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Abstract—We provide a systematic analysis of two related
multiparty protocols, namely (Non-Interactive Fully)
Distributed Verifiable Random Functions (DVRFs) and
Decentralised Random Beacons (DRBs), including their
syntax and definition of robustness and privacy properties.
These two protocols are run by multiple network nodes
where each node contributes with a partial evaluation
and the collection of these partial values is used to
evaluate a pseudorandom function. We refine current
pseudorandomness definitions for distributed functions and
show that the privacy provided by strong pseudorandomness,
where an adversary is allowed to make partial function
evaluation queries on the challenge value, is strictly better
than that provided by standard pseudorandomness, where
such adversarial queries are disallowed. We provide
two new DVRF instantiations, named DDH-DVRF and
GLOW-DVRF, that meet strong pseudorandomness under
widely accepted cryptographic assumptions. We show
the usefulness of our DRB formalism in two different
ways. Firstly, we give a rigorous treatment of a folklore
generic construction that builds a Decentralized Random
Beacon from any DVRF instance and prove that it satisfies
robustness and pseudorandomness provided that the original
DVRF protocol is secure. Secondly, we capture several
existing DRB protocols from academia and industry within
our framework, which serves as an evidence of its wider
applicability. Finally, we report on experimental evaluations
of our newly introduced DVRFs with implementations
under different cryptographic libraries, and we also
report preliminary benchmark results on two of the DRBs
obtained from the generic DVRF-to-DRB transformation.
Our benchmarks can be independently verified as we
provide an open source C++ reference implementation of
the new DVRFs. Finally, we conclude that our new DRB
instantiations are the most efficient instantiations currently
available while enjoying strong and formally proven security
properties.

Index Terms—Cryptography, Blockchain, Random Beacon,
Distributed Computation, Implementation, Pseudorandom
Functions, Threshold Signatures, Leader Election, Open
Source
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1. Introduction

In recent years there has been prolific development
in blockchain technologies [47], [55], and a plethora of
platforms relying on blockchains have seen the light of
day. The various platforms often differ in their design
choices, and thus on the consensus protocol they rely
on. Many consensus protocols, such as Tendermint [14],
Ethereum 2.0 [15], OmniLedger [42], Dfinity [36] and
Algorand [34], involve allocating the creation of blocks
with a block producer, whose selection procedure most
often than not requires a method for collective randomness
sampling. In order to avoid reliance on a trusted party, a
common approach is to use a mechanism that allows the
distributed computation of an unpredictable and unbiased
source of randomness, verifiably.

Verifiable Random Function (VRF). This primitive was
introduced by Micali, Rabin and Vadhan [44] and can be
seen as the public-key version of a keyed cryptographic
hash Fsk(·), where a trusted party evaluates Fsk(x) on
inputs x in such a way that the output can publicly be
verified for correctness via an auxiliary proof πx. The
secret key sk allows i) evaluation of Fsk(·) on any input
x and ii) to compute and provide proof πx of the correct
evaluation Fsk(x). The proof correctness can be verified
by means of an algorithm Verify that takes as inputs the
public key pk corresponding to sk, the values x, Fsk(x),
and proof πx, and outputs accept or reject. The IETF is
pursuing standardization of a verifiable random function
[35].

Unique Signatures. There are similarities between a VRF
and a digital signature scheme with unique signatures.
On inputs a string x and a secret signing key SKS , a
signing algorithm outputs a signature σx. If the signature
scheme is unforgeable, the latter value σx is unpredictable
given the public key PKS . Despite its unpredictability, the
signature σx on string x is publicly verifiable. There are
two issues that may prevent signature schemes with unique
signatures from being used straightforwardly as a VRF:
i) signatures σx may not be unique given x and PKS ;
and ii) σx is unpredictable but not pseudorandom (e.g.
signatures could contain some bias and be distinguishable
from a random distribution). VRFs derived from unique
signatures present strong unbiasibility properties due to
the uniqueness, even in the presence of active adversaries,
of the corresponding pseudorandom value. More gener-
ally, the connection between pseudorandom functions with
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public verifiability and digital signatures is well-known
[7], [30].

Our contributions. We provide the first systematic anal-
ysis of (Non-Interactive Fully) Distributed Verifiable Ran-
dom Functions (DVRFs), including their syntax and the
definition of their integrity and privacy properties. We
extend the definitions of standard and strong pseudo-
randomness given in [1] in the context of Distributed
Pseudorandom Functions with trusted setup and private
correctness verification to trustless setups with publicly
verifiable correctness. We provide further refinements to
previous pseudorandomness definitions in distributed set-
tings by parametrizing the strength of the privacy levels
achieved with a triple (θ, t, �), where � is the total number
of parties involved in the setup, t is the threshold, and
0 ≤ θ ≤ t is the maximum number of parties under
adversarial control. We show that under widely accepted
computational assumptions (i.e. DDH assumption) there
exist DVRFs that are (θ, t, �)-standard pseudorandom but
are not (θ, t, �)-strongly pseudorandom. Roughly speak-
ing, strong pseudo-randomness strengthens the standard
pseudorandomness property by allowing an adversary to
make partial queries on the target pseudorandom value
(Section 3). This separation result implies that the pri-
vacy provided by strong pseudorandomness is strictly
better than that provided by standard pseudorandomness.
In order to capture security against an active attacker
that corrupts a subset of θ ≤ t parties while providing
public verifiability, we additionally define the properties
of robustness and uniqueness.

In Section 4 we provide two new DVRF constructions
that achieve strong pseudorandomness, under well-known
cryptographic assumptions. One of these constructions is
called DDH-DVRF and can be implemented using stan-
dard elliptic curve cryptography (Section 4.1), whereas
the other construction is named GLOW-DVRF and uses
cryptographic pairings (Section 4.2). While the proof of
correctness πx in DDH-DVRF is non-compact, i.e., its
size is linear in the threshold t, GLOW-DVRF provides
a compact proof, i.e., with constant-size.

In Section 5 we present a formalization of Decen-
tralised Random Beacons with a distributed but non-
interactive beacon computation. We introduce DRB’s
security and privacy properties inspired by those of
DVRFs, namely strong/standard pseudorandomness, ro-
bustness and uniqueness. We show the usefulness of our
DRB formalisation in two different ways. Firstly, we give
a rigorous treatment of a folklore generic construction that
builds a Decentralized Random Beacon from any DVRF
instance and prove that it satisfies robustness and pseudo-
randomness provided that the original DVRFs are secure.
Secondly,we capture several existing DRB protocols from
academia and industry using our framework, which serves
as an evidence of its wider applicability. DRBs have
recently gained a lot traction as a key component for
leader(s) election in decentralized ledger technologies, and
we provide a classification of some of the most prominent
(Section 6).

We report on an experimental evaluation of
GLOW-DVRF and DDH-DVRF using the cryptographic
libraries MCL [46], RELIC [2] and Libsodium [8]. We
compare them with Dfinity-DVRF [36], a prominent

DVRF construction in the blockchain space. Our
experiments show that both GLOW-DVRF and
DDH-DVRF outperform Dfinity-DVRF in running
time, approximately by x3 and x5 respectively at the 128-
bit security level. We provide a reference implementation
in C++ and make it widely available with an open source
license [29] (Apache 2.0 license). To further illustrate the
superior performance and practicality of our DVRF-based
DRB constructions, we have developed a ledger prototype
with Tendermint-based state machine replication [14]
using Cosmos SDK [38]. Preliminary benchmarks can
be found in Section 7 and allow us to conclude that
our new DRB instantiations are the most efficient DRB
constructions currently available, as the random beacon
values are computed in a non-interactive fashion, while
enjoying strong and formally proven security properties.

1.1. Related Work

To our knowledge, the first distributed VRF con-
struction was proposed by Dodis [25] and required
the existence of a trusted dealer. The constructions de-
scribed in this work dispose of this trusted dealer by
using a Distributed Key Generation (DKG) sub-protocol:
DDH-DVRF use a protocol by Gennaro, Jarecki,
Krawczyk and Rabin [32], whereas GLOW-DVRF re-
quired several modifications to the latter. Kuchta and Man-
ulis [43] proposed a generic construction for interactive
distributed VRFs based on unique aggregate signatures
in the shared random string model. Compared to our
DVRF syntax and new designs, the concrete constructions
obtained from [43] are at least two orders of magnitude
less efficient than ours, both in running time (as they
use pairings and an inefficient generic transformation
of pseudorandom functions from unpredictable functions
[44]) and in latency (as they involve sequential interaction
between a number of peers).

An influential DVRF (used e.g. in [20]–[22], [39],
[50]) that we name Dfinity-DVRF was sketched in [36].
We discuss how the techniques [9], [32] that have been
used to prove standard unforgeability of threshold BLS
signatures [13] do not trivially allow to prove strong
pseudorandomness. In contrast, our new GLOW-DVRF
also uses pairing groups, but achieves strong pseudoran-
domness in the random oracle model under the co-CDH
and eXternal DDH assumptions. Perhaps surprisingly,
GLOW-DVRF shows not only stronger security than
Dfinity-DVRF but also possesses better running times.

Our DDH-DVRF bears more resemblance to the dis-
tributed pseudorandom function (DPRF) proposed in [1,
Figure 6]. The DPRF construction in [1] is based on
a trusted setup and is only privately variable, while we
update it to public verifiability and a trustless setup in
our DDH-DVRF. Rigorously proving public verifiability
requires to update the definitions of pseudorandomness
and robustness [1] in the presence of publicly available
proofs of correctness, as well as defining and proving
uniqueness.

2. Building Blocks

We recall next the Chaum-Pedersen proof system for
equality of discrete logarithms and the computational as-
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sumptions needed to build our concrete DVRFs construc-
tions.

Definition 2.1 (Equality of Discrete Logarithms NIZK
[18]). Our constructions use NIZK proof systems as an
ingredient. Specifically, we need the Equality of Discrete
Logarithms proof system (ProveEqH ,VerifyEqH) to show
k = logg x = logh y:

• ProveEqH(g, h, x, y, k) chooses r
$← Zq , computes

com1 = gr, com2 = hr and sets ch ← H(g, h, x, y,
com1, com2). Output is π = (ch, res) with res =
r + k · ch.

• VerifyEqH(g, h, x, y, π) parses π = (ch, res), com-
putes com1 ← gres/xch and com2 ← hres/ych and
outputs ch

?
= H(g, h, x, y, com1, com2).

Definition 2.2 (DDH assumption). Let G = 〈g〉 be a
(cyclic) group of order q prime. Let X ← (

G, q, g, gα, gβ
)

where α, β
$← Z∗q . The Decisional Diffie-Hellman assump-

tion holds if for γ
$← Z

∗
q the value

AdvDDH
I,A (λ) =

∣∣ Pr [A(X, gαβ) = 1
]− Pr [A(X, gγ) = 1]

∣∣
is negligible in λ, where λ is a measure of the bit length
of q.

Definition 2.3 (Asymmetric Pairing Groups). Let G1 =
〈g1〉 , G2 = 〈g2〉 and GT be (cyclic) groups of prime
order q. A map e : G1 × G2 → GT to a group GT is
called a bilinear map, if it satisfies the following three
properties:
• Bilinearity: e(gx1 , g

y
2 ) = e(g1, g2)

xy for all x, y ∈ Zp.
• Non-Degenerate: e(g1, g2) �= 1.
• Computable: e(g1, g2) can be efficiently computed.

We assume there exists an efficient bilinear pair-
ing instance generator algorithm IG that on input
a security parameter 1λ outputs the description of
〈e(·, ·),G1,G2,GT , q〉.

Asymmetric pairing groups can be efficiently gener-
ated [33] and group exponentiations and pairing opera-
tions can also be efficiently computed [24]. The security
of our pairing-based constructions may require the Com-
putational co-Diffie-Hellman (co-CDH) assumption [11]
which states CDH is hard in G1, and XDH assumption
which states that DDH is hard in G1.

Definition 2.4 (Computational co-CDH assumption [11]).
Let

X ←
(
e(·, ·),G1,G2,GT , q, g1, g2, g

α
1 , g

β
1 , g

α
2

)

where 〈e(·, ·),G1,G2,GT , q〉 ← IG(1λ) and α, β
$← Z∗q

and g1
$← G1, g2

$← G2. We say that IG satisfies the
Computational co-CDH assumption in G1 if

Advco-CDH
IG,A (λ) := Pr

[
A(X) = gαβ1

]

is negligible in λ.

Definition 2.5 (XDH assumption [16]). Let
〈e(·, ·),G1,G2,GT , q〉 ← IG(1λ) be a a bilinear
mapping. The XDH assumption states that DDH is hard
in G1.

Definition 2.6 (Lagrange coefficients). For a key recon-
struction set Δ, we define the Lagrange basis polynomials
λj,Δ(x) =

∏
k∈Δ\{j}

x−k
j−k ∈ Zq[X] and the Lagrange

coefficients λi,j,Δ = λj,Δ(i) ∈ Z
∗
q . For any polyno-

mial f ∈ Zq[X] of degree at most |Δ| − 1 we have∑
i∈Δ f(i)λ0,i,Δ = f(0).

3. Distributed Verifiable Random Functions:
Formal Definitions

This section introduces the syntax and properties of
any (non-interactive fully) Distributed Verifiable Function
(DVRF). Compared to a stand-alone Verifiable Random
Function (VRF) [44], a DVRF can be seen as a gen-
eralisation of a VRF to a distributed setting with no
trusted dealer. A DVRF can also be seen as adding public
verifiability to the output of Distributed Pseudo-Random
Functions [1], [48], although without a trusted setup.

3.1. Syntax and Basic Properties

Let a, b : N → N be polynomial time functions, and
where a(λ), b(λ) both are bounded by a polynomial in λ.
Let F : Dom 	→ Ran be a function with domain Dom
and range Ran. Let Dom and Ran be sets of size 2a(λ)

and 2b(λ) respectively. The goal of a DVRF is to initialize
a pseudoRandom function and compute Fsk(x) for inputs
x by a set of nodes N1, . . . , N� with no central party.

In the Setup phase, � nodes N1, . . . , N� communi-
cate via pairwise private and authenticated channels. We
assume the same network model as in [32], where the
distributed key generation (DKG) protocol [32] works
in the (partially/fully) synchronous communication model
and players are assumed to be equipped with synchronized
clocks. A setup interaction is then run between the � nodes
to build a global public key pk, individual nodes’ secret
keys sk1, . . . , sk�, and individual nodes’ public verification
keys vk1, . . . , vk�. The nodes’ secret and verification keys
(ski, vki) for i = 1, . . . , � will later enable any subset of
t + 1 nodes to non-interactively compute the verifiable
random value Fsk(x) on a plaintext x ∈ Dom. On the
contrary, any set of at most t nodes can not learn any
information on Fsk(x) for any x not previously computed.

Definition 3.1 (DVRF). A t-out-of-� (Non-Interactive)
Fully Distributed Verifiable Random Function (DVRF)
V = (DistKG,PartialEval,Combine,Verify) consists of
the following algorithms:
DistKG(1λ, t, �) is a fully distributed key generation pro-

tocol that takes as input a security parameter 1λ, the
number of participating nodes �, and the threshold
parameter t; it outputs a set of qualified nodes QUAL,
a global public key pk, a list VK = {vk1, . . . , vk�} of
nodes’ verification keys, and results in a list SK =
{sk1, . . . , sk�} of nodes’ secret keys where each secret
key is only known to the corresponding node.

PartialEval(x, ski, vki) is a partial evaluation algorithm
that takes as input a plaintext x ∈ Dom, secret
key ski and verification key vki, and outputs a triple
six = (i, vi, πi), where vi is the i-th evaluation share
and πi is a non-interactive proof of correct partial
evaluation.
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Combine(pk,VK, x, E) is a combination algorithm that
takes as input the global public key pk, the verifi-
cation keys VK, a plaintext x ∈ Dom, and a set
E = {si1x , . . . , s

i|E|
x } of partial function evaluations

originating from |E| ≥ t + 1 different nodes, and
outputs either a pair (v, π) of pseudorandom function
value v ∈ Ran and correctness proof π, or ⊥.

Verify(pk,VK, x, v, π) is a verification algorithm that
takes as input the public key pk, a set of verification
keys VK, a plaintext x ∈ Dom, a value v ∈ Ran and
a proof π, and outputs 0/1.

Admissibility. We say a DVRF is admissible if it satisfies
three basic properties:

• Consistency: meaning that no matter which collection
of correctly formed shares is used to compute the
function on a plaintext x the same random value
v = Fsk(x) is obtained.

• Robustness: that guarantees the availability of com-
puting the random function value on any plaintext
in the presence of an active adversary. Specifically,
robustness demands that if the combine function does
not return ⊥ then its output must pass the verification
test even in the presence of the adversary’s inputs to
the combine function. Robustness has been also called
guaranteed output delivery (G.O.D.) in recent works
[17], [41].

• Uniqueness: meaning that for every plaintext x a
unique value v = Fsk(x) passes the verification test. It
is infeasible for any adversary to compute two different
output values v, v′ and a plaintext x ∈ Dom such that
both values pass the verification test w.r.t. x, even
when the secret keys of the honest nodes are leaked.

The formal definitions of the above three properties can
be found in Appendix A.

3.2. Strong and Standard Pseudorandomness

Next we give rigorous definitions for two pseudoran-
domness properties against active adversaries that gen-
eralise the pseudorandomness definitions in distributed
scenarios [1], [48]. Roughly speaking, pseudorandomness
ensures that no adversary controlling at most t nodes
is able to distinguish the outputs of the function from
random. Previous definitions allow an adversary to choose
the set of parties to corrupt, obtain partial evaluations from
the honest parties on the challenge plaintext (up to the
threshold), and participate in computing the pseudoran-
dom function on the challenge plaintext, in the presence
of a trusted dealer.

Our definitions next dispense with the trusted setup
phase in previous definitions, and highlight a separation
between the strengths captured by previous attacker mod-
els. More concretely, by parametrising attackers in terms
of the actual number of nodes θ under adversarial control,
with 0 ≤ θ ≤ t and t being the recovery threshold, we are
able to separate the pseudorandomness strength in [1], that
we rename strong pseudorandomness, from [48], which
we rename standard pseudorandomness.

Definition 3.2 (Strong Pseudorandomness). A DVRF pro-
tocol V on nodes N = {N1, . . . , N�} is (θ, t, �)-strongly

pseudorandom with 0 ≤ θ ≤ t < � if for all PPT
adversaries A,

AdvPRand
V,A =

∣∣∣∣
Pr[PRandV,A(1λ, 0) = 1]
−Pr[PRandV,A(1λ, 1) = 1]

∣∣∣∣ ≤ negl(λ)

where negl() is a negligible function and the experiment
PRandV,A(1λ, b) is defined below:

[Corruption] A chooses a collection C of nodes to be
corrupted with |C| ≤ θ. Adversary A acts on behalf
of corrupted nodes, while the challenger acts on
behalf of the remaining nodes, which behave honestly
(namely they follow the protocol specification).

[Initialization] Challenger and adversary engage in
running the distributed key generation protocol
DistKG(1λ, t, �). After this phase, the protocol estab-
lishes a qualified set of nodes QUAL. Every (honest)
node Nj ∈ QUAL\C obtains a key pair (skj , vkj). In
contrast, (corrupted) nodes Nj ∈ C end up with key
pairs (skj , vkj) in which one of keys may be undefined
(i.e. either skj = ⊥ or vkj = ⊥). At the end of this
phase, the global public key pk and the verification
keys vector VK is known by both the challenger and
the attacker.

[Pre-Challenge Query] In response to A’s evaluation
query (Eval, x, i) for some honest node Ni ∈ QUAL\
C and plaintext x ∈ Dom, the challenger returns
six ← PartialEval(x, ski, vki). In any other case, the
challenger returns ⊥.

[Challenge] The challenger receives from the adversary
A a set of evaluation shares {six�}Ni∈U∩C with U ⊆
QUAL and |U | ≥ t+ 1, and a plaintext x� ∈ Dom,
such that (Eval, x�, i) has been queried at most t−|C|
times for different honest nodes Ni ∈ QUAL \ C.
Let sjx� ← PartialEval(x�, skj , vkj) for honest nodes
Nj ∈ U \ C and (v�, π�) ← Combine(pk,VK, x�,
{sjx�}Nj∈U\C ∪ {six�}Ni∈U∩C). If v� = ⊥ the exper-
iment outputs ⊥. Otherwise, if b = 0 the adversary
receives v�; else if b = 1 the adversary receives a
uniform random value in Ran.

[Post-Challenge Query] In response to A’s evaluation
query (Eval, x, i) for some node Ni ∈ QUAL \ C
and plaintext x ∈ Dom, the challenger returns
six ← PartialEval(x, ski, vki). In any other case, the
challenger returns ⊥. Furthermore, A is not allowed
to query (Eval, x�, i) for more than t − |C| different
honest nodes Ni ∈ QUAL \ C.

[Guess] Finally A returns a guess b′. The experiment
output is b′.

In the above definition, we separate the upper limit
θ on the number of corrupted nodes and the threshold
t, which leads to a refinement of previous pseudoran-
domness definitions. Indeed, [1], [48], only consider the
situation θ = t, which is not always the case in prac-
tice. For example, the DKG protocol in Dfinity-DVRF
[36] requires that a super-majority of nodes are honest
i.e., θ < �/3, while the DVRF threshold is set to be
t = (�− 1)/2, leaving a gap between θ and t. Moreover,
the values of t and � may greatly affect the communication
and computation complexity of the DKG setup (e.g., [32]),
and splitting θ and t can make the choice of t and � more
flexible for specific applications.
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Our definition of strong pseudorandomness extends
and refines the definition of pseudorandomness proposed
in [1] to a trustless setting. A trusted setup phase in [1]
can be leveraged to let the adversary choose which nodes
to corrupt after inspecting the public parameters. In our
trustless setup the absence of a trusted phase restricts the
adversary to choose the corrupted nodes before seeing the
public parameters. However, the adversary is empowered
by letting it select the corrupted nodes’ local secret keys
and influence the public parameters computation by inter-
acting with the honest nodes. This allows the adversary
to interfere with the setup phase which is not the case in
trusted setups such as [1]. We leave the study of a stronger
notion of adaptive security with trustless setup in which
the adversary is allowed to corrupt any node at any point
during the run of the protocol to future work.

A weaker notion of pseudorandomness, that we refer
to as standard pseudorandomness, where the adversary
is not allowed to obtain any partial evaluation on the
challenge plaintext, has been the standard up to now
in the related literature on DVRF [12], [26], [43]. The
usage of this weaker definition of pseudorandomness can
also be found in the DRB literature e.g. [17]. Using our
refined approach to defining (strong) pseudorandomness,
we define (θ, t, �)-standard pseudorandomness as follows.

Definition 3.3 (Standard Pseudorandomness). A DVRF
protocol V on nodes N = {N1, . . . , N�} sat-
isfies (θ, t, �)-standard pseudorandomness with 0 ≤
θ ≤ t < � if for all PPT adversaries A,
AdvStdPRand

V,A =
∣∣Pr[StdPRandV,A(1λ, 0) = 1] −

Pr[StdPRandV,A(1λ, 1) = 1]
∣∣ ≤ negl(λ), where

negl(·) is a negligible function and the experi-
ment StdPRandV,A(1λ, b) is defined as experiment
PRandV,A(1λ, b) with the exception that the adversary
is not allowed to obtain any partial evaluation on the
challenge plaintext x�.

3.3. Separation between Standard and Strong
Pseudorandomness

We shall discuss the relation between standard and
strong pseudorandomness. Perhaps unsurprisingly, we il-
lustrate that strong pseudorandomness is a strictly stronger
property than standard pseudorandomness. As it is usual,
we do so by constructing a DVRF protocol V that is
(θ, t, �)-standard pseudorandom, but it is not (θ, t, �)-
strongly pseudorandom. Let V ′ = (DistKG′,PartialEval′,
Combine′,Verify′) be a DVRF which is (θ, t′, �)-standard
pseudorandom with θ ≤ t′ < t < �. The existence
of such V ′ can be guaranteed under well-known com-
putational assumptions with our DVRF constructions in
Section 4. We shall construct V = (DistKG,PartialEval,
Combine,Verify) as follows:

DistKG(1λ, t, �) runs DistKG′(1λ, t′, �) among � nodes to
obtain a set QUAL of qualified nodes 1 and the
global public key pk. Each node in i ∈ QUAL
obtains a pair of (ski, vki).

PartialEval(x, ski, vki) outputs (i, vi, πi) ←
PartialEval′(x, ski, vki).

1. A side condition should be |QUAL| > t in order to make sure the
scheme is non-trivial. In Section 4, we can see that our constructions of
DDH-DVRF and GLOW-DVRF both satisfy this condition.

Combine(pk,VK, x, E) when |E| > t, it is also the case
|E| > t′ because t > t′. Thus we can run (v, π) ←
Combine′(pk,VK, x, E). Output (v, π).

Verify(pk,VK, x, v, π) outputs 1 if Verify′(pk,VK, x, v,
π) = 1. Else outputs 0.

Theorem 3.1. V is (θ, t, �)-standard pseudorandom but it
is not (θ, t, �)-strongly pseudorandom.

Proof. Firstly, we show that V does not satisfy (θ, t, �)-
strong pseudorandomness. By definition, an adver-
sary APRand

V is allowed to compromise θ nodes, e.g.
nodes N1, . . . , Nθ wlog. Additionally APRand

V can query
(Eval, x�, i) for up to t−θ different nodes Nθ+1, . . . , Nt ∈
QUAL wlog on the challenge plaintext x�. There-
fore APRand

V can obtain t > t′ valid partial evalu-
ations {six�}1≤i≤t which allows the adversary to run
Combine(pk,VK, x�, {six�}1≤i≤t) to recover v� and triv-
ially win the pseudorandomness game.

Secondly, we show that the (θ, t, �)-standard pseudo-
randomness of V holds because an adversary AStdPRand

V
can only compromise up to θ nodes, where θ ≤ t′ < t. If
the adversary AStdPRand

V can distinguish v� from random
for V�, then an adversary AStdPRand

V′ that can distinguish
v� from random for V ′ would exist too, which contradicts
the (θ, t, �)-standard pseudorandomness of V ′.

Corollary 3.1.1. If there exist DVRFs with standard pseu-
dorandomness then strong pseudorandomness is a strictly
stronger property than the standard pseudorandomness.

Interestingly, we will show in Section 6 that, in the
context of Dencentralized Random Beacons, Algorand
DRB [34] is (0, t, �)-standard pseudorandom, but is not
(0, t, �)-strongly pseudorandom, which offers an indepen-
dent and non-contrived confirmation of the separation
between pseudorandomness properties.

4. DVRF Instantiations

In this section, we present two original DVRF
constructions, that we name DDH-DVRF and
GLOW-DVRF, that achieve strong pseudorandomness
under widely accepted cryptographic assumptions.
DDH-DVRF is described here for the first time and it
can be seen as fully distributed version of the stand-
alone DDH-VRF presented in [30] (which is being
proposed for standardisation [35]). On the other hand,
GLOW-DVRF is a pairing-based DVRF that achieves
strong pseudorandomness with compact proofs (in
contrast to DDH-DVRF).

The setup phase of our proposed DVRF constructions
is based on the distributed key generation (DKG) protocol
in [32], which is a secret sharing protocol jointly run
by � nodes. We assume θ ≤ t < � − θ, meaning the
number of corrupted nodes θ is at most t and the number
of honest nodes � − θ is higher than the threshold t.
This side-condition guarantees the corrupted nodes cannot
disqualify any honest node during the run of the DKG
protocol and the honest nodes are able to complete the
DKG protocol correctly without the cooperation of the
corrupted nodes being necessary, i.e., |QUAL| > t.
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4.1. DDH-DVRF: a strongly pseudorandom
DDH-based DVRF with non-compact proofs

Let (G, g, q) be a multiplicative group. Let H1 :
{0, 1}∗ 	→ G and H2 : {0, 1}∗ 	→ Zq be hash func-
tions. We construct VDDH-DVRF = (DistKG,PartialEval,
Combine,Verify) as follows:

DistKG(1λ, t, �) is run by � participating nodes N =
{N1, . . . , N�}. Each node Ni chooses a random poly-
nomial fi(z) = ai,0+ai,1z+ · · ·+ai,tz

t. The protocol
outputs a set of qualified nodes QUAL ⊆ N , a secret
key ski =

∑
j∈QUAL fj(i) ∈ Zq and a verification

key vki = gski ∈ G for each i ∈ QUAL, an implicit
distributed secret value sk =

∑
i∈QUAL ai,0, and a

global public key pk =
∏

i∈QUAL g
ai,0(= gsk). This is

the well-known DKG protocol given in Fig. 2 in [32].
PartialEval(x, ski, vki) outputs six = (i, vi, πi) for a

plaintext x, where vi ← H1(x)
ski and πi ←

ProveEqH2
(g,H1(x), vki, vi; r) for randomness r

$←
Zq (see Definition 2.1 for the description of
(ProveEqH ,VerifyEqH)).

Combine(pk,VK, x, E) parses list E = {sj1x , . . . , s
j|E|
x } of

|E| ≥ t + 1 partial evaluation candidates originating
from |E| different nodes, and obtains verification keys
vkj1 , . . . , vkj|E| . Next,

1) Identifies an index subset I = {i1, . . . , it+1} such
that VerifyEqH2

(g,H1(x), vki, vi, πi) = 1 holds for
every i ∈ I , where six = (i, vi, πi). If no such subset
exists, outputs ⊥.

2) Sets v ←
∏
i∈I

v
λ0,i,I

i and π ← {
six

}
i∈I .

3) Outputs (v, π).

Verify(pk,VK, x, v, π) parses π =
{
six

}
i∈I such that

|I| = t+ 1 and I ⊆ QUAL

1) Parses six = (i, vi, πi) for i ∈ I .
2) Checks if VerifyEqH2

(g,H1(x), vki, vi, πi) = 1 for
every i ∈ I; if some of the checks fail, outputs 0.

3) Checks if v =
∏
i∈I

v
λ0,i,I

i ; if so outputs 1; otherwise

outputs 0.

Theorem 4.1. VDDH-DVRF satisfies consistency, robust-
ness and uniqueness.

Proof. First, we show that VDDH-DVRF is consistent. It
suffices to see that the following equality holds:

∑
j∈Δ

skjλ0,j,Δ =
∑
j∈Δ

λ0,j,Δ

( ∑
i∈QUAL

fi(j)

)

=
∑

i∈QUAL

(∑
j∈I

λ0,j,Δ · fi(j)
)

=
∑

i∈QUAL

ai,0 = sk (1)

Then
∏

j∈Δ(H1(x)
skj )λ0,j,Δ = H1(x)

(
∑

j∈Δ λ0,j,Δ·skj) =
H1(x)

sk holds for every subset Δ ⊆ QUAL with |Δ| ≥
t+ 1.

Robustness is straightforward since the NIZK proofs
included in π� are all valid proofs that have been checked
by the Combine function. This implies Verify outputs 1.
The uniqueness can be proven using the extractibility

property of NIZKs. That is, for any (v, π), if π verifies,
we can extract a k such that v = H1(x)

k and vk = gk.

The proof of the following theorem can be found in the
full version of this paper [31].

Theorem 4.2. VDDH-DVRF is (θ, t, �)-strongly pseudo-
random for any θ with θ ≤ t < � − θ under the DDH
assumption in the random oracle model.

Sketch of the proof. Assume an extended DDH in-
stance (this can be easily derived from DDH instance)
(gα0 , gα1 , . . . , gαw , gβ , y0, y1, . . . , yw) where either y0 =

gα0β , y1 = gα1β , . . . , yw = gαwβ or y0
$← G, y1

$←
G, . . . , yw

$← G. Suppose the adversary corrupts nodes
C = {1, . . . ,m} with m ≤ θ in the corruption phase.
A simulator who represents all the � − m honest nodes
can simulate the running of the DKG protocol with the
adversary who represents all the m corrupted nodes. At
the end of the DKG protocol, the global public key is set
to be pk = gα0 and the verification key vki = gαi for each
honest user i ∈ [m + 1, t]. Because � −m ≥ � − θ > t,
the simulator is able to derive all the secret keys of
the adversary, i.e., ski for i ∈ C. In the random oracle
model, the hash value of the challenge plaintext is set
to be H1(x

�) = gβ . The adversary’s partial evaluation
queries on x� can be answered directly using yi for an
honest user j ∈ [m + 1, t]. For an honest user j > t
, the partial evaluation on x� can be computed using
Lagrange coefficients and values of {yi}m+1≤i≤t and the
adversary’s shares gβski for i ∈ C. When yi = gαiβ for
each i, this simulates the real pseudorandomness game
perfectly; but when yis are chosen uniformly at random,,
the adversary receives uniformly random values. If the
adversary can break the pseudorandomness, then we can
construct an adversary that breaks the DDH assumption.

Remark 1 (DDH-DVRF vs. DPRFs [1]). The construc-
tion with trustless setup DDH-DVRF bears similarities
to the distributed pseudorandom functions with trusted
setup [1, Figure 5] and [1, Figure 6]. The correctness
of the latter is only privately verifiable, and a formal
specification of public verifiability is not part of their
focus.

4.2. GLOW-DVRF: a strongly pseudorandom
pairing-based DVRF with compact proofs

DDH-DVRF has the advantages of admitting very fast
implementations and relying on a long-standing crypto-
graphic assumption, as it can be built using e.g. ordinary
elliptic curves. DDH-DVRF’s proofs π are however non-
compact, i.e. their size is linear in the reconstruction
threshold t. Next we describe GLOW-DVRF, a a pairing-
based DVRF that achieves strong pseudorandomness and
compact proofs simultaneously.

Let (e,G1,G2,GT , q, g1, g2, h1, h2) be a bilinear pair-
ing (cf. Definition 2.3), where g1, g2 are generators of
G1,G2 respectively (same applies to h1, h2 respectively).
Let H1 : {0, 1}∗ 	→ G1, H2 : G1 	→ {0, 1}b(λ) and H3 :
{0, 1}∗ 	→ Zq be hash functions. Let VGLOW-DVRF =
(DistKG,PartialEval,Combine,Verify) be a DVRF for a
pseudorandom function defined as follows:
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DistKG(1λ, t, �) proceeds in the same way as in the DKG
used in the non-compact case (Fig. 2 in [32]), with the
differences described below:

• In the Generating phase, g, h are replaced with
g1, h1 ∈ G1.

• In Step 4, each node Ni with i ∈ QUAL exposes
Bi,0 = g

ai,0

2 via Feldman-VSS.

– In Step 4(a), each node Ni with i ∈ QUAL
broadcasts Ai,k = g

ai,k

1 for 0 ≤ k ≤ t and
Bi,0 = g

ai,0

2 .
– In Step 4(b), for each i ∈ QUAL, Nj checks

if g
si,j
1 =

∏t
k=0(Ai,k)

jk and e(Ai,0, g2) =
e(g1, Bi,0).

– In Step 4(c), set the global public key as pk =∏
i∈QUAL Bi,0.

To summarise, the verification keys vki(= gski1 ) are
generated in G1 using the generator g1 and the global
public key pk(= gsk2 ) is generated in G2 using the
generator g2.

PartialEval(x, ski, vki) computes vi = H1(x)
ski and

πi ← ProveEqH3
(g1, H1(x), vki, vi; r) for random-

ness r
$← Zq , and outputs share six = (i, vi, πi).

Combine(pk,VK, x, E) parses list E = {sj1x , . . . , s
j|E|
x } of

|E| ≥ t + 1 partial evaluation candidates originating
from |E| different nodes, and obtain verification keys
vkj1 , . . . , vkj|E| . Next,

1) Identifies an index subset I = {i1, . . . , it+1} such
that for every i ∈ I it holds that VerifyEqH3

(g1,
H1(x), vki, vi, πi) = 1, where six = (i, vi, πi). If no
such subset exists, outputs ⊥.

2) Sets π ←
∏
j∈I

v
λ0,j,I

j and v = H2(π).

3) Outputs (v, π).

Verify(pk, x, v, π): output 1 if the relation holds:
e(π, g2) = e(H1(x), pk) and v = H2(π). Otherwise
output 0.

The DistKG protocol in GLOW-DVRF generates the
verification keys vki in G1 but the global public key pk
in G2. The function evaluation shares are validated using
NIZKs, while the well-formedness of the reconstructed
pseudorandom value v is validated using a pairing equa-
tion, which in turn provides the compact proof as intended.

Using NIZKs to validate partial evaluations has two
benefits. Firstly, it is crucial for proving strong pseudo-
randomness for GLOW-DVRF. The main technical diffi-
culty of proving strong pseudorandomness is to simulate
the answers to the oracle queries PartialEval(ski, vki, x

�)
on the challenge plaintext x� when the secret key ski is
unknown. Placing verification keys vki’s on G1 results in
an adversary being unable to check the validity of the
i-th partial evaluation (provided that the XDH assump-
tion, e.g.. Definition 2.5, holds in the bilinear pairing
group), which facilitates exhibiting a security reduction to
strong pseudorandomness. Secondly, by validating evalu-
ation shares verifying NIZKs instead of pairing equations
speeds up the Combine algorithm by computing 4 · |E|
exponentiations in G1 instead of computing 2·|E| pairings,
as the latter are more computationally expensive.

Theorem 4.3. VGLOW-DVRF satisfies consistency, robust-
ness and uniqueness.

Proof. Consistency can be easily proven similar to The-
orem 4.1. The uniqueness follows from the fact that if
v = H2(π), v

′ = H2(π
′) and e(π, g2) = e(H1(x), pk) =

e(π′, g2) then π = π′ = H1(x)
sk.

Robustness can be proven using the extractability of
the NIZKs. When the challenger outputs 1, we have v� �=
⊥ and Verify(pk,VK, x�, v�, π�) = 0. W.l.o.g., assume
|U | = t+1. Combined with the consistency, we can derive
that there exists i ∈ U such that vi �= H1(x

�)ski , vki =
gski1 and πi a verified NIZK proof. We consider two cases
of i. If i ∈ U \C, this is impossible since vi is computed
correctly by the challenger. If i ∈ U ∩C, we can use the
PPT extractor of the NIZKs to derive a k such that vi =
H1(x

�)k and vki = gk1 which contradicts the hypothesis.

The proofs of the following theorems can be found in
the full version of this paper [31].

Theorem 4.4. VGLOW-DVRF achieves (θ, t, �)-standard
pseudorandomness for any θ with θ ≤ t < � − θ under
the co-CDH assumption in the random oracle model.

Sketch of the proof. Assume a co-CDH instance
(e,G1,G2,GT , q, g1, g2, g

α
1 , g

β
1 , g

α
2 ) with g1 ∈ G1, g2 ∈

G2, α, β
$← Zq . B’s goal is to output gαβ1 . Suppose the

adversary corrupts nodes C = {1, . . . ,m} in the corrup-
tion phase. A simulator who represents all the �−m honest
nodes can simulate the running of the DKG protocol with
the adversary who represents all the m corrupted nodes.
At the end of the DKG protocol, the global public key is
set to be pk = gα2 . The secret keys ski for honest nodes
i ∈ [m+1, t] are chosen by the simulator. The secret keys
ski for honest nodes i > t cannot be computed by the
simulator because α is unknown, but the corresponding
verification keys vki for i > t can be computed using La-
grange coefficients. In the random oracle model, the hash

value of the challenge plaintext is set as H1(x
�) = gβ1 .

When the adversary queries the random oracle H2 on a

value y, we check if e(y, g2) = e(gβ1 , g
α
2 ). If true, it means

y = gαβ1 and y can be output as a solution to the co-CDH
instance. We can show the probability that the adversary
queries such a y is at least the same as the advantage the
adversary distinguishes the standard pseudorandomness
game.

Theorem 4.5. VGLOW-DVRF is (θ, t, �)-strongly pseudo-
random under the XDH assumption and co-CDH assump-
tion in the random oracle model.

Sketch of the proof. Suppose the adversary corrupts nodes
C = {1, . . . ,m} in the corruption phase. When m =
t, the adversary has already compromised t nodes and
is not allowed to issue any partial evaluation query on
the challenge plaintext x�. Therefore, the proof for this
case is similar to Theorem 4.4. When m < t, the partial
evaluation queries on x� can be simulated using values in
XDH instance which is similar to Theorem 4.2.

Remark 2 (DVRFs imply DPRFs). It is easy to see
that DVRFs impliy Distributed Pseudorandom Functions
(DPRFs) by simply dropping the verification algorithm.
As a consequence the two concrete trustless DVRF con-
structions presented in this section imply two new trustless
DPRF constructions as per [1].
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5. Decentralised Random Beacons

A Decentralised Random Beacon (DRB) provides a
way to collaboratively agree on a (pseudo)random value
[20] without the involvement of a central party. A promi-
nent application of DRBs is to randomly select a leader
in Proof-of-Stake blockchains (e.g. Dfinity [36], Ethereum
2.0 [15], OmniLedger [42], Tendermint [14]), without the
need for a coordinator.

5.1. Formalisation of DRB

We start by presenting a syntax for DRBs with non-
interactive randomness generation and formally define its
relevant security properties, including robustness, unique-
ness, and strong/standard pseudorandomness. As we will
argue, we believe our definitions have merits not present
in recent definitions in the literature [5], [17]. In partic-
ular we are able to analyse with our framework several
academia and industry constructions (including ours): Al-
gorand [34], HERB [19], Ouroboros Praos [23], Elrond
[28], Orbs [4], Dfinity [36] and Harmony [37]. Last but
not least our new DRB formalisation also allows us to
capture the generic DVRF-to-DRB construction and study
its security, bringing the total number of instantiations
captured by our model to nine.

Definition 5.1 (Decentralised random beacon (DRB)). A
t-out-of-� DRB on a set of nodes N = {N1, . . . , N�}
is specified as a tuple R = (CmteGen,PartialRand,
CombRand,VerifyRand,UpdState) of polynomial algo-
rithms as follows:
CmteGen(1λ, t, �): this is an interactive protocol run by

the nodes in N to set up a random beacon commit-
tee. The protocol determines a set of qualified nodes
QUAL ⊆ N , outputs a committee public key cpk and
results in a list of secret keys SK = {sk1, . . . , sk�},
where each secret key is only known to the corre-
sponding node in the committee.

PartialRand(stn−1, ski, cpk): on input the state stn−1 ∈
Dom from round n − 1, a secret key ski and a
committee public key cpk, the algorithm computes a
partial value σn,i and a proof πn,i for round n. Output
is (i, σn,i, πn,i).

CombRand(stn−1, E , cpk) : on input a state stn−1 ∈
Dom, a set E = {(i, σn,i, πn,i)}i∈I of partial values
from |I| ≥ t + 1 different nodes, and a committee
public key cpk, this algorithm outputs a pair (σn, πn)
of a beacon value and a proof, or ⊥.

VerifyRand(stn−1, σn, πn, cpk): on input a state stn−1 ∈
Dom, a beacon value σn ∈ Ran, a proof πn and
a committee public key cpk, this algorithm verifies if
(σn, πn) is valid. The algorithm outputs 0/1.

UpdState(stn−1, σn, πn, cpk): on input the current state
stn−1, a beacon value σn ∈ Ran and its proof πn

generated at the end of round n − 1, the algorithm
outputs the updated state stn for round n, or ⊥.

Before giving security definitions for DRB, we first
describe a set of oracles that model the adversarial capa-
bilities. The oracles are introduced below and their formal
definitions are given in Figure 1. The oracles update
the following global variables: a total round number rn;

Init(C)
if C �⊆ N or |C| > t then return ⊥
(QUAL, cpk,K)← CmteGen(1λ, t, �)
ck = (N , C,QUAL, cpk,K)
rn = 0, st = st0
return 1

OKeyRev(i)

if i /∈ QUAL \ C return ⊥
parse K = {skj}j∈QUAL\C
return ski

OUpdate(σ,π)

parse ck = (N , C,QUAL, cpk,K)
if VerifyRand(st, σ, π, cpk) = 0 return ⊥
x← UpdState(st, σ, π, cpk)
if x = ⊥ then return ⊥
rn = rn+ 1; st = x
return (rn, st)

OPartialRand(i)

parse ck = (N , C,QUAL, cpk,K)
if i /∈ QUAL or i ∈ C return ⊥
(i, σi, πi)← PartialRand(st, ski, cpk)
return (i, σi, πi)

Figure 1: Oracles used in the different security games associated
to any t-out-of-� DRB.

the current state st; a variable ck that stores committee
information.

• Init(C): this oracle initialises a committee from nodes
in N . The oracle runs the interactive protocol CmteGen
on behalf of the honest nodes N \C and the adversary
runs on behalf of the bad nodes C. The adversary is
allowed to control up to t bad nodes in N . Let K be
the set of secret keys of the honest nodes run by the
oracle in the committee.

• OKeyRev(i): this oracle returns the secret key of an
honest node i in the committee.

• OPartialRand(i): this oracle computes the i-th node con-
tribution of the committee to the random beacon by
using the current state st and the i-th honest node’s
secret key and running PartialRand(st, ski, cpk).

• OUpdate(σ, π): this oracle extends the current
ledger with (σ, π) as the official randomness
output for the current round. The oracle runs
UpdState(s.t., σ, π, cpk) to obtain the state for the
next round and increases the round number rn by 1.

Similarly to DVRFs, we define robustness and unique-
ness for DRBs. Robustness, also called Guaranteed Output
Delivery, ensures that the computation of beacon outputs
cannot be stopped by an adversary once t + 1 partial
beacons are emitted by nodes from the committee, even
if some of the beacon shares have been generated by
malicious nodes. Uniqueness requires that the random
beacon values are unique per round, even in the presence
of an adversary that obtains the secret keys of the honest
parties. The uniqueness of the pseudorandom output of a
DRB provides strong bias resistance, as it stands against
any adversary independently from the number of corrupted
nodes that the adversary controls. This prevents an adver-
sary from manipulating the beacon values to obtain e.g.
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financial advantage and can be an useful block to obtain
fairness in DeFi applications [40].

Pseudorandomness for DRB. Pseudorandomness guar-
antees that the random beacon outputs are indistinguish-
able from uniformly random values in the presence of
active adversaries, which implies the properties of unpre-
dictability and bias-resistance [51], [52]. Below we shall
give the formal definitions of the standard and strong
pseudorandomness for DRB.

Definition 5.2 (Strong Pseudorandomness of DRB).
A DRB R = (CmteGen,PartialRand,CombRand,
VerifyRand,UpdState) on a set of nodes N = {N1, . . . ,
N�} is (θ, t, �)-strongly pseudorandom with θ ≤ t < � if
for any PPT adversaryA, there exists a negligible function
negl(·) such that

AdvPRand
R,A =

∣∣∣∣
Pr

[
PRandR,A(1λ, 0) = 1

]
−Pr [PRandR,A(1λ, 1) = 1

]
∣∣∣∣ ≤ negl(λ)

where the experiment PRandR,A(1λ, b) with b ∈ {0, 1}
is defined as below:

[Corruption] A correctness adversary A chooses a col-
lection C of nodes to be corrupted with |C| ≤ θ.

[Initialization] The challenger runs the oracle OInit(C) to
set up a committee by interacting with the adversary.

[Pre-Challenge Queries] A is given access to oracles
OPartialRand and OUpdate described above.

[Challenge] The challenger receives from the adversary
A a set U of size at least t + 1 and U ⊆ QUAL,
and a set of partial values {(i, σi, πi)}i∈U∩C . Let the
current state be st = x� and the current round number
be rn = j�. A is not allowed to query the oracle
OPartialRand(i) for more than t− |C| different i in the
j�-th round. The challenger proceeds as follows:
• (i, σi, πi) ← PartialRand(x�, ski, cpk) for i ∈
U \ C. Let (σ�, π�) ← CombRand(x�,
{(i, σi, πi)}i∈U , cpk). If σ� = ⊥, then the experi-
ment outputs ⊥.

• Otherwise, if b = 0, the challenger sets δ = σ�;
else if b = 1, the challenger chooses a uniform
random δ

$← Ran.
• The challenger moves to the next round by com-

puting st ← UpdState(δ, x�) and increasing the
round number rn = j� + 1. The challenger gives
(δ, rn, st) to the adversary.

[Post-Challenge Queries] A can continue to query the
oracles OPartialRand and OUpdate.

[Guess] Finally A returns a guess b′. Output b′.

In the above experiment, the adversary is allowed to
compromise m nodes with m ≤ θ and is allowed to query
OPartialRand(·) up to t − m times in the challenge round
(i.e., the j�-th round). To answer the challenge query, the
challenger combines the paritial values from the adversary
and the honest nodes to compute σ�. Depending on the
value of b, the challenger sets δ = σ� or a uniform
random. Then the challenger uses the value of δ to update
the current state and move to the next round.

Standard pseudorandomness for DRBs is obtained by
restricting the adversary in the above experiment to make
no queries in the j�-th round to the oracle OPartialRand.

5.2. Generic DVRF-to-DRB Construction and Se-
curity Analysis

Instantiation. We now describe a general implementation
of DRB using DVRF:

CmteGen(1λ, t, �): a set N of � nodes jointly run
DistKG(1λ, t, �) to obtain a set QUAL of qualified
nodes, a public key pk. Each node i obtains a secret
key ski and a verification key vki. Let cpk = (pk,VK)
where VK = {vki}i∈QUAL.

PartialRand(stn−1, ski, cpk): parse cpk = (pk,VK). Out-
put (σi, πi)← PartialEval(stn−1, ski, vki).

CombRand(stn−1, E , cpk): parse cpk = (pk,VK). Out-
put (σ, π)← Combine(pk,VK, stn−1, E).

VerifyRand(stn−1, σn, πn, cpk): parse cpk = (pk,VK).
Output Verify(pk,VK, stn−1, σn, πn).

UpdState(stn−1, σn, πn, cpk): Output the state stn =
σn‖n for the next round n. The round number is of
�-bit and the restriction placed here is that the total
number of rounds is at most 2	. We assume the state
st0 = σ0‖0 where the choice of σ0 ∈ R is left open.

The following theorems can be easily proven:

Theorem 5.1. VDRB is robust (resp. unique) if VDVRF is
robust (resp. unique).

Theorem 5.2. RDRB achieves (θ, t, �)-standard (resp.
strong) pseudorandomness if VDVRF achieves (θ, t, �)-
standard (resp. strong) pseudorandomness.

Due to space limitation, the detailed proofs can be
found in the full version of this paper.

Remark 3. With our DVRF constructions from Section 4
the initial seed σ0 can be set to be pk, the global public key
of the underlying DVRF construction. Indeed pk as output
by our concrete DVRFs is uniformly distributed at random
in the corresponding DH group, a property inherited by
our DKG protocols from [32]. It must be noted that other
DRB protocols from the literature [28], [34], [37] need
to use an out-of-band channel to agree on the initial seed,
which is not needed with our DVRF-to-DRB constructions.

6. Comparison with state-of-art DRB Instan-
tiations

Our framework focus on DRBs that can generate a
random beacon value in each round in a non-interactive
manner. We stress that non-interactive protocols are the
most desirable solutions for decentralised applications.

In this section, we shall first analyse a few non-
interactive random seed generation protocols integrated in
Algorand [34], Ouroboros-Praos [23], Elrond [28], HERB
[19], Dfinity [36] and Harmony [37]. We formalise these
protocols as DRBs in our framework and we analyse
whether they can achieve pseudorandomness and unbi-
asiability. We stress that while some of these DRBs will
be shown not to be pseudorandom, they may still serve a
useful purpose in the context they were proposed. Namely,
the full power of pseudorandomness may not be needed
for particular use cases where, for instance, unpredictabil-
ity may be enough. This is the case for Ouroboros-Praos
DRB, where it is sufficient to use a “leaky resettable
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beacon” [23]. However our work shows that the DRBs
that are not pseudorandom should be avoided as stand-
alone DRBs.

Then we shall describe and compare with other in-
teractive DRBs which may run across multiple rounds to
create a beacon value.

6.1. Capturing non-interactive DRBs with our
formalisation

Algorand, Ouroboros-Praos and Elrond. Algorand [34]
implements a random seed generation protocol to create
a publicly-known random seed that is fed into a crypto-
graphic sortition algorithm that assigns certain roles to
nodes belonging to a committee (such as being block
proposer in a given round). Ouroboros-Praos and Elrond
[23], [28] also implement similar protocols to Algorand’s.
Next, we show how to capture them as DRBs in our frame-
work. These DRBs are based on stand-alone verifiable
random functions VRF = (VRF.KeyGen,VRF.Eval,
VRF.Verify) [44], and can be formalised as the tu-
ple R = (CmteGen,UpdState,PartialRand,CombRand,
VerifyRand) as follows:

CmteGen(1λ, t, �): This is a non-interactive protocol, in
which each node in N = {N1, . . . , N�} creates a
VRF key pair (pki, ski) ← VRF.KeyGen(1λ) for
i = 1, . . . , �. The set of qualified nodes QUAL ⊆ U
are those that contribute a VRF public key, and the
committee public key cpk = {pki}i∈QUAL.

PartialRand(stn−1, ski, cpk): Compute a partial value for
round n by running the VRF evaluation function (ρn,i,
πn,i)← VRF.Eval(ski, stn−1). Output (i, ρn,i, πn,i).

CombRand(stn−1, E , cpk): Parse E = {(i, ρn,i, πn,i)}i∈I
with |I| > t and I ⊆ QUAL. Run a selection algo-
rithm j ← Sel(stn−1, I), where Sel is a pseudorandom
permutation and returns the node from I with the high-
est priority. If VRF.Verify(pkj , stn−1, ρn,j , πn,j) = 1,
set σn = ρn,j and πn = (j, πn,j , I); else set σn =
H(stn−1‖n) and πn = ⊥. Output (σn, πn).

VerifyRand(stn−1, σn, πn, cpk): If πn = ⊥, output the
result of whether H(stn−1‖n) == σn. Otherwise,
parse πn = (j, πn,j , I). If |I| > t and I ⊆ QUAL
and VRF.Verify(pkj , stn−1, σn, πn,j) = 1 with j ←
Sel(stn−1, I), output 1; else output 0.

UpdState(stn−1, σn): Output stn = σn‖n. The initial
state st0 = σ0‖0 where σ0 ∈ Ran is a random chosen
by the initial participants in the protocol.

The intuition behind this construction is that in each
round n a node Nj is chosen as a beacon leader based on
the randomness stn−1 agreed on round n − 1. The next
state is defined as the output of the VRF computation
VRF.Eval(skj , stn−1) by node Nj (provided it passes the
verification test wrt public key pkj); otherwise if node
Nj failed to provide a value, then the state for round n is
updated as H(stn−1‖n).

Algorand [34, Theorem 1] shows their random seeds
are unpredictable in the sense that the probability for the
attacker to compute all the random seeds of the next k
consecutive blocks decreases exponentially with k, under
the assumption that a fraction h (with h ≥ 2/3) of
users are honest. This relaxed security feature tolerates
more adaptive adversaries than our DVRF-based DRB

constructions and additionally results in a simpler non-
interactive committee setup phase.

Algorand DRB does not satisfy either (θ, t, �)-standard
or strong pseudorandomness when θ > 0. Intuitively, this
is because the combine algorithm CombRand relies on
selecting a single leader node to compute the next beacon
value σn, facilitating an adversary the possibility of in-
troducing bias whenever that node is corrupted. Assume
the adversary corrupts nodes C = {N1, . . . , Nm} with
0 < m ≤ θ. The probability that a corrupted node is
selected as leader for each round is at least p = m/�
which is non-negligible. Indeed, assume Nj is a corrupted
node controlled by the adversary. When Nj is selected as
the leader in the challenge query, the adversary is able to
distinguish σ� from a uniform random which breaks the
standard/strong pseudorandomness. The above attack does
not depend on whether the adversary knows the identity
of the leader or not. The adversary can always guess
successfully with probability at least p.

When θ = 0, i.e., the adversary is not allowed to
corrupt any node, the (0, t, �)-standard pseudorandomness
of Algorand DRB holds because of the pseudorandomness
of VRF. However, no corrupted node is a very strong
assumption for any decentralised application where any
node can participate. Furthermore, even if θ = 0, Al-
gorand DRB does not satisfy (0, t, �)-strong pseudoran-
domness. This is because strong pseudorandomness allows
the adversary to query OPartialRand oracle in the challenge
round. When i is the current leading node and i is honest,
the adversary can query OPartialRand(i) to obtain the next
beacon value which breaks the strong pseudorandomness.
Note that this attack also does not rely on the knowledge
of the leader. The total number of nodes is polynomial and
the adversary can issue up to t queries PartialRand which
gives the adversary a successful guessing probability t/�.

Finally, Algorand does not enjoy strong bias resis-
tance. When the secret key of any honest node is leaked
to the adversary, despite the fact that the adversary cannot
change the values of ρn,i for each honest node i, the adver-
sary can adjust the set I ⊆ QUAL by including/excluding
the partial outputs corresponding to corrupted nodes to
bias the output of σn to the adversary’s advantage.

The arguments above also apply to Ouroboros-Praos
[23, Section 5] and Elrond [28, Section 11] DRBs.

Harmony. Harmony [37, Section 3.1] is based on
verifiable random functions VRF = (VRF.KeyGen,
VRF.Eval,VRF.Verify) [44], and verifiable delay func-
tion VDF = (VDF.Eval,VDF.Verify) [10] and can be
formalised as follows:

CmteGen(1λ, t, �): This is a non-interactive protocol, in
which each node in N = {N1, . . . , N�} creates a
VRF key pair (pki, ski)← VRF.KeyGen(1λ) for i =
1, . . . , �. The set of qualified nodes QUAL ⊆ N are
those that contribute a VRF public key, and the com-
mittee public key cpk = ({pki}i∈QUAL, pp), where pp
is the global parameter for the VDF function.

PartialRand(stn−1, ski, cpk): The algorithm computes a
partial value for round n by running the VRF eval-
uation function (ρn,i, πn,i) ← VRF.Eval(ski, stn−1).
Output is (i, ρn,i, πn,i).

CombRand(stn−1, E , cpk): Parse E = {(i, ρn,i, πn,i)}i∈I
with |I| > t and I ⊆ QUAL.
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1) Identify the maximum index subset J ⊆ I such
that |J | > t and VRF.Verify(pkj , stn−1, ρn,j , πn,j)
= 1 for each j ∈ J . Let πr

n = {(ρn,j , πn,j)}j∈J .
2) Compute ρn = ⊕j∈Jρn,j and (σn, π

d
n) ←

VDF.Eval(pp, ρn).
3) Output (σn, πn) with πn = (πr

n, π
d
n).

VerifyRand(stn−1, σn, πn, cpk): Parse πn = (πr
n, π

d
n)

with πr
n = {(ρn,j , πn,j)}j∈J . If |I| ≤ t or I �⊆ QUAL,

output 0. If VRF.Verify(pkj , stn−1, ρn,j , πn,j) = 1 for

all j ∈ J and VDF.Verify(pp,⊕j∈Jρn,j , σn, π
d
n) = 1,

output 1; else output 0.
UpdState(stn−1, σn): Output stn = σn‖n. The initial

state st0 = σ0‖0 where σ0 ∈ Ran is a random chosen
by the initial participants in the protocol.

Roughly speaking, in each round Harmony’s DRB
computes the XOR of at least t+1 VRF evaluations from
pairwise different nodes that is then fed into a verifiable
delay function (VDF) to delay the computation of the final
randomness for k blocks to prevent the last revealer attack
[27]. Once ρn is committed into the blockchain, it cannot
be modified by any node. To simplify the description, we
let k = 1.

No formal security analysis is provided in [37] but
informal claims that their construction provide “random”
values are made. The fact that Harmony’s DRB directly
uses the result of VDF as beacon value guarantees that the
output is unpredictable but probably not pseudo-random
[10], [54]. As suggested in [10], a random oracle should
be applied to the output of the VDF to obtain the beacon
value. However, it is still a open question whether this
combination is provably indifferentiable from a Random
Delay Oracle [10]. We conclude then that Harmony’s DRB
does not satisfy either standard or strong pseudorandom-
ness.

Interestingly, Harmony’s DRB does not satisfy strong
bias resistance neither, even with the VDF function in
place. When these secret keys are leaked to the adversary,
the adversary can pre-compute the partial values from the
honest nodes and the VDF function. The adversary can
choose the partial values to be included into the beacon
value leading to a biased beacon value. We conclude that
Harmony’s DRB does not offer strong bias resistance.

Dfinity. Dfinity’s DRB [36] uses Dfinity-DVRF which
is an adaptation of the threshold BLS signatures [9].
Adversarial capabilities in standard pseudorandomness of
Dfinity-DVRF and unforgeability of threshold BLS sig-
natures go hand in hand, as in both cases an adversary
is not given the option to make partial queries on the
challenge plaintext x�. Therefore the standard pseudo-
randomness of Dfinity-DVRF can be derived in a manner
similar to the security reduction of the unforgeability of
the threshold BLS signature. Existing BLS security reduc-
tions do not seem to extend to prove strong pseudoran-
domness of Dfinity-DVRF. Indeed, since the verification
key vki of the i-th node is in G2, then the adversary can
verify if an answer vi is correct or not by checking the
pairing e(vi, g2) = e(H1(x

�), vki). Alas, the security re-
duction does not provide the challenger with knowledge of
logg2 vki, and then the challenger cannot answer a partial
signature/evaluation query on the challenge plaintext.

HERB. The so-called Homomorphic Encryption Random
Beacon construction [19], defines a DRB using DKG and

ElGamal homomorphic properties, similarly to the random
beacon used in Orbs’ Helix consensus protocol [3], [4].
HERB first runs DKG among n nodes to establish a
public key and the shares of the corresponding secret key
spread among n nodes. Each node publishes an ElGamal
encryption share of a secret along with NIZK of correct
encryption. Once the publication phase is over, any node
can check and aggregate the encryption shares into an
aggregate ciphertext which can be subsequently decrypted
by threshold of nodes. The decryption result is the final
beacon value. HERB’s beacon value is pseudorandom as
long as one participating node is honest and selects the
secret share randomly. Our preliminary analysis indicated
that HERB satisfies both standard and strong pseudo-
randomness. However, HERB does not offer strong bias
resistance when the secret keys of the honest nodes are
leaked, since the adversary is able to perform decryption
and obtain other nodes’ secret shares before choosing his
own secret share.

The results of our DRBs comparison is summarized
in Table 1.

6.2. Comparison with interactive DRBs

SCRAPE [17], RandShare/RandHound [52] and
Ouroboros [41] are interactive DRBs constructed using
Publicly Verifiable Secret Sharing (PVSS). These proto-
cols directly run PVSS protocol across multiple rounds
to produce one beacon value at a time, and belong to a
line of work initiated in [6]. We stress that this is a rather
expensive approach to create beacon values since PVSS’s
communication and computation complexity is similar to
a DKG protocol. In comparison, the DKG protocol in our
DRB is initiated once and generates multiple random bea-
con values using non-interactive algorithms PartialRand
and CombRand.

HydRand [51] builds upon SCRAPE and also uses
PVSS protocol. HydRand’s secret reconstruction process
runs across multiple rounds. In each round n, a leader
node is selected to open its PVSS secret value sr previ-
ously committed in a round r where the node was last
chosen as the leader, create a new commitment for a new
secret sn and use PVSS distribution protocol to generate
encrypted shares for sn. When the round leader does
not reveal its previous secret sr, then the other nodes
jointly reconstruct the secret using PVSS reconstruction
process. HydRand has a similar problem to Algorand: both
protocols rely on selecting a leader to produce a random
beacon value. The pseudorandomness of the beacon values
are therefore not guaranteed when some of the nodes
are corrupted. In comparison, our DRB can allow up
to t corrupted nodes while still achieves standard/strong
pseudorandomness. The tolerance of a certain number of
corrupted nodes is essential for any decentralised applica-
tion to avoid single-point of failures.

7. Performance Evaluation

We compare the efficiency of different DVRF imple-
mentations by benchmarking the time required to generate
a single random value for DRB purposes. The protocols,
and associated curves, studied in the reference implemen-
tation [29] are shown in Table 2, where the protocols
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Random Beacon Standard Strong Strong Unpredictability
Protocol Pseudorandomness Pseudorandomness Bias Resistance

Algorand-DRB [34] (–) � � �
Elrond-DRB [28] (–) � � �
Harmony-DRB [37] � � � �
HERB [19] � � � �
Orbs-DRB [4] � � � �
Ouroboros-Praos-DRB [23] (–) � � �
Dfinity-DRB [36] � (?) � �
DDH-DRB [This work] � � � �
GLOW-DRB [This work] � � � �

Table 1: Comparison of Random Beacons with non-interactive beacon computation. (–) means the corresponding property holds
when all nodes are honest. (?) means it is unknown whether the corresponding property can be proven.

are implemented using mcl library [46], RELIC [2], Lib-
sodium [8].

The results are summarised in Table 2, which shows
the average time for each protocol to generate a single
random value based on the average execution time of the
functions PartialEval and Combine. Benchmarking was
done using Catch2 [49] on a laptop running Ubuntu 18.04.
LTS with 64bit Intel Core i7-8550U processor, with 4GHz
processor speed, and 16GiB of memory. We observe that
the DDH-DVRF protocol with Ristretto255 outperforms
the Dfinity-DVRF protocol with curves offering the same
128-bit security level 2 by approximately a factor of 5.
In the case of BN256, which has the same prime field
size that Ristretto255 but lower security level, the times
for random value generation are 1.5 slower if using the
mcl library, and slower by over a factor of 10 if using
RELIC. Between the protocols with compact proofs, the
GLOW-DVRF protocol outperforms the Dfinity-DVRF
implementation on randomness generation for the same
curve by at least a factor of 2.5, and the highest performing
implementation, disregarding other factors, is therefore
the GLOW-DVRF protocol with curve BN256. How-
ever, comparing implementations with the same secu-
rity level the DDH-DVRF protocol produces the fastest
times. As mentioned in Section 4.2, the reason why our
DDH-DVRF and GLOW-DVRF constructions outper-
form Dfinity-DVRF is because the partial evaluations in
our constructions are validated using NIZKs, instead of
pairing equations as in Dfinity-DVRF. Our most expen-
sive NIZK proof involves computing 4 exp in G1, while
validating a pairing equation in Dfinity-DVRF involves
computing 2 pairings. Pairings are time-consuming: one
pairing is about 5x slower than exp in G1 as shown in mcl
benchmark [45]. Therefore computing two pairings may
be about 2.5x slower than 4 exp in G1.

The benchmarks discussed in this section can be re-
produced using the reference implementation [29] licensed
under Apache 2.0. The source code provided also allows
for separate benchmarking of the DistKG phase and ran-
domness generation with message passing for all curves
listed in Table 2. The communication between nodes is im-
plemented either locally, by means of a scheduler, or using
network connections. For the former all nodes must reside
within the same process, and can be used for running
the DistKG and DRB with simulated network latency. A
simple implementation of the latency, where each node’s

2. See https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-00.

html for a discussion of revised security strength of pairing-based
cryptographic assumptions.

latency is sampled from a Gamma distribution with some
chosen mean, is currently available. In the latter case of
network connections the nodes can be run on different
computers identified by their IP address. Each node has
an ECDSA and Diffie-Hellman key pair, which are used to
sign all outgoing messages and to set up the point-to-point
secure channels using Noise-C [53], respectively.

To further illustrate the superior performance and
practicality of our DVRF-based DRB constructions, we
have developed a ledger prototype with Tendermint-based
state machine replication [14] using Cosmos SDK [38].
In our prototype validator nodes act as DRB nodes, and
the block proposer stores in the block each DRB’s round
random value and corresponding proof using a special
transaction. The first random value appearing in a block
is used to select the leader for Tendermint consensus for
the next block. We evaluate how long it takes on average
for a at least 2/3 of the total number of validators to
agree on a random value (which guarantees that the cor-
responding beacon outputs will be stored eventually in a
block), where the beacon evaluation shares are propagated
amongst the nodes using the underlying P2P network
of Tendermint/Cosmos. The experiments have been run
using the GLOW-DVRF and Dfinity-DVRF-based DRB
protocols on Amazon EC2 t2.micro instances (1 GiB
of RAM, one virtual CPU core, 60-80 Mbit/s network
bandwidth) in the same AWS region but an artificial delay
of 200ms was added to each of the nodes. Executions
were performed both, with correct nodes only, as well as
considering up to 15% simulated node failures.

The benchmarks obtained show in particular how the
DRBs obtained through the DVRF-based generic con-
struction outperform random beacons where randomness
generation typically takes several rounds of communica-
tion [17], [41], [51], [52]. For instance, while the recently
presented Hydrand DRB [51] generates for a total of 64
nodes an average of 13 random values per minute in
a platform similar to the one used in our experiments,
our GLOW-DVRF-based DRB generates approximately
100 random outputs per minute, which represents approx-
imately x9 better throughput. With regards to verification
performance, Hydrand reports that an external client can
publicly verify the correctness of a round’s random beacon
in 57ms with a proof size of 26624 bytes in a setting
with 128 nodes, whereas for both our pairing-based DRBs
verification takes approximately 1.8ms with a proof size of
48 bytes (independently of the number of nodes). Even for
our DDH-DVRF-based DRB with non-compact proofs,
the proof size is only 6464 bytes for a similar number of
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Protocol Curve Library Security Proof size Randomness Time Ratio Assumption
Level (bytes) Generation (ms)

GLOW-DVRF

BN256 mcl 100 32 7.38 0.69
co-CDH
XDH

BLS12-381 mcl 128 48 18.67 1.75
BN384 mcl 128 48 21.39 2.00
BN P256 RELIC 100 33 33.16 3.10

DDH-DVRF
Ristretto255 Libsodium 128 1664 10.70 1

DDH
Curve25519 RELIC 128 1664 65.97 6.17

Dfinity-DVRF

BN256 mcl 100 32 18.81 1.76

co-CDH
BLS12-381 mcl 128 48 55.79 5.22
BN384 mcl 128 48 60.73 5.68
BN P256 RELIC 100 33 138.36 12.94

Protocol Curve Library Security Proof size Randomness Time Ratio Assumption
Level (bytes) Generation (ms)

GLOW-DVRF

BN256 mcl 100 32 29.06 0.68
co-CDH
XDH

BLS12-381 mcl 128 48 71.91 1.68
BN384 mcl 128 48 80.15 1.87
BN P256 RELIC 100 33 132.92 3.10

DDH-DVRF
Ristretto255 Libsodium 128 6464 42.91 1

DDH
Curve25519 RELIC 128 6464 285.59 6.66

Dfinity-DVRF

BN256 mcl 100 32 74.01 1.72

co-CDH
BLS12-381 mcl 128 48 215.34 5.02
BN384 mcl 48 128 228.54 5.33
BN P256 RELIC 100 33 566.21 13.20

Table 2: Time ratios per individual node for each protocol to generate one round of entropy for total number of nodes � = 50 (upper
table) and � = 200 (lower table), with threshold value t = �/2. These figures do not take into account latency due to communicating
partial evaluations between nodes.

Table 3: Average randomness generation time for different num-
bers of nodes n with no failures and 15% simulated failures on a
Cosmos/Tendermint-compatible ledger for Dfinity-DVRF and
GLOW-DVRF-based DRBs

nodes.
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Appendix A.
Additional DVRF Definitions

Definition A.1 (Consistency). A t-out-of-� DVRF
V = (DistKG,PartialEval,Combine,Verify) is said to
be consistent if: for any (QUAL, pk,VK,SK) ←
DistKG(1λ, t, �) run by � nodes among which up to
t nodes are corrupted, any plaintext x ∈ Dom, any
two subsets U,U ′ ⊆ QUAL of size at least t + 1, it
holds that (v, π)← Combine(pk,VK, x, {(i, vi, πi)}i∈U ),
(v′, π′) ← Combine(pk,VK, x, {(j, v′j , π′j)}j∈U ′) and
v = v′ �= ⊥, where (i, vi, πi) ← PartialEval(x, ski, vki)
for each i ∈ U , (j, v′j , π

′
j) ← PartialEval(x, skj , vkj) for

each j ∈ U ′.

Definition A.2 (Robustness). A t-out-of-� DVRF proto-
col V = (DistKG,PartialEval,Combine,Verify) on nodes
N = {N1, . . . , N�} satisfies robustness if for all PPT
adversaries A, the following experiment outputs 1 with
negligible probability.
[Corruption] A chooses a collection C of nodes to be

corrupted with |C| ≤ t. Adversary A acts on behalf
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of corrupted nodes, while the challenger acts on
behalf of the remaining nodes, which behave honestly
(namely they follow the protocol specification).

[Initialization] Challenger and adversary engage in
running the distributed key generation protocol
DistKG(1λ, t, �). After this phase, the protocol estab-
lishes a qualified set of nodes QUAL. Every (honest)
node Nj ∈ QUAL\C obtains a key pair (skj , vkj). In
contrast, (corrupted) nodes Nj ∈ C end up with key
pairs (skj , vkj) in which one of keys may be undefined
(i.e. either skj = ⊥ or vkj = ⊥). At the end of this
phase, the global public key pk and the verification
keys vector VK is known by both the challenger and
the attacker.

[Query] In response to A’s evaluation query (Eval, x, i)
for some honest node Ni ∈ QUAL \ C and
plaintext x ∈ Dom, the challenger returns six ←
PartialEval(x, ski, vki). In any other case, the chal-
lenger returns ⊥.

[Challenge] The challenger receives from A a set U ⊆
QUAL, of size at least t + 1, a plaintext x� ∈ Dom
and a set of evaluation shares {(i, vi, πi)}i∈U∩C
corresponding to nodes under adversarial control.
Challenger proceeds to compute the partial evalu-
ations corresponding to honest nodes as (i, vi, πi)
← PartialEval(x�, ski, vki) for i ∈ U \ C. Let
(v�, π�) ← Combine(pk,VK, x�, {(i, vi, πi)}i∈U ). If
v� �= ⊥ and Verify(pk,VK, x�, v�, π�) = 0 then
output 1; else, output 0.

In the above experiment the output value v� is ob-
tained by running the combine function on a set that
contains adversarial inputs. Robustness demands that if
the combine function does not return ⊥ then its output
must pass the verification test even in the presence of the
adversary’s inputs.

Definition A.3 (Uniqueness). A t-out-of-� DVRF protocol
V satisfies uniqueness if for all PPT adversaries A, the
following experiment outputs 1 with negligible probability.

[Corruption and Initialization] these two phases are de-
fined exactly as in Definition A.2 (Robustness).

[Query] The adversary A can issue evaluation query and
key revealing query.
• In response to A’s evaluation query (Eval, x, i)

for some honest node Ni ∈ QUAL \ C and
plaintext x ∈ Dom, the challenger returns six ←
PartialEval(x, ski, vki). In any other case, the chal-
lenger returns ⊥.

• In response to A’s key revealing query (KeyRev, j)
for some honest node Nj ∈ QUAL \ C, the chal-
lenger returns skj .

[Challenge] The challenger receives from the adver-
sary A, a plaintext x� ∈ Dom, two values
v, v′ ∈ Ran and two proofs π, π′. If v �= v′ and
Verify(pk,VK, x, v, π) = Verify(pk,VK, x, v′, π′) =
1 then output 1; else, output 0.
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