
NOVT: Eliminating C++ Virtual Calls to Mitigate Vtable Hijacking

Markus Bauer
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
markus.bauer@cispa.saarland

Christian Rossow
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
rossow@cispa.saarland

Abstract—The vast majority of nowadays remote code execu-
tion attacks target virtual function tables (vtables). Attackers
hijack vtable pointers to change the control flow of a
vulnerable program to their will, resulting in full control
over the underlying system. In this paper, we present NOVT,
a compiler-based defense against vtable hijacking. Instead of
protecting vtables for virtual dispatch, our solution replaces
them with switch-case constructs that are inherently
control-flow safe, thus preserving control flow integrity of
C++ virtual dispatch. NOVT extends Clang to perform a
class hierarchy analysis on C++ source code. Instead of
a vtable, each class gets unique identifier numbers which
are used to dispatch the correct method implementation.
Thereby, NOVT inherently protects all usages of a vtable,
not just virtual dispatch. We evaluate NOVT on common
benchmark applications and real-world programs including
Chromium. Despite its strong security guarantees, NOVT
improves runtime performance of most programs (mean
overhead −0.5%, −3.7% min, 2% max). In addition, pro-
tected binaries are slightly smaller than unprotected ones.
NOVT works on different CPU architectures and protects
complex C++ programs against strong attacks like COOP
and ShrinkWrap.

Index Terms—NOVT, vtables, vtable hijacking, LLVM, CFI

1. Introduction

The most popular programs are still written in
memory-unsafe languages like C++ nowadays [1]. For
decades, attackers have exploited the resulting memory
vulnerabilities to compromise systems, e.g., abusing well-
known vulnerabilities like stack buffer overflows. Program
vendors have reacted by employing defenses such as W⊕X,
ASLR [2] and stack canaries [3]. As a reaction, attackers
are shifting their effort to mount code-reuse attacks ex-
ploiting heap errors. Browsers are a particularly rewarding
and valuable target for heap-based code-reuse attacks, be-
cause browsers contain a massive amount of C++ code and
browsers include a scripting engine that allows adaptive
attacks. For example, 70% of all vulnerabilities in Google
Chrome are memory safety problems [4]. The problem
is not specific to browsers, though. In fact, code-reuse
attacks are fairly common also in other popular working
environments. For instance, use-after-free bugs are the
main source of vulnerabilities in Windows [5].

A fundamentally important attack step in exploiting
these vulnerabilities is vtable hijacking. Attackers com-

monly use heap corruption vulnerabilities (like a use-
after-free bugs) to corrupt a C++ object. C++ objects
contain the address of a vtable, which is a read-only
list of function pointers, pointing to all methods of the
given object. Using the memory corruption, an attacker
can overwrite the address to an object’s vtable with the
address of an attacker-controlled memory structure. This
memory structure is filled with a faked vtable containing
arbitrary function pointers. As soon as the program uses
the vtable to retrieve a method pointer, the attacker has
full control over the instruction pointer.

Unfortunately, C++ programs contain numerous vta-
bles as compilers use them to implement core language
features of C++: class inheritance and virtual methods.
The attack surface is significant. Each call of a virtual
method relies on a vtable pointer, and some programs
use millions of virtual method calls per second. Even
worse, researchers showed that vtable hijacking attacks
are Turing-complete, even if only existing vtables can be
re-used (the COOP attack [6]).

As a consequence, researchers aimed to defeat vtable
hijacking attacks, either with compiler-based program
modifications or binary rewriting tools. Previous work
[7]–[16] protects vtable-based virtual dispatch with se-
curity checks added to the program: before a virtual
method is called, either the vtable or the method pointer
in the referenced vtable are checked for validity. The set
of valid vtables or methods is determined by the C++
class hierarchy and type system. However, these additional
checks come with a performance penalty that is potentially
non-negligible [8], [13]–[17]. Furthermore, recent work
[6], [18] introduced new ways to bypass many existing
defenses, including [8], [9], [11], [13], [14], [16], [17].
Most proposed solutions only protect vtable-based virtual
dispatch, but not other usages of the vtable (e.g., virtual
offsets and runtime type information) [7], [9], [10], [12],
[19]. Finally, and quite surprisingly, no prior work has
attempted to solve the root cause of vtable hijacking: the
mere existence of vtables.

In this work, we radically change the way how C++
member functions are dispatched. Like prior work, we also
observe that all possible class types can be determined at
compile time [7], [8], [10], [17], [20], [21] if no dynamic
linking is required. However, instead of following the
well-explored idea of protecting vtables accordingly, we
show that vtables can be eliminated, which tackles the
root cause of vtable hijacking. Given the source code
of a C++ program, we leverage the class hierarchy to
eradicate vtables and to restrict virtual dispatches to the

650

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Bauer Markus. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00049

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
49

minimal valid set of methods per call site. Technically,
we replace vtables with class-unique identifiers (IDs).
Instead of vtable pointers, class instances contain an ID
that determines their class (dynamic type). Whenever a
virtual method is dispatched on an object instance, we
load the ID from the instance and build a switch(ID)
case construct that calls the respective method for a
given ID. For each virtual call, we only handle IDs of
classes that are possible by its static type, effectively
preventing function-wise code reuse attacks [6]. While
this sounds inefficient at first, we actually improve the
runtime performance of most tested programs. As a side
effect, unlike most related works, we protect all constructs
that relied on vtables before: virtual offsets, runtime type
information, and dynamic casts. Our approach is generic,
agnostic to the operating system and system architecture,
and is applicable to other compilers and ABIs.

We present a prototype of our protection—NOVT
(No VTables). NOVT is implemented in Clang/LLVM 10,
based on the Itanium ABI. While still a prototype, NOVT
can handle complex programs up to million lines of code.
We evaluate NOVT on the SPEC CPU 2006 benchmark,
Chromium, MariaDB, Clang, CMake and Tesseract OCR,
where it has a mean runtime overhead of −0.5%, 2%
worst case (i.e., speeds up programs on average). Binaries
protected by NOVT are slightly smaller than unprotected
ones. NOVT’s protection level is optimal (as defined in
ShrinkWrap [18]), protects against code-reuse attacks like
COOP [6] and is applicable to any valid C++ program
without code changes (given all linked C++ source code).
Our prototype has been released as open-source software1.

To summarize, our contributions are:

• We show that all C++ semantics can be imple-
mented without relying on vtables.

• We introduce NOVT, a LLVM-based prototype
that protects C++ programs by removing vta-
bles. NOVT safeguards even complex programs
against vtable hijacking, including Chromium
(29.7 MLoC), LLVM / Clang (3 MLoC) and the
C++ standard library (437 KLoC).

• The level of protection offered by NOVT is opti-
mal and complete. NOVT also protects every use
of vtables beyond dynamic calls, including virtual
inheritance offsets that are vital for field access
and object casts.

• NOVT shows negative performance overhead for
most tested programs, and is thus the first vtable
“protection” scheme that does not slow down the
majority of programs. At the same time, NOVT
also reduces binary size.

2. Background

Inheritance in C++ can become quite complex, as
C++ supports features like multiple inheritance and virtual
bases. We therefore start by providing relevant background
information on these C++ details. The code in Figure 1
will serve as running example to illustrate how C++
handles classes with inheritance.

1. https://github.com/novt-vtable-less-compiler/novt-llvm

class NV {
// 8 bytes, no virtual methods
uint64_t nv1;

};
class A { // 24 bytes

uint64_t a1, a2;
virtual void f();

};
class B : public NV, public virtual A {

// 72 bytes (40 + 8(NV) + 24(A))
uint64_t b1, b2, b3, b4;
virtual void g();
virtual void g2();

};
class C : public virtual A {

// 56 bytes (32 + 24(A))
uint64_t c1, c2, c3;
virtual void h();
virtual void h2();

};
class D : public B, public C {

// 120 bytes (24 +48(B) +32(C) +24(A))
uint64_t d1, d2;
void f() override;
void g() override;
void h() override;

};

Figure 1. C++ code as running example with multiple (classes B and D)
and virtual inheritance (classes B and C)

2.1. C++ Inheritance and Vtables

C++ classes can have virtual methods which can be
overwritten by child classes. Calling a virtual method on
a class instance invokes the method defined by the actual
dynamic type at runtime, regardless of the type in source
code (the static type). That means when we call g() on
a pointer of type B*, either B::g() or D::g() can be
executed, depending on the dynamic type of the instance.
To dispatch virtual functions, all major C++ compilers use
virtual function tables (vtables). A vtable is an array of
function pointers of all methods of a class, and possibly
additional information. Each class instance (with virtual
methods) contains a pointer to the vtable of its class. When
a virtual method is dispatched, the compiler emits code
that loads the vtable pointer, fetches the function pointer
from the table, and finally, calls this pointer.

2.2. C++ Multiple Inheritance

In C++, a class can have multiple base classes (mul-
tiple inheritance). Figure 2 shows the inheritance in our
example, where classes B and D inherit from multiple
classes. A and NV are base classes, C inherits only from
A. A is always inherited virtual, so that D includes one
copy of A, B and C each. Consequently, the four classes
A–D form an “inheritance diamond”, a common problem
in languages with multiple inheritance.

The compiler computes the memory layout of a class
according to the Itanium ABI [22]. Derived classes always
include their base (parent) classes in memory. That is, the
memory representation of a class instance always starts
with its primary vtable pointer, followed by all direct

651

class NV class A

class B class C

class D

+8

+48, virtual
+32, virtual

+0 +48

+96, virtual

Figure 2. Class hierarchy graph for our running example (Figure 1). The
given offsets relate to the memory layout in Figure 3 (e.g. NV starts at
offset +8 in B). The dashed line represents indirect virtual inheritance.

base classes in order of inheritance, and last, all fields
defined by this class are appended. Figure 3 shows the
memory layout of our example classes. If an instance of
type D* is cast to B* and method g() is dispatched, the
generated code would look up that method in D’s vtable
and call D::g with the correct this pointer (pointing to the
D object). But if an instance of type D* is cast to C* and
method h2() is dispatched, we would face two problems:
First, the vtable layout of B and C is incompatible, because
g2 is stored at index 1 in B’s vtable, while index 1 in C
is h2(). That means we cannot dispatch both g2 and h2
with the same vtable. Second, this would not point to an
instance compatible with type C—it points to an instance
of type D, which starts with fields b1-b4, not with c1-c3
as expected by C::g2. To mitigate this problem, Itanium
requires secondary vtables. The instance of D contains a
second vtable pointer at offset 48 (the beginning of the
C structure in D). When we cast D to C, we correct the
pointer by this offset so that it now points to the secondary
vtable, which gets a C-compatible layout, and methods
inherited from C can be dispatched without additional
effort. Methods overwritten by D get a special vtable entry
that moves this back to the beginning of D before calling
D’s implementation.

2.3. C++ Virtual Inheritance

With the sketched inheritance model, multiple copies
of a C++ base class can be included in a derived one.
This is counter-intuitive and not always desired. To solve
this, C++ provides virtual inheritance. A virtual base class
is always included only once, no matter how many base
classes inherit from it. In our example, A is a base of
both B and C, which in turn both are bases from D, but D
includes A only once. To this end, the memory layout
of a class with virtual bases is different: Instances of
virtual bases are included at the end of the final class
and deduplicated.

The computed memory layout (Figure 3) shows that
the memory offsets between a class and its base are no
longer constant. When method B::g2 accesses the field
A::a1 on an instance of B, it knows that this field is at
offset 56 (this+56) because A is at offset 48 and a1 is at
offset 8 in A. But if the same method is inherited to D,
A::a1 is at offset 104 (A starts at offset 96 in D). The
same problem occurs when casting between these types.
Again, C++ solves this issue with vtables. In addition to
function pointers, a vtable contains the memory offset to

cl
as

s
B

v
t

B
0

v
t

B
1

class B

class ANV

0 48 72

higher memory offset

nv1 b1 b2 b3 b4 a1 a2

cl
as

s
C

v
t

C
0

v
t

C
1

class C

class A

0 32 56

c1 c2 c3 a1 a2 cl
as

s
A

v
t

A
0

class A

0 24

a1 a2

cl
as

s
D

v
t

D
0

v
t

D
1

v
t

D
2

class D

class B class C

NV

class A

0 48 80 96 120

nv1 b1 b2 b3 b4 c1 c2 c3 d1 d2 a1 a2

Figure 3. Memory layout of our example classes according to the
Itanium ABI. Vtables B0 and D0 have a B-compatible layout. Vtables
A0, B1, C1 and D2 have an A-compatible layout. Vtables C0 and D1
have a C-compatible layout.

all its virtual bases and virtual children (including indirect
ones). When a field in a virtual base is accessed or a cast
occurs, the compiler first loads the pointer to the object’s
vtable, then loads the virtual offset from the (known) index
of the vtable, and finally, computes the address of the base
or children as this+virtual offset. To this end, vtables can
also contain a pointer to meta information about the class,
so-called runtime type information (RTTI), which are used
for exceptions and dynamic casts.

To build (and destroy) class instances, compilers may
need to use so-called construction vtables. These transient
tables contain the virtual offsets of a child class, but the
inherited methods of a parent class. When constructing
the child class, they ensure that no method on the child
is called before the parent classes are fully initialized.
Furthermore, construction vtables guide the objects to use
the correct virtual offsets.

2.4. Vtable Hijacking

As vtables contain function pointers, they are a valu-
able target for memory corruption. To hijack control flow,
an attacker can modify the vtable pointer stored in the first
bytes of an instance, e.g., by exploiting a heap overflow
or use-after-free vulnerability. Usually, the attacker over-
writes the vtable pointer with an address of an attacker-
controlled memory region. Then, the attacker fills this
memory region with a pointer to the code they want to
execute, creating a faked vtable. When a virtual method

652

is dispatched on the tampered class instance, the program
loads a function pointer from attacker-controlled memory
and calls it. By tampering with a single vtable pointer,
the attacker can thus leverage a potentially small memory
corruption to execute attacker-controlled code.

Researchers showed that attacks do not necessarily
need fake vtables: “Counterfeit Object-Oriented Program-
ming” (COOP) [6] attacks lead to turing-complete code
execution by chaining pointers to existing, valid vtables
from a sufficiently large program. Similar to ROP, several
gadgets in form of faked objects with pointers to actual
vtables are stored in an attacker-controlled buffer. Later
a loop with a virtual dispatch inside is used to dispatch
these gadgets one by one. Again, if this loop is in a
virtual function, regular vtable hacking (with any vtable
containing this virtual function) is used to start the attack.
COOP breaks naı̈ve protections that just check if vtable
pointers actually point to a vtable, because all vtable
pointers point to original vtables, from other classes.

However, virtual dispatch is not the only security-
critical operation on vtables—a fact that several related
works dismiss. An attacker can overwrite the vtable
pointer with a pointer to attacker-controlled memory and
change the virtual offset there. Whenever a method or field
inherited from the base class is used from the manipulated
object, the attacker has full control over the this pointer of
that method or the address of that field, even if the invo-
cation is non-virtual. With this power, common methods
like attribute getters and setters can be turned into arbitrary
memory read and arbitrary memory write primitives, while
the control flow of the program stays unaltered. Therefore,
we argue that a strong vtable protection must also protect
virtual offsets in addition to virtual dispatch.

3. Attacker Model

We want to mitigate memory corruption attacks
against C++ class instances in which an attacker aims
to divert control to an arbitrary function outside of the
instance’s scope. Hereby, we explicitly include COOP-
style attacks [6], i.e., we also aim to prevent the reuse of
existing, yet arbitrary virtual methods. Furthermore, we
aim to protect virtual offsets from arbitrary modifications,
as outlined in Section 2.4. We assume that the attacker
has arbitrary read and write access to the heap and other
memory locations that contain object instances, and they
know about the program’s memory layout.

We assume that all executable pages are non-writable
(W⊕X) and that return addresses are protected by other
means (e.g., canaries, shadow stack, etc.). In line with all
related works in this context, we ignore C-style function
pointers that might even occur in C++ programs.

Summarizing, our threat model reflects common re-
mote code execution attacks such as against Javascript
engines in off-the-shelf browsers.

4. Design and Implementation

Our protection scheme NOVT removes vtables from a
C++ program and replaces them with constant identifiers
that are used for dispatching virtual calls. Whenever a
vtable was used before, we generate a switch-case

struct that dispatches the minimal set of possible identi-
fiers, as determined by static types, and aborts execution
otherwise. This section outlines our overall methodology.
In Sections 4.1 and 4.2, we explain how we use class hier-
archy analysis and a class identifier graph to determine the
set of valid methods for each virtual call. In Sections 4.3
and 4.4, we show how we create dispatch functions and
class identifiers to replace vtables. In Section 4.5, we
show how we optimize the resulting structure to improve
performance. In Sections 4.6, 4.7 and 4.8 we show how
we build our prototype NOVT as a fork of Clang 10.

4.1. Class Hierarchy Analysis

To replace vtable-based virtual dispatch, we first need
to learn the class hierarchies [20] of the program we
want to protect. To this end, we add metadata to each
class that has at least one virtual method, a virtual base
or inherits a class with virtual methods or virtual bases.
Classes without any virtual methods or inheritance cannot
be used in virtual dispatch or virtual inheritance, and
would not contain a vtable pointer anyways (class NV in
our example). We ignore them in the remainder of this
paper, as they thus never undermine security according
to our threat model. For all other class, we record their
virtual and non-virtual bases including the memory offset
between the derived class and its base, and the defined
virtual or overridden methods. We also store a reference
to their vtables (which will be removed in a later step)
and to all generated construction vtables (including layout
class and memory offset from base class to layout class).
To avoid name clashes and to support C++ templates, we
mangle all class names according to the Itanium ABI [22].

From the stored inheritance information, we can con-
struct a class hierarchy graph at link time (see Figure 2).
Each node in this graph represents a class, each edge
represents an inheritance path. Each edge is marked with
the memory offset between both classes, i.e., the memory
location of the base class inside the derived memory
layout. When casting between these classes or dispatching
inherited methods we need to correct the pointer (this, etc.)
for this offset.

4.2. Class Identifiers

From the class hierarchy graph, we then determine the
necessary class identifiers we need to create. Each class
identifier will later replace a primary or secondary vtable,
i.e., a class can have multiple class identifiers. Each class
identifier is a pair ID = (cls, o) where cls is a class and
o is a memory offset. The memory offset denotes that
identifier ID will later be written at offset o bytes from
the start of the instance. If we read an identifier from an
instance pointer and know its offset, we can compute the
beginning of the instance (to adjust this). Class identifiers
with offset 0 signal the beginning of an instance (like
a primary vtable), offset �= 0 have the same purpose as
secondary vtables.

For objects in construction, we use combinations of
two class identifiers. The first identifier denotes the class
under construction and is later used to dispatch virtual
methods. The second identifier denotes the class whose
memory layout is applied, and is later used to resolve

653

virtual offsets. In our example, we need a construction
identifier ((C, 0) , (D, 48)) (“C-in-D”) while constructing
the C instance in D. It denotes that the virtual methods
from C should be used, but if fields from virtual base A
are accessed we have to respect D’s memory layout (e.g.,
A starts at +48 bytes, not at +32 as in C). Construction
identifiers avoid that overridden methods of an object are
called while the object is not fully constructed, they are
similar to construction vtables in Itanium.

To this end, we construct a class identifier graph (see
Figure 4 for an example). Each node in this graph is a class
identifier, edges between identifiers show the inheritance
between their classes: Two nodes (c1, o1) and (c2, o2) are
connected with an edge (c1, o1) −→ (c2, o2) iff i) c1 is
a base class of c2, ii) casting from a c2-pointer to a c1-
pointer modifies the pointer by (o2−o1) bytes. In practice
that means: If offset o2 in a class of type c2 refers to a
field inherited from c1 at offset o1, then these identifiers
are connected. In our example, (A, 0) and (B,+48) both
refer to the beginning of an A instance, therefore they are
connected. (A, 0) and (D,+48) are not connected because
A starts in D at offset +96.

We generate these class identifiers by traversing the
class hierarchy graph top-down, e.g., bases (parents) be-
fore derived classes. Created identifiers are marked virtual
if they have been generated using virtual inheritance,
non-virtual otherwise. This marking is vanished after all
identifiers have been created. For each class c, we create
identifiers in these steps:

1) We create one default identifier representing the
class at offset 0: (c, 0). We mark this identifier as
non-virtual.

2) We traverse all identifiers id′ = (c′, o′) of all base
classes c′ (given the memory offset o between c
and c′):

• If the identifier is marked non-virtual (i.e.,
it has not been created using any virtual
bases), we create an identifier (c, o+ o′)
and connect it with an edge from id′.
This new identifier is marked virtual iff c′
is a virtual base of c.

• If the identifier is marked virtual, we de-
termine its root (c′′, 0) in the graph (a
unique node generated by rule 1). Next we
determine the virtual offset o′′ of c′′ in c.
Finally, we create a new identifier (c, o′′)
and connect it with an edge from id′. The
new identifier is always marked virtual.

3) For each construction vtable c-in-c′ of the class
c, we traverse all identifiers id′ = (c, o) of this
class. For each identifier we compute the memory
offsets o1 (between c+ o and c+ 0) and o2 (be-
tween c+ o and c′+0). We create a construction
identifier ((c, o1) , (c

′, o2)) and connect it with an
edge from id′.

There is a strong relation between vtables and class
identifiers. Every class identifier corresponds to exactly
one vtable, connections between identifiers imply that
these vtables can be expected in the same location for
a given (static) type. We can clearly see this connection

A.0
+0 to A

B.0
+0 to B

B.1
+48 to B

B.0-in-D
+0 to B/D

B.1-in-D
+96 to B/D

C.0
+0 to C

C.1
+32 to C

C.0-in-D
+0 to C, +48 to D

C.1-in-D
+48 to C, +96 to D

D.0
+0 to D

D.1
+48 to D

D.2
+96 to D

Figure 4. The class identifier graph of our example, including all
possible construction identifiers (rounded rectangles).

when we compare the class identifier graph from Figure 4
with the vtables in Figure 3: Class B has two vtables: one
primary vtable and one that has layout of class A’s vtable
(e.g., B cast to A). These two tables correspond to the class
identifiers B.0 and B.1. Given a pointer with a static type
of A, it points to an instance starting with a pointer to the
primary vtable of A or the secondary vtable of B, therefore
class identifiers A.0 and B.1 are connected. Similar for
D: class D has three vtables that correspond to the class
identifiers D.0, D.1 (D casted to C) and D.2 (D casted to
A). Similarly all construction identifiers correspond to a
construction vtable. We will use this connection later and
replace vtable pointers with a unique number per class
identifier. The edges between class identifiers help us to
enumerate all possible class identifiers that can occur for
a given static type.

4.3. Dispatch Function Generation

While a vtable-based dynamic dispatch can be com-
piled independent of other compile units, this is no longer
possible for our protection (and, in general, for any protec-
tion that relies on class hierarchy analysis). To dispatch a
function, any approach based on a class hierarchy analysis
needs to know all possible functions that can be called,
which might not even be declared in the current unit.
To counter this and allow incremental compilation, we
compile dynamic dispatch in two steps. When compila-
tion requires a dynamic dispatch, we declare a dispatch
function instead and replace the dynamic dispatch with
a (static) call to this dispatch function. The generated
dispatch function has exactly the same type as the virtual
function we want to call. It is annotated with the static
type of the object we dispatch on and the method name we

654

need to dispatch. To account for templates and overloaded
functions, we mangle this method name according to the
Itanium ABI [22].

We define these methods later in the linking phase.
For each method, we identify the this argument and
start with loading the class identifier using that pointer.
We then create a switch-case structure (with LLVM’s
SwitchInst). Each possible class identifier is handled by
a case in that switch instruction. We can get all possible
class identifiers by traversing the class identifier graph,
starting with the static type’s primary class identifier. For
example, when dispatching on class C we would start
with identifier C.0 and traverse D.1 and C.0-in-D. For
each case, we can determine the method to be called
by the class identifier’s (dynamic) type using standard
inheritance rules. We emit a (static) call to this method and
return its result. To catch potential memory corruptions,
we emit a LLVM Trap intrinsic (x86’s ud2) in the default
case of the switch. If an invalid class identifier occurs at
runtime, the program crashes to avoid control flow hijacks.
The order of the traversal here is not important. During
assembly generation, LLVM will reorder all emitted cases
depending on the assigned identifier number. Also in the
rare cases where LLVM does not reorder checks the order
has a negligible effect on performance. We use the same
method to implement other constructs that used to rely
on vtables: Whenever the compiler needs to know the
virtual offset of a virtual base, we emit a call to an offset
function (typed pointer → word-sized int). This function
is later defined by a SwitchInst that simply returns the
correct offset for all possible class identifiers. Dynamic
casts that cannot be resolved at compile-time are replaced
with a cast function (typed pointer → pointer). For each
possible class identifier, this function returns either the
pointer (potentially with an offset) or nullptr if the class
cannot be cast. Last, we replace every access to runtime
type information with a call to an rtti function that returns
a pointer to the correct RTTI structure when called.

4.4. Storing Class IDs and Removing Vtables

The mechanisms described until now already replace
all C++ concepts that normally rely on vtables. We finally
can delete the vtables themselves, and replace the in-
stance’s pointers to them with the class identifier that cor-
responds to a given vtable. To this end, we assign a unique
number to every class identifier in the class identifier tree.
Next, we find direct usages of the vtable, which happens
only in class constructors (when the vtable’s pointer is
written to the instance). We replace that vtable pointer
with the corresponding class identifier’s number and write
it into the memory slot that used to store the vtable pointer.
The memory layout of classes does not change by this
modification, i.e., we do not introduce memory overhead
with this step. All dispatcher functions (and friends) load
this identifier number later from the vtable pointer slot and
use it as described. Finally, having removed all references
to the vtables, they will be removed by a following Dead
Globals Elimination pass.

4.5. Optimizations

We extend this basic methodology with optimizations
that boost the runtime efficiency of our protection.

4.5.1. Dead Class Identifiers. Class identifiers that are
never used in a generated function, or class identifiers
whose identifier number is never written in a construc-
tor can be safely removed. Removing them saves some
branches in the generated functions as well as it allows
for a more dense numbering. We evaluate optimizations on
the C++ programs from SPEC CPU 2006 and Chromium.
Applied after all other optimizations from this section, we
can on average remove 29% of all class identifiers because
they are never used in a constructor, and additional 22%
because they are never used in a generated function.

4.5.2. Merge Cases. In the generated functions, many
cases can be merged, for example, when multiple classes
inherit the same method without overriding it. Whenever
cases execute the same action (same method dispatched,
return same virtual offset, etc.) we merge them into one
case. This reduces code size and improves later optimiza-
tion results. In our experiments, we could remove 24% of
all case handlers on average.

4.5.3. Devirtualization. Whenever a generated function
has only one possible case (possibly after combining
cases, excluding the error case), we can statically de-
termine the only legal path and remove the switch-case
around it. Only a single static call or single constant
offset remains, the virtual operation has been statically
resolved (devirtualized). We mark the generated function
for inlining to get rid of any performance impact. On
average, 57% of all generated functions in our experiments
can be devirtualized.

4.5.4. Merge Identifiers. We look for pairs of class
identifiers that trigger the same behavior in all generated
functions and merge them to a single identifier, thus
reducing the total number of identifiers. These “equal”
identifiers occur, for example, when a subclass does not
overwrite any methods, or when a construction identifier is
rarely used. We search these equal identifiers by iterating
all generated functions: whenever a pair of two identifiers
is handled in the same function (i.e., occurs in the same
SwitchInst) and the two identifiers trigger the same
behavior, we mark them as “potentially equal”. We mark
them as “not equal” if they trigger different behavior and
must not be merged. In a second step, we check all pairs:
If two identifiers are marked “potentially equal” but no
“not equal” marking has been set, they can be safely
merged without changing program semantics. This holds
because the only (legal) usage of class identifiers are the
generated functions, and there is no case where switching
between the two would change the behavior of a gen-
erated function. The “potentially equal” and “not equal”
relations are propagated to the merged identifiers, hence
more than two identifiers will be merged if possible. With
this optimization, we can merge 10% of all identifiers on
average in our experiments.

655

4.5.5. Optimizing Identifier Numbers. The performance
of our protection is dominated by the efficiency of the
compiled switch instruction. The efficiency of the gen-
erated code depends mainly on the number of cases,
the density of the numbers and the maximal size of the
numbers. Dense packs of numbers can be handled by
more efficient constructions (e.g., jumptables) than sparse
sets. We thus set out to assign consecutive numbers to
identifiers that are used in the same dispatch function(s).

To this end, we first group identifiers that are used in
the same generated dispatch function and trigger different
behaviors there. We then assign numbers to each group
independently. All identifiers in a group need a different
identifier number to be distinguishable. This is not the
case for identifiers in different groups. Such “colliding”
identifiers are never used together and therefore do not
have to be distinguishable. Consequently, each of the
disjoint groups will have its own, independent numbering
starting with 0. Hence, unrelated identifiers from different
groups can have the same number. Assigning a number
multiple times does neither harm correctness nor security.
Whenever such a duplicate number occurs in the program,
it is absolutely clear from the context to which of the
identifiers it belongs.

We use a non-optimal recursive algorithm (shown in
Appendix A / Algorithm 1) to assign numbers to a group
of identifiers. For each set of identifiers larger than some
threshold, the algorithm splits it into two subsets that will
receive consecutive numbers recursively. One of the sub-
sets is the maximal subset used in a generation function.
Assuming a hierarchical structure of used identifier sets
in our generated functions, this algorithm tries to follow
that hierarchy. Our experiments show that this non-optimal
algorithm significantly (50% on average) compresses the
identifier space.

4.6. Implementation

We have implemented the NOVT prototype on top of
Clang 10 and LLD 10. NOVT modifies C++ programs
during compilation and linking. In the following, we will
detail our implementation choices for both phases.

In the compilation phase, our modified compiler adds
information about classes, inheritance and virtual methods
as metadata to its output. We replace virtual dispatches by
a call to a dispatch function. Similarly, we replace virtual
offset loads by a call to a offset function. The same holds
for dynamic_cast (cast functions) and RTTI loads (rtti
functions). We enforce link-time optimization (LTO) in
our compiler, so the output is always LLVM bitcode ready
for further analysis. Vtables are still emitted, they will be
removed later.

In the linking phase, we generate the newly introduced
functions in a compiler pass introduced to lld or LLVM’s
gold plugin. First, we combine the metadata from all
compilation units and reconstruct the full class hierarchy
of the program. From this class hierarchy, we build an
identifier graph, a structure that is similar to vtables and
their inheritance relations. Using this graph, we assign IDs
to all classes and change their constructors to write that
ID to each class instance, replacing the vtable pointer. For
each dispatch function, we determine the set of possible
call targets from the identifier graph, and insert a switch

statement that can call exactly these candidates. Similarly,
we generate all necessary offset, cast and rtti functions. We
optimize our identifier graph and the generated functions
to counter possible performance overhead caused by the
protection. Finally, the compiler’s code generation applies
off-the-shelf compiler optimizations.

4.7. Compiler-Assisted Optimizations

LLVM runs its optimizations that interact with our
generated code and further improve the performance. First
of all, LLVM’s Dead Global Elimination pass eliminates
all (now unused) vtables. Additionally, it identifies now
unused methods and RTTI structures and eliminates them,
which was not possible before our transformation. We
evaluate the positive effect of this program size reduction
in Section 5.4.

Next, LLVM can decide to inline some or all of
our generated functions, especially if they are short or
only called from few locations. On the other side, short
methods might be inlined into our generated function.
Both inlining operations save us a call instruction. In
the best case, our virtual dispatch is compiled without a
single assembly call. Inlining gets especially performant
if LLVM can infer the result of the identifier number Load
instruction using constant propagation (for example, if a
constructor has been inlined before). LLVM has a pass that
allows even interprocedural constant propagation, on our
transformed program this optimization is able to devirtu-
alize some further callsides. Finally, LLVM uses tail calls:
when we call a regular method from a dispatcher function,
LLVM emits a jmp instead of a call. As the dispatcher
function and method have the same signature, the method
can return instead of our dispatcher function later. Tail call
optimization saves us a second call, a second ret and
the space of a return address on the stack.

Last but not least, LLVM has several tweaks to effi-
ciently implement a SwitchInst in assembly. The most
well-known trick is a jumptable: Given numbers close to
each other, LLVM uses that number to load the address
of the next instruction and jump to it. Jumptables are
similarly efficient than vtables (a cmp instruction more),
but they are memory-safe because the jumptable index
is bounds-checked before usage. Jumptables are scalable,
their performance does not depend on the number of pos-
sible cases. Alternatively, LLVM can translate functions
with only a few cases to a chain-like or tree-like structure
of compares and jumps. These structures do not have the
overhead of an additional memory access, given a small
number of possible cases they are usually faster than
jumptables (or regular vtable-based dispatch). Another
trick is to use bitstring tests to check for many cases at
once. Given many numbers that fall to a single case (e.g.,
many classes inheriting a non-overridden method), LLVM
uses the bittest instruction (bt) to select a bit from a pre-
computed 64-bit word. If the selected bit is 1 the case is
correct.

4.8. Usability

For convenience, we modified Clang to use LTO
by default, to use our modified lld linker by default,

656

astar Chrome Clang CMake dealII Maria
DB

omnet
pp

povray soplex Tesser
act

xalan
cbmk

0%

20%

40%

60%

80%

100%

devirtualized

≤2 targets

≤3 targets

≤5 targets

≤10 targets

≤100 targets

≤500 targets

≤2600 targets

Figure 5. Virtual dispatchers broken down by their number of possible
call targets.

and to include an additional library search path contain-
ing a pre-compiled protected libstdc++. With these
small changes, our modified Clang is a drop-in replace-
ment for typical compilers (real Clang, mainly compat-
ible with g++). For most build systems, we only need
to set an environment variable to get protected binaries
(CXX=novt-clang++).

5. Evaluation

We now evaluate NOVT to see its impact on the
programs to protect. Most important, we aim to assess
the provided security level and the performance overhead.
Next, we also want to know the impact on binary size and
the limitations that come with this protection.

For our evaluation we use all C++ programs from
the standardized SPEC CPU 2006 benchmark [23],
namely astar, dealII, namd, omnetpp, povray, soplex and
xalancbmk. Using that benchmark allows us to compare
our results against other solutions (using the same bench-
mark). namd is a bit special because it does not use
virtual inheritance nor virtual dispatch. We still include
it in our evaluation to show the absence of any impact of
our approach if no protection is necessary. To demonstrate
scalability and practicability we also evaluate NOVT on
Chromium 83 [24] (Google Chrome), which consists of
29.7 million lines of C/C++ code, many dependencies and
is highly relevant in practice. Additionally Chromium does
not tolerate any slight error in the C++ language semantics
and therefore is a good test case to show that our approach
does not break programs. To show a broad compatibility
with a variety of popular C++ projects, we evaluate NOVT
on MariaDB (a SQL database server with 2.4 MLoC),
CMake (340 kLoC), Clang/LLVM 9 (2.9 MLoC) and
Tesseract OCR (300 kLoC).

To get comparable results, all programs have been
compiled with full protection (including a protected C++
standard library) and full link-time optimization enabled.
Reference is always the same program compiled with
unmodified Clang 10, full LTO and a statically linked
LTO-ready version of the C++ standard library. For SPEC
CPU 2006 we use all available optimizations (-O3), for
Chromium we enable all provided optimization options
in its build system. Other programs use their respective
defaults for a release build.

5.1. Security Evaluation

NOVT protects any vtable-related operation against a
memory-modifying attacker. This includes virtual memory
offsets, dynamic casts and rtti access. We also protect
member function pointers. Manual inspection of the gen-
erated dispatchers show that even concurrent memory
modifications can not give an attacker more control about
the instruction pointer, no intermediate values are stored
on the stack. Our protection restricts the callable methods
at each virtual dispatch location to the minimal set that
would still be allowed by the type system, depending on
optimizations even less. Haller et al. [18] showed that
this restriction is optimal without (potentially expensive)
context analysis.

This implies of course that an attacker can trigger
other, possibly unintended methods by overwriting the
type ID in memory, as long as these methods are still
allowed by the type system. However, modifying the
stored identifier number does not give full control over the
instruction pointer, and the number of callable functions
is considered low enough to prevent code-reuse attacks
(including COOP attacks) [6]. In the worst case, this
very limited set of methods might contain security-critical
functionality: For example, assume classes AdminUser
and RegularUser which both inherit from User. For
a regular user object typed User* in source code, an
attacker could overwrite the stored ID with the ID of
AdminUser. This attack gives access to methods over-
ridden by AdminUser that were unreachable before, but
does not give access to any additional methods added by
AdminUser, nor can the attacker trigger different meth-
ods with potentially incompatible signature or methods
unrelated to User, as he could with regular vtables. The
impact is quite program-specific, as an attack requires
specific call patterns in code. This restriction applies for
all solutions that restrict virtual dispatch based on a class
hierarchy analysis, including [7]–[11], [17], [25]. Our
level of protection is equal or better than these solutions.

In order to assess our intuition that NOVT prevents
COOP-style attacks, we have to inspect how many valid
targets each dispatcher allows to use. Successful COOP
attacks [6] require a large set of “vfgadgets”—virtual
functions that can be called by manipulating the object.
Schuster et al. identified ten different types of vfgadgets
that must be available for turing completeness (e.g., virtual
functions reading memory, performing arithmetic opera-
tions, etc.), some of them more than once (e.g., reading
memory to different registers). In unprotected programs,
any virtual function (referenced in a vtable) is a possible
target of any virtual dispatch in a COOP attack. With
NOVT applied, all vfgadgets must be different implemen-
tations of the same method inherited from a single base
class, with the exception of the “main loop” vfgadget,
which in turn must dispatch that method on that base
class. From Figure 5 we see that in a protected program,
most virtual dispatchs have less than 10 possible targets, in
particular for SPEC programs. The majority of these target
functions likely does not qualify as vfgadgets because
of their size and complexity. Even if, they are likely
vfgadgets of the same type, because all target functions
share the (high-level) semantics of the parent method.

657

Chromium represents a good worst-case example for
vtable protection: its large codebase contain 39,100 virtual
class definitions, with more than 54,700 vtables con-
taining over 210,000 distinct virtual functions. NOVT
restricts virtual dispatches to 2.9 possible targets on av-
erage. Excluding devirtualized calls, 5.7 possible targets
per virtual dispatcher remain. This low number of valid
targets does not allow to spawn successful COOP attack,
i.e., the vast majority of virtual dispatches is COOP-
safe. When looking at the maximum number of targets,
we see that a small fraction of virtual dispatches have
a higher number of targets (up to 2600). These dis-
patchers are required by some very generic interfaces in
Chromium’s source code that are implemented by many
classes: mojo::MessageReceiver, blink::Script-
Wrappable, blink::GarbageCollectedMixin and
google::protobuf::MessageLite. However, we be-
lieve that these generic interfaces do not pose an additional
risk for COOP-style attacks, because they all share similar
function types and purposes. It is unlikely that all required
types of vfgadgets are present in a set of almost-identical
functions. For example, for any protobuf-inheriting ob-
ject, the function Clear will always write memory, but
never be usable as a memory-reading vfgadget. Restricting
these dispatches further is not possible without breaking
the legitimate use of these interfaces. This assessment is
further supported by the COOP authors who state that
a C++ class-hierarchy-aware restriction of virtual call
targets reliably prevent COOP attacks even for large C++
target applications (“COOP’s control flow can be reliably
prevented when precise C++ semantics are considered
from source code” [6], Section VII B).

NOVT applies the same level of protection to virtual
offsets. Whenever a virtual offset is retrieved from an
object, we restrict the possible results to the minimal set
possible in the type system. Without this protection, an
attacker could hijack vtables to arbitrarily change the this
pointer of some inherited methods. Attackers can leverage
the this pointer to get arbitrary memory read/write prim-
itives from a single corrupted vtable pointer. Only few
related work protects virtual offsets [8], [11], and none of
them restricts virtual offset to the minimal possible set.

NOVT actually found an invalid virtual dispatch
in one of the SPEC CPU benchmarks (xalancbmk, in
SchemaValidator::preContentValidation). This
benchmark does an invalid sidecast of an object instance,
then calls a virtual method on it and finally checks if the
cast was valid at all. With traditional vtables, this error
would remain undetected, because both intended and
actual vtables have the same layout, but NOVT detects
that this dispatch violates the type system and halts the
program. We are not the first to report this issue [7],
[17], and provide a patch file in our source release.

The protection strength could be improved further
by randomization: In contrast to vtables, type IDs are
not addresses and could be randomized independently
of ASLR. A simple randomization could use a constant,
random offset added to all type IDs, preserving the struc-
ture of the dispatchers including their speed. To break
this randomization, an attacker has to leak one type ID
from memory. A stronger randomization could assign
all type IDs completely random. This approach will be
less efficient, because dispatchers with jumptables are not

astar
(-3.7%)

Chrome
(1.1%)

Clang
(0.1%)

dealII
(-1.2%)

MariaDB
(2.0%)

namd
(-0.2%)

omnetpp
(-0.1%)

povray
(1.4%)

soplex
(-0.7%)

Tesseract
(0.1%)

xalanc
(-3.7%)

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

Figure 6. Performance overhead of NOVT on all programs

possible anymore, but an attacker would have to leak each
type ID from an existing class instance before overwriting
any stored ID.

5.2. Runtime Evaluation

The performance overhead of any protection may hin-
der its real-world adoption. In this section, we therefore
provide thorough experiments that confirm that NOVT has
a negligible (actually, negative) run time slowdown.

5.2.1. Benchmark Selection. We evaluate the perfor-
mance overhead of NOVT using the SPEC CPU 2006
benchmark suite, parts of Chromium’s benchmark suite,
six well-known browser benchmarks and standard bench-
marks of MariaDB, Clang and Tesseract OCR.

For SPEC, we run the full benchmark suite, excluding
programs without C++. SPEC runs every program three
times and takes the median runtime as result. We run each
experiment 20x to get a meaningful result without outliers.

For Chromium, we use all standardized benchmarks
contained in Chromium’s benchmark set [26], which are
octane 2 [27], kraken 1.1 [28], jetstream2 [29], Dro-
maeo DOM [30] (not to be confused with the Dromaeo
Javascript benchmark) and speedometer2 [31], which is
a real-world benchmark comparing the performance of
the most popular web frameworks. We add sunspider
1.0.2 [32] because it has been used to evaluate many
related work [7], [8], [10]–[13], [15], [33]. Other relevant
literature used additional benchmarks to assess perfor-
mance impact on HTML/rendering performance, but these
historical samples are not included anymore in modern
Chromium (which switched from Webkit to blink). In-
stead, we benchmark the blink HTML engine’s perfor-
mance with the quite extensive blink benchmark set (326
samples in total). To avoid any bias, we selected all
benchmark sets that i) contained more than just a few
samples, ii) worked flawlessly on an unmodified reference
Chromium and iii) whose results had a reasonably low
standard deviation (below 1%). These were the blink
benchmark suites css, display locking, dom, events, lay-
out, paint and parser. We take the geometric mean of all
these results as Chromium’s performance overhead. Again
we repeated all experiments 20 times. For MariaDB, we
use the DBT3 benchmark provided by the developers
with the InnoDB database engine. For Clang, we measure
the time it takes to compile and optimize SQLite. For
Tesseract OCR, we use the benchmark from the Phoronix
test suite [34]. We do not conduct runtime analysis on

658

blink
css

(3.9%)

blink
display
(2.1%)

blink
dom
(2.2%)

blink
events
(-0.0%)

blink
layout
(4.7%)

blink
paint
(4.7%)

blink
parser
(0.1%)

dromaeo
dom
(0.3%)

jetstream2

(0.3%)

kraken

(0.1%)

octane

(0.4%)

speedo-
meter2
(0.8%)

sunspider

(-4.8%)

-5%
-4%
-3%
-2%
-1%
0%
1%
2%
3%
4%
5%

Figure 7. Performance overhead of NOVT on Chromium

namd povray soplexChrome
0

25 K

50 K

75 K

100 K

125 K

150 K

175 K

dealII Clang Tesser
act

0

1 M

2 M

3 M

4 M

5 M

6 M

7 M

omnet
pp

astar Maria
DB

xalan
cbmk

0

10 M

20 M

30 M

40 M

50 M

60 M devirtualized

≤2 cases

≤3 cases

≤5 cases

≤10 cases

≤100 cases

≤500 cases

≤2600 cases

Figure 8. Virtual actions (calls, vbase offset, etc) per second, broken
down by the number of switch cases in the NOVT dispatcher functions

CMake, because its runtime is mainly determined by the
speed of the programs it invokes (e.g. compilers), and
there exists no benchmark targeting CMake.

5.2.2. Benchmark Environment. We ran all SPEC
benchmarks on an Intel Core i5-4690 CPU (4×3.5 GHz,
no hyperthreading) with 32 GB of RAM. Operating system
was Debian 10 “Buster” with kernel 4.19. We used the
“performance” CPU governor, disabled CPU boost and
applied cpuset to minimize the impact of environment
and operating system on the measurements. The standard
deviation of all benchmarks was at most 0.7%, and 0.32%
on average. We ran all Chromium benchmarks on an Intel
Core i7-6700k CPU (4×4.0 GHz with hyperthreading)
with 16 GB of RAM and an AMD Radeon RX480 graph-
ics card. Operating system was Ubuntu 18.04 with kernel
5.3. The standard deviation of all Chromium benchmarks
was always below 0.92%, and 0.37% on average.

5.2.3. Performance Overhead. Figure 6 and Figure 7
show the performance overhead on the different programs
and benchmarks. We can see that many programs ac-
tually get faster after protection (astar, deadII, soplex,
xalancbmk), while few get slightly slower (chromium,
povray, MariaDB). The average overhead is −0.5% and
thus negative. The average overhead on the set of pro-
grams commonly used in related literature (SPEC CPU
and Chromium) is −0.9%. That is, our benchmarks get
faster on average, with a worst-case overhead of 1.98%
on MariaDB. The best result is astar. This program has

been completely devirtualized by NOVT and improves its
performance by 3.7%. The highest overhead in a SPEC
benchmark occurs on povray. Manual investigation shows
that povray has only 28 classes, excluding standard library,
and 1500 virtual calls per second—xalancbmk has 63
million virtual calls per second. Disabling the protection
on parts of the class hierarchy reveals that its overhead
does only loosely correlate to the number and structure of
the generated dispatch functions. We believe that this over-
head instead comes from subtle changes in the program’s
code layout. Evaluating hardware performance counters
on synthetic microbenchmarks did unfortunately not give
conclusive insights: NOVT’s overhead does not correlate
with cache miss rate. However, protected programs seem
to have a lower branch misprediction rate.

We summarize the size and call frequency of the
generated functions in Figure 8 and the number of virtual
calls in Appendix B (Table 4). We can see that NOVT can
handle billions of dispatches while still having a negative
overhead in some cases. The same holds for virtual offsets.
NOVT does not necessarily impose an overhead when
virtual inheritance is used extensively. However, the actual
performance overhead is not only subject to the class
structure. Again, we rather speculate that performance is
due to the code layout, which is out of our control.

For Chromium, we can easily see that the real-world
benchmarks tend to have a much lower performance over-
head than the synthetic HTML engine benchmarks. The
worst case overhead is 4.7%, while the mean overhead
is only 1.1%. We expect the real-world overhead to be
close to the latter—in particular speedometer2 (+0.8%)
is a good candidate to measure this because it tests the
performance of widely used web frameworks. sunspider
(−4.8%) shows that even some parts of Chromium actu-
ally got faster. While this result looked suspicious at the
first glance, we repeated this experiment twice to exclude
any error on our side, but we can reproduce this behavior
with a reasonably low standard deviation (0.5% max).
Further investigation revealed that sunspider is not the
only case where the protected Chromium is faster than
the reference (like the “blink image decoder” benchmark,
roughly −2%). However, all other cases did not comply
to our rules as described in Section 5.2.1, and we hence
did not include them because they were not sufficiently
representative.

Chromium seems to use less virtual dispatch than
some of the SPEC benchmarks. We observed the most
intensive use in the benchmark “blink display locking”

659

with 510,000 virtual calls per second. On the other hand,
Dromaeo DOM used only 20,000 virtual calls per second.
The size of the generated functions was roughly propor-
tional in all benchmarks, it is summarized in Figure 8. A
direct connection between size and number of the called
virtual functions could not be observed.

Summarizing, we can say that NOVT protects most
programs without any performance penalties, and only
some programs experience a slight yet negligible slow-
down from the protection. Even complex programs like
Chromium with large generated functions do not nec-
essarily suffer from performance drain. Finally, with a
focus on Chromium, we can say that the performance
bias we introduced with our protection was more than
compensated by the performance gain of enabling full link
time optimization.

5.2.4. Compilation Time. The compilation time of our
solution itself is unobtrusive. Our passes take a few mil-
liseconds up to a few seconds to run on a SPEC program,
and less than 40 seconds on Chromium. This compilation
time is negligible in a build process of multiple minutes
(SPEC) or multiple hours (Chromium), so we did not
optimize the compile time in our prototype. Admittedly,
building with Clang’s link time optimization is slower than
a regular build.

5.3. Generated Code Evaluation

NOVT replaces vtables with switch-case constructs
in dispatcher functions, which the compiler then further
optimizes during assembly generation. Table 1 shows that
dispatchers generally follow one of four low-level code
structures. Most dispatchers consist of a linear chain of
cmp or bt checks on the type ID, followed by a condi-
tional jump to the target function. These dispatchers usu-
ally check for only a small number (at most 4) of type IDs.
They are considered fastest, because they do not access
any memory. Dispatchers handling a large number of type
IDs often utilize a jumptable, guarded by an initial range
check. Jumptables require a memory read access, but scale
well in the presence of many type IDs. If a jumptable
is unsuitable, LLVM generates a tree-like comparison
structure, that includes cmp-based range checks and bitset
tests. Trees are in particular used if the number of type IDs
is low, if the type IDs are sparsely distributed, or if many
type IDs default to the same inherited method. While trees
are slower than short compare chains, they also operate
without memory access and are better suited if the type
IDs are not distributed dense enough for a jumptable. The
maximal tree depth we saw was five. Finally, multiple
jumptables can be combined by a tree (partial jumptable).
Our distribution algorithm tries to distribute type IDs as
dense as possible, to avoid these nested structures.

From a security perspective, all generated code struc-
tures are equal—memory is only read, and all memory
indices are bounds-checked. The type ID is read only once
and all intermediate computation happens in registers, no
TOCTOU attack (time-of-check-time-of-use) is possible.

5.4. Binary Size and Memory Overhead

We evaluate the size impact of NOVT by compiling
each program with and without protection, strip the result-

ing binaries and compare their size. Both protected and
unprotected version include a statically linked C++ stan-
dard library, and both versions run link-time optimizations
over that standard library. Table 2 shows the size of the
resulting binaries. It turns out that binaries usually get
smaller after protection, with the exception of MariaDB.
This might be counter-intuitive because each generated
function should be larger than the vtable entries they
replace, and many vtable entries are covered by more than
one generated function. We identified two reasons for this
observation: First, the virtual dispatch itself is smaller: in
the protected version, a single call instruction to a gen-
erated function suffices to do a virtual dispatch, in vtable-
based programs we would need a memory load and an
offset calculation first. If the same dispatcher function is
called from many locations we can save some bytes there.
Second, our structure allows for more efficient dead code
elimination: Our approach already identifies dead classes
in its internal optimization steps and can remove them.
From the final structure a simple dead global elimination
pass can identify virtual methods that are never called and
rtti entries that will never be accessed. In particular, the
C++ standard library contains a lot of code that is not
used in every program.

The memory overhead of our solution is negligible,
memory usage reduced slightly for all tested programs.
As we only change code and do not alter the memory
layout of objects, the used heap memory (including data
segment) does not change. Given that LLVM compiles
all our calls inside generated functions as tail calls, our
solution does not use any additional memory on the stack.
So the only difference in memory consumption comes
from the different size of the binary (which is usually
smaller).

6. Compatibility and Limitations

NOVT is compatible to both, small and extremely
large (e.g., Chromium) programs. We tested the correct-
ness of all benchmarked programs with different inputs
(usually from their benchmark suites). To this end, we
compiled LLVM 9 and Clang 9 with NOVT and ran
their quite extensive unit test suite (around 3800 tests)
to confirm that no error was introduced by NOVT—
excluding a single test that required dynamic linking,
which NOVT does not support. CMake and MariaDB also
have extensive test suites, we confirmed that NOVT does
not alter the outcome of any test.

While all benchmarks were evaluated on the 64-bit x86
architecture, NOVT works for any architecture supported
by LLVM. NOVT can thus, for example, also protect
mobile or embedded applications. To demonstrate this,
we compiled a set of 40 small test programs for different
architectures, including 32-bit x86, ARM, 64-bit ARM,
MIPS, 64-bit MIPS and 64-bit PowerPC. We verified that
these protected programs work as expected by executing
and using them in a QEMU emulator.

Our current prototype assumes the program to be
compiled with Clang. We chose Clang due to its wide
popularity and acceptance. Clang can build even the Linux
kernel [35] and has interfaces compatible to GCC or
Microsoft’s C++ compiler. Having said this, porting our
approach to other compilers is just a matter of engineering.

660

TABLE 1. SUMMARY OF ASSEMBLY CONSTRUCTS USED TO BUILD VIRTUAL FUNCTION DISPATCHERS.

Binary Compare chains Trees Jumptable Partial Jumptable Other/ukn Total

Chromium 39077 (82.71%) 3289 (6.96%) 4331 (9.17%) 114 (0.24%) 435 (0.92%) 47246

Clang 2307 (49.63%) 1094 (23.54%) 489 (10.52%) 528 (11.36%) 230 (4.95%) 4648

MariaDB 1107 (45.86%) 537 (22.25%) 382 (15.82%) 281 (11.64%) 107 (4.43%) 2414

CMake 259 (53.96%) 99 (20.62%) 55 (11.46%) 39 (8.12%) 28 (5.83%) 480

Tesseract 215 (78.75%) 10 (3.66%) 14 (5.13%) 1 (0.37%) 33 (12.09%) 273

astar 1 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1

dealII 72 (79.12%) 2 (2.20%) 11 (12.09%) 0 (0.00%) 6 (6.59%) 91

omnetpp 95 (59.38%) 12 (7.50%) 43 (26.88%) 0 (0.00%) 10 (6.25%) 160

povray 33 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 33

soplex 98 (73.68%) 0 (0.00%) 33 (24.81%) 0 (0.00%) 2 (1.50%) 133

xalancbmk 1320 (81.89%) 136 (8.44%) 103 (6.39%) 37 (2.30%) 16 (0.99%) 1612

TABLE 2. SIZE OF BINARIES BEFORE AND AFTER PROTECTION

Unprotected
binary size

Protected
binary size

Binary size
overhead

Chromium 211,025 KB 197,959 KB −6.19%
Clang 125,914 KB 125,779 KB −0.11%
CMake 11,149 KB 10,629 KB −4.66%
MariaDB 21,643 KB 24,779 KB 14.49%
Tesseract 3,647 KB 3,162 KB −13.30%
astar 149 KB 143 KB −3.96%
dealII 1,322 KB 817 KB −38.13%
namd 379 KB 371 KB −2.08%
omnetpp 1,447 KB 847 KB −41.45%
povray 1,532 KB 1,520 KB −0.79%
soplex 1,034 KB 551 KB −46.69%
xalan 4,624 KB 3,983 KB −13.87%

Finally, we do not lose compatibility by using full LTO.
While it increases compilation time, using full LTO im-
proves runtime performance. Alternatively, NOVT could
be implemented based on the faster “thin LTO”.

Our approach has one main limitation: It is not com-
patible to dynamic linking or dynamic loading of C++-
based libraries. This is an inherent drawback of all pro-
tection schemes that require full knowledge of the class
hierarchy during build time. After the program is com-
piled, it is not per se possible to add more allowed classes
to a specific virtual dispatch function. If a class from a
runtime-loaded C++ library is now inheriting from a class
already known, the new loaded class can not be respected
in the protection, calls to this class are not permitted. To
the best of our knowledge, most vtable protections have
this disadvantage [7], [8], [12], [17], [25], and those that
support dynamic linking face either performance over-
heads [10] or weaker security guaranties [9], [11].

In fact, the lack of support for dynamic linking is not
as crucial as it may look at first sight. First, programs com-
piled with NOVT can still dynamically link and load clas-
sical C libraries, or C++ libraries that expose a C-style in-
terface. Other C++ libraries can be compiled with NOVT
and then be linked statically into the final binary—like we
did for libstdc++ in our experiments. Second, modern
application deployment systems like Flatpak, Docker or
Snap already bundle and ship an application together with
all its dependencies. Applications packaged by such a
system do not have any advantage of dynamic linking
a library. Even without such a deployment system, some
applications statically link the majority of their dependen-
cies. For example, release builds of Google Chrome con-

tain statically linked libraries, including the C++ standard
library. Third, many programming languages apart from
C/C++ already use static linking as their default (or only)
way of linking, including Go, Rust, Haskell and OCaml.

As a major endeavor, in principle one could extend
NOVT to support dynamic libraries and dynamic loading
of C++ code with an arbitrary interface. While this signifi-
cant improvement would increase the compatibility of our
protection, we expect a negative impact on performance.

7. Related Work

7.1. Attacks on Vtables

Code-reuse attacks are still the most prevalent attack
method on C(++) programs nowadays. C++ programs are
particularly prone to call-oriented programming (COP)
[36], as they usually contain many indirect calls (necessary
for virtual dispatch). Schuster et al. [6] present Counterfeit
Object-oriented Programming (COOP)—a new attack tar-
geting C++ programs by using only valid vtables. COOP
attacks chain virtual functions together in a way that
resembles the original calling structure of a C++ program,
breaking most vtable protection schemes available at that
time. Haller et al. [18] revealed common errors in vtable
protections and improve upon the precision of GCC’s VTV
protection scheme. They prove that their correction to
VTV is optimal given context insensitivity.

7.2. Vtable Protections

Seeing the popularity of vtable hijacking attacks, it
is not surprising to see the wealth of literature on C++
vtable protection schemes. (Table 3) summarizes related
works, all of which enforce a C++-specific CFI policy.
We group these into approaches that rely on compilers or
binary rewriting.

Protecting binaries is naturally harder as vtables and
virtual calls must be extracted from a (possibly stripped)
binary. A first such approach was T-VIP [13], which
enforced that vtable pointers point to read-only memory,
preventing arbitrary control over the instruction pointer.
Later vfGuard [14] and VTint [15] enforced a stronger pol-
icy, only detected vtables are allowed as targets of vtable
pointers. The recent VCI [16] scheme can extract a class
hierarchy from binaries and restrict the set of possible
vtables further, while still not achieving the precision of
a compiler-based approach.

661

TABLE 3. RELATED WORK IN COMPARISON TO NOVT, GROUPED BY BINARY-BASED AND COMPILER-ASSISTED SOLUTIONS. WHILE

STATE-OF-THE-ART BINARY DEFENSES ARE STILL STRUGGLING WITH COOP ATTACKS, SOURCE-BASED DEFENSES HAVE SOLVED THIS ISSUE

FOR SOME TIME. HOWEVER, SURPRISINGLY MANY SOLUTIONS ARE NOT OPTIMAL AS OUTLINED BY SHRINKWRAP. SIMILARLY, ONLY FEW

SOLUTIONS PROTECT OTHER VTABLE VTABLE USAGES THAN DYNAMIC CALLS.

T
y
p
e

Related Work
Protection:

calls / offsets /

rtti & casts

Handles
method
pointers

Defeats
COOP

Optimal
(1)

Runtime Overhead Remarks

B
in

ar
y

T-VIP [13] �×× × × × ∼25% (SPEC) requires profiling

vfGuard [14] �×× × × × 18.3% (Internet Explorer)

VTint [15] �×× × × × 0.4% (SPEC), 1.4% (Chromium*)
instruments less calls
than other solutions

VCI [16] �×× × partial × 7.79% (SPEC + Chromium*)

S
o
u
rc

e-
co

d
e

b
as

ed

VT-Guard [9] �×× � × × unclear
patent does not detail its
performance penalties

SafeDispatch [8] ��×(2) � � � 2.1% (Chromium) requires profiling for performance

VTV [10] �×× � � ×(3) 1% - 8.7% (SPEC) requires profiling for performance

Redactor++ [25] �×× � � � 8.4% (SPEC), 7.9% (Chromium)
probabilistic defense,
requires execute-only memory

LLVM-VCFI [17] �×× × � × 1.97% (SPEC), 2.9% (Chromium) [7]

VTrust [11] ���(4) × � × 2.2% (partial SPEC)

OVT/IVT [7] �×× × � �(5) 1.17% (SPEC), 1.7% (Chromium)
ShrinkWrap-safe configuration
doubles overhead on SPEC

VIP [12] �×× × � � 0.7% (SPEC) compilation can take hours

CFIXX [37] �×× � � n.a. 4.96% (SPEC)
Object Type Integrity, not CFI.
Requires MPX CPU instructions

NOVT ��� � � � −0.9% (SPEC), 1.1% (Chromium)

(1) The solution restricts possible calls to the minimal possible set, as shown in ShrinkWrap [18]
(2) Virtual offset checks are not optimal and have additional runtime overhead
(3) ShrinkWrap [18] proposed a fix (without additional runtime overhead)
(4) For virtual offsets, RTTI access and dynamic casts, their check is weaker (no check if the valid vtable matches the static type)
(5) optional, with higher runtime overhead
(*) Only a few benchmarks have been used (octane etc.), but no HTML or rendering workloads (which typically have more overhead)

In contrast, compiler-based protections can get all
necessary information from source code and hence have
higher precision. SafeDispatch [8] was one of the first
vtable-specific approach that protects virtual calls with
little overhead. However, this little overhead could only be
achieved by dynamic profiling of the application. SafeDis-
patch did not only protect virtual calls, but also included
virtual offsets stored in vtables (with a weaker protection
level, as outlined by ShrinkWrap [18]). It uses a class
hierarchy analysis [20] to infer valid call targets. Redac-
tor++ [25] is another solution based on randomization
and information hiding. While not enforcing CFI, it hides
necessary vtable information such that COOP attacks
require hardly feasible guesswork. Its defense is proba-
bilistic and could be circumvented in some settings [38],
and it requires a system offering execute-only memory.
VTrust [11] improves over these solutions in terms of
compatibility, and protects vtables without knowledge of
a full class hierarchy. VTrust protects not only virtual
dispatch but also virtual offsets and type information, but
at a much weaker level: when resolving virtual offsets or
loading rtti, any vtable can be used, the check is type-
agnostic.

Despite these academic progresses, major C++ com-
pilers use their own vtable protections: Microsoft included
a canary-based solution named VT-Guard [9] in their
Visual C++ compiler. This solution is not strong enough

to prevent COOP attacks. GCC included a method called
VTV [10] which has been improved by ShrinkWrap [18].
VTV focuses on compatibility, but has a non-negligible
runtime overhead (and again requires dynamic profiling to
achieve its performance). LLVM has its own forward-CFI
approach [17] that includes a vtable-specific protection.
While this solution is more performant than VTV, it is
neither optimal nor complete. Again, all of these solutions
focus on virtual dispatch exclusively.

Recent work has brought different improvements.
Bounov et al. introduced OVT and IVT [7], two protec-
tions striving to improve performance by ordering and
interleaving vtables. They achieve an overhead as low as
1.17% with a non-optimal protection (and the possibility
to turn it into an optimal one). VIP [12] improves the
security guarantees of vtable protections, introducing a
pointer analysis technique that is used to reduce the set
of possible vtables in a way that is not possible without
context. However, their analysis takes up to an hour on
SPEC, and 6 hours on Chromium. As an alternative to
vtable-based CFI schemes, Object Type Integrity protects
vtables pointers (instead of protecting virtual calls) [37].
Their prototype CFIXX has a reasonable overhead, but
requires Intel’s deprecated MPX CPU extensions.

NOVT improved over all previous solutions in terms
of performance and protection. We protect all usages of
a vtable, including virtual offsets, type information and

662

dynamic casts, while most previous implementations only
protected virtual calls. Our protection is optimal in a
context-free setting (as shown in [18]), for all protected
usages. To the best of our knowledge, we are the first
vtable protection that actually speeds up most of the
programs it is applied to. At the same time, our solution
lives with the same limitation (no dynamic linking) than
most previous source-based solutions [7], [8], [12], [17],
[25]. Solutions that (partially) support dynamic linking
have a higher overhead [10], [11], [37] or lower security
level [9], [11].

7.3. Control Flow Integrity

CFI [39] schemes aim to protect all control transfers,
including function pointers and return addresses, whereas
our protection specifically targets C++ vtables with much
higher precision. Different CFI schemes with varying
protection and methods have been proposed over the years
[40]. MCFI [41] adds modularity support to classical CFI.
CCFIR [33] uses a dedicated “springboard section” and
randomization to improve on the performance of CFI.
WIT [42] protects not only indirect control flows, but
also aims at memory writes. MoCFI [43] adapts CFI to
the requirements of mobile devices. While classical CFI
usually works on source code, binCFI [44] is able to
protect control flow on closed-source binaries. Opaque
CFI [45] protects binaries even if the adversary has full
knowledge about the code and memory layout.

HyperSafe [46] shares some design ideas with NOVT:
To protect C-style indirect function calls and returns in
hypervisors, HyperSafe replaces function pointers and re-
turn addresses with function IDs. At each indirect control
transfer, the ID is checked and resolved through a per-
callside lookup table. In contrast, NOVT targets C++,
is usable in general and uses flexible switch instructions
instead of lookup tables. μRAI [47] protects return targets
on microcontrollers. Partial paths in the control-flow graph
get a “function ID” assigned, one register is reserved to
maintain the current ID at runtime. Instead of common re-
turn instructions and return addresses stored on the stack,
μRAI can determine the unique correct return address
from the current ID. Returns are implemented using a
jumptable over all possible IDs, removing return addresses
on the stack altogether.

As a different approach, code-pointer integrity and
code-pointer separation has been introduced [48]. CPI in-
tercepts attacks a step earlier by preventing modifications
of code pointers. These methods are orthogonal to ours
and can be used in combination. Other approaches try to
stop attacks even before a code pointer can be corrupted,
trying to enforce memory safety [49]–[51]. Advantages
and disadvantages of these and further CFI protections
are analyzed and summarized in [40] and [52].

7.4. Alternatives to Vtables

Decades ago, similar to our general idea, the compiler
community has explored alternatives to vtables. Although
these approaches did not have a security focus, and hence
also did not discuss security-critical considerations in this
respect, we will briefly describe them in the following.

Porat et al. [21] used static type checks and direct
calls to speed up hot paths in virtual dispatch—virtual
method implementations for frequently used classes are
called directly, while less frequent classes fall back to
classical vtables. Vtables are not changed, and no type
IDs are introduced. However, this approach only offers
small speed improvements, but no security gain.

SmallEiffel [53] was an experimental compiler for the
Eiffel programming language that does not use vtables.
Instead, it uses type IDs for classes and a binary search
tree for virtual dispatch. While the basic idea of type
IDs is similar to NOVT, SmallEiffel’s design can’t be
easily ported to C++, because Eiffel lacks many features
like mulitple or virtual inheritance that C++ has. Further-
more, SmallEiffel has an unclear security contribution,
because unexpected type IDs trigger undefined behavior.
In contrast, NOVT’s type identification system is more
advanced, can deal with all object-oriented features of a
modern language like C++, has a very strong focus on
security and the generated dispatchers can deliver better
performance than binary search trees.

8. Conclusion

NOVT uses a modified compiler to protect programs
given complete source code (including libraries). We
thereby radically change the way of protecting vtables
and, instead, eliminate them. NOVT replaces traditional,
vtable-based virtual dispatch with direct calls—based on
a class identifier in each C++ class instance it calls
an object’s method non-virtual. Using a class hierarchy
analysis at link-time, NOVT determines which method
implementations are possible according for each virtual
call, at runtime only these methods are callable. After a
protection with NOVT, no traditional vtables or vtable
pointers remain in the program.

NOVT is compatible with all C++ programs, with the
exception of dynamic linking and loading—as most previ-
ous solutions, NOVT relies on knowledge of the complete
class hierarchy. Legacy software can easily be protected
without any source code modifications or additional de-
pendencies. According to [18], NOVT’s offered protection
level is optimal for a type-based solution. NOVT is able
to defend against strong vtable-based attacks like COOP,
even for large programs. NOVT has been evaluated on
SPEC CPU 2006, Chromium, MariaDB, Clang, CMake
and Tesseract OCR. The introduced performance overhead
is often negative, −0.5% on average and 2% in the worst
case. The generated binaries are usually smaller after
protection, no memory overhead is introduced, the impact
on compilation time is minimal.

Acknowledgment

We thank our anonymous reviewers and our shepherd
for their valuable feedback. Also we thank Jonas Bushart
for his paper draft review.

Availability

Our prototype has been released as Open-Source Soft-
ware, it is avaliable on Github:
https://github.com/novt-vtable-less-compiler/novt-llvm

663

References

[1] V. Lextrait, “The Programming Languages Beacon.”
[Online]. Available: https://www.mentofacturing.com/Vincent/
implementations.html

[2] PaX, “Address Space Layout Randomization.” [Online]. Available:
https://pax.grsecurity.net/docs/aslr.txt

[3] H. Etoh and K. Yoda, “Protecting from stack smashing attacks,”
01 2000.

[4] The Chromium Projects, “Memory safety.” [Online].
Available: https://www.chromium.org/Home/chromium-security/
memory-safety

[5] M. Corporation, “Microsoft Security Intelligence Report vol.16.”
[Online]. Available: http://download.microsoft.com/download/7/
2/b/72b5de91-04f4-42f4-a587-9d08c55e0734/microsoft security
intelligence report volume 16 english.pdf

[6] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit Object-Oriented Programming: On the
Difficulty of Preventing Code Reuse Attacks in C++ Applications,”
in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP ’15. USA: IEEE Computer Society, 2015, p.
745–762. [Online]. Available: https://doi.org/10.1109/SP.2015.51

[7] D. Bounov, R. G. Kici, and S. Lerner, “Protecting C++
Dynamic Dispatch Through VTable Interleaving,” in 23rd
Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2016. [Online]. Available: http:
//wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
protecting-cpp-dynamic-dispatch-through-vtable-interleaving.pdf

[8] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch:
Securing C++ Virtual Calls from Memory Corruption
Attacks,” in 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014.
[Online]. Available: https://www.ndss-symposium.org/ndss2014/
safedispatch-securing-c-virtual-calls-memory-corruption-attacks

[9] M. R. Miller and K. D. Johnson, “Using virtual table protections to
prevent the exploitation of object corruption vulnerabilities,” Patent
US 2012/0 144 480 A1, patent number US 2012/0144480 A1.

[10] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow
Integrity in GCC & LLVM,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14. USA: USENIX
Association, 2014, p. 941–955.

[11] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li,
Y. Ding, and C. Song, “VTrust: Regaining Trust on Virtual
Calls,” in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016. The Internet Society, 2016.
[Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2017/09/vtrust-regaining-trust-virtual-calls.pdf

[12] X. Fan, Y. Sui, X. Liao, and J. Xue, “Boosting the Precision of
Virtual Call Integrity Protection with Partial Pointer Analysis for
C++,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017.
New York, NY, USA: Association for Computing Machinery,
2017, p. 329–340. [Online]. Available: https://doi.org/10.1145/
3092703.3092729

[13] R. Gawlik and T. Holz, “Towards Automated Integrity Protection
of C++ Virtual Function Tables in Binary Programs,” in
Proceedings of the 30th Annual Computer Security Applications
Conference, ser. ACSAC ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 396–405. [Online]. Available:
https://doi.org/10.1145/2664243.2664249

[14] X. Hu and H. Yin, “vfGuard: Strict Protection for
Virtual Function Calls in COTS C++ Binaries,” in
22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 01 2015.
[Online]. Available: https://www.ndss-symposium.org/ndss2015/
vfguard-strict-protection-virtual-function-calls-cots-c-binaries

[15] C. Zhang, C. Song, K. Chen, Z. Chen, and D. Song, “VTint:
Protecting Virtual Function Tables’ Integrity,” in 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2015. The Internet
Society, 02 2015.

[16] M. Elsabagh, D. Fleck, and A. Stavrou, “Strict Virtual Call
Integrity Checking for C++ Binaries,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 140–154. [Online]. Available:
https://doi.org/10.1145/3052973.3052976

[17] T. C. Team, “Control Flow Integrity Design Doc-
umentation.” [Online]. Available: https://clang.llvm.org/docs/
ControlFlowIntegrityDesign.html

[18] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and
H. Bos, “ShrinkWrap: VTable Protection without Loose Ends,” in
Proceedings of the 31st Annual Computer Security Applications
Conference, ser. ACSAC 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 341–350. [Online]. Available:
https://doi.org/10.1145/2818000.2818025

[19] The Clang Team, “SafeStack.” [Online]. Available: https:
//clang.llvm.org/docs/SafeStack.html

[20] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-
Oriented Programs using Static Class Hierarchy Analysis.”
Springer-Verlag, 1995, pp. 77–101.

[21] S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Yahav,
“Compiler Optimization of C++ Virtual Function Calls,” in Pro-
ceedings of the USENIX 1996 Conference on Object-Oriented
Technologies. Toronto, Ontario, Canada: USENIX Association,
Jun. 1996.

[22] CodeSourcery, Compaq, EDG, HP, IBM, Intel, R. Hat, and SGI,
“Itanium C++ ABI.” [Online]. Available: https://itanium-cxx-abi.
github.io/cxx-abi/abi.html

[23] Standard Performance Evaluation Corporation, “SPEC CPU®
2006.” [Online]. Available: https://www.spec.org/cpu2006/

[24] The Chromium Projects, “Chromium.” [Online]. Available:
https://www.chromium.org/Home

[25] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a
TRaP: Table Randomization and Protection against Function-Reuse
Attacks,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
243–255.

[26] The Chromium Projects, “Telemetry: Run Benchmarks Locally.”
[Online]. Available: https://chromium.googlesource.com/catapult/
+/HEAD/telemetry/docs/run benchmarks locally.md

[27] Octane Team Google, “Octane 2.0.” [Online]. Available: https:
//chromium.github.io/octane/

[28] Mozilla, “Kraken JavaScript Benchmark (version 1.1).” [Online].
Available: https://krakenbenchmark.mozilla.org/

[29] Webkit, “JetStream2.” [Online]. Available: https://browserbench.
org/JetStream/

[30] Mozilla, “Dromaeo: Javascript Performance Testing.” [Online].
Available: http://dromaeo.com/?dom

[31] Webkit, “Speedometer 2.0.” [Online]. Available: https:
//browserbench.org/Speedometer2.0/

[32] ——, “SunSpider 1.0.2 JavaScript Benchmark.” [Online].
Available: https://webkit.org/perf/sunspider/sunspider.html

[33] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and
Randomization for Binary Executables,” in Proceedings of the
2013 IEEE Symposium on Security and Privacy, ser. SP ’13.
USA: IEEE Computer Society, 2013, p. 559–573. [Online].
Available: https://doi.org/10.1109/SP.2013.44

[34] M. Larabel, “Tesseract OCR Benchmark - OpenBenchmark-
ing.org.” [Online]. Available: https://openbenchmarking.org/test/
system/tesseract-ocr

664

[35] The kernel development community, “Building Linux with
Clang/LLVM.” [Online]. Available: https://www.kernel.org/doc/
html/latest/kbuild/llvm.html

[36] N. Carlini and D. Wagner, “ROP is Still Dangerous: Breaking
Modern Defenses,” in Proceedings of the 23rd USENIX Conference
on Security Symposium, ser. SEC’14. USA: USENIX Association,
2014, p. 385–399.

[37] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CFIXX: Object
Type Integrity for C++,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.
[Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018 05A-2 Burow paper.pdf

[38] G. Maisuradze, M. Backes, and C. Rossow, “What Cannot
be Read, Cannot be Leveraged? Revisiting Assumptions of
JIT-ROP Defenses,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug.
2016. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/maisuradze

[39] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: Association for Computing Machinery, 2005,
p. 340–353. [Online]. Available: https://doi.org/10.1145/1102120.
1102165

[40] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal
War in Memory,” in Proceedings of the 2013 IEEE Symposium
on Security and Privacy, ser. SP ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 48–62. [Online]. Available:
http://dx.doi.org/10.1109/SP.2013.13

[41] B. Niu and G. Tan, “Modular Control-Flow Integrity,” in
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI
’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 577–587. [Online]. Available: https://doi.org/10.1145/
2594291.2594295

[42] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing Memory Error Exploits with WIT,” in Proceedings
of the 2008 IEEE Symposium on Security and Privacy, ser. SP
’08. USA: IEEE Computer Society, 2008, p. 263–277. [Online].
Available: https://doi.org/10.1109/SP.2008.30

[43] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A
Framework to Mitigate Control-Flow Attacks on Smartphones,”
in Proc. of 19th Annual Network & Distributed System
Security Symposium (NDSS), feb 2012. [Online]. Available:
http://www.internetsociety.org/sites/default/files/07 2.pdf

[44] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Bina-
ries,” in Proceedings of the 22nd USENIX Conference on Security,
ser. SEC’13. USA: USENIX Association, 2013, p. 337–352.

[45] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz,
“Opaque Control-Flow Integrity,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego,

[48] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-Pointer Integrity,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’14. USA: USENIX Association, 2014, p.
147–163.

California, USA, February 8-11, 2015. The Internet Society,
02 2015. [Online]. Available: https://www.ndss-symposium.org/
ndss2015/opaque-control-flow-integrity

[46] Z. Wang and X. Jiang, “HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy.
Berleley/Oakland, California, USA: IEEE Computer Society, May
2010, pp. 380–395.

[47] N. Almakhdhub, A. Clements, S. Bagchi, and M. Payer,
“μRAI: Securing Embedded Systems with Return Address
Integrity,” in 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 01 2020.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
murai-securing-embedded-systems-with-return-address-integrity/

[49] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C,” SIGPLAN Not., vol. 44, no. 6, p. 245–258, Jun. 2009.
[Online]. Available: https://doi.org/10.1145/1543135.1542504

[50] ——, “CETS: Compiler Enforced Temporal Safety for C,” in
Proceedings of the 2010 International Symposium on Memory
Management, ser. ISMM ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 31–40. [Online]. Available:
https://doi.org/10.1145/1806651.1806657

[51] D. Dhurjati and V. Adve, “Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE
’06. New York, NY, USA: Association for Computing Machinery,
2006, p. 162–171.

[52] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Comput. Surv., vol. 50, no. 1, Apr. 2017.

[53] O. Zendra, D. Colnet, and S. Collin, “Efficient Dynamic Dispatch
without Virtual Function Tables: The SmallEiffel Compiler,” in
Proceedings of the 12th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ser.
OOPSLA ’97. New York, NY, USA: Association for Computing
Machinery, 1997, p. 125–141.

Appendix A.
Identifier Number Assignment

The full algorithm to assign numbers to class iden-
tifiers (as described in Section 4.5.5) is given in Algo-
rithm 1.

Appendix B.
Number of Protected Operations

We measured the number of virtual calls, virtual offset
accesses and dynamic casts for all evaluated benchmarks.
We report them in Table 4.

665

function CreateIdentifierNumbers:
input : identifiers // identifier subgraph set
input : next number // initial 0
output: next number // next free number

if ‖identifiers‖ > 5 then // small sets need no advanced ordering
biggest subset := ∅;
/* find the biggest subset from all generated functions, ignoring small functions */
foreach func in generated functions do

if func.used ids � identifiers and 4 ≤ ‖func.used ids‖ and ‖func.used ids‖ > ‖biggest subset‖
then

biggest subset := func.used ids;
end

end
if biggest subset �= ∅ then

/* identifiers used together should get connected numbers */
next number := CreateIdentifierNumbers (biggest subset, next number);
next number := CreateIdentifierNumbers (identifiers − biggest subset, next number);
return next number

end
end
/* Order small sets and sets that can not be split. The order of identifiers is close to prefix traversal of the identifier

tree. */
foreach id in identifiers do

id.number := next number++;
end
return next number

end
Algorithm 1: The algorithm used to assign numbers to class identifiers.

TABLE 4. NUMBER OF PROTECTED OPERATIONS PER BENCHMARK

Benchmark # virtual call # virtual offset # dynamic cast # rtti access runtime
Chromium: blink css 1,123,380,274 364,138 0 0 251 sec
Chromium: blink display locking 24,693,016 168,377 0 0 49 sec
Chromium: blink dom 1,542,188,247 630,578 0 0 80 sec
Chromium: blink events 8,315,599 70,093 0 0 94 sec
Chromium: blink layout 35,869,225,028 1,755,609 0 0 1150 sec
Chromium: blink paint 5,607,395,213 859,399 0 0 385 sec
Chromium: blink parser 4,331,060,409 523,289 0 0 453 sec
Chromium: dromaeo 1,947,841,146 30,748 0 1 149 sec
Chromium: jetstream2 804,807,604 316,224 2 5 180 sec
Chromium: kraken 59,387,742 59,417 0 1 34 sec
Chromium: octane 118,479,849 24,373 0 1 50 sec
Chromium: speedometer2 541,254,241 194,405 0 0 74 sec
Chromium: sunspider 5,766,321 18,361 0 1 18 sec
Clang 97,010,210 961,927 493,848 0 31 sec
MariaDB 15,547,629,306 59,940 43,740 0 263 sec
Tesseract 292,155,762 192,129 16,793 0 38 sec
astar 4,996,986,681 0 0 0 286 sec
dealII 201,873,776 98,486,795 225,926,036 0 188 sec
namd 0 0 0 0 292 sec
omnetpp 3,361,136,271 14 47,429,169 330 279 sec
povray 153,212 0 0 0 98 sec
soplex 3,259,515 32,123,619 161 0 202 sec
xalancbmk 9,867,616,106 612,327 48 0 160 sec

666

		2022-08-24T19:08:10-0400
	Preflight Ticket Signature

