
Nontransitive Policies Transpiled

Mohammad M. Ahmadpanah*, Aslan Askarov†, and Andrei Sabelfeld*

*Chalmers University of Technology
†Aarhus University

Abstract—Nontransitive Noninterference (NTNI) and Nontran-
sitive Types (NTT) are a new security condition and enforcement
for policies which, in contrast to Denning’s classical lattice
model, assume no transitivity of the underlying flow relation.
Nontransitive security policies are a natural fit for coarse-grained
information-flow control where labels are specified at module
rather than variable level of granularity.
While the nontransitive and transitive policies pursue different

goals and have different intuitions, this paper demonstrates
that nontransitive noninterference can in fact be reduced to
classical transitive noninterference. We develop a lattice encoding
that establishes a precise relation between NTNI and classical
noninterference. Our results make it possible to clearly position
the new NTNI characterization with respect to the large body
of work on noninterference. Further, we devise a lightweight
program transformation that leverages standard flow-sensitive
information-flow analyses to enforce nontransitive policies. We
demonstrate several immediate benefits of our approach, both
theoretical and practical. First, we improve the permissiveness
over (while retaining the soundness of) the nonstandard NTT en-
forcement. Second, our results naturally generalize to a language
with intermediate inputs and outputs. Finally, we demonstrate
the practical benefits by utilizing state-of-the-art flow-sensitive
tool JOANA to enforce nontransitive policies for Java programs.

I. INTRODUCTION

Modern approaches to secure information flow follow Den-

ning’s classical model [8]. This model maps information to

security levels and uses a flow relation that regulates how

information can move between the levels. Under Denning’s

model, when data moves from one security level to another

one, it effectively looses its original security classification.

Denning therefore argues that in such a model, the flow

relation must be transitive, which has been the convention for

a large body of work on information flow control [32], [26],

[13].

Nontransitive policies In recent work, Lu and Zhang [17]

observe that in certain scenarios, the transitivity requirement

is in fact undesirable. This is most apparent when security

policies are specified in a coarse-grained manner, i.e., at the

level of mutually-distrustful components in an application. For

example, “component Alice may trust only another component

Bob with her information, however due to implied transitive

relations, her information may flow not only to Bob but also in-

directly to all components that Bob trusts, which is undesirable

for Alice” [17]. Another, more fine-grained example, is that of

user policies in a social network stipulating that “my friends

can access my personal data but not friends of my friends”.

To semantically characterize such security requirements, Lu

and Zhang propose the notion of nontransitive noninterference

(NTNI) and propose a specially designed type system to

statically enforce it.

Nontransitive noninterference is not to be confused with

intransitive noninterference [25], [23], [18], [30], a popular

model for declassification. Although both nontransitive and

intransitive policies assume flow relations are not transitive,

there is a conceptual difference between them. Assuming a

flow relation with flows from A to B and from B to C
but not from A to C, intransitive noninterference allows A’s
information to indirectly flow to C as long as the information

passes through a declassifier. In contrast, nontransitive policy

forbids all flows from A to C. Section VII elaborates the

relation in detail.

NTNI is introduced by a nonstandard security characteriza-

tion and a specialized type system [17]. The question remains

open whether the mainstream machinery of information-flow

control reasoning and enforcement can be leveraged for track-

ing NTNI.

This paper answers this question positively by showing how

to encode nontransitive noninterference via classical transi-

tive noninterference. Our encoding makes it possible to use

standard transitive techniques for information-flow control to

enforce nontransitive policies and thus address the coarse-

grained scenarios that motivate them. This has substantial

practical benefits, making it possible to deploy information-

flow concepts and tools to achieve nontransitive security.

We argue that flow-sensitive analysis is a natural fit for the

component-based scenario, where developers are not required

to provide fine-grained annotations at the level of variables.

We devise a lightweight program transformation to lever-

age flow-sensitive information-flow analysis to enforce NTNI.

Thanks to the flow-sensitivity of the analysis, the type system

verifies which variables are affected by what components,

enforcing component-level security. We implement a proto-

type of the transpiler, i.e., program transformer and policy

translator, and leverage flow-sensitive static tool JOANA [11]

to demonstrate our approach in practice.

Contributions The contributions of this paper are:

∙ We show that the definition of NTNI can be reduced to

classical transitive noninterference through a lattice encoding

(Section II).

∙ We leverage our encoding to show how an existing flow-

sensitive information-flow type system can enforce the

coarse-grained policies that motivate NTNI in the first place

(Section III).

543

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Mohammad M. Ahmadpanah. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00043

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
43

∙ We extend our results to a language supporting interaction

through input and output commands (Section IV).

∙ We develop a prototype that translates NTNI policy to a

classical transitive setting and uses JOANA static analysis

tool (Section V).

II. SECURITY CHARACTERIZATION TRANSPILED

All permitted flows between security levels are expressed

explicitly under nontransitive policies, as opposed to the

traditional way [8] of policy specification where security

levels constitute a partially ordered set. Nontransitive policies

only have reflexive property, yet expressive enough to include

other properties such as transitivity and antisymmetry among

arbitrary selections of levels.

This section shows how nontransitive noninterference can

be modeled as transitive noninterference using a power-lattice

encoding. Throughout the paper, we use a running example

adopted from Lu and Zhang [17] to discuss how the tran-

spilation works. We formalize the security notions and prove

the relation between these two approaches to define a security

policy.

Running example Figure 1 shows our running example con-

sisting of three components named Alice, Bob, and Charlie.
The security policy stipulates that Bob is allowed to read

Alice’s information and Charlie is allowed to read Bob’s
information. At the same time, no information flow from Alice
is allowed to Charlie.
Based on the policy, Bob can only send information to

Charlie if it is not influenced by Alice, as illustrated in

Figure 2. A transitive policy would presume that if information

may flow from Alice to Bob and from Bob to Charlie, then
it may also flow from Alice to Charlie. This is not the

case in this example. Since nontransitive policies specify all

permitted flows explicitly, the information flow from Alice
to Charlie would be considered as desired only if it was

explicitly stated in the policy. It is indeed easy to see that

nontransitive policies are a generalization of transitive ones

1 Alice {
2 data;
3 main() {
4 Bob.receive(data);
5 Bob.good();
6 Bob.bad();
7 }
8 }
9 Bob {

10 data1;
11 data2;
12 receive(x) { data1 = x; }
13 good() { Charlie.receive(data2); }
14 bad() { Charlie.receive(data1); }
15 }
16 Charlie {
17 data;
18 receive(x) { data = x; }
19 }

Figure 1: Running example [17].

Alice Bob Charlie

A B C

Figure 2: Nontransitive policy for the running example.

because transitive closures can be stated as permitted flows to

preserve the transitive property.

Using a coarse-grained information-flow control is sufficient

to specify the intended policy. Consider the labels A, B, and C
for the components Alice, Bob, and Charlie, respectively. We

specify the nontransitive policy using an arbitrary information

flow relation ⊵ 1, written A⊵B and B⊵C, which specifies that
information from security level A can flow to security level B
and from B to C. It also stipulates any other information flows
between the levels are disallowed. For instance, information

from security level A must not flow to C, directly or through

any other components.

For the sake of simplicity, we rewrite the example program

in a model language (without support for object-orientation)

that demonstrates the explicit flows arisen from data depen-

dencies between component variables. In the program shown

in Figure 3, Comp.var denotes the variable var belongs to the

component Comp.

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.good()
4 Charlie.data := Bob.data2;
5 // Bob.bad()
6 Charlie.data := Bob.data1;

Figure 3: Simplified version of the running example.

To track flows between component variables, we label

all variables of a component with the security label of the

component. By extending the labeling function for variables

of components, we classify Alice.data as A, Bob.data1 and

Bob.data2 as B, and Charlie.data as C. The program does

not satisfy nontransitive noninterference because there is an

illegal flow from A to C; the content of Alice.data is directly

transmitted to Charlie.data via Bob.data1. If the program,

however, did not include the bad method in Bob, it would be

secure with respect to the nontransitive policy.

A. Security notions
We now present our model language and formal defini-

tions of security notions, i.e., transitive and nontransitive

noninterference for programs. To model the essence of these

characterizations, we assume a simple batch-job setting where

only the initial and final memories are observable (before and

after program execution). We will show how to extend our

results to a language with I/O in Section IV.

1As a visual cue, we will use the green color for nontransitive and blue
color for transitive notions throughout the paper.

544

e ::= v | x | e⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c; c

Figure 4: Language syntax.

Expression Evaluation

⟨v,M⟩ ⇓ v
(VALUE)

⟨x,M⟩ ⇓ M(x)
(READ)

⟨e1,M⟩ ⇓ v1 ⟨e2,M⟩ ⇓ v2
⟨e1 ⊕ e2,M⟩ ⇓ v1 ⊕ v2

(OPERATION)

Command Evaluation

⟨skip,M⟩ → ⟨stop,M⟩ (SKIP)

⟨e,M⟩ ⇓ v M′ = M[x → v]
⟨x ∶= e,M⟩ → ⟨stop,M′⟩ (WRITE)

c = if e then ctrue else cfalse ⟨e,M⟩ ⇓ b

⟨c,M⟩ → ⟨cb,M⟩ (IF)

c = while e do cbody ⟨e,M⟩ ⇓ true

⟨c,M⟩ → ⟨cbody; c,M⟩ (WHILE-T)

c = while e do cbody ⟨e,M⟩ ⇓ false

⟨c,M⟩ → ⟨stop,M⟩ (WHILE-F)

⟨c1,M⟩ → ⟨c′1,M′⟩
⟨c1; c2,M⟩ → ⟨c′1; c2,M′⟩ (SEQ-I)

⟨stop; c,M⟩ → ⟨c,M⟩ (SEQ-II)

Figure 5: Language semantics.

Programs consist of multiple code components and a mem-

ory M ∶ Var → Val, a (total) mapping from a set of variables

Var to a set of values Val, partitioned by components Cmp
of the program. A variable x𝛼 ∈ Var denotes x is allocated

at 𝛼 ∈ Cmp. We write x where the component name is

unused. Using coarse-grained labeling, each component maps

to a security label, written ΓCmp ∶ Cmp → L. As a result,

all variables of a component are annotated with the same

label. Formally, ∀𝛼 ∈ Cmp.∀x𝛼 ∈ Var.Γ(x𝛼) = ΓCmp(𝛼) where
Γ ∶ Var → L. Note that we use Varc for the set of variables

that exist in program c.
Figures 4 and 5 illustrate the syntax and semantics of our

model language. An execution configuration ⟨c,M⟩ is a pair

of a command c and a given memory M, and → introduces

the transition relation between configurations. For expressions,

⟨e,M⟩ ⇓ v denotes an expression e evaluates to a value v under
a memory M. We write →∗ for the reflexive and transitive

closure of the → relation, and →n for the n-step execution of

→.

We adopt termination-insensitive [32] noninterference that

ignores information leaks resulted from termination behavior

of the given program. NTNI is introduced by a termination-

insensitive notion for batch-job programs [17]. We extend the

model language to support I/O and lift the security notion to

progress-insensitive [3].

Note that the choices of termination- and progress-

sensitivity are orthogonal to nontransitivenesses of policies.

Our results (in particular, the lattice encoding) can be thus

replayed for other variants of noninterference.

Transitive Noninterference (TNI) For a given program,

classical noninterference guarantees if two memories agree on

variables at level 𝓁 and lower, memories after the execution of
the program also agree on the variables at level 𝓁 and lower.

Accordingly, an observer at level 𝓁 can see the values of the

variables labeled as 𝓁 or lower, called 𝓁-observable values.

Transitive noninterference stipulates 𝓁-observable final values
of a program only depend on initial values from 𝓁 or lower

levels.

A transitive security policy is a triple = ⟨L , ⊑,Γ ⟩
where L is a set of security labels and ⊑ ⊆ L × L is a

binary relation that forms a partially ordered set (reflexivity,

asymmetry, transitivity) on L and specifies permitted flows

between security levels. A labeling function Γ ∶ Var → L
maps a variable to a security label.

Transitive indistinguishability relation (=) for a security

label 𝓁 ∈ L is defined as follows. Two memories are

indistinguishable at level 𝓁 if and only if values of variables

observable at the level 𝓁 and lower are the same.

Definition 1 (Transitive Memory Indistinguishability). Two
memories M1 and M2 are transitively indistinguishable
at level 𝓁 ∈ L , written M1

𝓁= M2 if and only if
∀x ∈ Var.Γ (x)⊑ 𝓁 ⇐⇒ M1(x) = M2(x).

We define transitive noninterference based on the indistin-

guishability relation between memories. A (batch-job) pro-

gram c satisfies termination-insensitive transitive noninterfer-
ence, written TNITI(, c), when for any two memories indis-

tinguishable at level 𝓁 ∈ L , the computation of the program

c terminates for both and the 𝓁-observer cannot distinguish
the final memories.

Definition 2 (Termination-Insensitive Transitive Noninter-
ference). A program c satisfies TNITI(, c) if and only
if ∀𝓁 ∈ L .∀M1,M2.

(
M1

𝓁= M2 ∧ ⟨c,M1⟩→∗⟨stop,M′
1⟩ ∧

⟨c,M2⟩→∗⟨stop,M′
2⟩
)

⇐⇒ M′
1
𝓁= M′

2.

Nontransitive Noninterference (NTNI) The nontransitive

notion of noninterference demands that for a given program,

changes on variables at security level 𝓁 can only influence

variables at the levels allowed by the policy. In this condition,

𝓁-observable values are the content of variables labeled as 𝓁.
Hence, nontransitive noninterference ensures that 𝓁-observable
final values are only dependent on those initial values that can
flow to 𝓁, as stated in the policy.

545

A nontransitive security policy is a triple

 = ⟨L , ⊵ ,Γ ⟩ where L is a set of security labels,

Γ ∶ Var → L is a labeling function, and ⊵ is an

arbitrary flow relation specifying permitted flows (can-flow-to
relation [8]). We define C(𝓁) = {𝓁′|𝓁′ ⊵ 𝓁} as the set of

levels that can flow to 𝓁, including itself. The only condition

for the relation is to be reflexive; no other properties, such as

transitivity, are required.

Nontransitive indistinguishability relations (=) for a se-

curity label 𝓁 ∈ L and a set of security labels ⊆ L are

defined below. Two memories are indistinguishable at level 𝓁
if variables of the level 𝓁 have the same values in those two.

Consistently, the relation holds for a set of labels if variables

of any level existing in the set be mapped to same values in

the two memories.

Definition 3 (Nontransitive Memory Indistinguishability). Two
memories M1 and M2 are nontransitively indistinguishable
at level 𝓁 ∈ L , written M1

𝓁= M2, if and only if
∀x ∈ Var.Γ (x) = 𝓁 ⇐⇒ M1(x) = M2(x). The memories
are indistinguishable for a set of security levels ⊆ L ,
written M1

= M2, if and only if ∀x ∈ Var.Γ (x) ∈ ⇐⇒

M1(x) = M2(x).

We use the indistinguishability relation between memories

to define nontransitive noninterference. A (batch-job) pro-

gram c satisfies termination-insensitive nontransitive nonin-
terference, written NTNITI(, c), if for any two memories

indistinguishable for the set of levels may influence variables

at 𝓁 ∈ L , the program c gets terminated for both and the

𝓁-observer cannot distinguish the final memories.

Definition 4 (Termination-Insensitive Nontransitive Noninter-
ference). A program c satisfies NTNITI(, c) if and only
if ∀𝓁 ∈ L .∀M1,M2.

(
M1

C(𝓁)= M2 ∧ ⟨c,M1⟩→∗⟨stop,M′
1⟩ ∧

⟨c,M2⟩→∗⟨stop,M′
2⟩
)

⇐⇒ M′
1
𝓁= M′

2.

B. Relationship between NTNI and TNI
We first prove that NTNI is a generalization of TNI, and

then for the other side, we introduce the transpilation from

NTNI to TNI and discuss how a nontransitive policy can

be seen as transitive. We present an encoding to convert

nontransitive policies to transitive ones and show if a program

is secure with respect to a nontransitive policy, then a se-

mantically equivalent program satisfies an equivalent transitive

policy and vice versa.

Theorem 1 (From TNITI to NTNITI). For any program c
and any transitive security policy = ⟨L , ⊑,Γ ⟩, there

exists a nontransitive security policy = ⟨L , ⊵ ,Γ ⟩
where L = L , ⊵ = ⊑∗, and Γ = Γ such that

TNITI(, c) ⇐⇒ NTNITI(, c). Formally,

∀c.∀ .∃ . TNITI(, c) ⇐⇒ NTNITI(, c).

Proof. To conserve space, the proofs of all statements can

be found in the online appendix in the supplementary materi-

als [1].

{}

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Asource,Asink Bsource Csource

Bsink Csink

Figure 6: The powerset lattice for the running example.

The transpilation from NTNI to TNI includes mapping the

nontransitive policy to the corresponding transitive one and

rewriting the given program to be compatible with the policy

encoding. We establish a powerset lattice with the set of

security levels. To connect these two policies together, we

should map the components and their variables to the transitive

labels. Prior to labeling variables, a transformation in the

program is needed, which we call canonicalization.
In nontransitive policies, A⊵B means information from the

source level A can flow to the sink level B. Therefore, we allo-
cate two fresh variables for each component variable to capture

the source and sink of information. We prepend a sequence of

assignments from source variables to the component variables,

and we append assignments from the component variables to

sink variables. Then, we can label source and sink variables

separately with respect to the encoding to preserve the notion

of nontransitive policy.

Running exampleWe describe the transpilation from NTNI to

TNI for the running example shown in Figure 3. We form the

powerset lattice of labels used in the nontransitive policy as

the set of labels for the corresponding transitive policy, i.e.,

L = ℘({A,B,C}) and ⊑ =⊆ (see Figure 6). We transform

the program to be able to capture the notion of nontransitive

noninterference by assigning labels to variables. We add two

fresh variables for each component variable in the given

program to differentiate the source and sink of information

and label them according to the definition of NTNI.

Figure 7 demonstrates the program after the transformation,

which we call it the canonical version of the program. It

consists of three sections: (1) initial assignments from a

(source) variable to a temp variable (lines 2-5), (2) a copy of

the program where variables are replaced by temp variables

(lines 7-9), and (3) final assignments from temp to sink
variables (lines 12-15). It is obvious that the meaning of the

program is preserved in the transformation.

Next, we define the new labeling function for component

variables. As illuminated by annotations in Figure 6, for any

component variable Comp.x that the component Comp is labeled
as 𝓁 in nontransitive policy, we label (source) variables Comp.x
as {𝓁}, Comp.x_temp as the top element of the security lattice,

i.e., the set of all nontransitive labels, and Comp.x_sink as the

set of nontransitive labels that can flow to the variable, i.e.,

C(𝓁). Thus, information flows from source variables (labeled

{𝓁}) to sink variables (labeled C(𝓁)) are carried through

internal temp variables. In Section III, we show how the

546

1 // init
2 Alice.data_temp := Alice.data;
3 Bob.data1_temp := Bob.data1;
4 Bob.data2_temp := Bob.data2;
5 Charlie.data_temp := Charlie.data;
6
7 Bob.data1_temp := Alice.data_temp;
8 Charlie.data_temp := Bob.data2_temp;
9 Charlie.data_temp := Bob.data1_temp;

10
11 // final
12 Alice.data_sink := Alice.data_temp;
13 Bob.data1_sink := Bob.data1_temp;
14 Bob.data2_sink := Bob.data2_temp;
15 Charlie.data_sink := Charlie.data_temp;

Figure 7: Canonical version of the running example.

presented type system updates the type of temp variables

based on data and control flows and verifies whether the final

assignments are secure.

Having the described labeling function, the canonical ver-

sion of the given program does not satisfy the transitive policy.

By tracking the sequence of lines 2, 7, 9, and 15 in Figure 7, an

explicit flow from {A} (level of Alice.data) to {B,C} (level
of Charlie.data_sink) is identified, which is not permitted

with respect to the transitive policy ({A} ⊈ {B,C}). However,
similar to the original program and the nontransitive policy, if

the program did not include the undesired flow, the program

would be considered secure.

Program canonicalization Algorithm 1 explains the trans-

formation for batch-job programs. First, for each vari-

able x in the program, we allocate two fresh variables

xtemp, xsink ∈ Var ⧵ Varc, and then apply the following trans-

formation on the given program. We use ++ to denote the

operator for string concatenation and the notation c [x → xtemp]
indicates renaming all occurrences of x in program c to xtemp
(in a capture-avoiding manner). We use Vartemp and Varsink to
point to the set of temp and sink variables, respectively.

Algorithm 1: Canonicalization algorithm for batch-job

programs.

Input : Program c
Output: Program Canonical(c)
init ∶= “ ”

final ∶= “ ”

foreach x ∈ Varc do
c [x → xtemp]
init ∶= init ++ “xtemp ∶= x; ”
final ∶= final ++ “; xsink ∶= xtemp”

end
Canonical(c) ∶= init ++ c ++ final
return Canonical(c)

We prove that the canonical version of the program keeps

the meaning and termination behavior of the original program,

yet the final values of variables are in the sink variables.

Lemma 1 (Semantic Equivalence Modulo Canonicalization).
For any program c, the semantic equivalence ≃C between

the programs c and Canonical(c) holds, where c ≃C c′
def
=

∀M.
(⟨c,M⟩→∗⟨stop,M′⟩ ⇐⇒ ⟨c′,M⟩→∗⟨stop,M′′⟩) ∧

∀x ∈ Varc.
(
M′(x) = M′′(xtemp) = M′′(xsink) ∧M(x) = M′′(x)

)
.

The following lemmas are intermediate steps to show how

a nontransitive policy on a given program is reduced to a tran-

sitive policy using the powerset lattice resulted from the set of

nontransitive labels in combination with the canonical version

of the program. Lemma 2 proves that the transformation holds

a program secure with respect to a nontransitive policy if and

only if the original program is secure.

Lemma 2 (NTNITI Preservation under Canonicalization).
Any program c is secure with respect to a nontransi-

tive security policy if and only if the canonical pro-

gram Canonical(c) is secure where ∀x ∈ Varc.Γ (xtemp) =
Γ (xsink) = Γ (x). Formally,

∀c.∀ .NTNITI(, c) ⇐⇒ NTNITI(,Canonical(c)).

We define the powerset encoding of a nontransitive policy

to a transitive policy for canonical programs as follows.

Definition 5 (Transitive Encoding of Nontransitive Poli-
cies). Given a nontransitive policy = ⟨L , ⊵,Γ ⟩
and a program c, the corresponding transitive policy =
⟨L , ⊑,Γ ⟩ on the canonical version of the program is
L = ℘(L),⊑ =⊆, and

∀x ∈ Varc.

⎧⎪⎨⎪⎩

Γ (x) = {Γ (x)}
Γ (xtemp) = L
Γ (xsink) = C(Γ (x))

.

As stated in Definition 5, the initial and final values of

an 𝓁-observable variable x of the given program are {𝓁}-
and C(𝓁)-observable in the canonical version, respectively.

Also, temp variables are internal and the top-level observer

only can see their final values, thus L -observable. The next

lemma demonstrates for any canonical program satisfying

a nontransitive policy, the program also complies with a

corresponding transitive policy and vice versa.

Lemma 3 (From NTNITI to TNITI for Canonical
Programs). Any canonical program Canonical(c) is

secure with respect to a nontransitive security policy

 where ∀x ∈ Varc.Γ (xtemp) = Γ (xsink) = Γ (x) if

and only if the canonical program is secure according

to the corresponding transitive security policy .

We write ∀c.∀ .∃ . NTNITI(,Canonical(c)) ⇐⇒
TNITI(,Canonical(c)).

Finally, by connecting the previous lemmas, we prove that

any nontransitive policy on a given program can be modeled

as a transitive policy on the canonical version of the program.

Given Theorems 1 and 2, the two notions of transitive and

nontransitive noninterference coincide.

547

Transpiler
Flow-Sensitive
Type System

Program

Nontransitive
Policy

Transformed
Program

Transitive
Policy

Accept/Reject

Figure 8: Composition of transpiler and enforcement mecha-

nism.

Theorem 2 (From NTNITI to TNITI). For any program c
and any nontransitive security policy = ⟨L , ⊵ ,Γ ⟩,
there exist a semantically equivalent (modulo canoni-

caliztion) program c′ and a transitive security policy

 = ⟨L , ⊑,Γ ⟩, as specified in Definition 5, such that

NTNITI(, c) ⇐⇒ TNITI(, c′). Formally,

∀ .∀c.∃ .∃c′. c ≃C c′ ∧ NTNITI(, c) ⇐⇒ TNITI(, c′).

III. ENFORCEMENT TRANSPILED

The proposed enforcement mechanism for nontransitive

policies [17] is a type system that does not use subtyping, the

classical way to check transitive types, for information flow

verification. Instead, it tracks dependencies between program

variables and collects all security labels of flows into a

component variable throughout the program. Then it checks

whether the flows comply with the specified policy. Therefore,

the type system can enforce both nontransitive and transitive

policies.

To enforce a nontransitive policy, however, we can benefit

from the transpilation introduced in Section II and devise a

transitive type system for canonical programs. We employ a

(vanilla) flow-sensitive type system [14] enforcing the corre-

sponding transitive policy on transformed programs. The flow-

sensitivite type system investigates how components influence

variables of the program. Figure 8 illustrates the composition

of the transpiler and the enforcement mechanism.

We prove soundness of our transitive type system (Fig-

ure 9a) and investigate how it relates to the nontransitive type

system. Inspired by the notion, we present a nontransitive

type system for our model language (Figure 9b) and prove

the soundness property. Then, we show that the flow-sensitive

transitive type system accepts more secure programs compared

to the nontransitive one.

A. Enforcement mechanism
We present a flow-sensitive type system that enforces tran-

sitive policies for canonical programs. The type system allows

updates of security types through typing the program. When

an expression is assigned to a variable, the security type of the

variable changes to the join of security types of the expression

and the program counter, to capture explicit and implicit flows

(arisen from control dependencies) to the variable.

For a command c, judgments are in the form of pc⊢Γ{c} Γ′,
where pc ∈ L is the program counter label and the typ-

ing environment Γ ∶ Var → L will be updated to Γ′ after
execution of c. We make use of the structure of canonical

programs in the typing rules, presented in Figure 9a. The two

rules for assignments (rules TT-WRITE-I and TT-WRITE-II)

represent the essence of the type system. We know that only

temp and sink variables can be on the left-hand side of

an assignment in a canonical program. Assignments to sink
variables occur at the end of the program, i.e., the final section,

where the right-hand side of assignments are temp variables

(rule TT-WRITE-II). The type system allows changes to the

security types, except for sink variables, whose initial types

must be kept (rule TT-SUB). Otherwise, upgrading security

levels of sink variables might violate the soundness property

of the type system.

Running example Given the policy specified in the running

example, the type system rejects the canonical program shown

in Figure 7. The initial types of the variables are the sets of

labels introduced in Definition 5. Applying the typing rules,

the types of the variables Alice.data_temp, Bob.data1_temp,
and Charlie.data_temp are (at least) the same as the type

of Alice.data, which is {A}. The assignments in the final

section are well-typed except for the last one, where the type

of Charlie.data_sink is the set of labels can flow to C, i.e.,
{B,C}. Since {A} ⊈ {B,C}, the program is ill-typed with

respect to the given nontransitive policy. We will discuss more

examples in Section V.

The next theorem states soundness of the flow-sensitive type

system, which means if the type system accepts a canonical

program, then the program satisfies the transitive noninterfer-

ence, and consequently, the original program complies with

the nontransitive policy.

Theorem 3 (Soundness of Flow-Sensitive Transitive Type
System).

pc⊢Γ {Canonical(c)} Γ′ ⇐⇒ TNITI(,Canonical(c)).

B. Relationship between nontransitive and flow-sensitive tran-
sitive type systems
The core idea of Lu and Zhang’s type system [17] is tracking

data and control dependencies between program variables

through type inference on information propagation history.

Then it guarantees flow relations from inferred labels of

dependencies to the specified label of the variable are stated

in the policy. Their flow-insensitive type system captures all

possible dependencies to a variable; thus it becomes less

permissive in comparison with a flow-sensitive type system.

Given the semantic relationship between nontransitive and

transitive policies, we demonstrate our flow-sensitive transi-

tive type system accepts all the well-typed programs in the

nontransitive type system, and more secure programs.

We present a nontransitive type system for our imperative

model language based on the essence of their type system. It

aggregates security labels of data and control dependencies of

variables through the program. For each assignment x ∶= e,
the type system checks permission of information flows from

the collected labels of the expression e and the program

counter to the specified label of the variable x.
Typing judgments are in the form of ,Γ, pc⊢ c ∶ t that

indicates the type t is assigned to the command c with

respect to the program counter label pc ⊆ L in the typing

548

Γ⊢ v ∶ ⊥ (TT-VALUE) Γ⊢ v ∶ ∅ (NT-VALUE)

Γ⊢ x ∶ Γ(x) (TT-READ) Γ⊢ x ∶ Γ(x) (NT-READ)

Γ⊢ e1 ∶ t1 Γ⊢ e2 ∶ t2
Γ⊢ e1 ⊕ e2 ∶ t1 ⊔ t2

(TT-OPERATION)
Γ⊢ e1 ∶ t1 Γ⊢ e2 ∶ t2
Γ⊢ e1 ⊕ e2 ∶ t1 ∪ t2

(NT-OPERATION)

pc⊢Γ{skip} Γ (TT-SKIP) ,Γ, pc⊢ skip ∶ t (NT-SKIP)

Γ⊢ e ∶ t x ∈ Vartemp
pc⊢Γ{x ∶= e} Γ[x → pc ⊔ t] (TT-WRITE-I) Γ⊢ e ∶ t Γ⊢ x ∶ t

∀𝓁 ∈ t ∪ pc.𝓁 ∈ Γ(x) ∧ 𝓁⊵(x)
 ,Γ, pc⊢ x ∶= e ∶ t

(NT-WRITE)x′ ∈ Vartemp x ∈ Varsink
pc ⊔ Γ(x′)⊑Γ(x)
pc⊢Γ{x ∶= x′} Γ

(TT-WRITE-II)

Γ⊢ e ∶ t
pc ⊔ t⊢Γ{ctrue} Γ′
pc ⊔ t⊢Γ{cfalse} Γ′

pc⊢Γ{if e then ctrue else cfalse} Γ′
(TT-IF)

Γ⊢ e ∶ t1
 ,Γ, pc ∪ t1 ⊢ ctrue ∶ t2
 ,Γ, pc ∪ t1 ⊢ cfalse ∶ t2

 ,Γ, pc⊢ if e then ctrue else cfalse ∶ t1 ∪ t2
(NT-IF)

Γ⊢ e ∶ t pc ⊔ t⊢Γ{cbody} Γ
pc⊢Γ{while e do cbody} Γ

(TT-WHILE)
Γ⊢ e ∶ t1 ,Γ, pc ∪ t1 ⊢ cbody ∶ t2
 ,Γ, pc⊢while e do cbody ∶ t1 ∪ t2

(NT-WHILE)

pc⊢Γ{c1} Γ′ pc⊢Γ′{c2} Γ′′

pc⊢Γ{c1; c2} Γ′′
(TT-SEQ)

 ,Γ, pc⊢ c1 ∶ t1 ,Γ, pc⊢ c2 ∶ t2
 ,Γ, pc⊢ c1; c2 ∶ t1 ∪ t2

(NT-SEQ)

pc1 ⊢Γ1{c} Γ′1
pc2 ⊑ pc1 Γ2 ⊑Γ1 Γ′1 ⊑Γ

′
2

∀x ∈ Varsink.Γ1(x) = Γ2(x) = Γ′1(x) = Γ′2(x)
pc2 ⊢Γ2{c} Γ′2

(TT-SUB)

Γ⊢ e ∶ t1 t1 ⊆ t2
Γ⊢ e ∶ t2

(NT-SUB-I)

 ,Γ, pc1 ⊢ c ∶ t1
pc2 ⊆ pc1 t1 ⊆ t2
 ,Γ, pc2 ⊢ c ∶ t2

(NT-SUB

549

The counterexample program in Figure 10 demonstrates

the theorem does not hold in the other direction; there is

a well-typed program according to the flow-sensitive rules,

which gets rejected by the nontransitive type system. If we

swap the last two statements of the running example, as

shown in Figure 10, the nontransitive type system still rejects

the program; types of both sides of an assignment must be

the same (rule NT-WRITE). The flow-sensitive type system,

however, accepts the program because it detects that the last

assignment overwrites the final value of Charlie.data and

updates the label accordingly (rule TT-WRITE-I). It can be

shown that adding flow-sensitivity flavor to the nontransitive

type system enhances precision to the same level offered by

the flow-sensitive transitive type system.

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.bad()
4 Charlie.data := Bob.data1;
5 // Bob.good()
6 Charlie.data := Bob.data2;

Figure 10: An example that shows the flow-sensitive type

system is more permissive than the nontransitive type system.

IV. EXTENSION WITH I/O

We extend the model language to support input and output

commands. In this setting, sources and sinks of information

are more tangible, as a better fit for real-world programs with

third-party components. Interestingly, we will observe a more

natural correspondence between nontransitive and transitive

security notions.

A. Security notions
Programs can receive inputs and produce outputs at any step

of computation. We include two new constructs input(x, 𝓁)
and output(x, 𝓁) for reading a value from the input channel at

security level 𝓁 and sending a value to the output channel at

level 𝓁, respectively. This model entails a revision on security
notions where intermediate output values are observable as

well as the termination behavior of a program.

We naturally choose another notion of noninterference

named progress-insensitive [3], [13] (corresponding to CP-
security for reactive programs [5]) that demands if two pro-

gram inputs agree on values at security levels may influence

variables at 𝓁, the output sequence observable at level 𝓁
remains the same up to the point that one of the executions

diverges silently (without producing any output). Transitive

policies define an input/output value 𝓁-observable if the value
is at level 𝓁 or lower, while an 𝓁-observer in a nontransitive

policy only sees values at level 𝓁. Note that the termination

behavior of a program is observable for all security levels in

both security notions.

Running example Recall the nontransitive policy of the

running example in Section II: A⊵B and B⊵C. The pro-

gram in Figure 11 violates progress-insensitive nontransitive

noninterference due to the presence of an implicit flow from

the input value of Alice.data with security level A to the

observable output at level C. Based on the input value, the

program sends an output value at level B or C. Therefore, the
observable outputs are different at levels B and C, depending
on the input value at level A.

1 input(Alice.data, A);
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, B);
5 else
6 output(Charlie.data, C);

Figure 11: Running example with I/O.

Figure 12 illustrates the syntax of our model language

supporting I/O. Evalution rules for input and output com-

mands are presented in Figure 13. We refer to Figure 23

(in Appendix) for the complete set of semantic rules. An

execution configuration ⟨c,M, I,O⟩ is a tuple consists of a

command c, a memory M, an input function I that maps

security levels to input channels, and an output channel O.
The relation → defines transitions between configurations. We

assume the environment is input total. We model program

inputs as a mapping from security levels to sequences of

values, written I(𝓁) = v.𝜎, where 𝓁 ∈ L, v ∈ Val, and 𝜎 is a

sequence of values. We define output behavior of a program

recursively by O = ∅ | ↻ | v𝓁.O, where ↻ denotes silent

divergence. Based on the language semantics, we abstract away

details of computation steps and define output evaluation of

an execution. Definition 6 introduces the new relation ⇝ that

indicates an initial configuration ⟨c,M, I,∅⟩ evaluates to O.

Definition 6 (Output Behavior of A Program Execution).
The output behavior O generated by an initial execution
configuration ⟨c,M, I,∅⟩, written ⟨c,M, I,∅⟩ ⇝ O, is defined
as follows:

⟨c,M, I,∅⟩→∗⟨stop,M′, I′,O⟩
⟨c,M, I,∅⟩ ⇝ O

⟨c,M, I,∅⟩→∗⟨c′,M′, I′,O⟩
∀n ∈ ℕ. ⟨c′,M′, I′,O⟩→n⟨cn,Mn, In,O⟩ ∧ cn ≠ stop

⟨c,M, I,∅⟩ ⇝ O.↻
.

Transitive Noninterference (TNI) Classical noninterference
guarantees 𝓁-observable output behavior of a program only

depends on inputs from 𝓁 or lower levels. A transitive security

policy = ⟨L , ⊑ ,Γ ⟩ is a triple where L is a set of

security labels and ⊑ ⊆ L × L is a binary relation that

specifies permitted flows between security levels forming a

partially ordered set on L . A labeling function Γ ∶ Var → L
maps a variable to a security label.

The definition of progress-insensitive noninterference relies

on the definition of indistinguishability relations for inputs

and outputs. To define the relations, we should first describe

observable inputs and outputs at a security level 𝓁. An 𝓁-
observer can see the content of input channels at the security

550

e ::= v | x | e⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c; c |

input(x, 𝓁) | output(x, 𝓁)
Figure 12: Language syntax with I/O.

c = input(x, 𝓁) I(𝓁) = v.𝜎
I′ = I[𝓁 → 𝜎] M′ = M[x → v]

⟨c,M, I,O⟩ → ⟨stop,M′, I′,O⟩ (IO-INPUT)

c = output(x, 𝓁)
M(x) = v O′ = O. v𝓁

⟨c,M, I,O⟩ → ⟨stop,M, I,O′⟩ (IO-OUTPUT)

Figure 13: Language semantics with I/O (selected rules).

level 𝓁 and lower. We define observable output behavior at a

level 𝓁 ∈ L by purging the values from an output sequence

which are not at the level 𝓁 or lower.

Definition 7 (Transitive Observable Output Behavior). Given
an output behavior O including a sequence of output values
and termination behavior of a program execution. The subse-
quence of the output behavior observable at a security level
𝓁 ∈ L is defined below:

O|
𝓁
=

⎧⎪⎨⎪⎩

O O = ∅ ∨ O =↻
v𝓁′ .O′|

𝓁
O = v𝓁′ .O′ ∧ 𝓁′ ⊑ 𝓁

O′|
𝓁

otherwise
.

We call two program inputs indistinguishable at level

𝓁 ∈ L if input sequences of the levels 𝓁 are the same as

well as lower levels.

Definition 8 (Transitive Input Indistinguishability). Two pro-
gram inputs I1 and I2 are indistinguishable at level 𝓁 ∈ L ,
written I1

𝓁= I2, if and only if ∀𝓁′ ⊑ 𝓁. I1(𝓁′) = I2(𝓁′).

Two program outputs are indistinguishable at level 𝓁 when

the sequences of observable outputs are exactly the same up

to the silent divergence in one of them. In other words, if both

of the output behaviors are terminating, then the 𝓁-observable
subsequences must be identical. Otherwise, the subsequences

must be the same until one of them reaches the ↻ event.

Definition 9 (Transitive Output Indistinguishability). Two
program outputs O1 and O2 are indistinguishable at level
𝓁 ∈ L , written O1

𝓁= O2, if and only if O1|𝓁 = O2|𝓁 ∨
(∃O,O′.O1|𝓁 = O.↻ ∧O2|𝓁 = O.O′) ∨ (∃O,O′.O1|𝓁 =
O.O′ ∧ O2|𝓁 = O.↻).

Given the indistinguishability definitions, we are ready to

define the security condition. A program c satisfies progress-
insensitive transitive noninterference, written TNIPI(, c),
when for any two program inputs indistinguishable at level

𝓁 ∈ L , the output behaviors resulted from the execution of

the program are indistinguishable for the 𝓁-observer.

Definition 10 (Progress-Insensitive Transitive Noninterfer-
ence). A program c satisfies TNIPI(, c) if and only
if ∀𝓁 ∈ L .∀M.∀I1, I2. I1

𝓁= I2 ∧ ⟨c,M, I1,∅⟩ ⇝ O1 ⇐⇒

∃O2.⟨c,M, I2,∅⟩ ⇝ O2 ∧ O1
𝓁= O2.

Nontransitive Noninterference (NTNI) The nontransitive

notion of noninterference stipulates that 𝓁-observable output

behavior of a given program is only dependent on those inputs

that can flow to 𝓁, as stated in the policy. A nontransitive

security policy = ⟨L , ⊵ ,Γ ⟩ is a triple where L is a

set of security labels, ⊵ is an arbitrary flow relation specifying

permitted flows, and Γ ∶ Var → L is a labeling function.

Similar to the transitive notion, we define indistinguisha-

bility relations for program inputs and outputs with respect to

definitions of observable inputs and outputs at a security level,

respectively. An 𝓁-observer can see the content of the input

channel at the level 𝓁 and the subsequence of output values

at the level 𝓁 as well as the divergence event.

Definition 11 (Nontransitive Observable Output Behavior).
Given an output behavior O including a sequence of output
values and termination behavior of a program execution. The
subsequence of the output behavior observable at a security
level 𝓁 ∈ L is defined as follows:

O|
𝓁
=

⎧⎪⎨⎪⎩

O O = ∅ ∨ O =↻

v𝓁.O′|
𝓁

O = v𝓁.O′

O′|
𝓁

otherwise
.

Two program inputs are indistinguishable for a set of levels

 ⊆ L if input sequences of the levels member of are

identical with each other.

Definition 12 (Nontransitive Input Indistinguishability). Two
program inputs I1 and I2 are indistinguishable for a set of lev-
els ⊆ L , written I1

= I2, if and only if ∀𝓁 ∈ . I1(𝓁) =

I2(𝓁).

Similar to Definition 9, two program outputs are indistin-

guishable at level 𝓁 ∈ L if the sequences of observable

outputs are the same until one of the executions diverges

silently.

Definition 13 (Nontransitive Output Indistinguishability). Two
program outputs O1 and O2 are indistinguishable at level
𝓁 ∈ L , written O1

𝓁= O2, if and only if O1|𝓁 = O2|𝓁 ∨
(∃O,O′.O1|𝓁 = O.↻ ∧O2|𝓁 = O.O′) ∨ (∃O,O′.O1|𝓁 =
O.O′ ∧ O2|𝓁 = O.↻).

Having the indistinguishability relations in hand, we define

the noninterference notion for the nontransitive setting. A

program c satisfies progress-insensitive nontrasnitive nonin-
terference, written NTNIPI(, c), when for any two program

inputs indistinguishable for the set of levels may influence

variables at level 𝓁 ∈ L , the output behaviors resulted from

the execution of the program are indistinguishable for the 𝓁-
observer.

551

Definition 14 (Progress-Insensitive Nontransitive
Noninterference). A program c satisfies NTNIPI(, c)
if and only if ∀𝓁 ∈ L .∀M.∀I1, I2. I1

C(𝓁)= I2 ∧
⟨c,M, I1,∅⟩ ⇝ O1 ⇐⇒ ∃O2.⟨c,M, I2,∅⟩ ⇝ O2 ∧ O1

𝓁= O2.

B. Relationship between NTNI and TNI

We follow the same pattern to relate nontransitive and

transitive security definitions together. Constructing the power-

lattice encoding remains as before, although the transformation

algorithm is more straightforward for programs with input/out-

puts. Before we see that, the next theorem confirms NTNI

is still a generalization of TNI using the progress-insensitive

notion in the security definitions.

Theorem 6 (From TNIPI to NTNIPI). For any program c
and any transitive security policy = ⟨L , ⊑ ,Γ ⟩, there

exists a nontransitive security policy = ⟨L , ⊵ ,Γ ⟩
where L = L ,⊵ = ⊑∗, and Γ = Γ such that

TNIPI(, c) ⇐⇒ NTNIPI(, c). Formally,

∀c.∀ .∃ . TNIPI(, c) ⇐⇒ NTNIPI(, c).

We introduce the transpilation for programs with interme-

diate input/outputs. Similar to the batch-job style, we es-

tablish the powerset lattice out of nontransitive labels, i.e.,

L = ℘(L) and ⊑ =⊆. However, the transformation algo-

rithm is quite simpler than canonicalization; only input and

output commands are required to be rewritten because of the

new security definition that considers only the relation between

program inputs and outputs.

Program transformation As explained in Algorithm 2, we

label sources of information at a security level 𝓁 ∈ L as the

singleton set of a security level ({𝓁}) and annotate sinks as

the set of labels that can flow to 𝓁, or C(𝓁). More precisely,

we replace input(x, 𝓁) commands with input(x, {𝓁}), and also
output(x, 𝓁) commands with output(x,C(𝓁)) in the program.

Algorithm 2: Transformation algorithm for programs

with I/O.

Input : Program c
Output: Program Transform(c)
foreach x ∈ Varc do

c [input(x, 𝓁) → input(x, {𝓁})]
c [output(x, 𝓁) → output(x,C(𝓁))]

end
Transform(c) ∶= c
return Transform(c)

Running example Figure 14 demonstrates how the transfor-

mation works on the running example. Each output command

explicitly specifies the set of labels that are permitted to

influence the output value. The transformed program does

not satisfy transitive noninterference because the presence of

output value at level {B,C} depends on an input value at level
{A}, which are incomparable in the security lattice. However,

1 input(Alice.data, {A});
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, {A,B});
5 else
6 output(Charlie.data, {B,C});

Figure 14: Transformed version of running example with I/O.

the flow from the input value to the output value at level {A,B}
is permitted because {A} ⊆ {A,B}.
It is obvious that the transformed version of a given program

preserves the meaning and termination behavior of the original

program, yet it changes the channel of output values. The input

and output values at the level 𝓁 can be found on the input

channel with label {𝓁} and the output channel labeled as C(𝓁)
in the canonical version of the given program. The next lemma

shows the semantic relation between a given program and the

transformed one.

Lemma 4 (Semantic Equivalence Modulo Transformation).
For any program c, the semantic equivalence ≃T between

the programs c and Transform(c) holds where c ≃T c′
def
=

∀M.∀I.∃I′.
(
∀𝓁.I(𝓁) = I′({𝓁})

)
∧ ⟨c,M, I,∅⟩ ⇝ O ∧

⟨c′,M, I′,∅⟩ ⇝ O′ ∧ O′ = O [v𝓁 → vC(𝓁)].

Then, we prove a nontransitive policy on a given pro-

gram (with intermediate inputs/outputs) can be reduced to a

transitive policy on the transformed version of the program.

Theorems 6 and 7 demonstrate the mutual relationship between

NTNI and TNI holds, even for programs with intermediate

observable values.

Theorem 7 (From NTNIPI to TNIPI). For any program c and
any nontransitive security policy = ⟨L , ⊵ ,Γ ⟩, there ex-
ist a semantically equivalent (modulo transformation) program

c′ and a transitive security policy = ⟨L , ⊑ ,Γ ⟩ where c′ =
Transform(c), L = ℘(L), ⊑ =⊆ and ∀x ∈ Varc.Γ (x) =
{Γ (x)} such that NTNIPI(, c) ⇐⇒ TNIPI(, c′). For-

mally,

∀ .∀c.∃ .∃c′. c ≃T c′ ∧ NTNIPI(, c) ⇐⇒ TNIPI(, c′).

C. Enforcement mechanism
Figure 15 illustrates an excerpt from a flow-sensitive type

system enforcing transitive policies on transformed programs.

We refer to Figure 24 (in Appendix) for the complete set

of typing rules. The type system defines judgments of the

form pc⊢Γ{c} Γ′ where pc ∈ L is the program counter label,

and the typing environments Γ ∶ Var → L and Γ′ describe
the security levels of variables before and after executing the

command c, respectively. Security types of the variables get

updated freely through the program and capture the informa-

tion flows to the variable (rule IO-TT-WRITE).

The rules for typing input and output commands are the

most important ones. The typing environments before and after

executing an output command stay the same if the explicit

flows (Γ(x)) and implicit flows (pc) are permitted to the level

of the specified output channel (rule IO-TT-OUTPUT). For an

552

Γ⊢ e ∶ t

pc⊢Γ{x ∶= e} Γ[x → pc ⊔ t]
(IO-TT-WRITE)

pc⊑ 𝓁
pc⊢Γ{input(x, 𝓁)} Γ[x → 𝓁]

(IO-TT-INPUT)

pc ⊔ Γ(x)⊑ 𝓁
pc⊢Γ{output(x, 𝓁)} Γ

(IO-TT-OUTPUT)

Figure 15: Flow-sensitive typing rules with I/O (selected

rules).

input command input(x, 𝓁), the level of variable x is updated to
𝓁 if the program context does not make an illegal implicit flow

(rule IO-TT-INPUT). Otherwise, it might violate soundness

of the enforcement mechanism for programs like Figure 16,

where the execution of an input command in a high context

influences the received value of the next input command at

the same level.

1 if High.h then input(Low.x,{L}) else skip;
2 input(Low.y,{L});
3 output(Low.y,{L});

Figure 16: An example that shows an implicit flow by input

commands.

Running example Given the policy specified in the running

example, the type system rejects the transformed program

shown in Figure 14. The initial types of the variables are

the singleton set of the nontransitive security label. Following

the typing rules, the types of the variables Alice.data_temp
and Bob.data1_temp are (at least) {A}. The rule for output

commands demands that the specified level of the output value

must be higher than union of the level of the program context

and the level of variable x. The if branch is well-typed because
{A}⊔{B}⊑ {A,B}, yet the type system cannot offer a suitable

type for the else branch where {A} ⊔ {B}⋢ {B,C}.
Theorem 8 states soundness of the type system. If a trans-

formed program is well-typed, then it satisfies the transitive

noninterference, and by the result of Theorem 7, the original

program complies with the corresponding nontransitive policy.

Theorem 8 (Soundness of Flow-Sensitive Type System for
Programs with I/O).

pc⊢Γ {Transform(c)} Γ′ ⇐⇒ TNIPI(, Transform(c)).

V. CASE STUDY WITH JOANA

We develop a prototype of our transpiler to analyze Java

programs. We follow the architecture illustrated in Figure 8

to implement a program canonicalizer and an input script

generator for JOANA [11], a flow-sensitive information-flow

analyzer for Java programs. The transpiler gets a path to

a Java project and generates the canonical version of the

program using Spoon [21], a library for transforming Java

programs. The user defines a nontransitive policy by labeling

the components (i.e., classes) of the program. Then, our tool

generates a script as the input of JOANA, which detects

possible illegal flows in the program. Our proof-of-concept

implementation can support as many programs as JOANA may

allow, as long as they are batch-job programs.

We evaluate our tool on four examples of nontransitive

policies to demonstrate the benefits of the reduction from

nontransitive to transitive policies in practice: Alice-Bob-

Charlie (the running example), Confused deputy, Bank logger,

and Low-High. The source code and materials of case studies

are available online [1]. We discuss the details of transpilation

and the JOANA’s script for the running example, and to

conserve space, we only report analysis results for the next

cases. In Appendix B, the source code of the programs in

question is presented.

A. Alice-Bob-Charlie (the running example)
We start with the running example as the first case, intro-

duced in Figure 1. To model the batch-job style, we modify

the code to include instances of components as fields of

Java classes. Following standard practices in object-oriented

programming, our prototype leverages composition relation-

ship [24] between classes where an object is a part of another

object. This leads to a hierarchy of objects, in which each

object is responsible for creation and deletion of required

objects of other classes. Assuming that no local variable

creates a new instance of a class, the execution starts from

the main object and continues in the underlying ones.

Given the main method as the starting point of the program,

constructors naturally provide placeholders for inserting the

init section (initiator methods), while the last line of the main
method is the placeholder for final assignments existing in

finalizer methods. By calling the finalizer method of the main
object, following the composition hierarchy, objects invoke the

finalizers as a chain. In the end, all of the sink fields are

assigned.

The transpiler suffices to inject the initiator and finalizer

methods per class. For readability, we slightly modify the

canonicalization algorithm. We add a source field assigned

to the initial value of the field in the original program, instead

of replacing occurrences of the variable with temp variables.

As an example, the canonical version of the program is shown

in Figure 17.

Considering the labels A, B, and C, for Alice, Bob, and
Charlie and with respect to the permitted flow (A⊵B,B⊵C),
the transpiler also generates the input script for JOANA.

Figure 18 displays the important snippet of it.

The first line describes the power-lattice, where e de-

notes the empty set as the bottom element. It is followed

by the list of annotations on field variables to distinguish

sources and sinks of information per class. For example, the

line sink Charlie.data_sink BC means Charlie.data_sink
is a sink variable with the security level BC (the set of

nontransitive labels can flow to C). The last command of

the script triggers the flow-sensitive information flow anal-

ysis. As the result of the analysis, JOANA reports the

security violation Illegal flow from Alice.data_source to

553

1 public class Alice {
2 private int data_source = 0,data,data_sink;
3 private Bob b;
4 public void initiator(){
5 data = data_source;
6 }
7 public Alice(){
8 initiator();
9 b = new Bob();

10 }
11 public static void main(String[] args){
12 Alice a = new Alice();
13 a.operation();
14 a.finalizer();
15 }
16 private void operation(){
17 b.receive(data);
18 b.good();
19 b.bad();
20 }
21 public void finalizer(){
22 data_sink = data;
23 b.finalizer();
24 }
25 }

1 public class Bob {
2 private int data1_source=0,data1,data1_sink;
3 private int data2_source=1,data2,data2_sink;
4 private Charlie c;
5 public void initiator(){
6 data1 = data1_source;
7 data2 = data2_source;
8 }
9 public Bob(){

10 initiator();
11 c = new Charlie();
12 }
13 public void receive(int x){ data1 = x; }
14 public void good(){ c.receive(data2); }
15 public void bad(){ c.receive(data1); }
16 public void finalizer(){
17 data1_sink = data1;
18 data2_sink = data2;
19 c.finalizer();
20 }
21 }

1 public class Charlie {
2 private int data_source, data, data_sink;
3 public void initiator(){data = data_source;}
4 public Charlie(){ initiator(); }
5 public void receive(int x){ data = x; }
6 public void finalizer(){ data_sink = data; }
7 }

Figure 17: The canonical version of Alice-Bob-Charlie.

Charlie.data_sink, visible for BC, which captures the un-
desired explicit flow.

Omitting invocation of the bad method yields a secure

program. In this case, JOANA reports No violations found
after running the same script on the canonical version of the

secure program.

1 setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB,
2 B<=BC,AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC
3 source Alice.data_source A
4 sink Alice.data_sink A
5 source Bob.data1_source B
6 sink Bob.data1_sink AB
7 source Bob.data2_source B
8 sink Bob.data2_sink AB
9 source Charlie.data_source C

10 sink Charlie.data_sink BC
11 run classical-ni

Figure 18: A snippet of JOANA script for Alice-Bob-Charlie.

B. Confused deputy

We benefit from the fact that nontransitive information flow

control supports enforcing both confidentiality and integrity

policies. The confused deputy problem [12] occurs in a

situation when an untrusted component is able to manipulate

a trusted component and misuse its authority to execute a

sensitive operation. It is an integrity problem since the policy

states if the attacker is not permitted to alter a resource, then

there must not be any way to do so, directly or by using a

deputy. We adopt Lu and Zhang’s code [17] as a starting point

to represent the confused deputy problem.

Figure 19 illustrates the skeleton of the source code. We

make use of four classes: Library, Service, Downloaded_Code,
and Trusted_Code. Values in Library are protected and

only Service is privileged to access them. The class

Downloaded_Code is third-party code that cannot access to

Library, while Trusted_Code is completely trusted. Invok-

ing addLog method of Service is permitted because it up-

dates a non-executable log file in Service, but the process
method of Library must not be called with data from

Downloaded_Code via Service. To rephrase the integrity pol-

icy, Downloaded_Code should not have any effects on the

sensitive component Library, directly or indirectly, while

Trusted_Code can. Given the initial letters of the component

names as their labels, the specified policy is D⊵ S, S⊵ L, T ⊵ S
and T ⊵ L.
On the other hand, Downloaded_Code must not retrieve

Library’s information through invoking the query method by

Service. Taking confidentiality policies into account, we add

flow relations L⊵ S, S⊵D, L⊵ T , and S⊵ T to exclude the

illegal flows from Library to Downloaded_Code violating data

secrecy. To sum up, the intended policy is the aggregation

of the integrity and confidentiality policies, which are defined

uniformly by the aforementioned nontransitive flows.

The transpiler generates the canonical version of the

program and annotates sources and sinks of information

in classes. JOANA discovers the violations in the

program and reports the two existing illegal flows:

Illegal flow from Downloaded_Code.data_source to
Library.printValue_sink, visible for LS (integrity)

and Illegal flow from Library.someValue_source
to Downloaded_Code.result_sink, visible for DS
(confidentiality).

554

1 public class Library {
2 private int someValue = 5, printValue = 0;
3 ...
4 public void process(int src){
5 printValue = src;
6 }
7 public int retrieve(int key){
8 return someValue;
9 }

10 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 ...
5 public void addLog(int x, int y){
6 logFile += x + y ;
7 }
8 public void print(int data){
9 library.process(data);

10 }
11 public int query(int key){
12 return library.retrieve(key);
13 }
14 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;
4 ...
5 public static void main(String[] args){
6 Downloaded_Code dc = new Downloaded_Code();
7 dc.operation();
8 }
9 private void operation(){

10 service.addLog(data, key);
11 service.print(data);
12 result = service.query(key);
13 }
14 }

Figure 19: The skeleton of Confused deputy source code.

A secure version of the program is the one without call-

ing service.print(data) and service.query(key) in the

operation method. Now information from Downloaded_Code
(as {D}) influences only logFile in Service (as {D, L, S, T}),
which is allowed by the policy. JOANA also confirms security

of the program by running the same script on the canonical

version of the revised program.

C. Bank logger

We discuss another example in which two bank services

for processing customers’ information (Bank) and logging

their public information (Logger) are totally separated. A

client component (BankLog) is developed to communicate with
both services at the same time. Figure 20 focuses on the

important parts of the source code. The two components

Bank and BankLog can mutually access each other’s informa-

tion, although Logger may read insensitive information. Thus,

Logger must not interfere with Bank directly or indirectly. We

label Bank, Logger, and BankLog components as B, L, and

1 public class Bank {
2 private int id = 20;
3 ...
4 public int getBalance(int x){
5 if (x == id) return balance; //flow #1
6 return 0;
7 }
8 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b; private Logger l;
4 ...
5 private void operation(){
6 balance = b.getBalance(userId);
7 if (balance > 0) //flow #2
8 l.append(userId);
9 }

10 }

Figure 20: An excerpt from Bank logger source code.

C, respectively. Consequently, the intended policy is C⊵B,
B⊵C, and C⊵ L.
The current implementation of the program violates

the policy by two implicit flows. The getBalance method

checks whether the id exists, and BankLog only requests

for logging if the sensitive value balance is positive.

Executing the JOANA script on the canonical version of the

program generates the following report: Illegal flow from
Bank.id_source to Logger.logFile_sink, visible for CL
(flow #1) and Illegal flow from Bank.balance_source to
Logger.logFile_sink, visible for CL (flow #2).

To secure the program, the log content must not be influ-

enced by sensitive information. One possible way to repair

the program is logging the number of accesses to the client

component BankLog. Hence, we replace lines 7 and 8 of

BankLog (in the operation method) with l.append(1). With

this change, JOANA accepts the canonical version of the

program using the same script.

D. Low-High
The previous examples included more than two components,

which allowed us to contrast transitive and nontransitive poli-

cies. The following example demonstrates the compatibility

with the baseline case of the two-level security policy. The

program (in Appendix B) contains two components Alice and

Bob, where Alice updates her data influenced by Bob’s secret
value. We define the nontransitive policy L⊵H such that L is

the label of Alice and H is for Bob.

1 setLattice e<=L,e<=H,L<=LH,H<=LH
2 source Alice.data_source L
3 sink Alice.data_sink L
4 source Bob.secret_source H
5 sink Bob.secret_sink LH
6 source Bob.data_source H
7 sink Bob.data_sink LH

Figure 21: A snippet of JOANA script for Low-High.

555

The transpiler transforms the program and generates

the input script for JOANA, as can be seen in Fig-

ure 21. Therefore, JOANA analyzes the program and

reports message Illegal flow from Bob.secret_source to
Alice.data_sink, visible for L expresses the security vio-

lation caused by the implicit flow.

Removing the illegal flow (line 13 in Alice) makes the

program secure, which is verified by running the JOANA

script on the canonical version of the modified program.

VI. ALTERNATIVE POLICIES AND ENCODINGS

Fine-grained policies While the main motivation for non-

transitive types is enforcing coarse-grained information-flow

policies, where labels represent components, the notion of

nontransitive security is not limited to module separation [17].

Other real-world scenarios such as policies in social media

(e.g., “only my friends can see my photo but not friends

of my friends”) also naturally match nontransitive policies.

Our framework can thus be generalized to decouple the

flow-to relation from component labels, allowing fine-grained

nontransitive policies.

Scalability The proposed transpiler employs the power-lattice
encoding that expands the number of security levels expo-

nentially. For the type system, however, its time and space

complexity do not depend on the size of the lattice. The

reason is that we never need to store the lattice, as the flow-to

relation is implicitly derived from its elements. In an off-the-

shelf deployment of JOANA, there is no time blowup, but

we cannot avoid the space blowup because JOANA is lattice-

agnostic. Making JOANA aware of the power-lattice nature of

the lattice (e.g., in the style of DLM [19]) can help avoiding

the blowup in the current implementation.

Alternative encodings A power-lattice encoding enables us

to support declassification and dynamic policies. However,

when such generality is not needed, we can reduce the size

of the lattice by alternative encodings, with the cost of losing

granularity of information stored in security labels.

We identify the soundness constraint for a nontransitive-to-

transitive policy encoding as 𝓁⊵ 𝓁′ ⇐⇒ 𝓁source ⊑ 𝓁
′
sink, where

source and sink variables of a component are labeled as 𝓁source
and 𝓁sink, respectively, when the component has label 𝓁 in the
nontransitive setting (recall that ⊵ is reflexive). Note that the

powerset lattice encoding indeed meets the condition because

∀𝓁, 𝓁′ ∈ L .𝓁source = {𝓁} ∧ 𝓁sink = C(𝓁) ∧
(
𝓁⊵ 𝓁′ ⇐⇒

{𝓁} ⊆ C(𝓁′)
)
(see Figure 6). Among various lattices satisfying

the constraint, a minimal one is desirable, i.e., the one with

the smallest set of labels.

We present a so-called source-sink lattice encoding that

satisfies the soundness constraint and reduces the size of

the lattice from exponential to polynomial. We start with

a source-sink partial order where for all 𝓁 ∈ L , there are

𝓁src, 𝓁snk ∈ L such that 𝓁src ⊑ 𝓁snk, due to reflexivity of

the ⊵ relation. Then, according to the soundness constraint,

we include transitive relations between levels based on the

specified nontransitive flows. Since the security levels must

Asource Bsource Csource

Asink Bsink Csink

T

(a)

Asource,Asink Bsource

Bsink Csource,Csink

T

(b)

Figure 22: (a) A source-sink lattice encoding for the running

example; (b) A minimal lattice.

constitute a lattice, we apply the Dedekind–MacNeille com-

pletion algorithm [4] to compute the smallest lattice containing

the partial order. If a unique least upper (resp. greatest lower)

bound for any pairs of source (resp. sink) levels does not exist,

it adds an intermediary level between two source and two sink

levels such that the intermediary level is the lub of the source

levels and the glb of the sinks. It also makes one top and

one bottom element for the lattice. Figure 22a illustrates the

resulting source-sink lattice for the running example (A⊵B
and B⊵C).

In the worst case, the size of the lattice is O(|L |2) and the
time complexity of the algorithm is O(|L |4), as proved in

Appendix A. Furthermore, optimization techniques can make

the partial order compact, before constructing the lattice out

of it; for example, any pairs of 𝓁src and 𝓁snk coincide in the

partial order when one of them is only in relation with the

other one, not any other levels. Figure 22b depicts the minimal

source-sink lattice for the nontransitive policy in question;

observe how Asink and Csource are collapsed.

We demonstrate the NTNI-to-TNI tranpilation defined for

a source-sink lattice, in comparison with the power-lattice

encoding, by replacing {𝓁} with 𝓁src and C(𝓁) with 𝓁snk in the
labeling function and program transformation. In Appendix A,

we formally introduce the transpilation using a source-sink

lattice. We make use of the program canonicalization for

batch-job programs and define the transitive encoding of

a nontransitive policy based on a given source-sink lattice

(Definition 15). We prove that any nontransitive policy on a

program can be reduced to a corresponding transitive policy

on a semantically equivalent program (Theorem 9). For the

enforcement mechanism, we prove that the presented flow-

sensitive type system, while a source-sink lattice is in place,

is sound and more permissive than the nontransitive type

system (Theorems 10 and 11). Moreover, our results can be

generalized to programs with intermediate inputs and outputs,

where the program transformation algorithm replaces the level

of input and output commands to 𝓁src and 𝓁snk, respectively
(Algorithm 3 and Theorem 12). We also prove that the flow-

sensitive type system for programs with I/O is compatible with

a source-sink lattice (Theorem 13).

556

VII. RELATED WORK

Our starting point is the special-purpose notions Nontransi-

tive Noninterference (NTNI) and Nontransitive Types (NTT)

by Lu and Zhang [17]. Our work demonstrates how to cast

NTNI as classical noninterference on a lattice and how to

improve the precision of NTT by classical flow-sensitive

analysis.

Nontransitive noninterference is not to be confused by

intransitive noninterference. Intransitive noninterference was

introduced by Rushby [25] and explored by, amongst others,

Roscoe and Goldsmith [23], Mantel and Sands [18], and Ron

van der Meyden [30]. Intransitive noninterference is intended

to address the where dimension of declassification [27]. The

typical scenario for intransitive noninterference is ensuring that

sensitive data is passed through a trusted encryption module

before it is released. For example, security labels might be

low, encrypt, and high, ordered by high → encrypt → low
while high ↛ low. Like nontransitive policies, intransitive

policies do not assume transitive policies. However, there is a

fundamental difference between nontransitive and intransitive

policies: intransitive noninterference allows low information to

be (indirectly) dependent on high. In the encryption module

scenario, this means that changes in the (high) plaintext may

reflect in the changes in the (low) ciphertext. In contrast,

nontransitive policy A⊵B and B⊵C guarantees that there are

no information dependencies from A to C whatsoever.

Further approaches to declassification introduce decentral-

ized hierarchies and dynamic policies. Myers and Liskov’s

DLM [19] is based on transitive policies that encode ownership

in the labels. The goal is to allow declassification only if it

is allowed by the owner(s) of the data. DC labels [28] by

Stefan et al. models a setting of mutual distrust without relying

on a centralized principal hierarchy. DC labels incorporate

formulas over principals, modeling can-flow-to relation by

logical implication. FLAM [2] by Arden et al. explores robust

authorization to mitigate delegation loopholes in policies like

DLM. Jia and Zdancewic [15] encode security types using

authorization logic in a programming language for access

control. Their encoding does not assume transitivity and it

needs to be encoded as explicit delegations. Swamy et al. [29]

and Broberg et al. [6] explore the effects of dynamic policy

updates on the transitivity of flows. Broberg et al. call a flow

time-transitive if information leaks from A to C via B even

if no flows from A to C are allowed at any given time. This

can happen when the policy of allowing flows from A to B
is dynamically updated to allow flows from B to C. Time-
transitivity is not in the scope of our work because our policies

are static.

Rajani and Garg [22] explore the granularity of policies

for information flow control. They show that fine-grained type

systems that track the propagation of values are as expressive

as coarse-grained type systems that track the propagation of

context. Vassena et al. [31] expand the study to the dynamic

setting. Xiang and Chong [33] use opaque labeled values in

their study of dynamic coarse-grained information flow control

for Java-like languages. However, in both cases, the considered

policies are transitive. An interesting avenue for future work

is to explore whether these approaches can be integrated with

ours to be able to handle nontransitive policies.

Our proof-of-concept implementation of the flow-sensitive

analysis for Java draws on Hammer and Snelting’s

JOANA [10], [11]. Note that our reduction results are general,

enabling the use of other practical flow-sensitive analyses

like Pidgin [16] by Johnson et al. for tracking nontransitive

policies.

VIII. CONCLUSION

In order to support module-level coarse-grained

information-flow policies, Nontransitive Noninterference

(NTNI) and Nontransitive Types (NTT) have been suggested

recently as a new security condition and enforcement. In

contrast to Denning’s classical lattice model, NTNI and NTT

assume no transitivity of the underlying flow relation. NTNI

and NTT, in the form they were proposed, are nonstandard,

requiring the development of nonstandard semantic machinery

to reason about NTNI and the development of nonstandard

enforcement techniques to track NTT.

This paper demonstrates that despite the different aims

and intuitions of nontransitive policies compared to classical

transitive policies, nontransitive noninterference can in fact be

reduced to classical transitive noninterference.

On the security characterization side, we show that NTNI

corresponds to classical noninterference on a lattice that

records source-to-sink relations derived from nontransitive

policies. On the enforcement side, we devise a lightweight

program transformation that enables us to leverage standard

flow-sensitive information-flow analyses to enforce nontransi-

tive policies. Further, we improve the permissiveness over the

nonstandard NTT enforcement while retaining the soundness.

We show that our security characterization and enforcement

results naturally generalize to a language with intermediate

input and outputs. An immediate practical benefit of our work

is the implication that there is no need for dedicated design and

implementation for the enforcement of nontransitive policies

for practical programming languages. Instead, we can leverage

state-of-the-art flow-sensitive information-flow tools, which

we demonstrate by utilizing JOANA to enforce nontransitive

policies for Java programs.

Acknowledgments Thanks are due to Yi Lu and Chenyi

Zhang for inspiring this line of work and for the interesting

discussions. This work was partially supported by the Swedish

Foundation for Strategic Research (SSF), the Swedish Re-

search Council (VR), and the Danish Council for Independent

Research for the Natural Sciences (DFF/FNU, project 6108-

00363).

REFERENCES

[1] M. M. Ahmadpanah, A. Askarov, and A. Sabelfeld. Nontransitive
Policies Transpiled - Supplementary Materials. https://www.cse.chal
mers.se/research/group/security/ntni, 2021.

[2] O. Arden, J. Liu, and A. C. Myers. Flow-limited authorization. In CSF,
2015.

557

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In ESORICS, 2008.

[4] K. Bertet, M. Morvan, and L. Nourine. Lazy completion of a partial
order to the smallest lattice. In Second Int. Symp. on Knowledge
Retrieval, Use and Storage for Efficiency, 1997.

[5] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic.
Reactive noninterference. In CCS, 2009.

[6] N. Broberg, B. van Delft, and D. Sands. The anatomy and facets of
dynamic policies. In CSF, 2015.

[7] S. Dahlgaard, M. B. T. Knudsen, and M. Stöckel. Finding even cycles
faster via capped k-walks. In STOC, 2017.

[8] D. E. Denning. A lattice model of secure information flow. Communi-
cations of the ACM, 1976.

[9] B. Ganter and S. O. Kuznetsov. Stepwise construction of the dedekind-
macneille completion (research note). In ICCS, volume 1453, 1998.

[10] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. Int. J. Inf. Sec., 2009.

[11] C. Hammer and G. Snelting. JOANA: Java Object-sensitive ANAlysis.
https://pp.ipd.kit.edu/projects/joana/, 2020.

[12] N. Hardy. The confused deputy (or why capabilities might have been
invented). ACM SIGOPS Oper. Syst. Rev., 22(4), 1988.

[13] D. Hedin and A. Sabelfeld. A perspective on information-flow control.
In Software Safety and Security. 2012.

[14] S. Hunt and D. Sands. On flow-sensitive security types. In POPL, 2006.
[15] L. Jia and S. Zdancewic. Encoding information flow in Aura. In PLAS,

2009.

[16] A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and enforcing
security guarantees via program dependence graphs. In PLDI, 2015.

[17] Y. Lu and C. Zhang. Nontransitive security types for coarse-grained
information flow control. In CSF, 2020.

[18] H. Mantel and D. Sands. Controlled declassification based on intransitive
noninterference. In APLAS, 2004.

[19] A. C. Myers and B. Liskov. Protecting privacy using the decentralized
label model. ACM Trans. Softw. Eng. Methodol., 2000.

[20] L. Nourine and O. Raynaud. A fast incremental algorithm for building
lattices. J. Exp. Theor. Artif. Intell., 14(2-3), 2002.

[21] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
SPOON: A library for implementing analyses and transformations of
java source code. Softw. Pract. Exp., 46(9), 2016.

[22] V. Rajani and D. Garg. Types for information flow control: Labeling
granularity and semantic models. In CSF, 2018.

[23] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterfer-
ence? In CSFW, 1999.

[24] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[25] J. Rushby. Noninterference, transitivity, and channel-control security
policies. SRI International, Computer Science Laboratory Menlo Park,
1992.

[26] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 2003.

[27] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
J. Comp. Sec., 2009.

[28] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction
category labels. In NordSec, 2011.

[29] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing policy
updates in security-typed languages. In CSFW, 2006.

[30] R. van der Meyden. What, indeed, is intransitive noninterference? J.
Comput. Secur., 2015.

[31] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan. From fine- to
coarse-grained dynamic information flow control and back. In POPL,
2019.

[32] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for
secure flow analysis. J. Comp. Sec., 1996.

[33] J. Xiang and S. Chong. Co-Inflow: Coarse-grained Information Flow
Control for Java-like Languages. In S&P, 2021.

[34] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM J.
Discret. Math., 10(2), 1997.

Expression Evaluation

⟨v,M⟩ ⇓ v
(IO-VALUE)

⟨x,M⟩ ⇓ M(x)
(IO-READ)

⟨e1,M⟩ ⇓ v1 ⟨e2,M⟩ ⇓ v2
⟨e1 ⊕ e2,M⟩ ⇓ v1 ⊕ v2

(IO-OPERATION)

Command Evaluation

⟨skip,M, I,O⟩ → ⟨stop,M, I,O⟩ (IO-SKIP)

⟨e,M⟩ ⇓ v M′ = M[x → v]
⟨x ∶= e,M, I,O⟩ → ⟨stop,M′, I,O⟩ (IO-WRITE)

c = if e then ctrue else cfalse ⟨e,M⟩ ⇓ b
⟨c,M, I,O⟩ → ⟨cb,M, I,O⟩ (IO-IF)

c = while e do cbody ⟨e,M⟩ ⇓ true
⟨c,M, I,O⟩ → ⟨cbody; c,M, I,O⟩ (IO-WHILE-T)

c = while e do cbody ⟨e,M⟩ ⇓ false
⟨c,M, I,O⟩ → ⟨stop,M, I,O⟩ (IO-WHILE-F)

c = input(x, 𝓁) I(𝓁) = v.𝜎
I′ = I[𝓁 → 𝜎] M′ = M[x → v]

⟨c,M, I,O⟩ → ⟨stop,M′, I′,O⟩ (IO-INPUT)

c = output(x, 𝓁)
M(x) = v O′ = O. v𝓁

⟨c,M, I,O⟩ → ⟨stop,M, I,O′⟩ (IO-OUTPUT)

⟨c1,M, I,O⟩ → ⟨c′1,M′, I′,O′⟩
⟨c1; c2,M, I,O⟩ → ⟨c′1; c2,M′, I′,O′⟩ (IO-SEQ-I)

⟨stop; c,M, I,O⟩ → ⟨c,M, I,O⟩ (IO-SEQ-II)

Figure 23: Language semantics with I/O.

APPENDIX

A. Source-sink encoding
We define the source-sink lattice encoding of a nontransitive

policy to a transitive policy for canonical programs as follows.

Definition 15 (Transitive Encoding of Nontransitive
Policies). Given a nontransitive policy = ⟨L , ⊵,Γ ⟩
and a program c, a corresponding transitive policy
 = ⟨L , ⊑,Γ ⟩ on the canonical version of the
program is L ⊇ {𝓁src, 𝓁snk|𝓁 ∈ L } ∪ {⊤,⊥} and
∀𝓁, 𝓁′ ∈ L .𝓁⊵ 𝓁′ ⇐⇒ 𝓁src ⊑ 𝓁

′
snk (⊵ is reflexive) such

that ⟨L , ⊑⟩ constitutes a lattice, and

∀x ∈ Varc. Γ (x) = 𝓁 ⇐⇒

⎧⎪⎨⎪⎩

Γ (x) = 𝓁src
Γ (xtemp) = ⊤

Γ (xsink) = 𝓁snk

.

As stated in Definition 15, the initial and final values of

an 𝓁-observable variable x of the given program are 𝓁src-

558

Γ⊢ v ∶ ⊥
(IO-TT-VALUE)

Γ⊢ x ∶ Γ(x)
(IO-TT-READ)

Γ⊢ e1 ∶ t1 Γ⊢ e2 ∶ t2
Γ⊢ e1 ⊕ e2 ∶ t1 ⊔ t2

(IO-TT-OPERATION)

pc⊢Γ{skip} Γ
(IO-TT-SKIP)

Γ⊢ e ∶ t
pc⊢Γ{x ∶= e} Γ[x → pc ⊔ t]

(IO-TT-WRITE)

Γ⊢ e ∶ t
pc ⊔ t⊢Γ{ctrue} Γ′
pc ⊔ t⊢Γ{cfalse} Γ′

pc⊢Γ{if e then ctrue else cfalse} Γ′
(IO-TT-IF)

Γ⊢ e ∶ t pc ⊔ t⊢Γ{cbody} Γ
pc⊢Γ{while e do cbody} Γ

(IO-TT-WHILE)

pc⊢Γ{c1} Γ′ pc⊢Γ′{c2} Γ′′

pc⊢Γ{c1; c2} Γ′′
(IO-TT-SEQ)

pc⊑ 𝓁
pc⊢Γ{input(x, 𝓁)} Γ[x → 𝓁]

(IO-TT-INPUT)

pc ⊔ Γ(x)⊑ 𝓁
pc⊢Γ{output(x, 𝓁)} Γ

(IO-TT-OUTPUT)

pc1 ⊢Γ1{c} Γ′1
pc2 ⊑ pc1 Γ2 ⊑Γ1 Γ′1 ⊑Γ

′
2

pc2 ⊢Γ2{c} Γ′2
(IO-TT-SUB)

Figure 24: Flow-sensitive typing rules with I/O.

and 𝓁snk-observable in the canonical version, respectively.

Also, only the top-level observer can see final values of

internal temp variables, thus makes them ⊤-observable. The

next lemma demonstrates that for any canonical program

satisfying a nontransitive policy, the program also complies

with a corresponding transitive policy and vice versa.

Lemma 5 (From NTNITI to TNITI for Canonical
Programs). Any canonical program Canonical(c) is

secure with respect to a nontransitive security policy

 where ∀x ∈ Varc.Γ (xtemp) = Γ (xsink) = Γ (x) if

and only if the canonical program is secure according

to a corresponding transitive security policy . We

write ∀c.∀ .∃ . NTNITI(,Canonical(c)) ⇐⇒
TNITI(,Canonical(c)).

Therefore, we prove that any nontransitive policy on a given

program can be modeled as a transitive policy on the canonical

version of the program.

Theorem 9 (From NTNITI to TNITI). For any program c
and any nontransitive security policy = ⟨L , ⊵ ,Γ ⟩,
there exist a semantically equivalent (modulo canoni-

caliztion) program c′ and a transitive security policy

 = ⟨L , ⊑,Γ ⟩, as specified in Definition 15, such that

NTNITI(, c) ⇐⇒ TNITI(, c′). Formally,

∀ .∀c.∃ .∃c′. c ≃C c′ ∧ NTNITI(, c) ⇐⇒ TNITI(, c′).

The next theorem states that the flow-sensitive type system

is sound; in other words, if the type system accepts a canonical

program, then the program satisfies the transitive noninterfer-

ence, and consequently, the original program complies with

the nontransitive policy.

Theorem 10 (Soundness of Flow-Sensitive Transitive Type
System).

pc⊢Γ {Canonical(c)} Γ′ ⇐⇒ TNITI(,Canonical(c)).

The next theorem shows if a program is secure under

the nontransitive type system, the flow-sensitive type system

accepts the canonical version of the program as well.

Theorem 11 (Flow-Sensitive Type System Covers Nontransi-
tive Type System).

 ,Γ1, pc⊢ c ∶ t ⇐⇒ pc⊢Γ2{Canonical(c)} Γ3,

where ∀x ∈ Varc.Γ3(xtemp)⊑
⨆

𝓁∈Γ1(x)
𝓁src∧(x) = 𝓁 ⇐⇒ Γ2(x) =

Γ3(x) = 𝓁src ∧ Γ2(xtemp) = ⊤ ∧ Γ2(xsink) = Γ3(xsink) = 𝓁snk.

We also introduce the transpilation for programs with

intermediate input/outputs. Similar to the batch-job style,

we establish a source-sink lattice out of nontransi-

tive labels, i.e., L ⊇ {𝓁src, 𝓁snk|𝓁 ∈ L } ∪ {⊤,⊥} and

∀𝓁, 𝓁′ ∈ L .𝓁⊵ 𝓁′ ⇐⇒ 𝓁src ⊑ 𝓁
′
snk (⊵ is reflexive) such

that ⟨L , ⊑⟩ is a lattice. In the program transformation al-

gorithm, only the levels of input and output commands are

modified because the notion of progress-insensitive noninter-

ference only focuses on the relation between program inputs

and outputs.

Program transformation As explained in Algorithm 3, we

label sources and sinks of information at a security level

𝓁 ∈ L as 𝓁src and 𝓁snk, respectively. More precisely, we

replace input(x, 𝓁) commands with input(x, 𝓁src), and also

output(x, 𝓁) commands with output(x, 𝓁snk) in the program.

Algorithm 3: Transformation algorithm for programs

with I/O.

Input : Program c
Output: Program Transform(c)
foreach x ∈ Varc do

c [input(x, 𝓁) → input(x, 𝓁src)]
c [output(x, 𝓁) → output(x, 𝓁snk)]

end
Transform(c) ∶= c
return Transform(c)

Obviously, the transformed version of a given program

preserves the meaning and termination behavior of the original

program, yet it changes the channel of output values. The input

and output values at the level 𝓁 can be found on the input

559

channel with label 𝓁src and the output channel labeled as 𝓁snk
in the canonical version of the given program. The next lemma

shows the semantic relation between a given program and the

transformed one.

Lemma 6 (Semantic Equivalence Modulo Transformation).
For any program c, the semantic equivalence ≃T between

the programs c and Transform(c) holds where c ≃T c′
def
=

∀M.∀I.∃I′.
(
∀𝓁.I(𝓁) = I′(𝓁src)

)
∧ ⟨c,M, I,∅⟩ ⇝ O ∧

⟨c′,M, I′,∅⟩ ⇝ O′ ∧ O′ = O [v𝓁 → v𝓁snk].

Then, we prove a nontransitive policy on a given program

(with intermediate inputs/outputs) can be reduced to a transi-

tive policy on the transformed version of the program.

Theorem 12 (From NTNIPI to TNIPI). For any program

c and any nontransitive security policy = ⟨L , ⊵ ,Γ ⟩,
there exist a semantically equivalent (modulo transformation)

program c′ and a transitive security policy = ⟨L , ⊑ ,Γ ⟩
where c′ = Transform(c), ⟨L , ⊑ ⟩ is a corresponding source-

sink lattice and ∀x ∈ Varc. 𝓁 = Γ (x) ⇐⇒ Γ (x) = 𝓁src such
that NTNIPI(, c) ⇐⇒ TNIPI(, c′). Formally,

∀ .∀c.∃ .∃c′. c ≃T c′ ∧ NTNIPI(, c) ⇐⇒ TNIPI(, c′).

Theorem 13 (Soundness of Flow-Sensitive Type System for
Programs with I/O).

pc⊢Γ {Transform(c)} Γ′ ⇐⇒ TNIPI(, Transform(c)).

Proof of complexity of source-sink lattice encoding. We

know that source levels are incomparable in the source-sink

partial order, the same for sink levels. Thus, if there is

not a quadruple of levels, two sources and two sinks, such

that source levels are in relation with both of the sinks,

then adding a top and a bottom element yields the smallest

lattice. To do so, we detect cycles of length four in the

undirected graph of the partial order. In the worst case, it

takes
(|L |

2

)
.O(|L |2) = O(|L |4) for the graph that has

2.|L | nodes; O(|L |2) for finding each cycle [34], [7],

and
(|L |

2

)
cycles exist at most. For each cycle, we add one

intermediary level to the partial order, as the unique least

upper (resp. greatest lower) bound of the source (resp. sink)

levels. Hence, in the worst case, the resulting lattice adds
|L |2
2 + 2 more levels to the partial order, thus O(|L |2) is

the size of the lattice. It is also proven that the Dedekind-

MacNeille completion takes O(r2) where r is the number of

elements in the lattice [4], [9], [20], thus O(|L |4).
B. Case studies

Alice-Bob-Charlie
1 public class Alice {
2 private int data = 13;
3 private Bob b;
4 public Alice(){
5 b = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.operation();

10 }
11 private void operation(){
12 b.receive(data);
13 b.good();
14 b.bad();
15 }
16 }

1 public class Bob {
2 private int data1 = 0, data2 = 42;
3 private Charlie c;
4 public Bob(){
5 c = new Charlie();
6 }
7 public void receive(int x){
8 data1 = x;
9 }

10 public void good(){
11 c.receive(data2);
12 }
13 public void bad(){
14 c.receive(data1);
15 }
16 }

1 public class Charlie {
2 private int data;
3 public Charlie(){ }
4 public void receive(int x){
5 data = x;
6 }
7 }

Confused deputy
1 public class Library {
2 private int someValue = 5;
3 private int printValue = 0;
4 public Library(){ }
5 public void process(int src){
6 printValue = src;
7 }
8 public int retrieve(int key){
9 return someValue;

10 }
11 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 public Service(){
5 library = new Library();
6 }
7 public void addLog(int x, int y){
8 logFile += x + y ;
9 }

10 public void print(int data){
11 library.process(data);
12 }
13 public int query(int key){
14 return library.retrieve(key);
15 }
16 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;

560

4 public Downloaded_Code(){
5 service = new Service();
6 }
7 public static void main(String[] args){
8 Downloaded_Code dc = new Downloaded_Code();
9 dc.operation();

10 }
11 private void operation(){
12 service.addLog(data, key);
13 service.print(data);
14 result = service.query(key);
15 }
16 }

Bank logger
1 public class Bank {
2 private int id = 20, balance = 100;
3 public Bank(){ }
4 public int getBalance(int x){
5 if (x == id)
6 return balance;
7 return 0;
8 }
9 }

1 public class Logger {
2 private static int logFile;
3 public Logger(){ }
4 public void append(int x){
5 logFile += x;
6 }
7 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b;
4 private Logger l;
5 public BankLog(){
6 b = new Bank();
7 l = new Logger();
8 }
9 public static void main(String[] args){

10 BankLog bl = new BankLog();
11 bl.operation();
12 }
13 private void operation(){
14 balance = b.getBalance(userId);
15 if (balance > 0)
16 l.append(userId);
17 }
18 }

Low-High
1 public class Bob {
2 private int secret = 100, data;
3 public Bob(){ }
4 public void receive(int x){
5 data = x;
6 }
7 public int getSecret(){
8 return secret;
9 }

10 }

1 public class Alice {

2 private int data = 10;
3 private Bob bob;
4 public Alice(){
5 bob = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.sendDataToBob();

10 }
11 public void sendDataToBob(){
12 bob.receive(data);
13 if (bob.getSecret() > data)
14 data++;
15 }
16 }

561

		2022-08-24T12:10:13-0400
	Preflight Ticket Signature

