
Poster: DyPolDroid: User-Centered Counter-Policies
Against Android Permission-Abuse Attacks

Matthew Hill and Carlos E. Rubio-Medrano
Texas A&M University - Corpus Christi

Corpus Christi, Texas, USA
mhill10@islander.tamucc.edu,

carlos.rubiomedrano@tamucc.edu

Luis M. Claramunt, Jaejong Baek
and Gail-Joon Ahn
Arizona State University
Tempe, Arizona, USA

{lclaramu, jbaek7, gahn}@asu.edu

Abstract—Android applications are extremely popular, as
they are used for banking, social media, e-commerce, etc.
However, several malicious applications have recently carried
out data leaks and spurious credit card charges by abusing
the Android Permissions granted initially to them by un-
aware users in good faith. To alleviate this pressing concern,
we present DyPolDroid, a dynamic, semi-automated security
framework that builds upon Android Enterprise, a device-
management framework for organizations, allowing for users
to design and enforce custom Counter-Policies, effectively
protecting against such malicious applications without re-
quiring advanced security and/or technical expertise.

1. Introduction
In recent years there has been an increase in the

number of malicious applications in the Android Ecosys-
tem [1], targeting users with a large variety of attacks,
e.g., harvesting private data, making unwanted credit card
charges, retrieving the location of users, etc. Whereas the
root causes for such attacks have been largely explored
in the literature [2], an increasing number of applications
look to use and abuse the permissions granted legitimately
by users to carry out attacks. These so-called Permission-
Abusing Applications (P-A Apps) initially pose as benign
and request users to grant a seemingly normal set of
permissions to deliver some harmless functionality, e.g.
sorting out contact information. However, they later abuse
the granted permissions to facilitate attacks, e.g., leaking
the user’s contacts to a remote server via the Internet.

To effectively defeat these P-A Apps, we present
DyPolDroid (Dynamic Policies in Android), a dy-
namic, semi-automated security framework, which allows
for users and enterprise administrators to easily write
Counter-Policies restricting a series of Attack Patterns.
These are sets of Permissions that, if used in combination,
may allow for carrying out an attack, e.g., combining
the Internet and Read-Contacts permissions to
perform a data leak. Later, Counter-Policies are evaluated
and translated into lists of permissions that are allowed
or denied for each potential P-A App, and are sent for
enforcement on the user’s device by means of the remote
configuration features offered by the Android Enterprise,
providing a convenient solution that offers an advanced
degree of automation and requires no advanced security
expertise.

Dr. Gail-Joon Ahn is also affiliated with Samsung Research.

2. Background and Problem Statement

Android Permission Model. Prior to Android 6.0, all
permissions requested by an app needed to be granted
by users at installation time; users were presented with a
list of permissions to accept or deny once the app have
been downloaded but before installation could begin. If
users would choose to deny the requested permissions,
the installation of the app would fail. With the release
of Android 6.0, the permission model was modified such
that apps needed to request access to a permission the first
time that they wanted to use it [3], which allowed for a
more fine-grained approach in which users would accept
or reject each permission individually.

Android Enterprise. Android Enterprise is a device
management framework that allows for organizations to
remotely configure a series of Android-run devices, e.g.,
installing and uninstalling apps on devices without exten-
sive user intervention [4]. In addition, Android Enterprise
leverages the permission model, as described before, to
dynamically update, e.g., grant or deny, the permissions
requested by individual apps, thus allowing for Enterprise
administrators to remotely restrict the functionality of all
the apps installed on a managed device at will.

Permission-Abusing Applications. A Permission-
Abusing Application (P-A App) is a seemingly benign
app that is secretly malicious. Its formal or informal
usage documentation states that it uses permissions in an
expected, harm-free way, e.g., for sending messages to
contacts via the Internet, but it may also use them in a
malicious, unwanted, and potentially user-harming way as
well, e.g., for installing tracking software [5] or collecting
extraneous user data [6].

Problem Statement. For the purposes of this paper,
we assert that apps that request access to permissions and
knowingly misuse them are potentially malicious, i.e., they
are P-A Apps, as such permissions may allow for them to
successfully carry out their attack(s). Therefore, we aim
to detect all potential apps installed on devices that may
be P-A Apps, and aim to prevent them from successfully
using, a.k.a., exploiting, any granted permissions at run-
time. In such a scenario, there may be an overlap between
the permissions that allow for benign functionality and the
ones used for carrying out malicious functionality, e.g.,
the Internet permission being simultaneously used
for sending messages (benign) and leaking private data
(malicious).

704

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Matthew Hill. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00053

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
53

Figure 1. The Workflow of DyPolDroid: a User signs up for an Android
Enterprise (1) and moves on to write Counter-Policies (2), which are
later evaluated against the Attack Patterns obtained from any installed
P-A Apps (3), producing a Device Policy that is then sent to the Device
(4). As a result, P-A Apps have their permissions blocked (5).

3. Our Approach: Dynamic Enforcement of
Counter-Policies via Android Enterprise

To address the previously stated problem, we have
envisioned an approach in which both Users and Android
Enterprise Administrators can actively restrict the func-
tionality of potential P-A Apps by leveraging the dynamic
permission updates provided by Android Enterprise. Our
approach, called DyPolDroid, allows for the specifica-
tion of so-called Counter-Policies restricting the Attack
Patterns described in Sec. 2. Such patterns are in turn
discovered utilizing contextual information obtained by
analyzing the flow of data inside the P-A Apps installed
on a user’s device. Following Fig. 1, our approach can be
further described as:

(1) Android Enterprise Sign Up. Initially, users are
allowed to sign up for the Android Enterprise on their
mobile device. One key functionality of DyPolDroid is
that users do not need to make any modification to their
operating system, e.g., requiring the device to be rooted,
which allows for them to simply register and get protected
in an easy and straightforward way.

(2) Writing Counter-Policies. Counter-Policies are
written using a series of templates depicting a subset of
XACML, the de facto language for authorization and ac-
cess control. Users are then able to specify a policy to help
protect their device by specifying a variety of rules includ-
ing features like: which applications can be installed, the
default permission policy of any newly installed applica-
tion, and what potential attacks the user would like to
defend against. In addition, Counter-Policies leverage the
conflict resolution features provided by XACML for the
case when multiple policies are applied to the same device,
allowing for DyPolDroid to resolve conflicts before any
resulting policies are sent to the user’s device.

Figure 2. Creating Device Policies in DyPolDroid. The set of authorized
permissions for each P-A App are obtained by evaluating Counter- Poli-
cies(1), whereas the set of requested Permissions are obtained via Data
Flow and Taint Tracking analysis (2). The set of resulting permissions is
calculated by subtracting the authorized permissions from the requested
ones, and it is later encoded and sent out as a Device Policy (3).

(3) Discovering Attack Patterns. Our proposed At-
tack Patterns are inspired by a set of predetermined attack
vectors that were found to be common place across a
number of known malicious applications [7]. These map
data from a source to a sink inside code. For example,
the Attack Pattern: {Contacts, Internet} extracts a user’s
contact information and sends them to a remote server via
the Internet.

DyPolDroid leverages taint tracking from FlowDroid
[8] to gain insight into the data usage within a P-A App.
The resulting data flow is cross-referenced against known
Android class functions that are used for interacting with
permissions. To ensure only matching applications are up-
dated, DyPolDroid uses the SHA 256 hash in conjunction
with the application package to ensure that only matching
applications have the appropriate actions taken against
them. This is important when there are multiple versions
of the same application installed on devices for different
users within the Android Enterprise, e.g. v1.1.33 and
v1.1.34. If a vulnerability that the user wants to protect
against is found and the application matches, the policy is
automatically updated to block the permission(s) required
to carry out the attack.

Fig. 2 gives an overview of how the Device Policies
are created and checked before being send to the user’s
device. First, the permissions requested by the P-A App
is obtained. Second, the results of the application anal-
ysis are used to determine what permissions, if any, are
being abused by the application to leak user data. These
offending permissions are then updated within the Device
Policy to block their usage by the application.

(4) Device Policies and Enforcement. Once the An-
droid Enterprise has received the Device Policy from
DyPolDroid, it sends it to the device. Once received, the
policy will immediately begin to apply. If there are any
conflicts between the user’s device and the new-applied
policy, e.g., an installed application is not allowed by the

705

1 <Rule RuleId="Laverna_attacks" Effect="Deny">
2 <Target>
3 <AnyOf> <AllOf> <Match Id="boolean-equal">
4 <AttributeValue>true</AttributeValue>
5 <AttributeDesignator
6 AttributeId="Laverna"/>
7 </Match> </AllOf> </AnyOf>
8 <AnyOf> <AllOf> <Match Id="boolean-equal">
9 <AttributeValue>true</AttributeValue>

10 <AttributeDesignator
11 AttributeId="\textSteal_Contacts"/>
12 </Match> </AllOf>
13 <AllOf><Match Id="boolean-equal">
14 <AttributeValue>true</AttributeValue>
15 <AttributeDesignator Category="action"
16 AttributeId="Steal_Messages"/>
17 </Match></AllOf> </AnyOf>
18 </Target>
19 </Rule>

Listing 1. A Counter-Policy for the Laverna P-A App.

policy, the device manager will freeze the profile until the
device is compliant with the policy, e.g., forcing the user
to manually uninstall the offending application. With the
policy now applied to the mobile device and in full effect,
the user can begin to get protected.

4. Preliminary Evaluation

For the purpose of evaluating our approach, we have
developed Laverna: a proof-of-concept P-A App that re-
quests several permissions for benign functioning, getting
full access to the user’s contacts, real time location, and
SMS so it can serve as a messaging application. How-
ever, it also silently exploits the granted permissions to
collect and leak data to a remote server when the user
is messaging another user. The leaked data includes the
contact’s full name and phone number and the messages
sent, including who the sender and receiver are. The
Counter-Policy shown in Listing 1 gives the response to
the different types of attacks a users wants to defend
against. In this case the two attacks are: Steal Contacts,
and Steal Messages. Should any of the attacks be found
when analyzing the application, the action taken against
the used permissions will be to deny them. This change in
allowed permissions is reflected in the JSON-based Device
Policy shown in Listing 2.

In our experiments, Laverna was downloaded on an
experimental device, and a user was allowed to select what
permissions can be granted before installed such P-A App.
Our tests show that DyPolDroid was able to block this
application from collecting the user’s data and sending it
off the device. Since a subset of the permissions requested
by Laverna were found to be malicious, the default policy
was overridden to block them on the device. While this
approach does not preemptively block the leaking of user
data, once DyPolDroid has been performed its analysis
future cases will mitigate such attacks.

5. Conclusions and Future Work

P-A Apps are still an ongoing problem for Android
Ecosystems. In such regard, DyPolDroid offers an effec-
tive and convenient solution that requires no root access

1 { "defaultPermissionPolicy": "PROMPT",
2 "applications": [{
3 "packageName": "com.example.laverna",
4 "installType": "REQUIRED_FOR_SETUP",
5 "permissionGrants": [
6 { "permission": "android.permission.

READ_CONTACTS",
7 "policy": "BLOCK"},
8 { "permission": "android.permission.

READ_SMS",
9 "policy": "BLOCK"}

10]}

Listing 2. A Device Policy for the Laverna P-A App.

to user’s devices nor any modifications to the code of P-
A Apps: two constraints that have limited the deployment
in practice of previous related approaches. As a matter
of ongoing and future work, we are currently analyzing
several P-A Apps to identify Attack Patterns and potential
templates for Counter-Policies that can effectively defeat
them. We plan to use this insight later on to conduct
a comprehensive study in which users sign up for an
experimental Android Enterprise. Then, we aim to collect
data on how the devices are used, and verify whether Dy-
PolDroid was able to accurately detect when permissions
were improperly used. Also, we will collect data regarding
the level of user satisfaction with respect to the restrictions
observed in the functionality of potential P-A Apps as a
result of using DyPolDroid.

Acknowledgments

This work is partially supported by a grant from the
National Science Foundation (NSF-SFS-1129561), a grant
from the Center for Cybersecurity and Digital Forensics
at Arizona State University, and by a startup funds grant
from Texas A&M University – Corpus Christi.

References

[1] ZDNet. (2020) Play store identified as main dis-
tribution vector for most android malware. [On-
line]. Available: https://www.zdnet.com/article/play-store-\
identified-as-main-distribution-vector-for-most-android-malware/

[2] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. Mao, “Kratos:
Discovering inconsistent security policy enforcement in the android
framework,” in Proc. of the Network and Distributed System Security
Symposium (NDSS) 2016, January 2016.

[3] Google. (2021) Permissions on android. [Online]. Available:
https://developer.android.com/guide/topics/permissions/overview

[4] Google. (2021) Android Enterprise. [Online]. Available: https:
//www.android.com/enterprise/

[5] Android Authority. (2020) Report: Hundreds of apps have hidden
tracking software used by the government. [Online]. Available: https:
//www.androidauthority.com/government-tracking-apps-1145989/

[6] The New York Times. (2020) The Lesson We’re
Learning From TikTok? It’s All About Our Data. [On-
line]. Available: https://www.nytimes.com/2020/08/26/technology/
personaltech/tiktok-data-apps.html

[7] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: Android malware
detection using permission pairs,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1968–1982, 2020.

[8] S. Arzt, “Static data flow analysis for android applications,” Ph.D.
dissertation, Technische Universität, Darmstadt, 2017. [Online].
Available: http://tuprints.ulb.tu-darmstadt.de/5937/

706

		2022-08-24T12:52:02-0400
	Preflight Ticket Signature

