
BGPeek-a-Boo: Active BGP-based Traceback for Amplification DDoS Attacks

Johannes Krupp
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
johannes.krupp@cispa.saarland

Christian Rossow
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
rossow@cispa.saarland

Abstract—Amplification DDoS attacks inherently rely on IP
spoofing to steer attack traffic to the victim. At the same time,
IP spoofing undermines prosecution, as the originating attack
infrastructure remains hidden. Researchers have therefore
proposed various mechanisms to trace back amplification
attacks (or IP-spoofed attacks in general). However, exist-
ing traceback techniques require either the cooperation of
external parties or a priori knowledge about the attacker.

We propose BGPEEK-A-BOO, a BGP-based approach
to trace back amplification attacks to their origin network.
BGPEEK-A-BOO monitors amplification attacks with hon-
eypots and uses BGP Poisoning to temporarily shut down
ingress traffic from selected Autonomous Systems. By sys-
tematically probing the entire AS space, we detect systems
forwarding and originating spoofed traffic. We then show
how a graph-based model of BGP route propagation can
reduce the search space, resulting in a 5× median speed-up
and over 20× for 1/4 of all cases. BGPEEK-A-BOO achieves
a unique traceback result 60% of the time in a simulation-
based evaluation supported by real-world experiments.

Index Terms—Amplification DDoS, BGP Poisoning, Trace-
back, IP Spoofing

1. Introduction

Amplification attacks [1] continue to be one the most
powerful type of DDoS attacks, reaching attack band-
widths as high as 1.7 Tbps in 2018 [2] or 2.3 Tbps in
2020 [3]. These attacks rely on IP spoofing: As IP header
information is not authenticated, crucial fields such as the
packet’s source address can be set to arbitrary values by
the attacker. Even worse, IP spoofing not only enables
these attacks in the first place, it also effectively hides
the attack’s origin. Without knowing the true network
origin, identifying the actors behind these attacks is nigh
impossible. Thus, a traceback mechanism for these attacks
is of prime importance.

Previous traceback approaches for amplification at-
tacks can only link attacks to scanners used in at-
tack preparation [4] or re-identify attacks from known
sources [5]. This restricts them to the subset of incidents
where rich auxiliary information is known a priori. Ap-
proaches to trace back IP spoofing in general [6] are
mostly based around the idea of packet marking [7]–
[12], where routers encode path information in the packet
header, or collecting flow telemetry data [13]–[17]. How-
ever, both require the cooperation of a large number of

routers along the path and thus a widespread deployment
on the Internet—something we have not seen despite these
approaches being known for over a decade.

In this paper we propose BGPEEK-A-BOO, a novel
approach to trace back amplification attacks that requires
neither cooperation of on-path routers nor knowledge of
potential attack sources. The main insight behind our
approach is as follows: While attackers may spoof IP level
information, they are usually tightly coupled to a given
spoofing-capable network location. Packets sent by the
attacker are thus bound to the routes chosen by their net-
work provider. This allows us to use the Border Gateway
Protocol (BGP) to identify the Autonomous System (AS)
that emits the spoofed attack traffic, which constitutes
a fundamental step towards fighting these attacks: Once
identified, prosecutors can contact the AS operators to
investigate the perpetrators behind the attack, which must
be customers of the AS. Further, the spoofing AS can be
pressured into implementing egress filtering by its peers,
similar to what happened to McColo in 2008 (cf. [18]).

BGPEEK-A-BOO, shown in Figure 1, consists of a
number of amplification honeypots organized in multiple
/24 prefixes and a BGP router that can advertise routes
for these prefixes. The honeypots emulate services that
are vulnerable to amplification in order to be selected
as reflectors in amplification attacks [19]. During attacks,
these honeypots will receive spoofed traffic sent by the
attacker. Through BGP Poisoning we can then exclude
certain ASes from propagating routes towards our system.
In particular, depriving the attacker of a route causes the
spoofed traffic to either switch to an alternative route,
which may be observed by a change in TTL values at
the honeypots, or to cease entirely. Building on this ob-
servation, we systematically probe ASes to uncover those
involved in forwarding attack traffic—eventually leading
us to the spoofing AS itself.

In a second step, we show how AS relationship data
can be used to drastically limit the search space. For
this we build a BGP flow graph that captures how BGP
advertisements propagate and analyze which systems are
reachable and dominated by others. We find that both
algorithms achieve a perfect attribution result 100% of the
time in an idealized, and still over 60% in a more realistic
simulation. Our naive algorithm requires a median of
549 BGP Poisoning steps (91.5 hours) for traceback, while
our graph-based algorithm improves this to 98.5 steps
(16.4 hours), with 25% of cases even terminating in at
most 29 steps (4.8 hours). An 8-fold parallelization of
our methodology reduces the median traceback duration

423

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Johannes Krupp. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00036

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
36

to less than an hour.
In summary, our contributions are the following:

1) We propose a novel approach for AS-level traceback
of IP spoofing by leveraging BGP Poisoning. Our
approach requires neither cooperation of external par-
ties nor a priori knowledge about the attacker.

2) We present two traceback algorithms, showing that
BGP-based traceback is feasible in principle and
can be greatly sped up when augmented with AS
relationship data.

3) We provide an extensive simulation-based evaluation,
measuring the influence of various parameters on per-
formance and correctness. We confirm our simulator
through real-world experiments using the PEERING
BGP testbed [20] and RIPE Atlas [21].

2. Background

In this section, we give a brief recap on amplification
attacks and BGP Poisoning.

2.1. Amplification DDoS Attacks

In an amplification DDoS attack, the attacker tricks
public UDP services (e.g., DNS servers) into sending large
amounts of traffic to the victim. This is possible, because
IP spoofing enables an attacker to spoof the source address
of packets to be the address of the victim. The service
will then perceive this packet as a legitimate request and
respond to the victim (making the service an involuntary
reflector). By carefully selecting reflectors that send large
responses, the attacker can maximize the traffic that is
reflected to the victim and achieve traffic amplification.
IP spoofing further hides the attacker’s (network) location,
which makes finding the attacker behind an amplification
attack notoriously difficult.

Fortunately, amplification attacks have been identified
to largely be launched from single sources such as Booter
services [5], [19]. For attackers, finding such reliable
and capable source infrastructures is challenging. Con-
sequently, these infrastructures are usually reused over
long time spans. These services have also been reported to
reuse the same set of reflectors for multiple attacks over
an extended period of time [5]. We can therefore assume
that reflectors continuously1 receive spoofed attack traffic
from the same origin.

2.2. The Border Gateway Protocol (BGP)

The Internet is often described as a “network of
networks”, as it comprises thousands of so-called au-
tonomous systems (ASes). Every AS is a network under
the control of a single entity. An AS is usually responsible
for a number of IP prefixes and can be identified by its
unique AS number (ASN).

BGP [22] enables routing between ASes. In BGP,
ASes exchange routing information with their neigh-
bors through route advertisements (also called announce-
ments). Each route advertisement describes a path of ASes

1. As we will show in Section 6.3.4, even though individual attacks
might be too short for BGP-based traceback, we can aggregate multiple
attacks to the same origin, thereby fulfilling this demand.

(AS_PATH) via which a certain IP prefix may be reached.
When a BGP router receives an advertisement for a prefix,
it first checks if it already knows a better2 route for
that prefix. If it does, the new route is only kept as a
fallback. Otherwise, the router prepends its own ASN
to the AS_PATH and advertises this new route to its
neighbors. Between two BGP routers, a new advertise-
ment for a prefix also implicitly withdraws the old route
advertised for that prefix. When routing traffic, packets
are forwarded according to the best known route for the
most specific prefix covering the traffic’s destination. We
assume that the attacker does not control an entire AS,
but is a customer of an RFC-compliant AS.

2.2.1. BGP Poisoning:. BGP detects and prevents
loops [22]. Before considering new advertisements,
routers check if their own ASN is already included in the
AS_PATH. If so, the new advertisement will be considered
as a withdrawal only and no longer propagated to the AS’s
neighbors. A side-effect of loop detection is that it enables
BGP Poisoning. By crafting the AS_PATH to include
other systems’ ASNs, loop detection can intentionally be
triggered at these other systems. Specifically, to trigger
loop detection at ASes X1, . . . , Xn, an AS A may send
an advertisement with

AS_PATH = (A,X1, . . . , Xn, A)

If any AS ∈ X1, . . . , Xn receives this advertisement, it
will find itself already present in the AS_PATH, consider
this a “loop”, and handle it as a withdrawal subsequently.
The first A ensures that A’s neighbors correctly see A
as the next on-path AS, while the last A ensures that the
prefix is still seen as originating from A (as required, e.g.,
for Route Origin Validation [23], [24]). We will call A
the poisoning AS and X1 through Xn the poisoned ASes.
Despite its negative name, BGP Poisoning does not imply
malevolence—after all, dropping advertisements can only
impede reachability of the poisoning AS, but not others.
On the contrary, since it gives operators a way to control
inbound traffic paths, its utility has been proven for many
traffic engineering tasks [25]–[27].

3. BGP-based Traceback

As noted in Section 2.2.1, BGP Poisoning can be
used to discard route advertisements at other ASes. In
this section we show how the resulting side-effects can be
leveraged to find the origin AS of spoofed attack traffic
and present our traceback system BGPEEK-A-BOO.

3.1. Poisoning for Traceback

Assume an AS A is sending spoofed traffic to a reflec-
tor and receives a poisoning advertisement for the reflec-
tor’s prefix. Since the AS will handle this advertisement
like a withdrawal, it will remove its routing information
for that prefix. However, without routing information it
can no longer send traffic to the reflector. The reflector
will hence stop receiving traffic from A.

A similar observation can be made for ASes forward-
ing traffic to the reflector. Assume an AS F is normally

2. according to its operator defined policies

424

BGPEEK-A-BOO

V

H

G

F

E

D

C

B

A

BGP Router

Amplification
Honeypots

...
...

Probe Prefix 1
X.Y.1.0/24

Probe Prefix n
X.Y.n.0/24

Control Prefix
X.Y.0.0/24

G

Figure 1: BGPEEK-A-BOO overview. After poisoning E, the attack towards V is no longer observed at the amplification
honeypots and must therefore originate from either A, B, C, or E.

forwarding spoofed traffic from A to the reflector and re-
ceives a poisoning advertisement. Next to losing the ability
to send traffic to the reflector, F also has to withdraw any
routes for that prefix it had advertised to its neighbors.
Thus A can no longer route traffic to the reflector via F .
If no alternative path from A to the reflector exists that
circumvents F , then A again loses connectivity and traffic
at the reflector will stop. However, even if an alternative
path exists, this case might be observable at the reflector:
Unless the IP hop count along both paths is exactly the
same, the traffic’s TTL value at the reflector will change.

This allows us to check whether some AS X was
on-path of a traffic flow: If poisoning X causes the
traffic to stop or its TTL value to change, X was on-
path. Furthermore, if traffic stopped, the origin AS has no
alternative routes avoiding the poisoned AS X .

3.1.1. Default Routes. In practice, some ASes can still
route traffic even for prefixes that they have no explicit
routing information for. These default routes can be either
configured statically or an upstream AS can advertise itself
as the next hop for a large prefix (e.g., 0.0.0.0/0). In
these cases, the poisoned AS will not loose connectivity
entirely, but switch to its default route. As before, such a
route change can result in an observable TTL change. Fur-
thermore, since a default route cannot be advertised with
a more specific prefix than the original route, BGP will
avoid paths including a default route whenever possible.

3.1.2. Combined Probes. The on-path check can also be
performed for multiple ASes simultaneously using a com-
bined poisoning advertisement. If the poisoning of an AS
leads to a stop in traffic, poisoning additional ASes cannot
undo this effect. If, however, it leads to a TTL change only,
poisoning additional ASes may cause further re-routing or
even eliminate alternative paths. While this could negate
the TTL change under specific circumstances3, it results
in additional traffic stops in many cases.

Ultimately though, a combined probe can only tell
whether any of the poisoned ASes were on-path. To find
the exact on-path AS within the probed set, we can use

3. if it causes traffic to take a path with the exact same IP hop count
as the original path

a binary search approach, iteratively splitting the probing
set in half and repeating the probing for each half.

3.1.3. Active Measurements. This technique can be fur-
ther supplemented by active measurements. By provoking
replies from a host in the measured AS (e.g. through ICMP
Pings or TCP SYNs4), we can observe the effect of poi-
soning on the AS. If the replies to our active measurements
stop under poisoning, but the spoofed traffic continues (or
vice versa), we can conclude that the measured AS was
not the spoofing source.

3.1.4. Probes in BGPEEK-A-BOO. BGPEEK-A-BOO

uses all but one of its prefixes as probe prefixes to probe
network responses to poisoning advertisements. The re-
maining prefix is designated as the control prefix and will
only be advertised regularly (non-poisoned). We will refer
to honeypots in probe prefixes and the control prefix as
probe honeypots and control honeypots respectively.

To probe an AS, the BGP router of BGPEEK-A-BOO

sends a poisoned route advertisements for a probe prefix
that receives attack traffic. Once the routes have stabilized,
it records the impact on the attack traffic and on pings.
If the attack is also observed by some control honeypots,
impact can also be measured by comparing traffic between
the probe and control honeypots.

4. A naive Traceback Approach

Using these measures we propose the naive traceback
algorithm depicted in Figure 2. The algorithm simply
loops over all ASes (set A) in chunks of size at most
n and considers each chunk as a combined probe P .

The actual probing is performed by PROBE, which
sends out a poisoned advertisement for the ASes in P ,
performs the active measurements, and returns the ob-
served effects. It returns the effect on the attack traf-
fic (rpassive) and the active measurement results (�ractive).
rpassive can be either NO_EFFECT if no change was ob-
served, TTL_CHANGE if we observed a TTL change, or
STOP if traffic has stopped entirely. Similarly, �ractive is a

4. suitable candidates and ports could be found through Internet-wide
scanning or by leveraging a search engine such as Shodan [28]

425

procedure NAIVETRACEBACK(A, A, n)
C ← ∅ � candidates
for block P in A of size ≤ n do

PROBEANDUPDATE(P)

return C

procedure PROBEANDUPDATE(P)
rpassive, �ractive ← PROBE(P)
if rpassive �= NO_EFFECT then
P ← UPDATE(P, rpassive, �ractive)
if |P| = 1 then
C ← C ∪ P � AS in P was on-path

else if |P| ≥ 2 then
P1,P2 ← SPLIT(P) � “Binary Search”
PROBEANDUPDATE(P1)
PROBEANDUPDATE(P2)

procedure UPDATE(P, rpassive, �ractive)
if rpassive = STOP then
Pinconsistent ← {X ∈ P | �ractive[X] �= STOP}

else
Pinconsistent ← {X ∈ P | �ractive[X] = STOP}

return P \ Pinconsistent

Figure 2: Naive traceback algorithm

vector with one component (either NO_EFFECT or STOP)
per probed AS.

If poisoning of P shows an effect on the attack traf-
fic, the probe is then narrowed down to find the exact
AS(es) that caused this effect. For this, first, all probed
ASes that show an inconsistent behavior in their active
measurements are discarded from the probe (UPDATE). If
this already reduces the probe to a single consistent AS,
it is then added to the candidate set C as a confirmed on-
path AS. Otherwise, the probe is split in half (SPLIT) and
the probing is repeated for each half recursively. Once all
ASes have been probed that way, the final set of confirmed
on-path ASes C is returned.

4.1. Runtime Analysis

The runtime of this traceback approach is greatly
dominated by the probing step, which involves sending out
a poisoned advertisement and performing active measure-
ments. This is because (1) it may take several minutes for
routes to settle after a new advertisement [26], [29], only
after which active measurements can be performed, and
(2) several BGP mechanisms further limit the rate at which
routers may send out new advertisements (Section 7.1).
Therefore, realistically, advertisements cannot be made
much faster than once every ten minutes.

We will thus count the number of required probing
steps to analyze the traceback runtime. At chunk size n
and a total of N ASNs in A, the naive traceback algorithm
from Figure 2 takes

⌈
N
n

⌉
steps to test each chunk once,

plus an additional 2 log2 n steps for every on-path AS to
reduce the chunk it is contained in down to a single AS.
For example, the AS65000 BGP Routing Table Analysis
Report [30] lists roughly 66000 active ASes for the end
of 2019 and an average AS path length of 5.5. With a
chunk size of n = 128 this thus gives an average of 593

steps total, which, at 6 advertisements per hour, would
take about 4 days and 3 hours to complete.

Given that spoofing sources, such as Booter services,
are active for extended periods of time (see Section 6.3.4)
and reuse the same amplifiers for a week or longer [5], this
shows that BGP-based traceback is feasible in principle.

4.2. Discussion

While this algorithm is intuitive and requires no exter-
nal knowledge of AS properties or relationships, it comes
with two main drawbacks: (1) It only returns an unordered
set of on-path ASes, which still leaves the exact path and
origin unknown. (2) It “wastes” a lot of time poisoning
off-path ASes that could potentially be avoided, as it
effectively conducts an exhaustive search over the entire
AS space.

4.2.1. On-Path Ordering. Ideally, one would like to find
the true origin AS of the spoofed traffic, or at least the on-
path AS closest to it that can still be discovered. However,
through probing we can only tell whether an AS was on-
path or not, but not its position along the path.

While at first glance it seems that this problem could
be solved by comparing TTL values received from hosts
located in these ASes, this is not necessarily true: Al-
though the AS level path should be the same for both
traffic originating from and traffic forwarded by an AS,
the IP level paths (and hence their hop counts) can differ
vastly. In a similar vein, one might attempt to infer the on-
path order from traceroutes towards hosts in the candidate
ASes, mapping the obtained IP level traceroute paths into
AS level paths. Barring the problems of mapping IP to AS
level paths [31], [32], traceroutes from the vantage point
can only reveal paths towards other hosts, but not their
reverse paths, which we are interested in.

4.2.2. Runtime Improvement. Although the estimated
runtime does not seem prohibitive, the question still re-
mains whether additional knowledge about ASes, such
as their relationships, can be used to achieve effective
traceback more efficiently. For example, as a simple opti-
mization the search can be aborted as soon as a stub AS is
confirmed to be on-path. Since stub ASes do not provide
transit for other ASes, an on-path stub AS must be the
one originating the observed traffic. In these cases, such
an early termination will reduce the expected runtime to
1/2 of the original algorithm. In the next section, we show
how the runtime can be further improved by leveraging
AS relationship data as well as the information about
alternative path availability one can obtain from probing.

5. Flow Graph based Traceback

Our graph-based traceback algorithm exploits knowl-
edge about the relationship between ASes to limit the
search space. For example, if the attack traffic stops under
poisoning, we know that the source has no alternative
route that avoids the poisoned ASes. To efficiently rea-
son about alternative paths and whether an advertisement
might be propagated from one AS to another, we define
a so-called AS Flow Graph.

426

5.1. AS Flow Graphs

AS relationships are usually classified as either
customer-provider (CP) or peer-to-peer (P2P) rela-
tions [33]. In a customer-provider relation, one AS (the
customer) pays another (the provider) for transit such that
the customer may reach and be reached from the Internet
via the provider. In a peer-to-peer relation, two ASes agree
to transit traffic for their customers to one another, thereby
reducing the amount of traffic they would have to pay their
provider for otherwise.

The resulting BGP paths are generally assumed to
be valley-free [33]: zero or more customer-provider
edges (“up”), followed by at most one peer-to-peer
edge (“sideways”), followed by zero or more provider-
customer edges (“down”). In other words: a peer-to-peer
or provider-customer edge can never be followed by a
customer-provider or peer-to-peer edge, as this would re-
sult in a “valley”. Note that this property is symmetric and
holds for both, the AS-level paths taken by routed traffic
as well as the propagation paths of BGP advertisements.

Following this, an AS may receive an advertisement
in two states: If the advertisement was received from a
customer (i.e., via a customer-provider edge), the valley-
free assumption does not restrict the edge types that may
follow. We will call this state unconstrained. If an adver-
tisement was received from either a peer or a provider,
it may only be forwarded to customers, but not to other
peers or providers. We will thus call this state constrained.

We can use a graph to model advertisement propa-
gation that uses two nodes per AS, one for each state.
Formally, we define this graph G = (V,E) as follows:
Every AS A is represented by two vertices, uA and
cA, representing the unconstrained and constrained state
respectively,

V =
⋃

A∈AS

{uA, cA}

We will denote the AS represented by a node x using
asn(x),

asn(x) = A⇔ x ∈ {uA, cA}
When AS A is a provider of AS B, advertisements may
only be forwarded “downhill” from cA to cB or “uphill”
from uB to uA. If A and B share a P2P relation, then
advertisements may only be forwarded between A and B
at the “peak” of the path, i.e., from uA to cB or from
uB to cA. Finally, advertisements received at uA may of
course also be forwarded to cA. In total,

E =

⎛
⎝ ⋃

A,B∈CP

{(uA, uB), (cB , cA)}
⎞
⎠

∪
⎛
⎝ ⋃

A,B∈P2P

{(uA, cB), (uB , cA)}
⎞
⎠

∪
(⋃

A∈AS

{(uA, cA)}
)

This graph then captures all valley-free AS paths, and
every path in this graph corresponds to a valid valley-free
AS path. For a formal proof, please refer to Section A.

A

B C

D

(a) Example AS relationships: A is provider of B, C is provider
of D, and B and C have a peer-to-peer relation.

A

B C

D

uA

cA uB

cB

uC

cC uD

cD

(b) The resulting AS flowgraph shows that route advertisements
from D may reach C and B, but can never reach A.

Figure 3: AS flowgraph example

By construction, the orientation of edges denotes the
direction of advertisement propagation. For example, an
edge from uB to uA implies that advertisements received
by B may be further propagated to A. However, the in-
verse graph obtained by reversing all edges is meaningful
as well, as it describes all possible traffic flows between
ASes: If AS B advertises a route for a prefix to AS A,
then A may send traffic destined towards that prefix to B.

In the example given in Figure 3, A is a provider of
B, C is a provider of D, and B and C have a peer-to-
peer relation. However, it is not obvious from the relation-
ship graph, whether advertisements from D may reach
A. The resulting flowgraph answers this unequivocally:
Advertisements from D can reach C (uD → uC) and B
(uD → uC → cB), but cannot reach A, since there is no
directed path from either uD or cD to uA or cA.

5.1.1. Reachability and Dominance. A poisoned adver-
tisement can affect ASes in two ways: ASes included
in the advertisements’ AS_PATH are affected directly, as
they will discard the advertisement due to loop detection.
However, this also prevents them from propagating the
advertisement further, which, in turn, can affect other
ASes. While some of these indirectly affected ASes may
still receive the advertisement via alternative routes and
thus only experience a route change, others may no longer
be able to receive the advertisement at all. To reason about
the propagation of (poisoned) advertisements originating
from a specific AS A, we can define its AS-specific
subgraph:

Definition 1 (AS-specific subgraph). For the flow graph
G and AS A, we define the AS-specific rooted subgraph
GA = (VA, EA, uA) as the subgraph of G rooted at uA.

We can then define two relations on this graph, reacha-
bility and (joint) dominance, to capture which ASes might
potentially be affected by a poisoned advertisement and
which will be inevitably.

427

Consider an advertisement that is poisoning
ASes P = {X1, . . . , Xn} (with corresponding nodes
p = {uX1

, cX1
, . . . , uXn

, cXn
}). Another AS Y might

only be affected by this advertisement if it can receive
advertisements from A via any AS in P 5. As all paths
in the graph GA describe valid propagation paths for
advertisements originating from A, AS Y therefore might
be affected if there is a path from any node x ∈ p to any
node y ∈ {uY , cY }.
Definition 2 (Reachability). We call a node y reachable
from another node x, iff there exists a path in GA from x
to y.

y ∈ reachableGA
(x)⇔

∃π = (x1 = x, . . . , xn = y) :

∀1 ≤ i < n : (xi, xi+1) ∈ EA

The set reachableGA
(x) describes all nodes whose

traffic towards A may be routed via x. The definition of
reachable can be trivially extended to sets of nodes by
taking their union:

reachableGA
({x1, . . . , xn}) =

n⋃
i=1

reachableGA
(xi)

Therefore, the set of ASes that might be affected by an ad-
vertisement poisoning nodes p is simply reachableGA

(p).
That is, if poisoning of nodes p causes the TTL values
of the attack traffic to change we can infer that the origin
was affected and must be an element of reachableGA

(p).

In a similar vein we can also define nodes that must
be affected. Intuitively, a node y must be affected if it
cannot receive advertisements from A but via nodes in p.
Thus, once all nodes in p are removed from the graph, y
should be no longer reachable from uA. In graph theory
terms p then constitutes a uA-y-vertex-separator (albeit
defined over directed graphs), but can also be seen as a
generalization of the concept of dominators from control-
flow-graph analysis.

Definition 3 ((Joint) Domination). We call a node y
(jointly) dominated by a set of nodes {x1, . . . , xn} in
graph GA, iff y is reachable from uA but removing the set
{x1, . . . , xn} breaks reachability from uA to y. Formally

y ∈ dominateesGA
({x1, . . . , xn})⇔

y ∈ reachableGA
(uA) ∧ y �∈ reachableG′

A
(uA)

where G′
A = (V ′

A, E
′
A, uA) with V ′

A = VA \ {x1, . . . , xn}
and E′

A = {(x, y) ∈ EA | x ∈ V ′
A ∧ y ∈ V ′

A}.
Hence, the set of ASes that will inevitably be affected,

i.e., those that will have to switch to default routes or
possibly loose connection, by an advertisement poisoning
nodes p is dominateesGA

(p). As noted above, other ASes
from reachableGA

(p) might be affected as well, but for
those contained in dominateesGA

(p) we can be certain.

5. Under specific circumstances, poisoned advertisements may also
induce route changes at ASes that have no connection to a poisoned
ASes. We analyze these cases in Section 7.4.

5.2. Flow Graph based Traceback

We can leverage this flow graph for AS traceback in
two ways: First, given a known on-path AS we know
that the neighboring on-path AS must also be one of its
successors in the graph. Instead of globally searching for
the origin AS we can therefore iteratively find all on-path
ASes one-by-one by probing the successors of the latest
found on-path AS.

Second, we can use reachability and dominance re-
lations given by the graph to reduce our probing search
space: If traffic stops, we know that the origin AS has no
alternative paths available and can thus limit our search
space to nodes dominated by the probed ASes (which
includes the probed ASes themselves). If we observe a
TTL change, we can still infer that the origin AS is at
least indirectly affected by the probe and can therefore
limit our search space to those nodes that are reachable
from the probed ASes. We can also use similar inferences
on the results of our active measurements: When responses
to active measurements for a probed AS stop but the attack
traffic does not, we can exclude all nodes dominated by
the probed AS from our search space, as those would no
longer be able to send traffic as well. Vice versa, if the
attack traffic stops but active measurements show that a
probed AS is still replying to pings, we can exclude all
nodes reachable by the probed AS, as they also could send
traffic to us via the probed AS.

5.2.1. Graph based Traceback Algorithm. Combining
both of these effects leads to the graph-based traceback
algorithm shown in Figure 4. Given the rooted subgraph
GA = (VA, EA, ua) of the receiving AS A and a probe
size limit n, it returns a set of candidate source ASes.

For this, the algorithm maintains a set of source candi-
dates C, which is initially set to all ASes reachable from A
and then continuously narrowed down during traceback.
Further, it also keeps a logbook L of ASes that have
already been probed and can thus be excluded from further
probing, as well as the most recent on-path AS L, which
is initially set to A. As long as there are candidates that
have not been probed yet (C \ L), a new set of ASes
to probe is selected (see Section 5.2.2) and passed to
PROBEANDUPDATE, which will perform the probing and
update the candidate set and logbook accordingly.

As before, probing is performed by PROBE (see Fig-
ure 2). Updating the candidate set is performed in two
steps: First, UPDATEPASSIVE reduces the candidate set
based on the overall effect on the attack traffic, limiting
C to the set of nodes dominated or reachable by the
current probe if traffic stopped or a TTL change was
observed. Second, UPDATEACTIVE further narrows down
the candidate set and the current probe by finding probed
ASes whose active measurements are inconsistent with the
overall observation and then removing nodes dominated
or reachable by these.

If there has been an effect on the attack traffic and
multiple probed ASes exhibit a consistent behavior, they
are split in half (SPLIT) and the probing is repeated for
each half. If a probe has been narrowed down to a single
consistent AS, this AS is set as the most recent on-path
AS L and a new probe is selected.

428

procedure TRACEBACK(GA, n)
C ← {asn(v) | v ∈ VA}) � candidates
L ← ∅ � logbook
L← A � most recent on-path AS
while C \ L �= ∅ do
P ← PICKPROBE(C,L, L, n)
L ← L ∪ P
PROBEANDUPDATE(P)

return C

procedure PROBEANDUPDATE(P)
rpassive, �ractive ← PROBE(P)
UPDATEPASSIVE(P, rpassive)
UPDATEACTIVE(P, rpassive, �ractive)
if rpassive �= NO_EFFECT then

if |P| = 1 then
L← X ∈ P � AS X was on-path

else if |P| ≥ 2 then
P1,P2 ← SPLIT(P) � “Binary Search”
PROBEANDUPDATE(P1)
PROBEANDUPDATE(P2)

procedure UPDATEPASSIVE(P, rpassive)
if rpassive = STOP then
C ← C ∩ dominateesGA

(P)
else if rpassive = TTL_CHANGE then
C ← C ∩ reachableGA

(P)

procedure UPDATEACTIVE(P, rpassive, �ractive)
if rpassive = STOP then
Pinconsistent ← {X ∈ P | �ractive[X] �= STOP}
C ← C \ reachableGA(Pinconsistent)

else
Pinconsistent ← {X ∈ P | �ractive[X] = STOP}
C ← C \ dominateesGA

(Pinconsistent)

P ← P \ Pinconsistent

Figure 4: Flow Graph based traceback algorithm

5.2.2. Probe Selection. Probe Selection (PICKPROBE)
picks a new probe based on the current candidates C, the
ASes that have been probed before L, the last discovered
on-path AS L, and the maximum probe size n. As dis-
cussed above, the next on-path AS must be a successor
of L. We can thus partition our remaining search space
of unprobed candidates C \ L into “layers” according to
their distance to the most recent on-path AS L. The next
on-path AS should then be part of the nearest layer. This
ordering also ensures that, should we be unable to find the
direct on-path successor of L, e.g., because it exhibits no
observable poisoning reaction, we only gradually expand
our search scope to later on-path ASes.

Intuitively, to reduce the candidate set as fast as
possible, we would like to first probe ASes that have
a high impact on the candidate set. While a stub AS
could also have a high impact if it is on-path (effectively
reducing the candidate set to a single entry), statistically
speaking, in most cases probed ASes will be off-path
ASes. The majority of candidate set reductions will thus
occur in UPDATEACTIVE. We therefore rank ASes by the
number of candidates that are reachable through them,

i.e., |reachableGA
(X) ∩ C|, and then select the n highest

ranking ASes as the next probe.

6. Evaluation

We next turn to evaluate the runtime and success
rate of BGPEEK-A-BOO and compare both proposed al-
gorithms. For this, we were fortunate enough to obtain
a temporary ASN and a temporary /22 prefix alloca-
tions for research purposes from our regional Internet
registry and were granted access to the PEERING BGP
testbed [20]. However, PEERING’s path length limit un-
fortunately proved prohibitive for any actual traceback
runs of BGPEEK-A-BOO on the Internet: Although a
recent study showed that advertisements even with long
paths of up to 255 hops are propagated to the vast majority
of the Internet [34], we were only able to send advertise-
ments with up to 5 hops via PEERING. Since the first and
last of these also had to be set to our own temporary ASN,
this left us with an effective probe size of 3. Unfortunately,
with this even a single run of our baseline approach would
have taken over 157 days to complete. We therefore resort
to simulation for a comparative evaluation of our proposed
traceback approaches and use the PEERING testbed for
supporting experiments.

6.1. Simulation Methodology

As noted by previous works [27], [35], [36], a com-
plete and fully accurate model of the entire Internet cannot
be obtained, as it would require exact knowledge of peer-
ing agreements and router configurations, both of which
are usually regarded as trade-secrets and thus generally
non-public. Simulation can therefore only be performed
over approximate topology data, such as the one regularly
published by CAIDA [37], and by making assumptions
on router configurations.

Although the simulator by Smith et al. [27] is thank-
fully publicly available, we found it unsuitable for our
use-case as it does model neither default routes nor TTL
values along paths. Consequently, we designed our own
lightweight simulator.

6.1.1. Simulator Design. Our simulator is based around
the same AS flow graph described in Section 5.1. To
model AS paths taken from a source to a destination, our
simulator assigns every edge in the graph a random weight
between 0 and 100 and then computes the shortest path.
This is in line with the regular BGP decision process [22,
sec. 9.1], which generally prefers shorter AS paths. The
random edge weight hereby models the local preference
value a network operator may set to prefer one link over
another. As the graph has two nodes corresponding to each
AS X , uX and cX , we ensure that the edge (uX , cX)
is assigned the weight 0, which also ensures that the
resulting AS paths are loop free—a path containing both
uX and cX can never be shorter than the one that uses
the zero-weight (uX , cX) edge.

The effect of a poisoning advertisement can then be
simulated by temporarily removing the poisoned AS’s
nodes from the graph, such that they can no longer send
traffic to the destination nor forward advertisements to
their customers or peers.

429

In contrast to previous works, our simulator also at-
tempts to model the presence of default routes, which were
identified as a major culprit for discrepancies between
simulations and experimental results in other BGP-based
tools [34]. For this, every AS is randomly marked as either
having a default route or not with certain probability.
When simulating a poisoning advertisement, those ASes
with default routes are not removed from the graph, but
instead increase the weights of their incoming edges by
10000. This ensures they are no longer selected as shortest
paths, unless no alternative is available—as would be the
effect of less-specific prefixes. ASes with default routes
also have a chance of using a secondary set of incoming
edge weights when being poisoned, as otherwise their
default route would always be identical to their regular
route.

Finally, our simulator allows mapping AS paths to
IP hop counts. For this, every step along the AS path is
assigned a random hop count value drawn from a negative
binomial distribution, which we found to be a good fit
after analyzing traceroute results from RIPE Atlas [21]
(see Section 6.3.3). In the real Internet, the IP-level path
length also depends on which ingress and egress routers
are taken. We therefore make this random value also
dependent on the preceding and succeeding AS hop.

6.2. Results

With this simulator, we conducted multiple experi-
ments to compare our different traceback algorithms in
terms of efficacy and efficiency as well as the influence
of various parameters, such as the placement of the de-
ployment location, the presence of default routes, and the
choice of probe size.

As a baseline setup for our evaluation we placed
the deployment location as a customer of the PEERING
testbed (AS47065), which fosters comparability with our
real-world experiments (Section 6.3). We set the default
route probability to 40% as a conservative approximation,
given that Smith et al. [34] report a default route preva-
lence between 26.8% and 36.7% in their experiments.
Lastly, we picked 128 as a conservative probe size, since
they also report successful propagation of paths of length
up to 255 [34]. The flow graph used by our simulator was
based on the public CAIDA AS relationship dataset for
December 2019 [37], which also covered the timeframe
when our real-world experiments were performed, aug-
mented by the peering relations listed by the PEERING
testbed [20].

Every experiment was repeated 1024 times, each time
with a randomly chosen AS as the traffic’s origin. In
addition, the simulator was also given a fresh random
seed for every run, such that our results are not biased
due to a single lucky weight assignment or similar. We
use naive to refer to the naive algorithm, naive+ for the
variant with early termination, and graph for the graph-
based algorithm.

6.2.1. Traceback Success. To analyze the efficacy of our
proposed traceback, we analyzed how often BGPEEK-A-
BOO succeeds in finding the origin. The naive algorithm
starts with an empty candidate set and selectively adds
on-path ASes. Hence we consider it successful if the true

TABLE 1: Success rate with a final candidate set of size
at most x

x ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

naive 10%±2%
32%±3%

52%±3%
59%±3%

60%±3%
61%±3%

61%±3%
61%±3%

naive+ 28%±3%
46%±3%

57%±3%
60%±3%

61%±3%
61%±3%

61%±3%
61%±3%

graph 58%±3%
62%±3%

65%±3%
66%±3%

66%±3%
67%±3%

68%±3%
68%±3%

origin is contained in its final candidate set. In contrast,
the graph-based algorithm assumes all ASes as candidates
initially, but excludes ASes during the traceback run.
Therefore, to be successful, the final candidate set must
also be smaller than a certain threshold (ideally of size 1).

As shown in Table 1, we find that both algorithms
have similar success rates: The naive algorithm manages
to identify the true origin in 61% ± 3%6 cases, while
the graph-based traceback algorithm achieves a slightly
higher success rate of 68%± 3% with a candidate set of
8 or less. When limiting the graph-based algorithm to a
single candidate, it still manages to succeed in 58%± 3%
cases. The naive algorithm is expected to find all on-path
ASes and thus has an expected candidate set size of the
average path length. For the graph algorithm, we will use
a candidate set size of 8 in the following.

6.2.2. Runtime. As noted before, the traceback speed of
BGPEEK-A-BOO is limited by the rate at which BGP
advertisements can be sent. We therefore measure the
runtime of each algorithm in the number of probing steps,
with a realistic step duration of 10 minutes. As can be seen
from Figure 5, the naive algorithm performs similar to the
number of steps derived in Section 4.1, with a mean and
median runtime of 549 steps. Adding early termination on
stub-ASes slightly reduces the median to 523 steps, but
more importantly reduces the average to just above 400
steps, with 25% even terminating in under 268 steps. Since
it is strictly superior to the naive algorithm, we will only
report results for the naive+ algorithm in the following.

Overall, the graph-based algorithm performs best by
far, with an average of 159 steps and a median of only
98.5 steps. Interestingly, a quarter of all cases terminate in
less than 29 steps, around 4.83 hours at six advertisements
per hour. Most notably, even in the worst case the graph-
based algorithm still completes its search in 415 steps or
less, thus making it faster than even the best run of the
naive algorithm. This demonstrates that utilizing AS graph
information substantially improves the efficiency, with a
median runtime speed-up of 5.6×.

6.2.3. Prefix Parallelization. If BGPEEK-A-BOO ob-
serves an attack in multiple probing prefixes simulta-
neously, we can further speed up traceback by running
multiple probes in parallel. While this does not necessar-
ily reduce the total number of advertisements, it greatly
reduces the number of steps and hence the total runtime.
Figure 6 therefore compares using different numbers of
probing prefixes, one (no parallelization), two, and eight.
For the naive algorithm we see a linear speed-up, reducing
the median runtime from 523 to 262 steps when using two

6. We denote the 95% Agresti-Coull confidence interval

430

0 100 200 300 400 500 600

steps

success

61%
±3%

61%
±3%

68%
±3%

naive naive+ graph

Figure 5: Runtime comparison. Dashed lines show aver-
age times, while the notch indicates the 95% confidence
interval around the median.

0 100 200 300 400 500 600

steps

prefixes=1

prefixes=2

prefixes=8

success
61%
±3%

68%
±3%

63%
±3%

70%
±3%

64%
±3%

70%
±3%

naive+ graph

Figure 6: Influence of parallelization

prefixes and 66 steps when using eight. With the exception
of the ”binary search” step, probe selection is independent
from previous probe results, and thus the naive algorithm
can be almost perfectly parallelized. The graph-based
algorithm benefits less from parallelization, since probe
selection is strongly coupled to previous probe results,
but still sees a 5.8× speed-up in the median runtime from
98.5 steps to 17 steps when going to eight prefixes. As
with the probe size, varying the number of prefixes does
not have a significant influence on the success rate.

6.2.4. Default Routes. Intuitively, default routes should
have a negative influence on our traceback approach, both
in terms of runtime and success. As the presence of default
routes has been confirmed by multiple studies [34], [38]
we would like to quantify to which extent they impact our
results. To this end, we repeated the experiment two more
times, once in an “ideal world” setting with no default
routes and once in an exaggerated setting where 80% of
ASes have a default route. In line with intuition, both
algorithms generally perform better with fewer default
routes, as shown in Figure 7. Interestingly though, the
graph-based algorithm still terminates faster when faced
with 40% default routes than the naive algorithm in the
ideal world setting without any default routes. The default
route prevalence is also the most determining factor of
traceback success: In the idealized setting with no default
routes, all simulated runs were successful, resulting in an
estimated success rate of 100%±0%. Yet, even with 80%
default routes, they achieve a success rate of 23% ± 3%
and 29%± 3% respectively.

6.2.5. Probe Size. We ran another experiment to measure
the influence of the probe size, evaluating each algorithm
with a probe size of n = 32, n = 64, and n = 128.
The results, shown in Figure 8 confirm our intuition that
the runtime of the naive algorithm scales inversely to the

0 100 200 300 400 500 600

steps

pdef=0.0

pdef=0.4

pdef=0.8

success
100%
±0%

100%
±0%

61%
±3%

68%
±3%

23%
±3%

29%
±3%

naive+ graph

Figure 7: Influence of default route prevalence

0 500 1000 1500 2000

steps

n=32

n=64

n=128

success
61%
±3%

69%
±3%

60%
±3%

68%
±3%

61%
±3%

68%
±3%

naive+ graph

Figure 8: Influence of probe size

probe size. Where at n = 128 the naive algorithm has
a median runtime of around 500 steps, this doubles to
just over 1000 at n = 64 and quadruples to 2000 at
n = 32. While the same relation holds true for the graph
algorithm’s maximum runtime, 400 steps at n = 128 to
1600 steps at n = 32, it still achieves a median runtime
of less than 500 steps even with n = 32. At that, it
outperforms both naive variants with a probe size of
n = 128. As expected, the success rate of BGPEEK-A-
BOO is not influenced by the probe size.

6.2.6. Deployment Location. To quantify the impact of
the deployment location of BGPEEK-A-BOO, we also
ran the experiment from three different ASes: Next to a
deployment at a PEERING customer we also simulated
runs from a Tier-1 provider (AS174) as well as from a
national research network. However, as shown in Figure 9,
neither runtime nor success rate vary significantly between
the three different deployments.

6.2.7. TTL Values. BGPEEK-A-BOO relies on TTL val-
ues to detect when traffic is redirected to alternative routes.
However, while mostly stable, TTL values can change
for reasons unrelated to our traceback and could even be
modified by an attacker attempting to evade detection. In
a final experiment we therefore simulate how BGPEEK-
A-BOO performs without TTL values, i.e., only checking
whether poisoning leads to a stop in traffic. Perhaps sur-
prisingly, the results in Figure 10 show that a lack of TTL
values only leads to a slowdown of the graph algorithm,
whose median runtime doubles, but has no statistically sig-
nificant impact on overall traceback success. This shows
that BGPEEK-A-BOO can still be used even if TTL values
are found to be unreliable, albeit with increased traceback
times.

431

0 100 200 300 400 500 600

steps

PEERING

Tier 1

National
Research
Network

success
61%
±3%

68%
±3%

57%
±6%

69%
±3%

55%
±6%

65%
±6%

naive+ graph

Figure 9: Influence of deployment location

0 100 200 300 400 500 600

steps

TTL

no TTL

success

61%
±3%

68%
±3%

58%
±3%

66%
±3%

naive+ graph

Figure 10: Influence of using TTL values

6.3. Supporting Real-World Experiments

We also leveraged the PEERING BGP testbed [20]
to conduct experiments in the live Internet and analyzed
attack data captured by the DDoS honeypot AMPPOT [19],
to bootstrap additionally required parameters and to assess
the plausibility of our simulated results.

6.3.1. Changing Default Routes. To faithfully model the
effect of default routes, we not only need to know how
many ASes have a default route, but also how often this
default route differs from the regular route. To measure
this effect, we designed the following experiment: From
our temporary AS we would send out a poisoning adver-
tisement for a target system, advertising one of three /24
prefixes from our /22 allocation. The fourth prefix would
be advertised regularly to serve as a control. After a short
while we would then ping the target system from both,
the poisoning prefix and the control prefix. If ping replies
are still observed in the poisoning prefix we can conclude
that the target does have a default route. If the TTL values
also differ between the poisoning and the control prefix
we can further infer that it differs from the regular route.

As targets we randomly selected 624 RIPE Atlas
probes [21] in different ASes. TTL values were recorded
five minutes after the advertisement was sent to allow
routes to settle [26], [29], and new advertisements were
only sent every ten minutes per prefix. Out of the 624
tested RIPE Atlas probes we found 360 (58%) to have
default routes, i.e., we would still receive pings for the
prefix that was advertised with a poisoning advertisement
only, a fraction larger than the default route prevalence
reported by Smith et al. [34] in 2020, but lower than the
one reported by Bush et al. [38] in 2009. We attribute the
discrepancy to two effects: First, our sample size is smaller
than the one employed by both Smith et al. and Bush et
al. and further biased towards ASes housing RIPE Atlas
probes. Second, we found the probe’s AS information

as reported by RIPE’s Atlas back end to not always be
accurate and thus suspect that in some cases the probe’s
actual AS was different from the one poisoned, thereby
making them a false positive. As noted in Section 6.2,
we picked a default route probability of 40% for our
simulator.

In 101 of 360 (28%) cases we further observed a
discrepancy in TTL values between the poisoned and the
control prefix, letting us conclude that in these cases the
default route in fact differs from the regular route. At a
confidence level of 95% this thus gives a probability of
having a differing default route between 23% and 33%.
We therefore model this in our simulator by having an
AS choose a different upstream in 30% of the cases when
poisoned.

6.3.2. On-Path Poisoning. As a main primitive our ap-
proach relies on the assumption that poisoning on-path
ASes provokes some observable change in the target
traffic, either a change in TTLs due to a route change
or a complete absence of traffic due to the lack of al-
ternative routes. To measure how this assumption holds
up in practice we designed the following experiment: As
the “traffic origin” we randomly selected a RIPE Atlas
probe [21], and used a stream of ping packets from the
probe to our traceback system deployed at PEERING as
the “attack traffic”. To obtain a real-time approximation of
the taken AS path, we scheduled a traceroute measurement
from the Atlas probe to our traceback system. Running the
traceroute in that direction ensures that we measure the ac-
tual ingress path to our system and do not have to assume
paths to be symmetric. Using the Team Cymru IP to ASN
Lookup [39] we then mapped traceroute IP hops to ASes
and, subsequently, poisoned every discovered on-path AS
one-by-one. In contrast to the previous experiment, this
time we did not measure the impact on the poisoned AS,
but on the ping packets from the Atlas probe simulating
the target traffic flow. As before we waited five minutes
before taking measurements after new advertisements and
ten minutes between advertisements for the same prefix.

Note that the list of on-path ASes obtained that way
is naturally incomplete, as a traceroute may miss hops
along the path and the IP-to-ASN mapping leads to further
inaccuracies as well [31], [32]. To validate the real-time
IP-to-ASN mapping we obtained from Team Cymru we
later compared the mapping results to the data covering
the same timeframe published on RIPEstat [40]. Here we
found 22 instances in which the IP-to-ASN mappings dis-
agreed. Manually analyzing these 22 cases we determined
the Team Cymru mapping to be correct in 14 of these, and
excluded the other 8 from further analysis. As we were
only interested in measuring true on-path ASes we further
also excluded hops that mapped to the same AS as the
Atlas probe mimicking the traffic source.

We ran the experiment with Atlas probes located in
161 different ASes, allowing us to collect a total of 327
unique (on-path AS, target AS)-pairs. In total, we found
that poisoning an on-path AS resulted in a loss of traffic
in 137 (42%) cases and a change in the TTL in further
112 (34%) cases. Only in 78 (24%) instances we found
poisoning on-path ASes to have no measurable impact on
the target traffic at all.

432

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

IP hopcount from origin

0%

20%

40%

60%

80%

100%
STOP TTL CHANGE NO EFFECT

0

20

40

60

80

100

Figure 11: Real-world results of on-path AS poisoning

To further analyze whether the impact is related on
the distance between the poisoned and the measured AS,
we grouped the results by their hop distance to the target
AS. While ideally we would have used AS hop distances
for this, this would have required access to the full AS
path. We thus resorted to using IP hop distances as they
could be obtained easily from the traceroute, and let the
poisoning results count towards all IP hops that were
mapped to the same AS. Figure 11 shows the normalized
results per IP hop count, with the black line denoting
the number of tested AS pairs per hop distance to give
an indication of their significance. As depicted, most on-
path ASes were discovered at a distance of 2 to 10 hops
from the origin. However, we find that overall the distance
between the poisoned AS and the traffic source appears
to have little impact on how traffic is affected, and that in
most cases a measurable impact can be expected.

6.3.3. TTL Distribution. We leveraged the same RIPE
Atlas traceroutes to obtain a realistic model of inner-AS
path lengths for our simulator, such that we can simulate
IP hop counts of AS paths. For this, we utilized the same
IP-to-AS mapping and then scanned the traceroute results
for consecutive hops in different ASes. If we can find two
of these transitions, A→ B at hops (x, x+1) and B → C
at hops (y, y+1), then the inner-AS path length of B from
A to C is y + 1 − x hops. We were able to extract 137
AS-triples and their corresponding hop counts and found
that a negative binomial distribution with k = 3, p = 0.62
was a good fit.

6.3.4. Continuity of Spoofing Activity. Even with the
graph-based algorithm, BGPEEK-A-BOO has an average
runtime of 147 steps, or just over one day at six ad-
vertisements per hour. We therefore assess, how long an
attack source may be observed consecutively. To this end,
we collected data on 13, 321, 740 amplification attacks
observed by AMPPOT [19]. All attacks were collected
between 2015-11-25 and 2020-06-15 by a Selective Re-
sponse enabled honeypot [4]. Selective Response restricts
every scanner to finding a different set of 24 of the 48
honeypot IPs, thereby imposing a unique fingerprint on the
scanner. Prior work revealed a tight connection between
scan and attack infrastructure [4]. We will thus use the
fingerprint as an identifier for the (unknown) traffic source.

To focus on distinctive fingerprints, we only consid-
ered attacks that used at least 12 and at most 24 honeypot

10m 1h 1d 7d 30d 90d 1y

duration

0%

20%

40%

60%

80%

100%
≥ 90% active ≥ 99% active

Figure 12: Fingerprint activity

IPs, which left us with 8, 635, 257 remaining attacks. For
each fingerprint, we then computed the longest period,
during which it was observed at least 90% (99%) of
the time. Figure 12 shows the fraction of attacks whose
fingerprint was observed for a given duration at a given
activity level. From this plot we find that the majority of
attacks stem from sources that are also active for extended
periods of time. For example, over 68% of attacks stem
from a source that was seen for over a week at 90%
activity, 51% even at 99%.

7. Discussion

We now discuss how our evaluation results translate
to the real-world deployability of our approach and the
ethics of our live Internet experiments.

7.1. BGP Mechanisms

While our simulator strives to faithfully model routes
and advertisement propagation, it does so by abstracting
ASes and their relationships into a graph model. This
abstraction may not fully model BGP in the real world,
where ASes do not act as atomic entities but advertise-
ments are instead passed between routers and processed
by actual BGP implementations. As such, multiple mech-
anisms may influence the propagation of advertisements
which we discuss below.

7.1.1. Route Flap Dampening. Route Flap Dampening
(RFD) [41] aims to decrease the load on routers by main-
taining a per-route penalty score. This score is increased
for every update, but decays exponentially over time. Once
a route’s score reaches a threshold, it is no longer con-
sidered for routing nor propagated to peers until its score
drops below a re-use threshold. Studies have shown that
the default thresholds used in RFD can actually be harmful
even for stable routes [42], and RFD was subsequently
advised against [43]. Although later studies proposed new
settings that have less adverse effects [44]–[46], it still
remains disabled by default in, e.g., Cisco routers [47].
However, as RFD maintains a score on a per-route rather
than a per-prefix basis, it does not affect our traceback
technique: Whilst we send out multiple updates for the
same prefix, every update includes a new AS path and
therefore constitutes a new route [41, sec. 4.4.3]. Hence,
even if RFD was enabled, our traceback should still work.

433

7.1.2. Minimum Route Advertisement Interval. An-
other measure to prevent high load on BGP routers is
the Minimum Route Advertisement Interval (MRAI), that
limits the rate at which updates for a certain prefix are
passed on to peers. The idea behind this is that with-
holding routes for a certain time allows the (downstream)
path exploration to converge, thereby reducing the number
of updates and withdrawals sent further to peers. The
recommended value for the MRAI timer is 30 seconds [22,
sec. 10]. As we always waited ten minutes between ad-
vertisements this should have given routers ample time
for this timer to expire. However, it also means that a
real-world deployment of our approaches should employ
a similar delay between advertisements.

7.1.3. Path Filtering. Smith et al. also report ASes to
filter advertisements based on path lengths or by checking
for potential poisoning paths [34]. For length based filters
Section 6.2.5 indicates that our graph-based approach
would still perform well in many cases even when limiting
the path length to 32. However, filtering of poisoning
advertisements can impede our traceback approach if it
is performed by one of the on-path ASes. In this case,
any poisoning advertisement may provoke the target traffic
to change and thus both algorithms may falsely flag the
probed AS to be on-path—even if the observed change
was only caused by filtering.

7.1.4. Non-Uniform Routing. The use of active prob-
ing in our traceback assumes that all outbound packets
from an AS are affected in the same way by a route
change, regardless of whether they are originating from
the AS or forwarded on behalf of another. In theory,
every edge-router of an AS could behave differently and
use a different route, which in turns means that different
hosts in the AS could behave differently under poisoned
advertisements. A study by Mühlbauer et al. [48] finds that
such route diversity can be modelled by splitting ASes
into multiple quasi-routers, each modelling a consistent
routing behavior observed by the AS. However, they find
that the vast majority in route diversity comes from prefix-
dependent preferences, and that “for almost all ASes one
quasi-router suffices”. Since in our case the attack traffic
as well as the active measurement replies are destined
towards the same prefix, they are not affected differently
by prefix-dependent routing preferences. We can thus
conclude that, for our purposes, all outbound traffic from
an AS towards our prefix takes the same AS level path.

7.2. Observation Correlation

Our approach relies on stopping traffic and changing
TTL values to infer AS-level route changes. However,
TTL values along a path may also change for other reasons
(e.g., inner-AS route changes), and attack traffic may cease
because the attack stopped entirely. Therefore, if it is
unclear whether a change was the result of a poison-
ing advertisement, the advertisement can be repeatedly
withdrawn and re-advertised until a correlation can be
confirmed or refuted. Furthermore, if BGPEEK-A-BOO’s
control honeypots also observe the same attack traffic, they
too can be used to decide whether a change is spurious.

7.3. AS Flow Graph Correctness

Whereas our naive algorithm makes no assumptions
about AS relationships, our graph-based traceback algo-
rithm assumes that (1) AS paths adhere to the valley-
free assumption and AS relationships follow the standard
customer-provider/peer-to-peer model, and (2) a global
view of these relations is available. We discuss both
assumptions in detail below.

7.3.1. Valley-Free Assumption and AS Relationships.
While both customer-provider and peer-to-peer relations
between ASes are well-established and have intuitive eco-
nomic incentives, the exact relation between two ASes can
be arbitrarily complex. For example, Giotsas et al. [49]
identified 4026 ASes whose relationships they classified
as either hybrid or partial transit. In a hybrid relation,
two ASes exhibit different relations at different exchanges,
whereas a partial transit relation is a restricted form of a
customer-provider relation. Giotsas and Zhou [50] also
find a small number of AS paths that seemingly violate
the valley-free assumption, which they also attribute to
non-standard AS relationships.

Our AS flow graph only captures customer-provider
and peer-to-peer relations and requires paths to adhere to
the valley-free assumption. Thus, our graph-based trace-
back approach may falsely exclude ASes it believes to be
reachable or dominated by others when faced with such
non-standard relations. However, as long as reachability
and dominance information can be efficiently encoded
(e.g., through adapting links in the graph), a similar algo-
rithm may still be employed.

7.3.2. AS Relationship Dataset. AS relationships are
usually subject to non-disclosure agreement and can thus
only be inferred from publicly available routing data.
While the state-of-the-art of inferring the global AS re-
lationship graph has been constantly evolving [33], [51]–
[58], inference will inevitably only be able to produce
an approximation of the AS graph. As with non-standard
AS relations, missing or incorrect links are problematic
for our graph-based algorithm, which could cause it to
wrongly discard ASes as candidates. In that regard, our
simulation results should be seen as best-case results, as
both simulator and traceback use the same graph data.

7.4. Induced Route Changes

In some cases, a poisoned advertisement can lead
to route changes or losses even at ASes that can never
receive an advertisement through one of the poisoned
ASes. Consider for example the network shown in Fig-
ure 13. In the normal state, AS C receives three adver-
tisements for routes to A, the direct route from A, the
route D → B → A from D, and the route E → A from
E. From these it will choose the route via D, since it has
the highest local preference. However, since this route is
received from one of C’s providers, it cannot be exported
to the peer E. AS E therefore only sees the direct route
from A, which it can further advertise to its provider F .

Poisoning B makes the route D → B → A unavail-
able. C therefore switches to its next preferred route, the
direct route to A. Since A is a customer of C, C can

434

A

B C

D

E

F

22 1

1 23

1

(a) A is customer of B, C, and E; B and C are customers
of D; E is customer of F ; D and E have a peer-to-peer
relation; numbers indicate local preferences; thick arrows show
the resulting routes to A.

A

B C

D

E

F

22 1

1 23 1

(b) Poisoning B causes C to switch routes, which induces a
route change at E and a loss of connection at F .

Figure 13: Example of induced changes

advertise this new route C → A to its peer E. This,
however, induces a route change at E, because this new
route has a higher local preference at E. Furthermore,
since the best route at E is now received from a peer, it
can no longer be exported to E’s provider F . F therefore
loses its connection to A. Note that neither E nor F could
ever have a route to A via the poisoned AS B. Yet, they
see a route change or even a loss of connectivity.

An AS can only cause such induced changes, if it
can receive two different routes, one from a customer
and one from a peer or provider. Only in that case,
the set of other ASes that it can export routes to can
change: Switching from a customer-provided route to a
peer/provider-provided one limits it to advertise this route
to its customers, switching the other way enables it to also
advertise a route to its peers and providers. We will call
these ASes ambiguous. ASes that are reachable through an
ambiguous AS may therefore experience induced changes.
Further, if an AS is only reachable through peers or
providers of ambiguous ASes, it may also experience an
induced connectivity loss.

For our naive algorithm, such induced changes can
cause additional ASes to appear in the final result set (e.g.,
in the example above, B would be erroneously considered
on-path even if the attack came from F). Yet, these
induced changes cannot “hide” actual on-path ASes from
detection. Our graph algorithm on the other hands requires
a small modification (shown in Figure 14) to correctly
handle induced changes: Whenever the candidate set is
reduced, ASes that could show the observed behaviour
due to induced changes need to be retained.

To assess the impact of induced route changes, we
ran a simulation of our graph-based traceback with these
modifications. As shown in Figure 15, neither runtime nor
success rate differ significantly compared to the unmod-
ified version. This can be explained because ambiguous
ASes are relatively rare: Analyzing the flowgraph used
during simulation reveals only 231 ambiguous ASes. We
can thus conclude, that induced route changes only have
negligible impact on the traceback performance.

procedure UPDATEPASSIVE’(P, rpassive)
if rpassive = STOP then
Cstop ← indStopGA

(P)
C ← C ∩ (dominateesGA

(P) ∪ Cstop)
else if rpassive = TTL_CHANGE then
Cchange ← indChangeGA

(P)
C ← C ∩ (reachableGA

(P) ∪ Cchange)

procedure UPDATEACTIVE’(P, rpassive, �ractive)
if rpassive = STOP then
Pinconsistent ← {X ∈ P | �ractive[X] �= STOP}
Cstop ← indStopGA

(P)
C ← C \ (reachableGA(Pinconsistent) \ Cstop)

else
Pinconsistent ← {X ∈ P | �ractive[X] = STOP}
Cchange ← indChangeGA

(P)
C ← C \ (dominateesGA

(Pinconsistent) \ Cchange)
P ← P \ Pinconsistent

Figure 14: Flow Graph based traceback algorithm adapted
to handle induced route changes

0 50 100 150 200 250 300 350 400

steps

success

68%
±3%

66%
±3%

graph graph’

Figure 15: Influence of induced route changes. The mod-
ified algorithm is labeled graph’.

7.5. Multi-Source Attacks

Amplification attacks are largely launched from single
sources [5], [19]. For BGPEEK-A-BOO we thus assume
that every attack has a unique source AS. In theory though,
amplification attacks could also be launched from multiple
colluding sources in different ASes.

If the attack traffic of a multi-source attack can be
separated by source (e.g., by different TTL values due to
different path lengths), both algorithms of BGPEEK-A-
BOO still work as before. Otherwise, successful poisoning
of one of the sources can only be measured as a decrease
in attack traffic volume. Yet, even in that case, the naive
algorithm should be able to find all attack sources.

7.6. Evasion

During a traceback run BGPEEK-A-BOO creates a
large number of route advertisements for the probing pre-
fixes. Attackers that are aware of our system may therefore
try to evade it by monitoring public BGP data [59], [60] in
order to identify and exclude the probing prefixes. While
we cannot prevent such active evasion attempts, we can
at least detect if an attacker is evading our system. In
this case, we would not observe any attacks from a given
adversary at the probe honeypots, but would keep observ-
ing them at the control honeypots. Yet, even outside of
BGPEEK-A-BOO, amplification honeypots are inherently
detectable due to their rate limiting behavior [19].

435

Besides evasion, attackers might also attempt to de-
ceive BGPEEK-A-BOO by modifying their initial TTL
values. However, as shown in Section 6.2.7, BGPEEK-A-
BOO still performs well even when ignoring TTL values.

7.7. Ethical Considerations

We took several measures to ensure that our experi-
ments did not impact other systems or lead to instabilities
in the BGP. To obtain a real-time estimate of the cur-
rently active BGP path, we conducted traceroute runs from
RIPE Atlas probes to our measurement system hosted at
PEERING. In order to keep the impact on other systems
minimal, we only used one-off measurements with the
default values defines by RIPE (i.e., packets of 48 bytes,
at most 3 packets per destination). For our active ping
measurements we ensured to send at most one packet
per minute per target on average. At 64 bytes per packet
(1Bps), we believe these to have negligible impact.

All experiments that involved sending (poisoned)
BGP advertisements were conducted only after consulting
PEERING operators. To further ensure that other exper-
iments running at the testbed were not influenced by
ours, we used temporary prefixes and a temporary ASN
allocated by our regional Internet registry for the purpose
of these experiments. We also registered our temporary
allocations in the WHOIS database, such that network
operators were able to contact us directly. Additionally,
we closely monitored network operator mailing lists.

7.7.1. Impact on Legitimate Traffic. Poisoning adver-
tisements can render a prefix temporarily unreachable
from parts of the Internet. Therefore, BGPEEK-A-BOO’s
probing prefixes should host no other systems but hon-
eypot reflectors. As we use BGP Poisoning on these
small prefixes only, other prefixes remain unaffected—
effectively excluding collateral damage on benign traffic.

8. Related Work

We find related work from two fields of study: The first
considers the problem of IP spoofing and traceback, the
second is concerned with BGP Poisoning as a primitive
for traffic engineering and security applications.

8.1. IP Spoofing and Traceback

IP spoofing and the resulting need for traceback has
been an active field of research for many years. One com-
mon approach collects (statistical) telemetry data at mul-
tiple routers from which the origin of spoofed packets can
later be derived [13]–[17]. Another approach lets routers
encode path information into the packet itself [61], [62],
using additional IP options or unused header fields [7],
[61], [63]–[65], advanced encoding schemes [7], [12],
[66], or probabilistic techniques [8]–[10], [61], [67] to
reduce the per-router overhead. In theory, both approaches
could perfectly track the origin of spoofed traffic. How-
ever, both require a widespread deployment in routers
and the cooperation of multiple ISPs. As some of these
techniques have been proposed almost two decades ago,
it is clear that this is a inhibiting factor for traceback in

practice. In contrast, BGPEEK-A-BOO requires no coop-
eration of other systems nor changes to existing routers.

Another line of work considers the problem of trace-
back in the specific case of amplification attacks. Krupp et
al. [4], [5] relaxed the traceback problem to finding scan-
ning systems used for attack preparation or re-identifying
Booter services responsible for attacks. In contrast, our
approach can identify ASes actively participating in the
attack without upfront knowledge of the system.

A third line of research considers the broader ques-
tion of identifying systems that are capable of IP spoof-
ing [68]–[71]. While another important step in alleviating
the problem of IP spoofing, we consider their work or-
thogonal to ours: Whereas they find systems that could
in principle send spoofed packets, we aim to identify
malevolent actors red-handed.

In concurrent work, Fonseca et al. [72] also attempt to
identify spoofing sources by varying BGP advertisements
from multiple anycast locations. For this, they create 700
different advertisement configurations by selecting subsets
of their peers, adding path prepends, and poisoning imme-
diate neighbors. For every configuration they then record
through which peer the attack traffic is received, thereby
generating a fingerprint of source ASes. In contrast to
BGPEEK-A-BOO, their approach necessarily requires 700
probing steps and cannot distinguish ASes that share a
common path beyond their immediate neighbors.

8.2. BGP Poisoning

Although only a side-effect of BGP’s loop detection
mechanism, BGP Poisoning has seen a wide field of
applications. In the area of measurement studies, Colitti et
al. [73] and Anwar et al. [74] employed BGP Poisoning
to supplement the analysis of AS relationships and prefix
propagation. Katz-Bassett et al. [25], [26] showed how
BGP Poisoning may be used to actively repair routes, and
Smith et al. [27] later showed how it can be used to avoid
DDoS congested links. Finally, works by Tran et al. [75]
and Smith et al. [34] analyze how well BGP Poisoning
works in practice through extensive measurements. Yet,
to the best of our knowledge, our approach and the
concurrent work by Fonseca et al. [72] are the first to
leverage BGP Poisoning for DDoS attack traceback.

9. Conclusion

IP spoofing not only enables amplification attacks, but
also hides the attackers’ true whereabouts. Our system
BGPEEK-A-BOO employs a novel traceback approach
that shows that BGP Poisoning can be used to track
down an attacker’s network location—requiring neither
the assistance of external parties nor knowing the attacker
in advance. We find that our naive algorithm has a median
runtime of 549 steps, or just under four days with realistic
parameters, thus showing the feasibility of our approach
in practice. Our second algorithm leverages a graph model
of BGP path propagation built from AS relationship data
and manages to reduce this runtime to 98.5 steps, or just
over one day, for the same parameters—and in only 29
steps, under five hours, in a quarter of all cases.

436

Acknowledgment

We would like to thank PEERING for letting us
conduct real-world BGP measurements as well as RIPE
NCC for a temporary IP-prefix and ASN allocation and the
RIPE Atlas platform. We would further like to thank Ethan
Katz-Bassett and Italo Cunha for an insightful discussion
of an earlier draft of this paper. Finally, we would also
like to thank the anonymous reviewers and our shepherd
for their valuable feedback.

References

[1] C. Rossow, “Amplification hell: Revisiting network protocols for
ddos abuse.,” in NDSS, 2014.

[2] “NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit
Attack Era Is Upon Us.” https://www.netscout.com/blog/asert/
netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era.
Accessed: 2020-06-18.

[3] “AWS said it mitigated a 2.3 Tbps DDoS at-
tack, the largest ever.” https://www.zdnet.com/article/
aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/.
Accessed: 2020-06-18.

[4] J. Krupp, M. Backes, and C. Rossow, “Identifying the scan and
attack infrastructures behind amplification ddos attacks,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1426–1437, 2016.

[5] J. Krupp, M. Karami, C. Rossow, D. McCoy, and M. Backes,
“Linking amplification ddos attacks to booter services,” in Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses,
pp. 427–449, Springer, 2017.

[6] A. John and T. Sivakumar, “Ddos: Survey of traceback methods,”
International Journal of Recent Trends in Engineering, vol. 1,
no. 2, p. 241, 2009.

[7] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for ip traceback,” in Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society
(Cat. No. 01CH37213), vol. 2, pp. 878–886, IEEE, 2001.

[8] B. Duwairi, A. Chakrabarti, and G. Manimaran, “An efficient prob-
abilistic packet marking scheme for ip traceback,” in International
Conference on Research in Networking, pp. 1263–1269, Springer,
2004.

[9] Q. Dong, S. Banerjee, M. Adler, and K. Hirata, “Efficient proba-
bilistic packet marking,” in 13TH IEEE International Conference
on Network Protocols (ICNP’05), pp. 10–pp, IEEE, 2005.

[10] R. Shokri, A. Varshovi, H. Mohammadi, N. Yazdani, and
B. Sadeghian, “Ddpm: dynamic deterministic packet marking for
ip traceback,” in 2006 14th IEEE International Conference on
Networks, vol. 2, pp. 1–6, IEEE, 2006.

[11] A. Belenky and N. Ansari, “On deterministic packet marking,”
Computer Networks, vol. 51, no. 10, pp. 2677–2700, 2007.

[12] Z. Gao and N. Ansari, “A practical and robust inter-domain mark-
ing scheme for ip traceback,” Computer Networks, vol. 51, no. 3,
pp. 732–750, 2007.

[13] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchak-
ountio, S. T. Kent, and W. T. Strayer, “Hash-based ip traceback,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4,
pp. 3–14, 2001.

[14] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchak-
ountio, B. Schwartz, S. T. Kent, and W. T. Strayer, “Single-packet
ip traceback,” IEEE/ACM Transactions on networking, vol. 10,
no. 6, pp. 721–734, 2002.

[15] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale ip traceback in high-
speed internet: Practical techniques and theoretical foundation,”
in IEEE Symposium on Security and Privacy, 2004. Proceedings.
2004, pp. 115–129, IEEE, 2004.

[16] T. Korkmaz, C. Gong, K. Sarac, and S. G. Dykes, “Single packet
ip traceback in as-level partial deployment scenario,” International
Journal of Security and Networks, vol. 2, no. 1-2, pp. 95–108,
2007.

[17] M. Sung, J. Xu, J. Li, and L. Li, “Large-scale ip traceback in high-
speed internet: practical techniques and information-theoretic foun-
dation,” IEEE/ACM Transactions on Networking, vol. 16, no. 6,
pp. 1253–1266, 2008.

[18] “ISP Cut off From Internet After Security Concerns.” https://www.
pcworld.com/article/153734/mccolo isp security.html. Accessed:
2021-02-03.

[19] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yosh-
ioka, and C. Rossow, “Amppot: Monitoring and defending against
amplification ddos attacks,” in International Symposium on Recent
Advances in Intrusion Detection, pp. 615–636, Springer, 2015.

[20] B. Schlinker, T. Arnold, I. Cunha, and E. Katz-Bassett, “Peering:
Virtualizing bgp at the edge for research,” in Proceedings of the
15th International Conference on Emerging Networking Experi-
ments And Technologies, pp. 51–67, 2019.

[21] “RIPE Atlas.” https://atlas.ripe.net. Accessed: 2019-12-01 - 2019-
12-03.

[22] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4
(BGP-4),” Tech. Rep. 4271, Jan. 2006.

[23] M. Lepinski and S. Kent, “An Infrastructure to Support Secure
Internet Routing,” Tech. Rep. 6480, Feb. 2012.

[24] M. Lepinski, D. Kong, and S. Kent, “A Profile for Route Origin
Authorizations (ROAs),” Tech. Rep. 6482, Feb. 2012.

[25] E. Katz-Bassett, D. R. Choffnes, Í. Cunha, C. Scott, T. Anderson,
and A. Krishnamurthy, “Machiavellian routing: improving internet
availability with bgp poisoning,” in Proceedings of the 10th ACM
Workshop on Hot Topics in Networks, pp. 1–6, 2011.

[26] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishna-
murthy, “Lifeguard: Practical repair of persistent route failures,”
ACM SIGCOMM Computer Communication Review, vol. 42, no. 4,
pp. 395–406, 2012.

[27] J. M. Smith and M. Schuchard, “Routing around congestion:
Defeating ddos attacks and adverse network conditions via reactive
bgp routing,” in 2018 IEEE Symposium on Security and Privacy
(SP), pp. 599–617, IEEE, 2018.

[28] “The search engine for the Internet of Things.” https://www.shodan.
io/. Accessed: 2020-06-18.

[29] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4, pp. 175–187, 2000.

[30] “AS65000 BGP Routing Table Analysis Report.” https://bgp.
potaroo.net/as2.0/. Accessed: 2020-04-29.

[31] Y. Zhang, R. Oliveira, H. Zhang, and L. Zhang, “Quantifying the
pitfalls of traceroute in as connectivity inference,” in International
Conference on Passive and Active Network Measurement, pp. 91–
100, Springer, 2010.

[32] Y. Hyun, A. Broido, et al., “Traceroute and bgp as path incon-
gruities,” tech. rep., Cooperative Association for Internet Data
Analysis (CAIDA), 2003.

[33] L. Gao, “On inferring autonomous system relationships in the
internet,” IEEE/ACM Transactions on Networking (ToN), vol. 9,
no. 6, pp. 733–745, 2001.

[34] J. M. Smith, K. Birkeland, T. McDaniel, and M. Schuchard, “With-
drawing the bgp re-routing curtain,” in Network and Distributed
System Security Symposium (NDSS), 2020.

[35] M. Schuchard, A. Mohaisen, D. Foo Kune, N. Hopper, Y. Kim, and
E. Y. Vasserman, “Losing control of the internet: using the data
plane to attack the control plane,” in Proceedings of the 17th ACM
conference on Computer and communications security, pp. 726–
728, 2010.

[36] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper, “Routing
around decoys,” in Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 85–96, 2012.

437

[37] “The CAIDA AS Relationships Dataset, Jun 2019 - Jan 2020.”
http://www.caida.org/data/active/as-relationships/.

[38] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet op-
tometry: assessing the broken glasses in internet reachability,” in
Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement, pp. 242–253, 2009.

[39] “Team Cymru IP to ASN Lookup v1.0.” https://whois.cymru.com/.
Accessed: 2019-12-01 - 2019-12-03.

[40] “RIPEstat Data API.” https://stat.ripe.net/docs/data api. Accessed:
2020-01-21.

[41] C. Villamizar, R. Chandra, and D. R. Govindan, “BGP Route Flap
Damping,” Tech. Rep. 2439, Nov. 1998.

[42] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route
flap damping exacerbates internet routing convergence,” in ACM
SIGCOMM Computer Communication Review, vol. 32, pp. 221–
233, ACM, 2002.

[43] P. Smith and C. Panigl, “RIPE Routing Working Group Recom-
mendations On Route-flap Damping.” RIPE 378, May 2006.

[44] R. Bush, C. Pelsser, M. Kuhne, O. Maennel, P. Mohapatra, K. Patel,
and R. Evans, “RIPE Routing Working Group Recommendations
on Route Flap Damping.” RIPE 580, Jan. 2013.

[45] C. Pelsser, R. Bush, K. Patel, P. Mohapatra, and O. Maennel,
“Making Route Flap Damping Usable,” Tech. Rep. 7196, May
2014.

[46] C. Pelsser, O. Maennel, P. Mohapatra, R. Bush, and K. Patel,
“Route flap damping made usable,” in International Conference on
Passive and Active Network Measurement, pp. 143–152, Springer,
2011.

[47] “Cisco IOS IP Routing: BGP Command Reference.”
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute bgp/
command/irg-cr-book/bgp-a1.html#wp3674090369. Accessed:
2020-01-08.

[48] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and S. Uh-
lig, “Building an as-topology model that captures route diversity,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 4,
pp. 195–206, 2006.

[49] V. Giotsas, M. Luckie, B. Huffaker, and K. Claffy, “Inferring
complex as relationships,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, pp. 23–30, 2014.

[50] V. Giotsas and S. Zhou, “Valley-free violation in internet rout-
ing—analysis based on bgp community data,” in 2012 IEEE In-
ternational Conference on Communications (ICC), pp. 1193–1197,
IEEE, 2012.

[51] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Char-
acterizing the internet hierarchy from multiple vantage points,” in
Proceedings. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 2, pp. 618–627,
IEEE, 2002.

[52] G. Di Battista, M. Patrignani, and M. Pizzonia, “Computing the
types of the relationships between autonomous systems,” in IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the
IEEE Computer and Communications Societies (IEEE Cat. No.
03CH37428), vol. 1, pp. 156–165, IEEE, 2003.

[53] T. Erlebach, A. Hall, and T. Schank, “Classifying customer-
provider relationships in the internet,” TIK-Report, vol. 145, 2002.

[54] J. Xia and L. Gao, “On the evaluation of as relationship inferences
[internet reachability/traffic flow applications],” in IEEE Global
Telecommunications Conference, 2004. GLOBECOM’04., vol. 3,
pp. 1373–1377, IEEE, 2004.

[55] X. Dimitropoulos, D. Krioukov, B. Huffaker, G. Riley, et al.,
“Inferring as relationships: Dead end or lively beginning?,” in
International Workshop on Experimental and Efficient Algorithms,
pp. 113–125, Springer, 2005.

[56] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker,
Y. Hyun, K. Claffy, and G. Riley, “As relationships: Inference and
validation,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 1, pp. 29–40, 2007.

[57] B. Hummel and S. Kosub, “Acyclic type-of-relationship problems
on the internet: an experimental analysis,” in Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pp. 221–
226, 2007.

[58] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas, et al., “As
relationships, customer cones, and validation,” in Proceedings of
the 2013 conference on Internet measurement conference, pp. 243–
256, ACM, 2013.

[59] “University of Oregon Route Views Archive Project.” http://
routeviews.org/. Accessed: 2020-11-02.

[60] “RIPE Routing Information Service (RIS).” http://www.ripe.net/
data-tools/stats/ris. Accessed: 2020-11-02.

[61] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
network support for ip traceback,” in Proceedings of the conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 295–306, 2000.

[62] T. W. Doeppner, P. N. Klein, and A. Koyfman, “Using router
stamping to identify the source of ip packets,” in Proceedings of the
7th ACM Conference on Computer and Communications Security,
pp. 184–189, 2000.

[63] D. Dean, M. Franklin, and A. Stubblefield, “An algebraic approach
to ip traceback,” ACM Transactions on Information and System
Security (TISSEC), vol. 5, no. 2, pp. 119–137, 2002.

[64] A. Yaar, A. Perrig, and D. Song, “Stackpi: New packet marking
and filtering mechanisms for ddos and ip spoofing defense,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 10,
pp. 1853–1863, 2006.

[65] R. Chen, J.-M. Park, and R. Marchany, “A divide-and-conquer
strategy for thwarting distributed denial-of-service attacks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 5,
pp. 577–588, 2007.

[66] A. Yaar, A. Perrig, and D. Song, “Pi: A path identification mech-
anism to defend against ddos attacks,” in 2003 Symposium on
Security and Privacy, 2003., pp. 93–107, IEEE, 2003.

[67] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network
support for ip traceback,” IEEE/ACM transactions on networking,
vol. 9, no. 3, pp. 226–237, 2001.

[68] R. Beverly and S. Bauer, “The spoofer project: Inferring the extent
of source address filtering on the internet,” in Usenix Sruti, vol. 5,
pp. 53–59, 2005.

[69] R. Beverly, R. Koga, and K. Claffy, “Initial longitudinal analysis
of ip source spoofing capability on the internet,” Internet Society,
p. 313, 2013.

[70] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from
hell? reducing the impact of amplification ddos attacks,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pp. 111–
125, 2014.

[71] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll, and k. claffy,
“Network hygiene, incentives, and regulation: Deployment of
source address validation in the internet,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 465–480, 2019.

[72] O. Fonseca, Í. Cunha, E. Fazzion, W. Meira, B. Junior, R. A.
Ferreira, and E. Katz-Bassett, “Tracking down sources of spoofed
ip packets,” in 2020 IFIP Networking Conference (Networking),
pp. 208–216, IEEE, 2020.

[73] L. Colitti, G. Di Battista, M. Patrignani, M. Pizzonia, and M. Ri-
mondini, “Investigating prefix propagation through active bgp prob-
ing,” Microprocessors and Microsystems, vol. 31, no. 7, pp. 460–
474, 2007.

[74] R. Anwar, H. Niaz, D. Choffnes, Í. Cunha, P. Gill, and E. Katz-
Bassett, “Investigating interdomain routing policies in the wild,” in
Proceedings of the 2015 Internet Measurement Conference, pp. 71–
77, 2015.

[75] M. Tran, M. S. Kang, H.-C. Hsiao, W.-H. Chiang, S.-P. Tung, and
Y.-S. Wang, “On the feasibility of rerouting-based ddos defenses,”
in 2019 IEEE Symposium on Security and Privacy (SP), pp. 1169–
1184, IEEE, 2019.

438

Appendix A.
Correctness of AS Flow Graphs

Theorem 1. Let Π = (X1, . . . , Xn) ∈ ASn be a valley-
free path from AS X1 to AS Xn and G = (V,E) the flow
graph constructed according to Section 5.1. Then there
exists a path π = (x1 = uX1

, . . . , xm = cXn
) ∈ V m in

G.

Proof. Since Π = (X1, . . . , Xn) is a valley-free path, it
can be split into three (possibly empty) parts: an “uphill”
prefix, a single “peak” peer-to-peer link, and a “downhill”
suffix. Formally, ∃k, l, 1 ≤ k ≤ l ≤ k + 1 ≤ n s.t.:

1) ∀1 ≤ i < k : (Xi, Xi+1) ∈ CP
2) k < l =⇒ (Xk, Xl) ∈ P2P
3) ∀l ≤ i < n : (Xi+1, Xi) ∈ CP

For the first part, we can find a path in G as by con-
struction it holds that ∀1 ≤ i < k : (uXi , uXi+1) ∈ E.
Likewise, for the last part, since (Xi+1, Xi) ∈ CP it holds
that ∀l ≤ i < n : (cXi , cXi+1) ∈ E. If the path has a peer-
to-peer link, i.e., k < l, then (uXk

, cXl
) ∈ E. Otherwise, it

holds that Xk = Xl and thus (uXk
, cXl

) = (uXk
, cXk

) ∈
E. Therefore, the path π = (uX1 , . . . , uXk

, cXl
, . . . , cXn)

is in G and satisfies the requirements.

Theorem 2. Let G = (V,E) be the flow graph con-
structed according to Section 5.1 and π = (x1, . . . , xm) ∈
V m be a path in G. Then there exists a valley-free path
Π = (X1 = asn(x1), . . . , Xn = asn(xm)) ∈ ASn.

Proof. W.l.o.g. assume that x1 = uX1 and xm = cXn .
Since all edges in E are of the form (uA, uB), (cA, cB),
or (uA, cB) the path can only have one transition from
“unconstrained” to “constrained” nodes, i.e., ∃1 ≤ i < n
such that

1) ∀1 ≤ j ≤ i : xj ∈ {uA|A ∈ AS}
2) ∀i < j ≤ n : xj ∈ {cA|A ∈ AS}

Therefore, for j < i it holds that (asn(xj), asn(xj+1)) ∈
CP, as otherwise there would be no edge in G be-
tween them. Likewise, for j > i it holds that
(asn(xj+1), asn(xj)) ∈ CP. Finally, for the edge
(xi, xi+1) = (uXk

, cXl
) it must hold that either

Xk = Xl or that (Xk, Xl) ∈ P2P. Therefore, Π =
(asn(x1), . . . , asn(xm)) follows the definition of a valley-
free path, with the exception that it may still contain
loops. However, if Π contains a loop, i.e., ∃1 ≤ i <
j ≤ n s.t. Π = (X1, . . . , Xi, . . . , Xj , . . . Xn) with
Xi = Xj , one can easily construct a loop-free path
Π′ = (X1, . . . , Xi, . . . Xn) by omitting positions i + 1
through j. Note that removal of loops does not affect the
path’s endpoints, and thus the resulting AS path Π′ is a
valley-free path from asn(x1) to asn(xm).

439

		2022-08-24T11:32:16-0400
	Preflight Ticket Signature

