
0 and relying on an attacker model that cannot interrupt
the process after the execution of each instruction, the
countermeasure of prefetching was applied: The OpenSSL
S-Box implementation includes a prefetch stage before
each of the rounds. Since the 256 bytes of the S-Box
table map to 4 different cache lines, the encryption process
only has to read 4 values to ensure the whole S-Box
table is loaded into the cache memory. When the S-
Box implementation performs a key-dependent memory
access, the data will always be in the cache. As a result,
traditional approaches of side channel attacks cannot be
used to extract information from this implementation.
Irazoqui et al. analyzed the OpenSSL implementation in
2017 with a tool for leakage detection and came to the
same conclusion, declaring it leakage free [79].
Nevertheless, this implementation is still vulnerable,

since the attacker can accurately time the evictions to
happen in the tiny time windows between the prefetch and
utilization of the target data (T2)2. The CACHESNIPER at-
tack, bypasses this way the prefetch and allows an attacker
to observe information referring to the last round of the
encryption, even in the absence of shared memory. We
can thus perform a cross-core cache attack that recovers
the secret key of this protected implementation.
In the last round, the output of the S-Box is xored

with the corresponding round key to get the ciphertext. In
order to retrieve the secret key in all scenarios (method 1
and 2) we use the information referring to the accesses
to the S-Box retrieved during the attack phase (output
of Figure 7) and assume the ciphertext to be known by
the attacker. This is obviously repeated many times with
different ciphertexts.
We use the non-access approach described in [13].

They use information from cache misses, meaning they
track when the victim did not load the data into the cache.
In this particular implementation, the S-Box is accessed
16 times during the last round, and even if we are able to
accurately get the information referring to the last round
exclusively, we would not know which of the 16 accesses
was responsible for this access. On the contrary, if we
determine that an element has not been accessed it means
none of the operations in the last round has used it. As a
consequence, we xor each byte of the ciphertext with the
64 values of the S-Box held in the cache line (ki = Ci⊕
S-Box [0 to 63]). None of these values could be the secret
key. When observing multiple different encryptions, the
key can be inferred by method of elimination.

2. While analyzing the shared library included in Ubuntu 16.04 or
CentOS 7.6 (OpenSSL 1.0.2g), we observed an additional protection.
The OpenSSL implementation of AES has four different copies of the
S-Boxes. If there are, for example, two processes using the library at the
same time, each of them will use a different table. This does however
not hinder the attack

692

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0

50

100

150

200

250

Number of samples

K
ey
v
al
u
e
p
o
ss
ib
il
it
ie
s

byte1 byte2 byte3

byte4 byte5 byte6

byte7 byte8 byte9

byte10 byte11 byte12

byte13 byte14 byte15

byte16

Figure 8. Key candidates for each of the bytes of the key of the S-
Box AES implementation of OpenSSL retrieved using the TSX-based
detection and method 2.

In our test system the last round takes around 40-50
cycles to execute, with a variance of around 15 cycles.
Thus, even if we interrupt the victim at the exactly chosen
time, which we estimated in the preparatory step, we
may not manage to evict T2. Even a slight variation
in the interruption instantly leads to a different number
of observed accesses. Since we are assuming that the
observed data refers only to the last round, evicting once
the processor has executed at least one instruction after
the prefetch leads to some false positives affecting some
of the bytes. Even worse, we see false positives if we hit
the cache after the encryption process has ended.
To maximize our success chances despite the varying

execution times, we adopt the strategy of dynamically
updating the value of t described in Section 6. Instead
of using the probability of 1% as the expected one, we
allow up to 7% of cache misses. This way we try to
ensure that the observed cache misses actually happen
in the round. This value was determined empirically on
our machine, by selecting different probability values and
running multiple experiments with the value of t adapted
dynamically according to that probability and window
sizes of 10 000 observations.
For this implementation, we can use the content of

one line of the S-Box as T1, since the data is prefetched
in every round. Both method 1 (assumes shared memory)
and method 2 (does not require shared memory) are able
to successfully retrieve the entire secret AES key with
a minimum number of samples of about 500 000. Even
with the false positives introduced by all the variances,
we get enough information through the 500 000 samples.
Our results show that it is more likely to evict the data
in the middle of the execution of the last round than just
at the beginning. This means some bytes are recovered
faster than others, as it can be observed in Figure 8.
Figure 8 shows half of the key bytes has been com-

pletely leaked with less than 100 000 samples. Focusing
on the different bytes, Figure 8 shows that the initial four
bytes are obtained with 10 000 samples, a relatively small
amount. Around 12 of the 16 bytes are already known with
200 000 samples. Retrieving the last 4 bytes of the key is
the hardest part, and it requires 300 000 more samples.
This shows how difficult it is to evict the data in between
the execution of the prefetch and the subsequent access
in the last round. While completely brute-forcing these 4
bytes takes 232 trials, the information already collected
(with 200000 samples) reduces the key space to around

Input: base b, modulo m, exponent e = (en−1...e0)2
Output: be (mod m)
1: init(R);
2: for i from n− 1 downto 0 do
3: mul(R[0], R[1], R[ei])); � Load R[0] and R[1]
4: modRed(R[ei]);
5: � R[2] is a temp variable that avoids the leakage of R[ei]

6: sqr(R[2], R[2]);
7: modRed(R[2]);
8: end for
9: return R;

Figure 9. wolfSSL exponentiation implementation

215 options, making a complete search of the remaining
key space faster and stealthier than continuing the attack.
The number of samples required to retrieve the secret

key slightly varies between executions and depends on
the selected t even if we use the adaptive approach. The
location of the S-Box in the cache is also important as
some sets are noisier than others.

7.2. CACHESNIPER against RSA

RSA is the most widely used public key cryptographic
algorithm. It considers a public key (n, e) where n is
the product of two prime numbers p and q that re-
main secret, and a private key (p, q, d) where d ≡ e−1

(mod (p−1)(q−1)). Only the encryption and decryption
operations are relevant to understand the attack. For a mes-
sage m, the ciphertext c is obtained as c = me (mod n)
and it is recovered with an analogous operation m = cd

(mod n). The decryption, which is the exponentiation
operation using the secret key d, is the attack target.
There are multiple ways of implementing this expo-

nentiation [80], [81]. We will focus particularly on the
square-and-multiply exponentiation, since the wolfSSL
implementation is based on it. The square-and-multiply
approach scans the bits of the secret exponent d, perform-
ing a square operation independently of the value of the
scanned bit, and a multiplication if such bit is equal to 1.
Thus, an attacker monitoring these operations can retrieve
the sequence of bits of the exponent.
The modular exponentiation executed for the RSA

decryption operations in the wolfSSL implementation is
a variation of this well-known square-and-multiply al-
gorithm. It is shown in Figure 9. The countermeasures
wolfSSL has deployed to protect this implementation are
to always perform the square and the multiply operations
for each bit of the exponent (lines 3 and 6) and to load the
two possible values of the secret bit related parameter R
(R[0] and R[1]) into the cache, so they prevent an attacker
from distinguishing which one (0 or 1) was actually used
during execution of the multiplication function (line 3).
For the square operation, they even initialize a temp
variable R[2] to hide accesses to (R[0] and R[1]). These
are clearly to prevent cache attacks, which can be seen
in the source code comments and the release notes [82],
[83].
Despite the always-load countermeasure, there are

two possible windows to retrieve the secret information.
Firstly, at the end of the multiplication operation in line 3
only the result referring to the actually used bit is stored.
In that copy process, one of the two possible values

693

is loaded while the other one remains untouched. This
leaks the key bit. The second window is even bigger,
because of the reduce operation in line 4 that only uses
the information of the actual key bit value, not taking the
precaution of loading both values. This means that this
function could be even vulnerable to a traditional cache
attack, although the synchronization between the attacker
and the victim process would be a challenge.
Based on the code wolfSSL provides for the tests, we

generated different secret keys of 2048 bits, and embedded
them in our server application in such a way that it
decrypts the received data by calling to the wolfSSL
RSA decrypt operation. We can observe the leakage by
monitoring accesses to one of the two array entries R[0]
or R[1] (our T2), since the accesses to each of them to
depend on the key bit value (0 or 1). During the execution
of the multiply function, they are both loaded into the
memory, but at the end of this function they perform a
copy operation which only accesses the required value.
That is, an attacker can, for example, remove R[0] from
the cache before the execution of the copy operation and
check it afterwards. This operation takes around 70-80
cycles in our system, which is enough for the observation.
Attacking this implementation is eased by the reduce

operation executed after the multiply operation. This func-
tion only loads the correct value of R[ei], so either R[0]
or R[1]. The execution of the reduce operation takes about
2300 cycles in our test system. This time even allows the
execution of a complete probe cycle, so we do not have
to be so precise evicting the data when targeting it.
We used both the multiply and the reduce operations

for the detection T1 and later evict R[0](T2). Note that,
while the functions are shared, R[0] and R[1] are not,
so method 2 is required. The attacker has to profile the
application to determine t and to find the cache set in
which R[0] is loaded. Since our scenario is a continuously
running process in a server, the location of R[0] does not
change. The task of profiling is eased with the help of
the detection of the multiply function. In our posterior
experiments we assume that the attacker already knows
in which set R[0] is located.
There are other differences to the approach taken in

the attack against the S-Box (method 2, case 1). Loading
the data of a whole eviction set conflicting with R[0] in
the transactional region to achieve a very accurate eviction
leads to false positives in detection. This is due to other
elements being loaded into the cache set during the large
time window of 2300 cycles. This large window also
means we do not require such high accuracy, so we can
just load some blocks in the transaction to reduce the time
it takes later to evict R[0]. This avoids loading the whole
eviction set during the transaction. After the detection,
only the remaining blocks of the eviction set need to be
accessed in the abort handler to retrieve the information
about the access (inference step in Figure 7, line 10).
The retrieved key bits depend on both the accuracy of

the detection and on the ability of the attacker to remove
the data from the cache during the execution of the leaky
parts of the code. The mean time between the execution of
two multiply operations is about 24000 cycles. That time
seems to be “constant” and it is enough for carrying the
detection, eviction and retrieving the data. We collected
information for the execution of 100 RSA decryptions.

Our attack correctly detected 96.8% of the multiply op-
erations introducing 1.3% of false positives. From those
correctly detected operations, the information referring to
the access to R[0] featured 91% of true positives rate and
87.2% of false negative rate, namely a precision of 87.6%.
Note that no further processing of the results was

done. Since we get quite exact timestamps from the TSX
aborts, trace alignment becomes fairly easy. For the same
reason, some of the retrieved samples that do not match
the expected temporal pattern can be discarded to improve
the accuracy. Finally, the decision about the correct value
of the secret bits of the exponent can be made based on
the information retrieved from various traces [84].

8. Countermeasures

The presented attack is feasible due to the fact that
code with secret dependent access patterns exist. Even if
data is prefetched in the cache, there is a short interval
between that prefetch and the actual utilization of the
data (as short as the execution of a single instruction)
in which an attacker can evict it. Therefore, the attacker
has the possibility to observe such accesses and retrieve
the secret information. In order to prevent this leakage,
these susceptible windows must be removed from the
source code and the code should be redesigned. In order
to help developers to find leakages in their code, there are
tools that detect these leakages [21], [85]. As mentioned
above, these tools need to be handled with care, as the
very OpenSSL implementation attacked in this work was
declared leakage free after such an analysis [79].
In particular, efficient and constant-time implementa-

tions of AES are possible by using the bit-slicing tech-
nique [86]. Alternatively, each S-Box lookup could access
all four cache lines and choose the correct lookup value
via arithmetic, eliminating cache line leakage. OpenSSL
also provides a constant-time AES software implemen-
tation based on bit-slicing, which needs to be selected
via the -DOPENSSL AES CONST TIME flag. However
it would be good to have widely used APIs call secure
implementations, since many deployed applications will
update the library, but keep the API calls. This gives
developers a false sense of security.
The wolfSSL RSA implementation can be repaired by

loading the leaky data into the cache in the two vulnerable
functions or use of a temporary value, which is in sync
with the currently implemented countermeasures in other
parts of the code. Note that the fix will prevent exploitation
through the LLC, while it may still be able to retrieve
some information in the powerful SGX scenario.
There are some other approaches intended to defeat

cache attacks [87]. Hardware based countermeasures that
prevent cache attacks by means of new cache designs [88]
or applying hardware modifications [89], [90], can be
effective for the presented attack. However, they are not
available yet and some of them are not expected to be
implemented soon. Similarly, techniques that allocate the
victim and the attacker data in different and mutually
exclusive cache sets [91] would prevent this attack.
The TSX-based defense cloak suggests to perform the

entire encryption within a transaction, which would then
abort in case of a cache eviction [68], preventing the
leakage and CACHESNIPER. When detecting the eviction

694

of the prefetched data this method stops the process and
restarts it. However, this method is not widely adopted
since it is prone to many false positives, due to sponta-
neous aborts. Frequent restarts introduce a large overhead
and open the door to denial of service attacks. Besides,
Cloak does not prevent an attack on the L1 cache, if the
prefetched data does not belong to a write set.
Finally, detection-based countermeasures monitor the

execution of the algorithms they aim to protect. They
collect information about execution times or from perfor-
mance counters (i.e. cache misses or accesses) to detect
changes in the execution trace, which could imply an
attack [26]–[28], [30]. CacheSniper was not designed to
be stealthy and it generates cache misses on the victim
algorithm. However, as we demonstrated by attacking the
T-table implementation, CacheSniper can also improve the
efficiency of existing attacks, seriously limiting the capa-
bility of the detection-based countermeasures to trigger
the alarm on time.

9. Related work

The AES T-Table implementation has probably been
(and still is) one of the most widely attacked implemen-
tations [12]–[14], [92]–[94]. Usually either the first or the
last round are targeted, since these rounds only perform
an XOR operation between some data and the secret
key. Other approaches, such as targeting a deeper layer
implementation of T-Table AES used only to encrypt seeds
for the pseudo random number generator in AES, are
possible but much less popular [95]. It was replaced by an
S-Box implementation, which after suffering some attacks
was protected with a prefetch. So far, cache-level attackers
have only been able to observe cache accesses in very
controlled scenarios. They have launched up to 200 spy
threads whose execution is controlled with timers and their
respective interruption routines to ensure the victim can
only execute a few instructions [35], or taken advantage of
the powerful adversarial scenario given by SGX. Moghimi
et al. [96] assumed a much more powerful adversary with
full OS control targeting SGX. They frequently interrupt
the victim process and monitor the entire L1 data cache,
observing various samples per round. This allows them
to distinguish the prefetching stages from the normal
operations of the round. Our approach on the contrary
does not need to frequently interrupt the victim, works
across cores and donly requires the user-level privileges
commonly assumed for cache attacks.
Just as AES, RSA has been a target of side channel

attacks for many years [97]. Since the execution time
is considerably longer than that of AES, prefetching is
usually employed in the form of always load/always ex-
ecute strategies. This in combination with careful code
design, such as the Montgomery reduction with constant
execution flow, are supposed to ensure protection against
cache attacks. However, there are subtleties out of the
control of the programmer (e.g. a JIT interpreter that
treats an if and else branch differently) that still enable
attacks [63], or changes in the attack (e.g the exploitation
of cache-bank conflicts) that also recover the key from
protected implementations [11].
TSX is the main enabler for our approach. Several

other attacks use TSX to improve on signal-to-noise ra-

tio, many of them targeting KASLR [66], [67]. There
are various suggestions for address mappings that are
not vulnerable to these attacks [98]–[100]. Regarding
TSX-based attacks targeting cryptographic operations, the
Prime+Abort attack assumes an attacker with the same
privilege level as ours, but attacks an unprotected im-
plementation [64]. One of the goals of Prime+Abort is
to demonstrate that removing timers is not a sufficient
countermeasure against side channel attacks. It detects
data usage by the victim, which is not enough information
for targeting prefetched implementations that always load
that data. While CACHESNIPER also builds on the fact
that a transaction aborts if data used during the transaction
is evicted from the LLC, we additionally show that the
time between the eviction and the abort triggering is
almost constant and infer the exact execution state of the
victim. We further use the abort handler to carry the attack
whereas it is used as an oracle in the Prime+Abort attack.
Other works have exploited asynchronous aborts to leak
part of an RSA key [42] or to leak data [101] assuming
powerful attackers and in concrete scenarios.

10. Conclusion

Writing truly constant-time code is difficult and can
result in significant performance penalties. Prefetch-based
countermeasures ensure that the cache access profile of
a full execution of a protected implementation is secret
independent, at the cost of a minimal performance impact
caused by few unnecessary reads. But for high-resolution
attackers, it is possible to evict data between prefetch
and the subsequent sensitive access, restoring the leaky
behavior of the target implementation.

In this work we show that such powerful attacks
are not restricted to cache attackers with root privileges
that can conveniently interrupt the target process at will.
Instead we show how user-level cache attackers – by care-
fully preparing caches and optimizing their timing with re-
spect to the victim process – can achieve an unprecedented
temporal accuracy. Existing cryptographic code relying
solely on the inability to achieve this accuracy has to
be rewritten, since we show that data that has just been
prefetched cannot be assumed to still reside in the cache
when used, even if used immediately.

Our work quantifies the achievable resolution for care-
fully designed attack code in several different scenarios.
All of the discussed scenarios require user-level privileges
only and work in a cross-core setting. Nevertheless they
can overcome the prefetch countermeasure in either case.
Our analysis reveals that TSX is a powerful mechanism
for an attacker to synchronize her execution with the
execution of the victim process. With TSX, the attacker
sees an abort whenever the victim access a target memory
location. This fact, combined with its transient capabilities
and the knowledge of the replacement policies of Intel
processors, can be leveraged to achieve cache evictions
at the desired instants, i.e. after the prefetch, even in the
absence of shared memory.

We demonstrate the feasibility of our approach by
retrieving the secret key of the T-Table and S-Box AES
implementations of OpenSSL and the secret bits from the
exponentiation of the wolfSSL RSA implementation.

695

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user
space,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018, pp. 973–990.

[3] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu,
T. Eisenbarth, and B. Sunar, “SPOILER: Speculative load hazards
boost rowhammer and cache attacks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 621–637.

[4] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Steck-
lina, T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-
boundary data sampling,” in CCS, 2019.

[5] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019.

[6] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution,” in Proceedings
of the 27th USENIX Security Symposium. USENIX Association,
August 2018.

[7] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“Smotherspectre: Exploiting speculative execution through
port contention,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS 19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 785800.

[8] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight
data load,” in 2019 2019 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2019, pp. 88–105. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP.2019.00087

[9] Fangfei Liu and Yuval Yarom and Qian Ge and Gernot Heiser
and Ruby B. Lee, “Last level Cache Side Channel Attacks
are Practical,” in Proceedings of the 2015 IEEE Symposium on
Security and Privacy, ser. SP ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 605–622. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.43

[10] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Seriously, get off my cloud! cross-vm rsa key recovery
in a public cloud,” IACR Cryptology ePrint Archive, Tech. Rep.,
2015.

[11] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing
attack on openssl constant-time rsa,” Journal of Cryptographic
Engineering, vol. 7, no. 2, pp. 99–112, Jun 2017. [Online].
Available: https://doi.org/10.1007/s13389-017-0152-y

[12] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a
minute! A fast, cross-vm attack on AES,” in Research in Attacks,
Intrusions and Defenses - 17th International Symposium, RAID
2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings,
2014, pp. 299–319.

[13] S. Briongos, P. Malagón, J.-M. de Goyeneche, and J. M.
Moya, “Cache misses and the recovery of the full aes 256
key,” Applied Sciences, vol. 9, no. 5, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/5/944

[14] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing and
its Application to AES,” in 36th IEEE Symposium on Security
and Privacy (S&P 2015), 2015, pp. 591–604.

[15] Y. Yarom and N. Benger, “Recovering openssl ecdsa nonces using
the flush+reload cache side-channel attack,” IACR Cryptology
ePrint Archive, vol. 2014, p. 140, 2014.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in ACM Conference on Computer
and Communications Security, CCS 2009, Chicago, Illinois, USA,
November 9-13, 2009, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

[17] M. S. İnci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Cache Attacks Enable Bulk Key Recovery on the
Cloud,” in Cryptographic Hardware and Embedded Systems –
CHES 2016: 18th International Conference, Santa Barbara, CA,
USA, August 17-19, 2016, Proceedings, B. Gierlichs and A. Y.
Poschmann, Eds., 2016.

[18] D. X. Song, D. A. Wagner, and X. Tian, “Timing analysis
of keystrokes and timing attacks on ssh.” in USENIX Security
Symposium, vol. 2001, 2001.

[19] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and
their implications,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: ACM, 2015, pp. 1406–1418.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813708

[20] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Sgxpectre: Stealing intel secrets from sgx enclaves via specula-
tive execution,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2019.

[21] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar,
“Microwalk: A framework for finding side channels in
binaries,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ser. ACSAC ’18. New York,
NY, USA: ACM, 2018, pp. 161–173. [Online]. Available:
http://doi.acm.org/10.1145/3274694.3274741

[22] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side channels,”
in Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13). Washington, D.C.: USENIX, 2013, pp.
431–446.

[23] R. L. Brotzman, S. Liu, D. Zhang, G. Tan, and M. T. Kandemir,
“Casym: Cache aware symbolic execution for side channel de-
tection and mitigation,” 2019 IEEE Symposium on Security and
Privacy (SP), pp. 505–521, 2018.

[24] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat: Preventing
microarchitectural attacks before distribution,” in Proceedings
of the Eighth ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’18. New York,
NY, USA: ACM, 2018, pp. 377–388. [Online]. Available:
http://doi.acm.org/10.1145/3176258.3176316

[25] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1,
pp. 1–27, Apr 2018.

[26] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Applied Soft Computing, vol. 49, pp. 1162 – 1174,
2016.

[27] S. Briongos, P. Malagón, J. L. Risco-Martı́n, and J. M. Moya,
“Modeling side-channel cache attacks on aes,” in Proceedings
of the Summer Computer Simulation Conference, ser. SCSC
’16. San Diego, CA, USA: Society for Computer Simulation
International, 2016, pp. 37:1–37:8. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3015574.3015611

[28] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth,
“Cacheshield: Detecting cache attacks through self-observation,”
in Proceedings of the Eighth ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’18. New
York, NY, USA: ACM, 2018, pp. 224–235. [Online]. Available:
http://doi.acm.org/10.1145/3176258.3176320

[29] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “For-
tuneteller: Predicting microarchitectural attacks via unsupervised
deep learning,” 2019.

696

[30] T. Zhang, Y. Zhang, and R. B. Lee, CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds. Cham:
Springer International Publishing, 2016, pp. 118–140. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-45719-2 6

[31] A. Fuchs and R. B. Lee, “Disruptive prefetching: impact on side-
channel attacks and cache designs,” in Proceedings of the 8th
ACM International Systems and Storage Conference, 2015, pp.
1–12.

[32] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge aes against cache-based software side chan-
nel vulnerabilities.” IACR Cryptology ePrint Archive, vol. 2006,
p. 52, 01 2006.

[33] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Architecting
against software cache-based side-channel attacks,” IEEE Trans-
actions on Computers, vol. 62, no. 7, pp. 1276–1288, 2013.

[34] D. Page, “Defending against cache-based side-channel attacks,”
Information Security Technical Report, vol. 8, no. 1, pp. 30 – 44,
2003. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1363412703001043

[35] A. C., B. Roy, B. S. V. Mandarapu, and B. Menezes, “s-box
implementation of aes is not side channel resistant,” Journal of
Hardware and Systems Security, vol. 4, 12 2019.

[36] A. Polyakov, “Commit message: Agressively prefetch s-
box in sse codepatch, . . . ,” https://github.com/openssl/
openssl/commit/fc92414273bc30deee51bf1c99abe4b5802f55fb#
diff-c0dcd6713547b63fc56ce9716bf52bd9, 2006.

[37] J. Kong, O. Aciicmez, J. Seifert, and H. Zhou, “Hardware-
software integrated approaches to defend against software cache-
based side channel attacks,” in 2009 IEEE 15th International
Symposium on High Performance Computer Architecture, 2009,
pp. 393–404.

[38] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “Absyn-
the: Automatic blackbox side-channel synthesis on commodity
microarchitectures,” in Network and Distributed Systems Security
(NDSS) Symposium, 2020.

[39] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“Smotherspectre: exploiting speculative execution through
port contention,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019,
pp. 785–800.

[40] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection,” in 41th IEEE Symposium on Security and Pri-
vacy (S&P’20), 2020.

[41] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practi-
cal attack framework for precise enclave execution control,” in
Proceedings of the 2nd Workshop on System Software for Trusted
Execution, 2017, pp. 1–6.

[42] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, “Medusa:
Microarchitectural data leakage via automated attack synthesis,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020.

[43] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar,
“Copycat: Controlled instruction-level attacks on enclaves for
maximal key extraction,” arXiv preprint arXiv:2002.08437, 2020.

[44] A. Cabrera Aldaya and B. B. Brumley, “When one vulnerable
primitive turns viral: Novel single-trace attacks on ecdsa and rsa,”
TCHES, vol. 2020, Mar. 2020.

[45] O. S. foundation, “Security policy,” https://www.openssl.org/
policies/secpolicy.html, 2012, [Online; accessed 26-June-2020].

[46] C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Fran-
cillon, “Reverse engineering intel last-level cache complex ad-
dressing using performance counters,” in Proceedings of the 18th
International Symposium on Research in Attacks, Intrusions, and
Defenses - Volume 9404, ser. RAID 2015. New York, NY, USA:
Springer-Verlag New York, Inc., 2015, pp. 48–65.

[47] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power manage-
ment of the third generation intel core micro architecture formerly
codenamed ivy bridge,” in 2012 IEEE Hot Chips 24 Symposium
(HCS), Aug 2012, pp. 1–49.

[48] A. Abel and J. Reineke, “Measurement-based modeling of the
cache replacement policy,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April
2013, pp. 65–74.

[49] ——, “Reverse engineering of cache replacement policies in intel
microprocessors and their evaluation,” in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), March 2014, pp. 141–142.

[50] H. Wong, “Intel Ivy Bridge cache replacement policy,” jan
2013. [Online]. Available: http://blog.stuffedcow.net/2013/01/
ivb-cache-replacement/

[51] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A re-
mote software-induced fault attack in javascript,” in Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer,
2016, pp. 300–321.

[52] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE,
2019, pp. 39–54.

[53] S. Briongos, P. Malagon, J. M. Moya, and T. Eisenbarth,
“Reload+refresh: Abusing cache replacement policies to perform
stealthy cache attacks,” in 29th USENIX Security Symposium
(USENIX Security 20). Boston, MA: USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/briongos

[54] A. Abel and J. Reineke, “uops.info: Characterizing
latency, throughput, and port usage of instructions on
intel microarchitectures,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
’19. New York, NY, USA: ACM, 2019, pp. 673–686. [Online].
Available: http://doi.acm.org/10.1145/3297858.3304062

[55] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf, “Cachequery: Learn-
ing replacement policies from hardware caches,” arXiv preprint
arXiv:1912.09770, 2019.

[56] W. Hu, “Lattice scheduling and covert channels,” in IEEE
Symposium on Research in Security and Privacy. IEEE
Computer Society, 1992, pp. 52–61. [Online]. Available:
http://dx.doi.org/10.1109/RISP.1992.213271

[57] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel
cryptanalysis of product ciphers,” Journal of Computer Security,
vol. 8, no. 2/3, pp. 141–158, 2000. [Online]. Available: http://
content.iospress.com/articles/journal-of-computer-security/jcs133

[58] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: The Case of AES,” in Topics in Cryptology –
CT-RSA 2006: The Cryptographers’ Track at the RSA Conference
2006, San Jose, CA, USA, February 13-17, 2005. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–20.
[Online]. Available: http://dx.doi.org/10.1007/11605805 1

[59] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice,”
in Proceedings of the 2011 IEEE Symposium on Security
and Privacy, ser. SP ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 490–505. [Online]. Available:
http://dx.doi.org/10.1109/SP.2011.22

[60] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp.
719–732. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[61] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Know thy neighbor: Crypto library detection in cloud,”
PoPETs, vol. 2015, no. 1, pp. 25–40, 2015. [On-
line]. Available: http://www.degruyter.com/view/j/popets.2015.
1.issue-1/popets-2015-0003/popets-2015-0003.xml

697

[62] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,”
in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, 2015, pp. 897–
912. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/gruss

[63] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-
by key-extraction cache attacks from portable code,” in Interna-
tional Conference on Applied Cryptography and Network Secu-
rity. Springer, 2018, pp. 83–102.

[64] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+abort: A timer-free high-precision l3 cache attack using
intel TSX,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017, pp.
51–67. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/disselkoen

[65] D. Dice, T. Harris, A. Kogan, and Y. Lev, “The influence
of malloc placement on TSX hardware transactional memory,”
CoRR, vol. abs/1504.04640, 2015. [Online]. Available: http:
//arxiv.org/abs/1504.04640

[66] R. Wojtczuk, “Tsx improves timing attacks against
kaslr,” https://bromiumlabs.wordpress.com/2014/10/27/
tsx-improves-timing-attacks-against-kaslr/, 2014, [Online;
accessed 03-Nov-2020].

[67] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space
layout randomization with intel tsx,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 380392. [Online]. Available:
https://doi.org/10.1145/2976749.2978321

[68] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa, “Strong and efficient cache side-channel protection
using hardware transactional memory,” in 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 217–233. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/gruss

[69] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster,
A. Fogh, and S. Mangard, “Automated detection, exploitation,
and elimination of double-fetch bugs using modern cpu features,”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ser. ASIACCS ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 587600.
[Online]. Available: https://doi.org/10.1145/3196494.3196508

[70] Intel®, “Intel® transactional synchronization extensions (intel®

tsx) asynchronous abort,” https://software.intel.com/security-
software-guidance/deep-dives/deep-dive-intel-transactional-
synchronization-extensions-intel-tsx-asynchronous-abort, 2019,
[Online; accessed 5-Nov-2020].

[71] T. kernel development community, “Taa - tsx asynchronous
abort,” https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/tsx async abort.html, 2019, [Online; accessed 5-Nov-2020].

[72] Intel®, “Side channel vulnerabilities: Microarchitectural
data sampling and transactional asynchronous abort,”
https://www.intel.com/content/www/us/en/architecture-and-
technology/mds.html, 2019, [Online; accessed 5-Nov-2020].

[73] R. H. S. Blog, “It’s all a question of time - aes timing attacks
on openssl,” July 2014, https://access.redhat.com/blogs/766093/
posts/1976303.

[74] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse
engineering of cache slice selection in intel processors,”
in 2015 Euromicro Conference on Digital System Design
(DSD), vol. 00, Aug. 2015, pp. 629–636. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/DSD.2015.56

[75] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu,
T. Eisenbarth, and B. Sunar, “{SPOILER}: Speculative load
hazards boost rowhammer and cache attacks,” in 28th {USENIX}
Security Symposium ({USENIX} Security 19), 2019, pp. 621–637.

[76] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in 13th Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA),
2016.

[77] M. Larabel and M. Tippett, “Phoronix test suite,”
http://www.phoronix-test-suite.com/, 2008.

[78] J. Daemen and V. Rijmen, The Design of Rijndael: AES -
The Advanced Encryption Standard, ser. Information Security
and Cryptography. Springer, 2002. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-662-04722-4

[79] G. Irazoqui, K. Cong, X. Guo, H. Khattri, A. K. Kanuparthi,
T. Eisenbarth, and B. Sunar, “Did we learn from LLC side
channel attacks? A cache leakage detection tool for crypto
libraries,” CoRR, vol. abs/1709.01552, 2017. [Online]. Available:
http://arxiv.org/abs/1709.01552

[80] C. Ko, “Analysis of sliding window techniques for exponenti-
ation,” Computers & Mathematics with Applications, vol. 30,
no. 10, pp. 17 – 24, 1995.

[81] D. M. Gordon, “A survey of fast exponentiation methods,” J.
Algorithms, vol. 27, no. 1, pp. 129–146, Apr. 1998.

[82] J. Barthelmeh, “wolfssl (formerly cyassl) release 3.10.0,” https:
//github.com/wolfSSL/wolfssl/releases/tag/v3.10.0-stable, 2016.

[83] T. Ouska, “Commit message: switch timing resistant expt-
mod to use temp for square instead of leaking key bit
to cache monitor,” https://github.com/wolfSSL/wolfssl/commit/
6ef9e79ff5ccd2b96fdfed404ada872fd29514be, 2016.

[84] G. D. Micheli and N. Heninger, “Recovering cryptographic keys
from partial information, by example,” Cryptology ePrint Archive,
Report 2020/1506, 2020, https://eprint.iacr.org/2020/1506.

[85] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and
G. Sigl, “DATA – differential address trace analysis: Finding
address-based side-channels in binaries,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 603–620. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity18/presentation/weiser

[86] E. Käsper and P. Schwabe, “Faster and timing-attack resistant aes-
gcm,” in International Workshop on Cryptographic Hardware and
Embedded Systems — CHES. Springer, 2009, pp. 1–17.

[87] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey
of microarchitectural timing attacks and countermeasures on
contemporary hardware,” Journal of Cryptographic Engineering,
vol. 8, no. 1, pp. 1–27, Apr 2018. [Online]. Available:
https://doi.org/10.1007/s13389-016-0141-6

[88] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-
level protection against cache-based side channel attacks in
the cloud,” in Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12). Bellevue, WA: USENIX,
2012, pp. 189–204. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/kim

[89] F. Liu and R. B. Lee, “Random fill cache architecture,”
in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-47. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 203–215. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2014.28

[90] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings of the
34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: ACM, 2007, pp. 494–505.
[Online]. Available: http://doi.acm.org/10.1145/1250662.1250723

[91] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel
attacks in cloud computing,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA),
March 2016, pp. 406–418.

[92] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,” in
USENIX Security Symposium, 2015, pp. 897–912. [Online].
Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/gruss

[93] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth,
and B. Sunar, “A faster and more realistic flush+reload
attack on AES,” in Constructive Side-Channel Analysis and
Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers,
2015, pp. 111–126. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-21476-4 8

698

[94] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache Attacks on Mobile Devices,” in
25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016., 2016, pp. 549–
564. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/lipp

[95] S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger, E. Ronen,
and Y. Yarom, “Pseudorandom black swans: Cache attacks on
ctr drbg,” Cryptology ePrint Archive, Report 2019/996, 2019,
https://eprint.iacr.org/2019/996.

[96] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How
sgx amplifies the power of cache attacks,” in Cryptographic
Hardware and Embedded Systems – CHES 2017, W. Fischer and
N. Homma, Eds. Cham: Springer International Publishing, 2017,
pp. 69–90.

[97] M. Mushtaq, M. A. Mukhtar, V. Lapotre, M. K. Bhatti, and
G. Gogniat, “Winter is here! a decade of cache-based side-channel
attacks, detection & mitigation for rsa,” Information Systems,
vol. 92, p. 101524, 2020.

[98] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “Kaslr: Break it, fix it, repeat,” in Proceedings of the
15th ACM Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 481493. [Online]. Available:
https://doi.org/10.1145/3320269.3384747

[99] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “Kaslr is dead: Long live kaslr,” in Engineering Se-
cure Software and Systems, E. Bodden, M. Payer, and E. Athana-
sopoulos, Eds. Cham: Springer International Publishing, 2017,
pp. 161–176.

[100] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A.-R.
Sadeghi, “Lazarus: Practical side-channel resilient kernel-space
randomization,” in Research in Attacks, Intrusions, and Defenses,
M. Dacier, M. Bailey, M. Polychronakis, and M. Antonakakis,
Eds. Cham: Springer International Publishing, 2017, pp. 238–
258.

[101] M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-
leak forwarding: Leaking data on meltdown-resistant cpus,”
CoRR, vol. abs/1905.05725, 2019. [Online]. Available: http:
//arxiv.org/abs/1905.05725

Appendix A.
Influence of L1 replacement policy

We have observed differences in the results between
12-way-associative caches and 16-way-associative caches.
These are due to the L1 replacement policy. In the first
case, just after the 12 elements of the set have been placed
in the cache, 4 of them are exclusively present in the LLC,
and the L1 cache will have suffered 4 misses. It will keep
the 4 last accessed blocks, but it will not necessarily have
evicted the first 4 accessed. On the contrary, when using a
16-way-associative cache, the L1 cache will have suffered
8 misses. This means it is likely that the 8 elements that
were first accessed only reside in the LLC. We observed
that in the first case the block we call B is in the L1 cache
whereas it is not in the second case.
The replacement policy defines which elements are

replaced and the dependence of the eviction order with
the actual access to the data. Indeed, our observations can
be explained by the tree-based pseudo-LRU replacement
policy implemented in the L1 cache [54], [55].
For clarification, the tree-based replacement policy is

represented in Figure 10. Starting from the root node, it
selects each of the branches depending on the intermediate
values of the nodes. In the example, the eviction candidate
is marked in red. Since the root node contains a 1, it

Figure 10. Tree structure that controls the Pseudo-LRU replacement
policy of L1 and L2 caches. The eviction candidate is highlighted

TABLE 2. EXPERIMENTAL PLATFORM DETAILS.

Processor Intel core i5-7600K

Cores 4

Frequency 3.8 GHz

Inclusive LLC Yes

LLC slices 8

LLC size 6 MB

LLC ways 12

L1 size 32 KB

L1 ways 8

selects the right branch. The value of the child node is 0,
so it selects the left branch. Finally, the last node has a 1,
so it points to the element at the right, F in the example.
Note that the blocks of memory in the cache set (A to H)
are ordered. According to our experiments when the cache
set is completely empty, the elements are inserted linearly
in the first free block they find regardless of the actual
values of the nodes. Once the set is completely filled with
data, the apparent value of all the nodes seems to be 0.
If an element in the cache is either accessed or replaced,
the values of the nodes that pointed to it are switched. For
instance, in the example, if F is accessed the nodes will
switch from 101 to 010, and D would become the new
eviction candidate.
This replacement policy explains why B is in the

L1 cache after reading the whole LLC eviction set (12
elements). For this reason, B cannot be the first element
to be accessed because its age would not change. Based
on this replacement policy, we have prepared a linked list
of addresses to access all but one elements of the eviction
set. The order of this list ensures that all of them are in
the LLC only, where their age can be manipulated.

Appendix B.
Technical experiment data

The following remarks should help fellow researchers
to reproduce our results.

B.1. Experimental platform

All experiments were conducted on the same machine,
the details of which are listed in Table 2.

B.2. wolfSSL setup

In order to analyze the wolfSSL implementation of the
exponentiation, we compiled the latest version at the time
of writing this paper (version 4.4.0) with the –enable-
debug –enable-keygen flags in order to be able to keep

699

the symbols after the installation and to generate RSA
keys. Note that we only used the –enable-debug flag to
verify the execution path with gdb. It is not necessary
otherwise. Later, we ran the tests included in the library
itself to analyze their RSA implementation and found
that the exponentiation is still vulnerable despite the steps
taken to remove side channel vulnerabilities.

700

		2022-08-24T21:31:34-0400
	Preflight Ticket Signature

