
Epoque: Practical End-to-End Verifiable Post-Quantum-Secure E-Voting

Xavier Boyen
Queensland University of Technology

Australia
firstname.secondname@qut.edu.au

Thomas Haines
NTNU Trondheim

Norway
firstname.secondname@ntnu.no

Johannes Müller
SnT, University of Luxembourg

Luxembourg
firstname.secondname@uni.lu

Abstract—The ultimate goal in modern secure e-voting is
to enable everyone to verify whether the final election
result correctly reflects the votes chosen by the (human)
voters, without exposing how each individual voted. These
fundamental security properties are called end-to-end veri-
fiability and voter privacy. Unfortunately, it turns out to be
very challenging to pursue these properties simultaneously,
especially when the latter must be future-proofed against the
rise of quantum computers. In this work, we show, for the
first time, a practical approach to do this.

We present Epoque, the first end-to-end verifiable, voter-
private, post-quantum-secure homomorphic e-voting pro-
tocol. It achieves its properties through the combination
of practical lattice-based cryptographic primitives only, in
a novel way. We formally prove all our security claims
under common trust and hardness assumptions. At the
core of Epoque lies an efficient identity-based encryption
(IBE) scheme with blazingly fast master-key decryption.
It is the component that makes the efficient tallying of
thousands or millions of ballots a practical possibility. In
order to demonstrate its practicality, we fully implemented
it and provide detailed benchmarks; we believe this latter
contribution is of independent interest beyond the specific
e-voting application.

1. Introduction

E-voting systems are now widely used in national,
state-wide, and municipal elections all over the world with
several hundred million voters so far. The results of these
elections make a fundamental impact on the lives of all
of us, directly or indirectly. Therefore, it is important
to ensure that e-voting systems map the secret inputs
provided by the voters to the correct final result, even
in the presence of extremely powerful and sophisticated
adversaries.

Unfortunately, numerous security studies of real e-
voting systems (see, e.g., [10], [35], [42], [63], [66])
demonstrate that there is a high risk that the published
election result does not reflect how voters actually voted.
Therefore, modern e-voting protocols strive for what is
called end-to-end verifiability (see, e.g., [2], [8], [17],
[20], [46], [47]). This fundamental security property en-
ables voters and external observers to check whether
the published election result is correct, even if, for in-
stance, voting devices have programming errors or tallying
authorities are outright malicious. Several such systems
have already been deployed in real binding elections (see,

e.g., [2], [3], [15], [17], [27], [39]). In Switzerland and
Norway, for example, e-voting systems for national and
local elections and referendums are required to provide
verifiability [33], [41].

To date, the security of all practical end-to-end veri-
fiable e-voting protocols relies on “traditional” hardness
assumptions, such as factoring integers or computing dis-
crete logarithms. With more and more powerful quantum
computers on the horizon (see, e.g., [5]), these voting
protocols may be rendered completely insecure. This
threat motivates the design of end-to-end verifiable e-
voting protocols that are secure against quantum attacks.
Unfortunately, it turned out to be very challenging to
pursue this objective, and, in fact, it had not been met
prior to our work.

The reason behind this state of affairs is that naı̈vely
replacing the “classical” cryptographic primitives of an
arbitrary end-to-end verifiable e-voting protocol (e.g., He-
lios [2]) with known post-quantum primitives can destroy
practicality. Despite the fact that post-quantum-secure
cryptography has become more efficient and versatile
in the past decade or so, there exist only the follow-
ing two practical post-quantum-secure e-voting protocols
in the literature. Boyen, Haines, and Müller [13] pro-
posed and implemented a completely lattice-based veri-
fiable decryption mix net which can be used for verifi-
able post-quantum-secure e-voting but the class of elec-
tions it should be used for is limited (see Sec. 8). Del
Pino, Lyubashevsky, Neven, and Seiler [31] instantiated
the homomorphic e-voting protocol by Cramer, Franklin,
Schoenmakers, and Yung [26] with practical lattice-based
cryptographic primitives. However, unlike Boyen et al.’s
mix net [13], the homomorphic e-voting protocol by Del
Pino et al. [31] is not (end-to-end) verifiable: we will
elaborate in Sec. 2 that all tallying authorities and all
voters’ voting devices in [31] need to be honest in order
to (be able to) verify that the final election result is in fact
correct. As we will see, it has long been far from obvious
how to eliminate these undesirable trust assumptions in
the lattice-based setting without undermining practicality.

Altogether, there does not exist a homomorphic e-
voting protocol in the literature that can be used in a
real practical election to both protect the privacy of votes
and provide end-to-end verifiability in the presence of
quantum attackers.1

1. There exist verifiable e-voting protocols in the literature with un-
conditional privacy and thus post-quantum privacy (see, e.g., [29], [59])
but their verifiability reduces to quantum-insecure hardness assumptions.

272

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Xavier Boyen. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00027

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
27

1.1. Our contributions

We propose Epoque, the first provably secure end-to-
end verifiable e-voting protocol for post-quantum-secure
elections in the real world.

Instead of relying on specific primitives, the security
of the generic Epoque e-voting protocol (Section 3) can
be guaranteed under certain assumptions these primitives
have to satisfy. More precisely, Epoque follows (and gen-
eralizes) the homomorphic secret-sharing approach pre-
viously taken by [26], [31] but completely eliminates
any trust on the tallying authorities for verifiability. To
this end, the (generic) Epoque e-voting protocol employs
(generic) identity-based encryption (IBE).2

We demonstrate that the generic Epoque e-voting pro-
tocol can be instantiated with practical and purely lattice-
based cryptographic primitives (Section 4). For this pur-
pose, we propose a new version of the prominent lattice-
based IBE scheme by Agrawal, Boneh, and Boyen [4]
(Section 5). Compared to [4], our IBE scheme provides
a blazingly fast additional master-key decryption algo-
rithm, which does not change the IBE security properties
but proves particularly useful for our application. We
have implemented a prototype of the extended IBE and
provide detailed benchmarks illustrating its practicality
(Section 6). Though it is only a tweak of the ABB IBE [4],
we expect it to be of independent interest and to find good
uses beyond the specific e-voting application.

We formally prove that the generic Epoque e-voting
protocol achieves vote privacy, verifiability, and even ac-
countability which guarantees that misbehaving parties
can also be identified (Section 7). We emphasize that
Epoque provides these properties under standard and
transparent trust assumptions.

We further show how Epoque can be extended with a
lightweight return code scheme (which does not require
any further cryptographic primitives) in order to mitigate
trust on the voters’ voting devices (Appendix A).

1.2. Structure of the paper

We start by describing the general concept of e-voting
based on homomorphic secret-sharing (Section 2). In par-
ticular, we will elaborate on the security issues of the
previous works [26], [31] following this approach, and
explain why they cannot be solved easily. After that, the
structure of the paper follows the one of the contributions
as described above. We discuss the main properties of
Epoque and its related work in Section 8.

2. Homomorphic Secret-Sharing E-Voting

We have mentioned in the introduction that the design
of our protocol follows the homomorphic secret-sharing
approach for e-voting, originally proposed by Cramer et
al. [26]. Their e-voting protocol is based on Pedersen
commitments and Schnorr-like ZKPs. Since the security
of these primitives relies on the hardness of the discrete
logarithm problem, the protocol by Cramer et al. could
be broken by a (sufficiently strong) quantum computer.

2. To be clear: Epoque builds on the cryptographic primitive of IBE;
key-escrow and authority objections to turnkey IBE systems do not apply.

More recently, Del Pino et al. [31] demonstrated that [26]
can instead be instantiated with practical lattice-based
primitives. We will refer to the conceptual design of [31]-
plus-[26] as basic homomorphic secret-sharing e-voting.

In this section, we will first describe how basic ho-
momorphic secret-sharing e-voting works and the (lim-
ited) security it provides (Section 2.1). After that, we
will demonstrate that a single malicious tallying authority
can block any incoming ballot with impunity, and that
this issue not only undermines correctness but also vote
privacy (Section 2.2). Eventually, we will explain why
protecting against malicious voting devices is challenging
when usability is taken into account (Section 2.3).

In the remainder of the paper, we will describe and
formally analyze how to solve the fundamental security
issues at the root of the above dilemma, and do so effi-
ciently. It bears repeating that our solution can be instanti-
ated with efficient lattice-based primitives available today.
As a result, we obtain the first practical, wholly lattice-
based, e-voting system with end-to-end verifiability.

Notation. Let (X,+) be a finite Abelian group. Through-
out this paper, whenever we say that an element x ∈ X is
secretely shared among n parties, we mean that n − 1
elements x1, . . . , xn−1 have been chosen uniformly at

random from X , and xn ← x − ∑n−1
i=1 xi. We write

〈x〉 = (x1, . . . , xn) to denote a secret sharing of x.

2.1. Overview

Basic homomorphic secret-sharing e-voting works as
follows (see also Table 1). We have a number of voters
V1, . . . ,VnV

and trustees T1, . . . ,TnT
. We use a homo-

morphic commitment scheme and a public-key encryption
scheme.

2.1.1. Vote casting. Each voter Vi first chooses her vote
vi ∈ {0, 1} and then secretely shares vi among the nT

trustees3:

〈vi〉 = (vi1, . . . , v
i
nT
). (1)

After that, Vi commits to each share vik with ran-
domness rik and obtains a commitment cik. Due to the
homomorphic property of the commitment scheme, we
have that ci ← ∑

k c
i
k is a commitment to vi =

∑
k v

i
k

with randomness ri ←∑
k r

i
k.

Furthermore, Vi generates a zero-knowledge proof
(ZKP) of knowledge of an opening to a valid vote, i.e.,
that ci is a commitment to either 0 or 1.

Additionally, for each trustee Tk, voter Vi encrypts
(vik, r

i
k) under Tk’s public key pkk and obtains a cipher-

text eik. The voter’s final ballot consists of all the commit-
ments (cik)k, the ZKP of correctness, and the encrypted
openings (eik)k. Eventually, Vi posts her ballot bi on the
bulletin board.

2.1.2. Ballot weeding. First, all ballots with invalid ZKPs
are removed.4 Then, each trustee Tk decrypts the cipher-
text eik of each unremoved ballot bi with its secret key

3. Notice that the superscript in vi is used here to designate a voter;
it does not indicate an exponentiation.

4. In what follows, for the sake of simplicity, we assume that all
ballots have valid ZKPs.

273

TABLE 1: Homomorphic Secret-Sharing E-Voting with Honest Participants

Voters Trustee T1 . . . Trustee TnT

v1 share−−−→ (v11 , . . . , v
1
nT

) commit−−−→ Com(v11)
. . . Com(v1nT

)

.

.

.
.
.
.

.

.

.

vnV share−−−→ (v
nV
1 , . . . , v

nV
nT

) commit−−−→ Com(v
nV
1) . . . Com(v

nV
nT

)

↓ sum ↓ sum

↓ sum
∑nV

i=1 Com(vi1)
. . .

∑nV
i=1 Com(vinT

)

↓ open ↓ open
∑nV

i=1 v
i =

∑nT
k=1

∑nV
i=1 v

i
k

sum←−−
∑nV

i=1 v
i
1

. . .
∑nV

i=1 v
i
nT

Remarks: (1) The upper part of the table illustrates the casting phase and lower part the tallying phase. Recall that the commitment scheme is
homomorphic. We note that the sum over all plain votes (left column) is implicit. (See Section 2 for the notation.)
(2) For the sake of simplicity, this overview table assumes that all participants (voters and trustees) are honest. We note that if participants are
malicious, then the fundamental disputes (as described in Section 2.2) can occur in the “open” phase.

to obtain (ṽik, r̃
i
k). If (ṽik, r̃

i
k) is not a valid opening of

cik, then Tk publishes a complaint that eik was invalid and
Vi’s ballot bi is removed. Let I ⊆ {1, . . . , nV} refer to
the set of unremoved ballots.

2.1.3. Tallying. Each trustee Tk publishes

vk ←
∑
i∈I

vik and rk ←
∑
i∈I

rik. (2)

The final result is then

res←
∑
k

vk. (3)

2.1.4. Security. If the final election result res does not
correspond to the votes contained in the unremoved ballots
(bi)i∈I , then this can be detected. This is due to the
binding and homomorphic properties of the commitment
scheme which guarantee that

res =
∑
k

vk =
∑
k

∑
i∈I

vik =
∑
i∈I

∑
k

vik =
∑
i∈I

vi. (4)

Therefore, the tallying of the unremoved ballots (bi)i∈I is
a verifiable operation.

Furthermore, the IND-CCA security of the encryp-
tion scheme and the hiding property of the commitment
scheme guarantee that the tallying does not reveal more
information about the single votes (vi)i∈I inside the unre-
moved ballots (bi)i∈I than what can be derived from the
final result res.

However, when we regard the complete voting proto-
col, verifiability is no longer guaranteed. More precisely,
as we will demonstrate in what follows, it is not possi-
ble to verify whether a (single!) malicious trustee (Sec-
tion 2.2) or some malicious voting devices (Section 2.3)
have tampered with the voters’ votes. This undermines not
just verifiability, but also vote privacy.

2.2. Malicious tallying authorities

In this section, we focus on the threat of malicious
trustees in basic homomorphic secret-sharing e-voting as
well as the challenge of protecting against it in a lattice-
based setting.

2.2.1. Attacks. Observe that if a trustee Tk claims that
some ciphertext eik was invalid, then bi is removed—
regardless of whether Tk’s complaint is correct! In par-
ticular, if Tk is dishonest, then Tk could effectively
“block” any ballot bi without having to provide any evi-
dence. Hence, basic homomorphic secret-sharing e-voting
does not guarantee verifiability against a single malicious
trustee.

This verifiability issue also affects vote privacy, since
if Tk were to block incoming ballots selectively, perhaps
based on metadata, then the remaining ballots would be
left in a smaller “anonymity set” and with possibly much
decreased privacy if the attacker chose a set with high
correlations or from other a priori information. We refer to
Cortier and Lallemand [23] for more details on the relation
between verifiability and vote privacy, but even with a
single corrupted trustee, the adversary has a significant
advantage in breaking vote privacy.

2.2.2. Defenses. Del Pino et al. [31] acknowledge the
aforementioned issue and propose to let each voter Vi

store the randomness used for each encryption eik so that,
in case Vi’s ballot is incorrectly claimed invalid, Vi could
reveal the respective randomness. Although this approach
may be appealing at a theoretical level, its implicit as-
sumptions are problematic in a real-world election because
the trustees in [31] need to use their secret tallying keys in
order to verify whether a ballot is valid. In a real election,
however, these tallying keys should be encapsulated out-
side the actual tallying phase to ensure that they are physi-
cally inaccessible by a potentially malicious environment.5

Because incoming ballots could no longer be verified im-
mediately after being submitted, as proposed by [31], in a
real election, each voter would have to store all the critical
information of her ballot (plain vote, random coins, etc.)
until her ballot was verified at a later point. This would
be problematic, first, because the voters would have to
store sensitive information beyond the casting phase, and
second, because the voters’ voting/verification ceremony
would become so complex that it is questionable whether

5. For example, in the e-voting system used for national elections in
Estonia, it is specified that the “processing of votes is carried out in an
off-line environment” and that the private key “cannot be used before
the process of counting of votes” [38].

274

enough voters would even attempt, much less complete,
the required checks.

In Section 3, we propose a novel solution based on
identity-based encryption (IBE) to overcome the verifi-
ability gap without introducing any restrictions. The re-
sulting e-voting protocol, named Epoque, is practical and
can completely be instantiated with lattice-based crypto-
graphic primitives (Section 4). We formally prove that
Epoque provides verifiability and vote privacy in the pres-
ence of fully malicious tallying authorities under common
trust assumptions (Section 7.2 and 7.3).

Due to the latest developments of more efficient ZKPs
of correct decryption (most notably [36]), there exist alter-
native practically efficient solutions to the one presented
in this paper.6 If we require that a trustee Tk, who claims
that some ciphertext eik decrypts to an invalid opening of
the respective commitment, proves this claim in ZK, then
a malicious trustee can no longer block incoming valid
ballots, while, at the same time, an honest trustee can
still correctly reject invalid ballots without revealing in-
formation on her secret key skk. Both approaches, the one
using IBE and the one using ZKPs of correct decryption,
are practical solutions for the previously open verifiability
and privacy problems of [31] (see Sec. 8).

2.3. Malicious voting devices

In this section, we focus on the threat of malicious
voting devices in basic homomorphic secret-sharing e-
voting, and the challenge of defeating them in a usable
way.

2.3.1. Impact. It is obvious that basic homomorphic
secret-sharing e-voting does not protect against malicious
voting devices, neither in terms of verifiability nor privacy.
To see that verifiability is broken, assume that a corrupted
voting device replaces the candidate entered by the human
voter by a different one: the human voter would not have
any means to detect this manipulation. To see that vote
privacy cannot be guaranteed, recall that a voting device
always receives the human voter’s chosen candidate in
clear.

2.3.2. Mitigations. Ensuring vote privacy against a mali-
cious voting device typically involves using some kind
of verifiable re-encryption mix net for which, to date,
there does not exist sufficiently practical lattice-based
instantiations (see Section 8). Therefore, in what follows,
we restrict our attention to verifying possibly malicious
voting devices, further focusing on correctness of in-band
transmissions (i.e., of the ballots), since preventing out-of-
band data exfiltration from a malicious system is really a
hardware problem.

One approach for verifying voting devices is the
challenge-or-cast technique by Benaloh [9]. It is, for
instance, employed in the Helios e-voting system [2].
From a technical perspective, it would be straightforward
to employ the challenge-or-cast technique in basic secret-
sharing e-voting as well. However, several usability stud-
ies [1], [11], [44], [57], [58], [60] indicate that only few

6. The paper by Esgin, Nguyen, and Seiler [36] has been presented at
Asiacrypt after we had submitted our paper to EuroS&P. We thank the
anonymous referees for pointing us to the work by Esgin et al. [36].

human voters successfully execute the challenge-or-cast
gambit, even within the IACR’s7 own Helios elections.
We have therefore decided not to follow this approach for
Epoque.

A different technique for verifying the correct be-
haviour of voting devices is based on return codes. This
solution was, for example, used for binding political
elections in Switzerland [39] and Norway [6], [41]. We
will follow this approach. In Appendix A, we propose a
lightweight return code scheme for Epoque (Section 3)
that can be instantiated without any additional crypto-
graphic primitives.

3. Description of Epoque

In this section, we introduce the Epoque e-voting pro-
tocol. In Section 3.1, we explain the general idea of how
Epoque extends the basic homomorphic secret-sharing
e-voting protocol in order to protect against malicious
tallying authorities (recall Section 2.2). In Section 3.2,
we describe Epoque in full technical detail.

3.1. Idea

Recall from Section 2.2 that we are essentially facing
the following problem when protecting against malicious
trustees: How can Tk publicly prove that eik encrypts (or
fails to encrypt) certain message(s) m under pkk without
revealing any information on the remaining messages en-
crypted under pkk? How can this be realized with practical
lattice-based cryptographic primitives?

We propose to use the following idea [30] to solve this
problem effectively. Instead of using a PKE scheme, we
employ an IBE scheme (see Appendix B) with chosen-
plaintext security (IND-ID-CPA) and the following prop-
erty: Given a master public key mpk, an identity i, and
an individual secret key mski, it can be efficiently decided
whether mski is correct, i.e., corresponds to i w.r.t. mpk.

Now in Epoque, we assume that each trustee Tk holds
a master public key mpkk instead of an “ordinary” public
key pkk as in the basic secret-sharing e-voting protocol. In
order to secretly send her k-th opening values (vik, r

i
k) to

Tk, voter Vi uses Tk’s master public key mpkk together
with her identity i (instead of pkk as in the basic protocol)
to encrypt (vik, r

i
k). We denote the resulting ciphertext by

eik as before.
Why does this technique enable a public observer/third

party to verify the complaint of a (possibly) malicious
trustee? To see this, consider the following two relevant
cases (either Tk or Vi is honest):

• Case 1: Assume that Tk is honest and that Vi

is dishonest. Assume that Vi creates an invalid
ciphertext eik. In this case, Tk uses its master
secret key mskk to derive Vi’s individual secret
key mskik. After that, Tk publishes mskik so that
everyone can first verify the correctness of mskik,
and then decrypt eik to verify Tk’s complaint. Due
to the IND-ID-CPA security of the IBE scheme,
revealing mskik does not leak any information
about the vote shares of the remaining voters.

7. The International Association for Cryptologic Research.

275

• Case 2: Conversely, assume that Tk is dishonest
and that Vi is honest. Since Vi is honest, her
ballot bi, including all encrypted opening values
eik, is valid. Assume that Tk wants to block Vi’s
ballot by incorrectly claiming that eik was invalid.
In order to “convince” a public observer of its false
statement, Tk would have to publish an element,
say x, such that (i) x is a correct individual secret
key corresponding to Vi, and (ii) using x, eik
decrypts to a message different from the message
that Vi encrypted under her identity i w.r.t. mpkk.
Due to the correctness of the IBE scheme, this is
impossible. Therefore, a dishonest trustee can no
longer “block” honestly generated ballots.

This argument demonstrates that our technique solves
the verifiability (and, hence, vote privacy) issues of the ba-
sic homomorphic secret-sharing e-voting in the presence
of malicious trustees. Importantly—and this is the crucial
point!—, there exist highly practical lattice-based instan-
tiations of IBE with the required features (Section 4).

3.2. Protocol

We now present the Epoque e-voting protocol in full
detail. As mentioned in Section 1, instead of relying on
specific primitives, the security of Epoque can be proven
from generic assumptions these primitives have to satisfy.
In Section 4, we show how to instantiate Epoque from
practical lattice-based cryptographic primitives.

3.2.1. Cryptographic primitives. We require the follow-
ing:

• A computationally hiding and computation-
ally binding homomorphic commitment scheme
(KeyGencom,Com,Open).

• A NIZKPoK8 scheme for creating proofs πV of
knowledge of a correct shared committed vote,
i.e., whose sum over all committed shares opens
to either 0 or 1. This can be described by the
following relation RV. Let prmcom be an ar-
bitrary output of KeyGencom(1

�). Then, a tuple

(prmcom, c
j
k, (r

j
k,m

j
k))k∈K,j∈J is in RV if and

only if

–
∑

k∈K mj
k ∈ {0, 1} for all j ∈ J , and

–
∑

j∈J
∑

k∈K mj
k ∈ {0, 1}, and

– Open(prmcom,m
j
k, c

j
k, r

j
k) = 1 for all k ∈

K and all j ∈ J .

• An identity-based encryption (IBE) scheme
(KeyGenibe,Extr,Enc,Dec) which is IND-ID-
CPA-secure (Appendix B). We require that
the correctness of an individual secret key
given the public parameters can efficiently
be decided. More precisely, this correctness
property can be described by the following
relation Ribe. Let prmibe be an arbitrary output
of KeyGenibe(1

�), and id be a valid identity.

Then, a tuple (prmibe,mskid, id) is in Ribe

if and only if there exist random coins r
such that (prmibe,msk) = KeyGenibe(r) and

mskid = Extr(prmibe,msk, id).

8. Non-interactive zero-knowledge proof of knowledge.

3.2.2. Protocol participants. Epoque is run among the
following participants:

• voting authority AT,
• human voters V1, . . . ,VnV

,
• voters’ supporting devices VSD1, . . . ,VSDnV

,
• trustees T1, . . . ,TnT

, and
• a public, append-only bulletin board B.

We assume that for each party there exists a mutually
authenticated channel to B.9

3.2.3. Protocol overview. A protocol run of Epoque con-
sists of the following phases: setup, ballot creation, ballot
submission, ballot weeding, voter verification, tallying,
and public verification. We now explain each phase in
more details.

3.2.4. Setup. In this phase, all election parameters are
fixed and posted on the bulletin board.

The voting authority AT determines and publishes the
security parameter �, the number of candidates ncand,
the list {1, . . . , nV} of eligible voters, opening and clos-
ing times, the election identity idelection, etc. Afterwards,
the voting authority runs the key generation algorithm
of the commitment scheme and publishes prmcom ←
KeyGencom(1

�).
Each trustee Tk runs the key generation algorithm

KeyGenibe of the IBE scheme to generate its public pa-
rameters prmk = prmibe,k and its master secret key mskk.
After that, Tk publishes prmk on the bulletin board.

3.2.5. Ballot creation. In this phase, every voter Vi can
vote for some candidate j′ ∈ {1, . . . , ncand}. The voter
Vi enters her chosen candidate to her supporting device
VSDi. On input j′ ∈ {1, . . . , ncand}, VSDi encodes j′ as
a binary vector

vi = (vi,j)ncand
j=1 ∈ {0, 1}ncand ⊆Mncand

com , (5)

where vi,j
′

= 1. Then for all candidates j ∈
{1, . . . , ncand}, VSDi secretely shares vi,j among the
trustees

〈vi,j〉 = (vi,j1 , . . . , vi,jnT
). (6)

Afterwards, for all j ∈ {1, . . . , ncand} and all trustees
Tk, VSDi runs the commitment algorithm Com with input
vi,jk :

(ci,jk , ri,jk)← Com(prmcom, v
i,j
k). (7)

Since the commitment scheme is homomorphic, the com-
mitment ci,j ←∑nT

k=1 c
i,j
k decommits to vi,j using open-

ing value ri,j ←∑nT

k=1 r
i,j
k , i.e.,

Open(prmcom, v
i,j , ci,j , ri,j) = 1. (8)

In order to guarantee the well-formedness and knowl-
edge of all committed shares ci,jk , VSDi creates a NIZKP
of knowledge πi

V for proving that VSDi knows messages

vi,jk ∈Mcom and opening values ri,jk ∈ R such that

• for all j ∈ {1, . . . , ncand}, it holds that∑nT

k=1 v
i,j
k ∈ {0, 1}, and

9. In practice, as in Helios-C [20] or Belenios [22], one could establish
a PKI among the voters so that they can sign their ballots.

276

•
∑ncand

j=1

∑nT

k=1 v
i,j
k ∈ {0, 1}, and

• for all j ∈ {1, . . . , ncand} and all k ∈ {1, . . . , nT},
it holds that Open(prmcom, v

i,j
k , ci,jk , ri,jk) = 1.

For each trustee Tk, VSDi reads Tk’s public parame-
ters prmk from the bulletin board B. Then, VSDi encrypts

the tuple (vi,jk , ri,jk)ncand
j=1 using Tk’s public parameters

prmk and Vi’s identity i, i.e.,

eik ← Enc(prmk, i; (v
i,j
k , ri,jk)ncand

j=1). (9)

Eventually, VSDi returns a message to Vi stating that
the ballot is ready for submission.

3.2.6. Ballot submission. VSDi submits the ballot

bi ← (i, (ci,jk)j,k, (e
i
k)k, π

i
V) (10)

to the bulletin board B. For each incoming ballot bi, B
checks whether

• Vi has not yet submitted a ballot before, and
• bi does not contain a duplicate entry of another

ballot bj ∈ B, and
• πi

V is valid.

If all checks are positive, then B adds bi to the (initially

empty) list of ballots �b and publicly updates �b.

3.2.7. Ballot weeding. Each trustee Tk reads �b from the

bulletin board B. For each ballot bi ∈ �b, trustee Tk uses
mskk to decrypt eik.

If decryption fails, then Tk runs the IBE private-key
extraction algorithm Extr to derive Vi’s individual secret
key mskik ← Extr(prmk,mskk, i), and publishes (i,mskik)
as proof that eik is malformed.

If decryption succeeds, then Tk parses the resulting
plaintext as (vi,jk , ri,jk)ncand

j=1 , and verifies whether

Open(prmcom, v
i,j
k , ci,jk , ri,jk) = 1 (11)

holds true for all j ∈ {1, . . . , ncand}. In other words, Tk

verifies whether the resulting plaintext contains opening
values for all commitments ci,1k , . . . , ci,ncand

k assigned by
voter Vi to trustee Tk. If this check fails, then Tk extracts
mskik as described above and publishes (i,mskik) as proof
that eik is invalid.

Eventually, after Tk has verified all ballots bi in �b as
described, Tk sends a respective message to the bulletin
board.

If, in this phase, a trustee Tk publishes (i, x) for some
voter Vi, then everyone can efficiently verify whether
(prmibe,k, x, i) ∈ Ribe, i.e., whether x is indeed the (or, at
least, a) valid individual secret key for Vi w.r.t. Tk’s public
IBE parameters prmibe,k. Furthermore, everyone can use

x to verify bi in the same (deterministic) way as Tk has
done internally before.

3.2.8. Tallying. Those ballots which have not been proven
invalid by any of the trustees are processed as follows.10

Each trustee Tk publishes

vjk ←
nV∑
i=1

vi,jk and rjk ←
nV∑
i=1

ri,jk (12)

10. For the sake of readability, we now suppose all submitted ballots
valid.

for all j ∈ {1, . . . , ncand}. Everyone can verify the cor-

rectness of vjk, r
j
k by checking

1
?←− Open(prmcom, v

j
k, c

j
k, r

j
k), (13)

where cjk ←
∑nV

i=1 c
i,j
k .

The final election result can publicly be computed as

res←
(

nT∑
k=1

v1k, . . . ,

nT∑
k=1

vncand

k

)
. (14)

3.2.9. Public verification. In this phase, every participant,
including the voters themselves and external auditors, can
verify correctness of both the ballot weeding phase and
the tallying phase.

4. Lattice-Based Instantiation

In this section, we demonstrate how to instantiate
the generic Epoque protocol (Section 3) with lattice-
based cryptographic primitives only. We describe different
options to efficiently instantiate the generic IBE scheme
which differ in terms of security and efficiency. Before
that, following Del Pino et al. [31], we briefly describe
concrete lattice-based instantiations of the generic com-
mitment scheme and the NIZKPs of well-formedness.

4.1. Commitment scheme

We use the lattice-based commitment scheme pro-
posed by Del Pino et al. [31] which is computationally
binding under the Module Short Integer Solution (M-SIS)
problem and computationally hiding under the Module
Learning With Errors (M-LWE) problem [54]. We refer
to [31] for details of their construction.

4.2. NIZKP of well-formedness

We follow Del Pino et al. [31] by realizing πV by
the conjunction of the statements proved by two other
NIZKPs. This strategically places most of the compu-
tational effort on the authorities, who are able to use
amortized proofs for greater efficiency. We note that this
NIZKP is also a proof of knowledge (PoK) which is
important for our optimisation of the IBE decryption (see
below).

We illustrate this approach for an election with two
candidates. In this case, each voter first commits either to
0 or to 1 (for candidate A or B, respectively), and then
generates a NIZKP πV for proving that ci is a commitment
either to 0 or to 1. However, such an exact NIZKP is
computationally complex for lattice-based commitments
which would be in conflict with the requirement of a
lightweight casting procedure. In order to solve this issue,
Del Pino et al. [31] proposed the following solution.
Instead of proving the exact relation above, each voter Vi

proves an approximate variant of it. Then, each trustee Tk

proves that the commitment cik assigned by Vi has small
randomness. These two proofs collectively imply the exact
relation (i.e., that ci is a commitment either to 0 or to 1).
Importantly, each trustee can prove that the randomness
is small for many commitments at once so that its cost

277

can be amortized over many voters. We refer the reader
to [31] for much of the details, in particular for why these
two proofs collectively imply a ZKP as required for πV.

We note that there exist further subsequent innovations
in the literature (e.g., [12], [36], [37], [67]) that open up
other interesting alternatives for realizing this primitive.

4.3. IBE scheme

We elaborate on three different options to instantiate
the generic IBE scheme efficiently in the lattice-based
setting.

4.3.1. Based on RLWE in the ROM. The most straight-
forward solution is to instantiate the generic IBE scheme
with a lattice-based one whose security reduces to the
ring learning-with-errors (RLWE) hardness assumption in
the random oracle model (ROM). The lattice-based IBE
scheme by Ducas, Lyubashevsky, and Prest [34] would be
a good candidate for this purpose.11 However, applying
such an IBE scheme comes along with a possible security
weakening. Firstly, while LWE is known to be at least
as hard as standard (worst-case) problems on euclidean
lattices, RLWE is only known to be as hard as their
restrictions to special classes of ideal lattices, correspond-
ing to ideals of some polynomial rings. Secondly, if the
encryption scheme is secure only in the ROM, then the
long-term privacy of ballots is threatened by unforeseen
future cryptanalyses of the hash functions employed in the
election.12

4.3.2. Based on LWE in the standard model. In order
to avoid the aforementioned possible security issues, we
prefer to employ an IBE scheme in the standard model,
such as the prominent one by Agrawal, Boneh, and Boyen
(ABB) [4], whose security reduces to the plain LWE hard-
ness assumption. However, if we applied the ABB scheme
directly to our scenario, then Epoque would be rendered
inefficient because for each ballot, the voter’s respective
individual secret key would need to be extracted. Because
the extraction algorithm is in the order of 1 min (see
Table 2), this approach would be too slow for processing
possibly millions of ballots. In Sec. 5, we propose a
modified version of the ABB IBE scheme with fast master
decryption which solves this efficiency problem, as ex-
plained next. Unlike in the original ABB IBE scheme, the
master secret key holder (the trustee in Epoque) can use
a shortcut decryption algorithm to decrypt each ciphertext
independently of the individual public key the ciphertext
had been created with. Now, the trustees in Epoque can
use this shortcut decryption algorithm to decrypt each

11. Ducas et al. implemented their IBE scheme on a standard com-
puter and they report that generating an individual secret key takes less
than 33ms, while both encryption and decryption take less than 2ms each
(for a security level of 192 bits). Applied to our application, a trustee
can decrypt the ciphertexts of roughly 30 ballots per second (not taking
into account the trustee’s further actions).

12. Practitioners may push back on any criticism of random oracles,
but the argument is strongly supported, both on theoretical and empirical
grounds: (1) being keyless, hash functions are the trickiest to design and
essentially the most vulnerable of all symmetric-key constructions, a fact
that has been eloquently demonstrated in (2) very-high-profile breaks of
universally used hash functions theretofore believed secure (e.g., SHA-
1 [55] or MD5 [64]).

voter’s ciphertext, without having to (slowly) extract the
respective individual secret key. In Sec. 6 (Table 2), we
provide detailed benchmarks of our implementation of the
modified ABB IBE scheme from Sec. 5 which demon-
strate that, due to this modification, decryption can be
done blazingly fast. In short, our shortcut yields a 4-order-
of-magnitude speed improvement over the original ABB
IBE.

Altogether, following the approach taken in this paper,
we obtain a practically efficient instantiation of the generic
IBE scheme in Epoque which is more secure than the ones
based on RLWE in the ROM.

4.3.3. Combination of IBE and PKE. Alternatively to
our modification of the ABB scheme to avoid slow decryp-
tion on the trustees’ side, we now describe how to combine
an arbitrary IBE scheme, e.g., original ABB IBE [4], with
an arbitrary efficient lattice-based PKE scheme.13

Let Encibe denote the encryption algorithm of an IND-
ID-CPA-secure IBE scheme, and Encpke the encryption
algorithm of an IND-CPA-secure PKE scheme. In the
setup phase, each trustee Tk runs the key generation
algorithm of the IBE scheme to obtain public parameters
prmk and a master secret key mskk. Now, additionally,
each trustee Tk runs the key generation algorithm of the
PKE scheme to obtain a public/private key pair (pkk, skk).
In the ballot creation phase, voter Vi encrypts the opening
values (vi,jk , ri,jk)ncand

j=1 under Tk’s public key pkk

eik ← Encpke(pkk; (v
i,j
k , ri,jk)ncand

j=1), (15)

and then encrypts the randomness r̂ik used to create eik
under Vi’s individual public key, i.e., the combination of
Tk’s public parameters prmk and Vi’s identity i:

êik ← Encibe(prmk, i; r̂
i
k). (16)

Note that the difference between this technique and the
abstract one described in the generic Epoque protocol
(Sec. 3.2) is that the voter does not encrypt the opening
values under its individual public key (prmk, i) but the
randomness used to encrypt these opening values.

In the ballot weeding phase, Tk first decrypts the PKE
ciphertext eik and verifies whether the resulting plaintext
is a valid opening for the respective commitments. If this
is the case, Tk simply discards the IBE ciphertext êik. If
and only if eik does not decrypt to a valid opening, then
Tk runs the extraction algorithm of the IBE scheme to
derive and publish Vi’s individual secret key mskik so that
everyone can decrypt the IBE ciphertext êik. Everyone can
then use the resulting plaintext in combination with the
trustee’s public key pkk to decrypt the PKE ciphertext eik
and verify that eik does not decrypt to a valid opening of
the respective commitments.

Note that, using the above technique, the trustees
need to run the expensive extraction algorithm only if a
ciphertext decrypts to an invalid opening. Because this will
rarely if ever need to be done in an election, this technique
could also be realized efficiently with the original, i.e.,
unmodified, ABB IBE scheme [4]. On the contrary, the
technique proposed in Sec. 4.3.2 is more compact in that
it requires only one ciphertext per ballot, unlike two in
the latter technique.

13. We thank the anonymous EuroS&P referee who proposed this
alternative approach.

278

5. Lattice-Based IBE with Fast Master De-
cryption

Our IND-ID-CPA-secure IBE instantiation is based
on the Agrawal-Boneh-Boyen (ABB) IBE scheme in
the standard model [4] whose security reduces to the
plain learning-with-errors (LWE) hardness assumption.
This IBE scheme was selected primarily because we can
transform the general master key msk normally used for
identity-based private-key extraction, into a special master
key that can decrypt all well-formed ciphertexts regardless
of the ciphertext recipient, extremely efficiently.

In what follows, we briefly recall some basic details
of the ABB IBE [4] first. After that, we explain how
to construct an efficient master decryption key without
affecting the security of the original construction.

5.1. Agrawal-Boneh-Boyen IBE scheme

Let n be the security parameter. We choose q,m, σ, α
such that

m = 6n1+δ q = m2.5 · ω(
√

log n) (17)

σ = m · ω(
√

log n) α = [m2 · ω(
√

log n)]−1 (18)

hold true, where we round up m to the nearest larger
integer and q to the nearest larger prime. We assume that
δ is such that nδ > �log q� = O(log n).

We use a function H : Zn
q → Z

n×n
q to map identities in

Z
n
q to matrices in Z

n×n
q . The function H needs to satisfy

the following notion of injectivity:

∀id1, id2 ∈ Z
n
q : (id1 �= id2 ⇒ det(H(id1)−H(id2)) �= 0).

(19)

We refer to [4] for an explicit construction of H .
The public parameters

prm = (A0, A1, B, u) (20)

consist of a three random matrices A0, A1, B ∈ Z
n×m
q

plus a vector u ∈ Z
n
q .

The master secret

msk = (TA0
) (21)

consists of a basis with low Gram-Schmidt norm (≤
O(
√
n log q)) for the lattice Λ⊥q (A0). For the non-

specialist, this is to say that TA0
is an m × m integer

matrix of full rank but low norm, whose column vectors
mod q are all orthogonal to A0, i.e.,

A0 · TA0 = 0 (mod q) (22)

It is relatively easy to generate TA0 at the same time as a
random A0 is created, but this is believed to be infeasibly
hard after the fact, even quantumly.

The extraction algorithm Extr on input prm,msk, id
runs a certain sampling algorithm (see [4] for details) that
returns a short (low-norm) integer 2m-vector did such that

[A0|A1 +H(id) ·B] · did = u, (23)

where Fid ← [A0|A1 + H(id) · B] is a publicly con-
structable n× 2m matrix which varies with id.

The encryption algorithm Enc takes prm, id and a
message b ∈ {0, 1} as input. It first chooses uniformly

random s ∈ Z
n
q and R ∈ {−1, 1}m×m. After that, noise

vectors x ∈ Zq and y ∈ Z
m
q are generated according to

some distribution χ for which the LWE problem is hard
(e.g., as hard as the worst-case SIVP and GapSVP under
a quantum reduction; see [61] for details). The resulting
ciphertext

(c0, c1) ∈ Zq × Z
2m
q (24)

consists of

c0 ← uT s+ x+ b · �q
2
� ∈ Zq, (25)

c1 ← FT
id s+

[
y

RT y

]
∈ Z

2m
q . (26)

The decryption algorithm Dec on input prm,mskid =
did and ciphertext (c0, c1) returns 1 if∣∣∣c0 − dTidc1 − �

q

2
�
∣∣∣ < �q

4
� (27)

in Z, and otherwise 0.
For completeness, whereas [4] describes using a ci-

phertext (c0, c1) ∈ Zq × Z
2m
q to encrypt a single bit of

message, it is noted that multi-bit encryption is possible
by adding instances of c0, c

′
0, c

′′
0 , ... ∈ Zq , all constructed

using the same encryption randomness s so that they can
all share the same ciphertext vector c1 ∈ Z

2m
q . This

requires preparing a matching number of independent
random vectors u, u′, u′′, ... ∈ Z

n
q in the IBE public key.

We shall use this for efficiency.

5.2. Our construction

In the original ABB scheme, to decrypt a ciphertext
encrypted under an individual public key Fid, it is first nec-
essary to extract the respective individual secret key did.
Unfortunately, the performance of the extraction algorithm
Extr is comparatively slow (see Table 2 for benchmarks
of Extr), because it involves a somewhat costly Gaussian
integer sampling, required to prevent the extracted private
key from leaking details of the master key. If however the
master-key holder is doing the decryption, one possibility
to speed things up is to degrade the Gaussian sampler,
as long as the resulting “unsafe” private key is functional
and not disseminated—but we can do even better.

To make master-key-based decryption really fast we
designed an additional “master shortcut decryption” mech-
anism, able to decrypt any recipient’s ciphertext imme-
diately from the master secret key msk, without having
to extract an individual private key first, and without
changing (what the outside world sees of) the rest of the
scheme. Conceptually, this adds no functionality to the
IBE scheme, nor does it remove any security from it;
but the benefit is that such master shortcut decryption
is blazingly fast, as demonstrated by our performance
benchmarks in Section 6 (Table 2).

Speedy master decryption is particularly well moti-
vated for Epoque, where each tallier Tk is required to
perform one decryption for each voter’s ballot, all using
different ids, but only infrequently (if at all) does it need
to publish a properly extracted private key for any voter.
Without shortcut decryption, each tallier Tk would have to
extract a use-once-and-discard private key for every single
voter. Master shortcut decryption is much more practical
in large-scale elections.

279

5.2.1. Master shortcut decryption. In ABB IBE, the
only two properties for a private key did to work are that
‖did‖2 < β for some β, and that F (id) · did = u per
Eq. 23. Additional properties on the distribution of did
are only necessary to prevent did from leaking information
about msk, either upon extraction of did, or, in a chosen-
ciphertext attack, upon decryption of specially crafted
ciphertexts using did (more on that below). Absent those
two circumstances, the master-key holder is able safely to
use any dmsk for decryption, provided that ‖dmsk‖2 < β
and F (id) ·dmsk = u (mod q). We show how to construct
such dmsk that work for all id.

First, in the master-key generation phase, we construct
the random matrix B with a trapdoor TB , i.e., s.t.,

A2 · TB = 0 (mod q) , ‖TB‖ < β′ (28)

just like we did for A0 and TA0
. Note that this can be

done while A2 remains vanishingly close to a uniform
distribution over Zn×m

q .

Then, we obtain dmsk =

[
d1
d2

]
by sampling, in order:

1) Using TA2 , a low-norm vector d2 ∈ Λ⊥q (A2), which
is to say that A2 · d2 = 0;

2) Using TA0 , a low-norm vector d1 ∈ Λ−A1d2
q (A0),

i.e., such that A0 · d1 = −A1 · d2.

Notice that both equations above are vector equalities in
Z
n
q , infeasible to solve for low-norm solutions except with

knowledge of the respective trapdoors TA2 and TA0 , e.g.,
using the SampleLeft() algorithm from [4].

The Master shortcut decryption algorithm is then ex-
actly the same as regular decryption, substituting dmsk for
did. Note that master shortcut decryption works regardless
of id, since

∀id, [A0|A1 +H(id) ·B] · dmsk = u (29)

Using dmsk in the same way as a normal user would
use did, a tallyer is able to decrypt all (well-formed)
ciphertexts extremely quickly.

5.2.2. Security. The addition of a master decryption al-
gorithm does not alter the chosen-plaintext (IND-ID-CPA)
semantic security of the IBE scheme, since all user data
(including public and private keys) have the same distri-
bution as in the original IND-ID-CPA secure construc-
tion [4], and for the same reason the modified scheme
is also correct.14 More precisely, Game 2 of the original
security reduction (see Sec. 6.4 of [4]) contains the same
modification of original ABB that we use here for master
shortcut decryption. This means that the original security
reduction applies to our modification immediately.

14. Technically, the basic ABB IBE and our variant only satisfy a
weaker notion of security against selective-identity attacks, denoted IND-
sID-CPA, wherein the attacker has to announce in advance the identity it
is going to target. Since in Epoque the assigned voter IDs actually live
in a “cryptographically tiny” domain of mere thousands or millions, the
distinction between ID and sID security is inconsequential. Specifically,
any sID-secure IBE is also fullID-secure with an ε advantage divided by
a factor no greater than the size of the domain of IDs, here quite small.
This distinction is also orthogonal to CPA versus CCA security.

5.3. Secure employment in Epoque

In what follows, we argue that the IBE with fast master
shortcut decryption can be used securely in the Epoque
protocol. We first explain that publishing an individual se-
cret key did of a dishonest voter can leak some information
on the master shortcut key dmsk but that this leakage is
practically negligible (as already proved in [4]).

5.3.1. Leakage of individual secret keys. Privacy of
Epoque relies on the assumption that an honest trustee
never reveals any individual secret key of an honest voter.
This assumption could be violated indirectly through the
use of master (shortcut) decryption. To see this, observe
that when an honest tallier reveals the key of some
voter V, it is also indicating that V is dishonest in the
sense that her ciphertext is either invalid or malformed.
Ciphertexts which are only slightly malformed (perhaps
intentionally made so), will decrypt correctly with some
non-trivial probability (neither 0 or 1), depending on how
the malformation “aligns” with the decryption key did or
dmsk (recall that d is a vector in an Euclidean space, and
thus has a direction). Through this mechanism, a crafty
attacker is theoretically able to obtain information about
the decryption key. This is completely inconsequential
when did is used for decryption, since did itself is being
revealed on decryption failures, but when dmsk is used,
the disclosure of did is actually leaking a minute amount
of information about dmsk. Since dmsk is a valid key for
every user, including honest ones, the assumption is being
violated.

5.3.2. Amount of leakage. The intuition behind the ex-
isting formal proof that this “attack” does not work at all,
is that merely gathering some information about dmsk, of
which there are exponentially many, is useless unless dmsk

can be reconstructed exactly. (Most lattice-based cryp-
tosystems, including ABB IBE, tolerate and in fact require
noise on the ciphertext, but not on the private keys.) But,
since the ciphertext-validity-testing oracle above is non-
interactive, an exponential number of malformed voter
ballots would have to be submitted before the information
gained will allow accurate reconstruction of dmsk.15

6. Implementation and Benchmarks

We provide benchmarks of our instantiation of Epoque
presented in Section 4. We first present detailed bench-
marks of the new IBE scheme which show that our
instantiation of the IBE scheme is very efficient in prac-
tice. After that, we recall some experimental results by
Del Pino et al. [31] who implemented the lattice-based
commitment scheme and ZKPs, leaving the encryption
scheme unspecified. These partial performance results of
the voting scheme from [31] apply immediately to the
complete Epoque system, because the overhead we intro-
duce with the IBE is practically negligible (see Table 2).
Altogether, Epoque is, at worst, of nearly identical speed,
but is significantly more secure than [31].

15. This is the same mechanics whereby interactive binary search
can isolate an element in O(logN) comparisons, while non-interactive
search on the same domain would need O(N) of the same comparisons

(or O(
√
N) if quantum). Here N is the size of the domain, so N = 2�,

indeed exponential in the bit-length � of the data being searched.

280

6.1. IBE scheme

In Table 2, we provide benchmarks of our implemen-
tation of the IBE scheme presented in Section 5. Our
implementation is optimised first for decryption which
is the main bottleneck, then encryption, key extraction,
and finally key generation, with the latter two currently
using a generic Gaussian sampler which has room for
improvement.16

Our experiments show that while master-key genera-
tion starts to take significant time at the higher security
levels, using such IBE system as part of Epoque, both to
encrypt ballot shares by the voters, and to decrypt them
by the authority, are still blazingly fast, respectively taking
11 ms and 4 μs per bit of IBE ciphertext at the “medium-
high” security level indicated in Table 2, which by current
estimates for lattice cryptography would correspond to a
security parameter λ somewhere between 128 and 192
bits.

Encryption and decryption times increase linearly with
ciphertext size at first, then plateau at λ bits and be-
yond, since for long messages one would use hybrid
IBE+Symmetric encryption scheme, where the IBE is
used to encrypt a λ-bit ephemeral key for a suitable
symmetric cipher mode of operation (an unauthenticated
mode, since we only require chosen-plaintext security).

Individual private key extraction at this security level
is a bit lengthier at several seconds per identity, but recall
that this will rarely if ever need to be done in an election.
The mere existence of this functionality acts as a deterrent
against voters intentionally crafting incorrect ballot shares.

In terms of ciphertext and public-key sizes, accommo-
dating λ-bit plaintexts (or more with hybrid encryption)
is not much different than 1-bit plaintexts. The bulk of
the ciphertext consists of the n-vector s (where, e.g.,
n ≈ 512), to which one would add some n′ additional
elements y ∈ Zq , where λ/ log2 q < n′ ≤ λ (e.g., for
λ = 192, take n′ = 48 or 64). In summary, the total
ciphertext overhead, excluding the size of the message
itself, will be slightly in excess of the “smaller” lattice
dimension n times log2 q bits.

6.2. Commitment scheme and NIZKP

For the commitment scheme and the NIZKP πV, Del
Pino et al. [31] give results of an experiment conducted
with 11000 voters and 4 trustees that we briefly recall
here.17 They report that each voter device takes about 8.5
ms for creating the commitments and the (approximate)
NIZKP per trustee, and that its total size is roughly 15 KB
per trustee. They further report that it takes each trustee
0.15 sec per voter, in total for creating the amortized exact
NIZKP and for tallying the ballots.

16. Our test machine was an 8th-generation Intel i7 laptop, with
3.3 GHz single-thread measured clockspeed. All mitigations against
speculative-execution attacks on Intel have been applied. The entire
implementation is in plain C from the ground up, linking only to the
standard C math library and only for the Gaussian sampler.

17. They used a laptop with an Intel Skylake i7 CPU running at 2.6
GHz.

7. Security Analysis

In this section, we formally analyze the security of
the generic Epoque protocol in terms of verifiability and
privacy.

7.1. Computational Model

We start by formally modeling Epoque using a general
and established computational framework (see, e.g., [21],
[51], [52]) that we can use both for analyzing verifiability
and privacy of Epoque.

The computational model introduces the notion of a
process which can be used to model protocols (we recall
some details in Appendix C). Essentially, a process π̂P

modeling some protocol P is a set of interacting ppt Turing
machines which capture the honest behavior of protocol
participants. The protocol P runs alongside an adversary
A, modeled via another process πA, which controls the
network and may corrupt protocol participants; here we
assume static corruption. We write π=(π̂P‖πA) for the
combined process.

7.1.1. Modeling of Epoque. The Epoque voting protocol
can be modeled in a straightforward way as a protocol
PEpoque(nV, nT, ncand, μ) in the above sense, as detailed
next. By nV we denote the number of voters Vi and
by nT the number of trustees Tk. By ncand we denote
the number of candidates, and by μ we denote a prob-
ability distribution on the set of choices C = {v ∈
{0, 1}ncand :

∑ncand

j=1 v[j] = 1}. An honest voter makes

her choice according to this distribution.18 This choice
is called the actual choice of the voter.

In our model of Epoque, the voting authority AT
is part of an additional agent, the scheduler S. Besides
playing the role of the authority, S schedules all other
agents in a run according to the protocol phases. We
assume that S and the bulletin board B are honest, i.e.,
they are never corrupted. While S is merely a virtual entity,
in reality, B should be implemented in a distributed way
(see, e.g., [28], [43], [45]).

7.2. Verifiability

In this section, we establish the level of verifiability
provided by Epoque. To this end, we use the generic and
widely used verifiability definition proposed in [51] which
we briefly recall first.

7.2.1. Verifiability framework. The verifiability defini-
tion [51] assumes a “virtual” entity, called the judge J,
whose role is to either accept or reject a protocol run.
In a real election, the program of the judge can be exe-
cuted by any party, including external observers and even
voters themselves. The judge takes as input solely public
information (e.g., the zero-knowledge proofs in Epoque
published on the bulletin board) to perform certain checks.
In the context of e-voting, for verifiability to hold, the
judge should only accept a run if “the announced election

18. This in particular models that adversaries know this distribution.
In reality, the adversary might not know this distribution precisely. This,
however, makes our security results only stronger.

281

TABLE 2: IBE Benchmarks

IBE Algorithm/Metric Complexity Low Security Medium Security Med-High Security Higher Security

Dimensions n× 2m 100× 2400 200× 4800 300× 7200 400× 9600

Max Ctx. Overhead O((n+ λ) · log q) 0.4 kB 0.6 kB 0.8 kB 1 kB

KeyGen O(m3 · log2 q) 405 sec 3711 sec 11589 sec 35443 sec

Extr O(m · n2 · log2 q) 1 to 3 sec 6 to 8 sec 22 sec 53 sec

Enc (1 bit) O(m · n · log2 q) 3 ms 7 ms 11 ms 17 ms

Dec (1 bit) O(m · log2 q) 1 μs 2 μs 3 to 4 μs 4 μs

Dec (192 bits) O(m · log2 q) 0.2 ms 0.4 ms 0.6 ms 0.8 ms

Remarks: (1) For all security levels in the experiments, we used the prime modulus q = 4093. (2) Private-key extraction timing has

higher variance than the other operations, due to a combination of rejection sampling without the need for too many samples. (3)

Encryption and especially decryption times are barely measurable, scaling only linearly and with very small constant factors. For

1-bit messages, we measured them using respectively 1000 and 1000000 iterations with precautions against the compiler possibly

optimising some of the work away. (4) The log q and log2 q factors in the complexity column respectively capture the asymptotic

size and time factors of working in q-bit arithmetic, and can be ignored when q (here 12 bits) fits in a CPU register.

result corresponds to the actual choices of the voters”.
This statement is formalized via the notion of a goal γ
of a protocol P. A goal γ is simply a set of protocol
runs for which the mentioned statement is true, where
the description of a run contains the description of the
protocol, the adversary with which the protocol runs, and
the random coins used by these entities.

Following [51], we say that a goal γ is verifiable
by the judge J in a protocol P, if the probability that
J accepts a run r of P even though the goal γ is vio-
lated (i.e., r /∈ γ) is negligible in the security parame-
ter. In the formal definition of verifiability (which is a
bit shortened for brevity of presentation), we denote by
Pr[(π̂P‖πA)

(�) �→ ¬γ, (J : accept)] the probability that a
run of the protocol along with an adversary πA (and a
security parameter �) produces a run which is not in γ but
in which J (nevertheless) returns accept. This probability
should be negligible.

Definition 1 (Verifiability [51]). We say that a goal γ
is verifiable by the judge J in a protocol P if for all
adversaries πA, the probability

Pr[(π̂P‖πA)
(�) �→¬γ, (J : accept)]

is negligible as a function of �.

For our subsequent verifiability analysis of Epoque,
we instantiate the verifiability definition with the goal
γ(ϕ) proposed in [21]. This goal captures the intuition of
γ given before. The parameter ϕ is a Boolean formula to
describe which protocol participants are assumed honest.
The goal γ(ϕ) is defined formally as described next (we
simplified the definition for brevity of presentation).

Definition 2 (Goal γ(ϕ) [21]). Let P be a voting protocol.
Let Ih and Id denote the set of honest and dishonest
voters, respectively, in a given protocol run. Then,
γ(ϕ) consists of all those runs of the voting protocol
P where either

• ϕ is false (e.g., the adversary corrupted a voter
that is assumed to be honest), or

• ϕ holds true and there exist (valid) dishonest
choices (mi)i∈Id such that the election result
equals (mi)i∈Ih∪Id , where (mi)i∈Ih are the honest
voters’ choices.

7.2.2. Analysis. We prove the verifiability result for
Epoque under the following assumptions:

• (V1) The IBE scheme is correct (for verifiability,
IND-ID-CPA-security is not needed), the commit-
ment scheme is computationally binding, and πV

is a NIZKP.
• (V2) The scheduler S, the bulletin board B, the

judge J, and all voter supporting devices VSDi

are honest:

ϕ = hon(S) ∧ hon(B) ∧ hon(J)

nV∧
i=1

hon(VSDi)

Note that an arbitrary number of voters and trustees
may be controlled by the adversary. In Appendix A, we
show how to mitigate trust on the voter supporting devices
as well.

The verification procedure J of Epoque essentially
involves checking individual secret keys revealed by the
trustees (if any) and NIZKPs (see Appendix D for details).
If one of these checks fails, the protocol run and hence the
result are rejected. Now, essentially, the following theorem
states that the probability that in a run of Epoque an
honest voter’s vote has been dropped or manipulated if
ϕ holds true (i.e., γ(ϕ) is broken) but the protocol run is
nevertheless accepted by J is negligible.

Theorem 1 (Verifiability). Under the assumptions (V1)
and (V2) stated above, the goal γ(ϕ) is verifiable in
the protocol PEpoque(nV, nT, ncand, μ) by the judge J.

The correctness of Theorem 1 follows immediately
from a stronger result. In fact, Epoque even provides
accountability which implies verifiability as demonstrated
in [51]. For verifiability, one requires only that, if the
election outcome does not correspond to how the vot-
ers actually voted, then such a protocol run is not ac-
cepted. Verifiability however does not require the blame
of misbehaving parties. On the contrary, accountability
requires that misbehaving parties be (publicly) blamed, an
important property in practice as misbehavior should be
identifiable and have consequences: accountability serves
as a deterrent. We state the accountability result of Epoque
in Appendix E and formally prove it in [14].

282

7.3. Privacy

In this section, we carry out a rigorous analysis of the
vote privacy of Epoque and show that the privacy level
of Epoque is ideal. For this purpose, we use the privacy
definition for e-voting protocols proposed in [52] which
has already been used to analyze a number of further
voting protocols and mix nets [48]–[50], [52], [53].

7.3.1. Definition. The definition proposed in [52] formal-
izes privacy of an e-voting protocol as the inability of
an adversary to distinguish whether some voter Vobs (the
voter under observation), who runs her honest program,
voted for choice ch0 or choice ch1.

To define this notion formally, we first introduce the
following notation for an arbitrary e-voting protocol P.
Given a voter Vobs and ch ∈ C, we consider instances
of P of the form (π̂Vobs

(ch)‖π∗‖πA) where π̂Vobs
(ch) is

the honest program of the voter Vobs under observation
who takes ch as her choice, π∗ is the composition of
programs of the remaining parties in P, and πA is the
program of the adversary. In the case of Epoque, π∗
includes the scheduler, the bulletin board, all other voters,
and all trustees.

Let Pr[(π̂Vobs
(ch)‖π∗‖πA)

(�) �→ 1] denote the prob-
ability that the adversary writes the output 1 on some
dedicated tape in a run of (π̂Vobs

(ch)‖π∗‖πA) with security
parameter � and some ch ∈ C, where the probability
is taken over the random coins used by the parties in
(π̂Vobs

(ch)‖π∗‖πA).
Now, vote privacy is defined as follows, where for

Epoque we quantify over all adversaries πA which neither
corrupt the bulletin nor the scheduler S.

Definition 3 (Privacy). Let P be a voting protocol, Vobs

be the voter under observation, and δ ∈ [0, 1]. Then,
P achieves δ-privacy, if for all choices ch0, ch1 ∈ C
and all adversaries πA the difference

Pr[(π̂Vobs
(ch0)‖π∗‖πA)

(�) �→ 1]

−Pr[(π̂Vobs
(ch1)‖π∗‖πA)

(�) �→ 1]

is δ-bounded19 as a function of the security parameter
1�.

In other words, the level δ is an upper bound of
an arbitrary adversary’s advantage to “break” vote pri-
vacy. Therefore, δ should be as small as possible. Note,
however, that even for an ideal e-voting protocol with
a completely passive adversary, δ might not be 0: for
example, there might be a non-negligible chance that all
honest voters, including the voter under observation, voted
for the same candidate, in which case the adversary can
easily derive from the final election result how the voter
under observation voted.

7.3.2. Analysis. We now state that Epoque provides ideal
vote privacy in the case that at most nT−1 trustees are dis-
honest, where nT is the number of trustees: clearly, if all
trustees were dishonest, privacy could not be guaranteed
because an adversary could simply open all commitments
in the list of ballots.

19. A function f is δ-bounded if, for every c > 0, there exists �0
such that |f(�)| ≤ δ + �−c for all � > �0.

More specifically, the formal privacy result for
Epoque is formulated w.r.t. an ideal voting protocol
Ivoting(nV, ncand, μ). In this protocol, all nV voters pick
their candidates according to the distribution μ. The ideal
protocol outputs the total number of votes per candidate.
The privacy level δideal(nV,ncand,μ)

this ideal protocol has de-

pending on the given parameters was derived in [52].
To prove that the privacy level of Epoque is ideal, we

make the following assumptions about the primitives we
use (see also Section 3):

• (P1) The IBE scheme is IND-ID-CPA-secure, the
commitment scheme is computationally binding
and hiding, and πV is a NIZKP of knowledge.

• (P2) An adversary πA does neither corrupt the
scheduler S, nor the bulletin B, nor all trustees,
and at least nV

honest voters including their voting
devices are honest.

Now, the following privacy theorem says that the
privacy level of Epoque is ideal under the previous as-
sumptions.

Theorem 2 (Privacy). Under the assumptions (P1)
and (P2) stated above, the voting protocol
PEpoque(nV, nT, ncand, μ) achieves a privacy level of
δideal(nV

honest,ncand,μ)
.

The proof is provided in [14], where we use a se-
quence of games to reduce the privacy game for Epoque
to the privacy game for the ideal voting protocol.

8. Discussion

In this section, we first discuss the main properties of
Epoque, and then compare Epoque with the few related
e-voting protocols that are designed to protect against
quantum computers.

8.1. Lattice-based security

We have formally proven that the generic Epoque e-
voting protocol guarantees vote privacy, as well as veri-
fiability and accountability in the presence of malicious
tallying authorities (Section 3 to 7.3). Furthermore, we
have demonstrated how Epoque can be extended with
a lightweight return code scheme to also protect against
malicious voters’ supporting devices (Appendix A). Since
Epoque and its return code extension can be instantiated
with purely lattice-based cryptographic primitives (Sec-
tion 4), we obtained a completely lattice-based e-voting
protocol with end-to-end verifiability and vote privacy.

8.2. Practicality

Our lattice-based instantiation of the generic Epoque
e-voting protocol consists of three cryptographic prim-
itives, namely our new IBE scheme, the commitment
scheme and the ZKP of well-formedness. Del Pino et
al. [31] demonstrated that the lattice-based instantia-
tions of the commitment scheme and the ZKP of well-
formedness are practical. In this work, we have fully
implemented our lattice-based IBE scheme and provide
detailed benchmarks to show its practicality (Section 6).

283

Altogether, in combination, this demonstrates that our
lattice-based instantiation of Epoque is practical.

The core components scale linearly in the number of
voters and trustees, and only logarithmically in the number
of candidates (for simple voting rules). For the whole
system, complexity is O(n log n) in the number of ballots,
since sorting will be needed, and O(n) in the number of
candidates, if only to print them somewhere.

We note that the trustees can safely provide their
service even if many malicious voters submit incorrect
ciphertexts. Proving that a ciphertext decrypts to an invalid
opening is not an urgent matter. If a ciphertext decrypts
to an invalid opening, then the trustees can set aside the
respective ballot and tally the remaining (valid) ballots
to announce the election result without delay. Extracting
and publishing the individual secret key of an incorrect
ciphertext can be done afterwards. Also note that a voter
who submits an invalid ballot effectively wastes her vote
and can be identified (and thus held accountable) as well.
Altogether, both the risk and the effect of such “DDoS”
attacks is very small.

8.3. Coercion-resistance

We have formally proven that Epoque provides the
most fundamental security properties each secure e-voting
system must provide: privacy and verifiability (and even
accountability). Beyond these fundamental properties, it
is sometimes desirable that voters cannot be coerced to
vote for a given candidate, or that they cannot sell their
votes. Therefore, some e-voting systems were designed
to resist against or to mitigate the possibility of coercing
voters and selling votes (e.g., [16], [19], [62]). Typically,
these e-voting systems employ very specific cryptographic
primitives (e.g., re-randomizable signature schemes [16]).
Instantiating such techniques with practical lattice-based
primitives is an open and interesting question that we leave
for future work.

8.4. ZKPs of correct decryption

As mentioned in Sec. 2.2, an alternative approach to
the one followed in this paper is to employ a ZKP of
correct decryption. Constructing such a ZKP for lattice-
based encryption schemes has attracted much interest in
the literature. Until very recently, existing results relied on
classical hardness assumptions (e.g., [32]) or came with
parameters indicating that they are not really practical
(e.g., [7]) compared to the results we achieve here using
the IBE “trick”. As to the best of our knowledge, the first
comparably efficient and completely lattice-based solution
to this problem can be based on the ZKP system by Esgin,
Nguyen, and Seiler [36].20 Both Esgin et al.’s ZKP and our
IBE technique do not introduce any significant overhead
on the voters’ or on the trustees’ side. Only if a voter does
not encrypt a valid opening, Esgin et al.’s ZKP enables
a trustee to prove malformedness faster (but with larger
proof size). Because this will rarely if ever need to be
done in an election and can also be executed after the

20. Lyubashevsky, Nguyen, and Seiler [56] demonstrate how to further
reduce the proof size of [36], assuming a new hardness assumption
(“extended LWE”) which is not yet established.

election result was announced (see above), both Esgin
et al.’s ZKP as well as our IBE technique are similarly
practical solutions to the same problem. Compared to
Esgin et al.’s ZKP, the ABB IBE scheme [4] we extended
is not only well-established but also conceptually simpler
and thus easier to implement correctly—an aspect which
must not be underestimated (see, e.g., [42]). Ultimately, it
will be up to the implementer which option to choose.

8.5. Related work

There are several e-voting protocols in the literature
that aim to achieve vote privacy in the presence of
quantum (see [40]) or even computationally unbounded
adversaries (see, e.g., [29]). But only few (techniques for)
e-voting protocols have been published so far that were
designed to guarantee both vote privacy and verifiability
against quantum attackers. In what follows, we elaborate
on all of these works and their relationship to Epoque.

8.5.1. Del Pino et al. (CCS 2017). The e-voting protocol
by Del Pino, Lyubashevsky, Neven, and Seiler [31] is a
practical lattice-based instantiation of the basic homomor-
phic secret-sharing e-voting protocol by Cramer, Franklin,
Schoenmakers, and Yung [26]. In particular, [31] inherits
the (limited) security of [26] (see Section 2).

8.5.2. Chillotti et al. (PQCrypto 2016). The voting pro-
tocol by Chillotti, Gama, Georgieva, and Izabachène [18]
is built upon a fully homomorphic lattice-based PKE
scheme. Chillotti et al. do not provide any benchmarks
but the employment of fully homomorphic encryption
indicates that their voting protocol is not practical.

8.5.3. Boyen et al. (Esorics 2020). Boyen, Haines, and
Müller [13] proposed and employed a generic technique,
named trip wires, to make any decryption mix net veri-
fiable without requiring any further cryptographic primi-
tives (in particular, no ZKPs). Boyen et al. applied this
technique to a completely lattice-based decryption mix
net; the resulting protocol can directly be used for verifi-
able and highly practical lattice-based e-voting. In contrast
to Epoque, [13] does not aim for a “perfect” but “high”
verifiability level (which guarantees that the probability
of being caught cheating increases exponentially in the
number of manipulated votes), and [13] requires a set of
auditors one of which needs to be trusted (temporarily).
At the same time, in contrast to homomorphic protocols
like Epoque, decryption mix nets such as [13] have the
advantage to easily handle very complex ballots (e.g.,
for IRV or STV elections). Therefore, both protocols,
Epoque and [13], are useful options for practical lattice-
based e-voting, each of them with its own balance between
security and the set of manageable voting methods.

8.5.4. Proofs of correct shuffle. None of the published
lattice-based proofs of correct shuffling for re-encryption
mix nets [24], [25], [65] has been implemented so far.

9. Conclusion

We proposed Epoque, the first end-to-end verifiable
e-voting protocol that can completely be instantiated with

284

practical lattice-based cryptographic primitives. Epoque
supports arbitrarily many voters and tallying authorities.

For this purpose, we proposed a new highly efficient
version of the lattice-based Agrawal-Boneh-Boyen IBE
scheme. We fully implemented this IBE scheme and pro-
vided detailed benchmarks for demonstrating the practi-
cality of the IBE scheme and thus the one of Epoque.

We formally proved the security of Epoque in terms
of verifiability, accountability, and vote privacy, each one
under standard and transparent trust assumptions.

We also demonstrated how Epoque can be extended
with a lightweight return code scheme in order to mitigate
trust on the voters’ voting devices.

Acknowledgements

We thank the anonymous EuroS&P referees for their
helpful feedback, in particular for pointing us to related
work on lattice-based ZKPs of correct decryption that
we had not been aware of before, and for proposing an
interesting alternative approach (see Sec. 4.3.3) to the one
followed in this paper.

All authors acknowledge support from the Luxem-
bourg National Research Fund (FNR) and the Research
Council of Norway for the joint INTER project SURCVS
(Number 11747298). The research of Johannes Müller was
in part funded by FNR, grant reference number 11299247.

References

[1] Claudia Z. Acemyan, Philip T. Kortum, Michael D. Byrne, and
Dan S. Wallach. Users’ Mental Models for Three End-to-End
Voting Systems: Helios, Prêt à Voter, and Scantegrity II. In Human
Aspects of Information Security, Privacy, and Trust - Third Inter-
national Conference, HAS 2015, Held as Part of HCI International
2015, Los Angeles, CA, USA, August 2-7, 2015. Proceedings, pages
463–474, 2015.

[2] Ben Adida. Helios: Web-based Open-Audit Voting. In Proceedings
of the 17th USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA, pages 335–348, 2008.

[3] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-
Jaques Quisquater. Electing a University President Using Open-
Audit Voting: Analysis of Real-World Use of Helios. In
USENIX/ACCURATE Electronic Voting Technology (EVT 2009),
2009.

[4] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice
(H)IBE in the Standard Model. In Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, pages 553–
572, 2010.

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C.
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fer-
nando GSL Brandao, David A. Buell, et al. Quantum Supremacy
using a Programmable Superconducting Processor. Nature,
574(7779):505–510, 2019.

[6] Jordi Barrat, Michel Chevalier, Ben Goldsmith, David Jandura,
John Turner, and Rakesh Sharma. Internet Voting and Individ-
ual Verifiability: The Norwegian Return Codes. In 5th Interna-
tional Conference on Electronic Voting 2012, (EVOTE 2012), Co-
organized by the Council of Europe, Gesellschaft für Informatik
and E-Voting.CC, July 11-14, 2012, Castle Hofen, Bregenz, Austria,
pages 35–45, 2012.

[7] Carsten Baum, Ivan Damgård, Kasper Green Larsen, and Michael
Nielsen. How to Prove Knowledge of Small Secrets. In Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III, pages 478–498, 2016.

[8] Susan Bell, Josh Benaloh, Mike Byrne, Dana DeBeauvoir, Bryce
Eakin, Gail Fischer, Philip Kortum, Neal McBurnett, Julian Mon-
toya, Michelle Parker, Olivier Pereira, Philip Stark, Dan Wallach,
and Michael Winn. STAR-Vote: A Secure, Transparent, Auditable,
and Reliable Voting System. USENIX Journal of Election Tech-
nology and Systems (JETS), 1:18–37, August 2013.

[9] Josh Benaloh. Ballot Casting Assurance via Voter-Initiated Poll
Station Auditing. In 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, EVT’07, Boston, MA, USA, August 6, 2007,
2007.

[10] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How
Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and
Applications to Helios. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and
Information Security, Proceedings, volume 7658 of Lecture Notes
in Computer Science, pages 626–643. Springer, 2012.

[11] David Bismark, James Heather, Roger M. A. Peel, Steve Schneider,
Zhe Xia, and Peter Y. A. Ryan. Experiences Gained from the first
Prêt à Voter Implementation. In First International Workshop on
Requirements Engineering for e-Voting Systems, RE-VOTE 2009,
Atlanta, Georgia, USA, August 31, 2009, pages 19–28, 2009.

[12] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Al-
gebraic Techniques for Short(er) Exact Lattice-Based Zero-
Knowledge Proofs. In Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I, pages 176–202,
2019.

[13] Xavier Boyen, Thomas Haines, and Johannes Müller. A Verifiable
and Practical Lattice-Based Decryption Mix Net with External
Auditing. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.
Schneider, editors, Computer Security - ESORICS 2020 - 25th
European Symposium on Research in Computer Security, ESORICS
2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II,
volume 12309 of Lecture Notes in Computer Science, pages 336–
356. Springer, 2020.

[14] Xavier Boyen, Thomas Haines, and Johannes Müller. Epoque:
Practical End-to-End Verifiable Post-Quantum-Secure E-Voting.
IACR Cryptol. ePrint Arch., 2021:304, 2021.

[15] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter
Y. A. Ryan, Steve Schneider, Vanessa Teague, Roland Wen, Zhe
Xia, and Sriramkrishnan Srinivasan. Using Prêt à Voter in Victoria
State Elections. In J. Alex Halderman and Olivier Pereira, editors,
2012 Electronic Voting Technology Workshop / Workshop on Trust-
worthy Elections, EVT/WOTE ’12, Bellevue, WA, USA, August 6-7,
2012. USENIX Association, 2012.

[16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David
Galindo. BeleniosRF: A Non-interactive Receipt-Free Electronic
Voting Scheme. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1614–1625, 2016.

[17] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,
Stefan Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily
Shen, and Alan T. Sherman. Scantegrity II: End-to-End Verifiability
for Optical Scan Election Systems using Invisible Ink Confirmation
Codes. In 2008 USENIX/ACCURATE Electronic Voting Workshop,
EVT 2008, July 28-29, 2008, San Jose, CA, USA, Proceedings,
2008.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. A Homomorphic LWE Based E-voting Scheme. In Post-
Quantum Cryptography - 7th International Workshop, PQCrypto
2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, pages
245–265, 2016.

[19] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers.
Civitas: Toward a Secure Voting System. In 2008 IEEE Symposium
on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland,
California, USA, pages 354–368, 2008.

[20] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika
Izabachène. Election Verifiability for Helios under Weaker Trust
Assumptions. In Computer Security - ESORICS 2014 - 19th
European Symposium on Research in Computer Security, Wroclaw,
Poland, September 7-11, 2014. Proceedings, Part II, pages 327–
344, 2014.

285

[21] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller,
and Tomasz Truderung. SoK: Verifiability Notions for E-Voting
Protocols. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 779–798, 2016.

[22] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Bele-
nios: A Simple Private and Verifiable Electronic Voting System. In
Joshua D. Guttman, Carl E. Landwehr, José Meseguer, and Dusko
Pavlovic, editors, Foundations of Security, Protocols, and Equa-
tional Reasoning - Essays Dedicated to Catherine A. Meadows,
volume 11565 of Lecture Notes in Computer Science, pages 214–
238. Springer, 2019.

[23] Véronique Cortier and Joseph Lallemand. Voting: You Can’t Have
Privacy without Individual Verifiability. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pages 53–66, 2018.

[24] Núria Costa, Ramiro Martı́nez, and Paz Morillo. Proof of a Shuffle
for Lattice-Based Cryptography. In Secure IT Systems - 22nd
Nordic Conference, NordSec 2017, Tartu, Estonia, November 8-
10, 2017, Proceedings, pages 280–296, 2017.

[25] Núria Costa, Ramiro Martı́nez, and Paz Morillo. Lattice-Based
Proof of a Shuffle. IACR Cryptology ePrint Archive, 2019:357,
2019.

[26] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and
Moti Yung. Multi-Autority Secret-Ballot Elections with Linear
Work. In Advances in Cryptology - EUROCRYPT ’96, Interna-
tional Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages
72–83, 1996.

[27] Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and Vanessa
Teague. vVote: A Verifiable Voting System. ACM Trans. Inf. Syst.
Secur., 18(1):3, 2015.

[28] Chris Culnane and Steve A. Schneider. A Peered Bulletin Board
for Robust Use in Verifiable Voting Systems. In IEEE 27th Com-
puter Security Foundations Symposium, CSF, 2014, pages 169–
183, 2014.

[29] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election
verifiability or ballot privacy: Do we need to choose? In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer
Security - ESORICS 2013 - 18th European Symposium on Research
in Computer Security, Egham, UK, September 9-13, 2013. Proceed-
ings, volume 8134 of Lecture Notes in Computer Science, pages
481–498. Springer, 2013.

[30] Ivan Damgård, Dennis Hofheinz, Eike Kiltz, and Rune Thorbek.
Public-Key Encryption with Non-interactive Opening. In Topics
in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the
RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008.
Proceedings, volume 4964 of Lecture Notes in Computer Science,
pages 239–255. Springer, 2008.

[31] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor
Seiler. Practical Quantum-Safe Voting from Lattices. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1565–1581, 2017.

[32] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short
Discrete Log Proofs for FHE and Ring-LWE Ciphertexts. In
Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography,
Beijing, China, April 14-17, 2019, Proceedings, Part I, pages 344–
373, 2019.

[33] Der Bundesrat. Das Portal der Schweizer Regierung. Federal
Chancellery Ordinance on Electronic Voting, 2013. https://www.
admin.ch/opc/en/classified-compilation/20132343/index.html (ac-
cessed 02.11.2020).

[34] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient
Identity-Based Encryption over NTRU Lattices. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874
of Lecture Notes in Computer Science, pages 22–41. Springer,
2014.

[35] Jeremy Epstein. Weakness in Depth: A Voting Machine’s Demise.
IEEE Security & Privacy, 13(3):55–58, 2015.

[36] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler.
Practical Exact Proofs from Lattices: New Techniques to Exploit
Fully-Splitting Rings. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 259–288. Springer, 2020.

[37] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi
Liu. Lattice-Based Zero-Knowledge Proofs: New Techniques for
Shorter and Faster Constructions and Applications. In Advances
in Cryptology - CRYPTO 2019 - 39th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part I, pages 115–146, 2019.

[38] State Electoral Officeof Estonia. General Framework of Elec-
tronic Voting and Implementation thereof at National Elections in
Estonia. https://www.valimised.ee/sites/default/files/uploads/eng/
IVXV-UK-1.0-eng.pdf (accessed 17.02.2021).

[39] David Galindo, Sandra Guasch, and Jordi Puiggali. 2015
Neuchâtel’s Cast-as-Intended Verification Mechanism. In E-Voting
and Identity - 5th International Conference, VoteID 2015, Bern,
Switzerland, September 2-4, 2015, Proceedings, pages 3–18, 2015.

[40] Huangyi Ge, Sze Yiu Chau, Victor E. Gonsalves, Huian Li, Tianhao
Wang, Xukai Zou, and Ninghui Li. Koinonia: Verifiable E-Voting
with Long-Term Privacy. In David Balenson, editor, Proceedings
of the 35th Annual Computer Security Applications Conference,
ACSAC 2019, San Juan, PR, USA, December 09-13, 2019, pages
270–285. ACM, 2019.

[41] Kristian Gjøsteen. The Norwegian Internet Voting Protocol. In E-
Voting and Identity - Third International Conference, VoteID 2011,
Tallinn, Estonia, September 28-30, 2011, Revised Selected Papers,
pages 1–18, 2011.

[42] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa
Teague. How not to prove your election outcome. In IEEE
Symposium on Security and Privacy, pages 644–660. IEEE, 2020.

[43] Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing the
Achilles Heel of E-Voting: The Bulletin Board. IACR Cryptol.
ePrint Arch., 2020:109, 2020.

[44] Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and
Melanie Volkamer. Usability Analysis of Helios - An Open Source
Verifiable Remote Electronic Voting System. In 2011 Electronic
Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’11, San Francisco, CA, USA, August 8-9, 2011, 2011.

[45] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim,
and Thomas Zacharias. On the Security Properties of e-Voting
Bulletin Boards. In Security and Cryptography for Networks - 11th
International Conference, SCN 2018, Proceedings, pages 505–523,
2018.

[46] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang.
DEMOS-2: Scalable E2E Verifiable Elections without Random Or-
acles. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6,
2015, pages 352–363. ACM, 2015.

[47] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-
to-End Verifiable Elections in the Standard Model. In Advances in
Cryptology - EUROCRYPT 2015, volume 9057 of Lecture Notes
in Computer Science, pages 468–498. Springer, 2015.

[48] Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch,
and Andreas Vogt. Ordinos: A Verifiable Tally-Hiding E-Voting
System. In IEEE European Symposium on Security and Privacy,
EuroS&P 2020. IEEE, 2020 (in press).

[49] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz
Truderung. sElect: A Lightweight Verifiable Remote Voting Sys-
tem. In IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 341–
354, 2016.

286

[50] Ralf Küsters and Tomasz Truderung. Security Analysis of Re-
Encryption RPC Mix Nets. In IEEE European Symposium on Se-
curity and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016, pages 227–242. IEEE, 2016.

[51] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountabil-
ity: Definition and Relationship to Verifiability. In Proceedings
of the 17th ACM Conference on Computer and Communications
Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,
pages 526–535, 2010.

[52] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability,
Privacy, and Coercion-Resistance: New Insights from a Case Study.
In 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-
25 May 2011, Berkeley, California, USA, pages 538–553, 2011.

[53] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal Anal-
ysis of Chaumian Mix Nets with Randomized Partial Checking. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 343–358. IEEE Computer
Society, 2014.

[54] Adeline Langlois and Damien Stehlé. Worst-Case to Average-Case
Reductions for Module Lattices. Des. Codes Cryptogr., 75(3):565–
599, 2015.

[55] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a Shambles: First
Chosen-Prefix Collision on SHA-1 and Application to the PGP
Web of Trust. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 1839–1856. USENIX Association, 2020.

[56] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
Shorter Lattice-Based Zero-Knowledge Proofs via One-Time Com-
mitments. IACR Cryptol. ePrint Arch., 2020:1448, 2020.

[57] Karola Marky, Oksana Kulyk, Karen Renaud, and Melanie Volka-
mer. What Did I Really Vote For? In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018, page 176, 2018.

[58] Karola Marky, Oksana Kulyk, and Melanie Volkamer. Comparative
Usability Evaluation of Cast-as-Intended Verification Approaches
in Internet Voting. In Sicherheit 2018, Beiträge der 9. Jahrestagung
des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V.
(GI), 25.-27.4.2018, Konstanz., pages 197–208, 2018.

[59] Tal Moran and Moni Naor. Split-ballot voting: everlasting privacy
with distributed trust. In Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, editors, Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 246–255.
ACM, 2007.

[60] Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer. Mental
Models of Verifiability in Voting. In E-Voting and Identify - 4th
International Conference, Vote-ID 2013, Guildford, UK, July 17-
19, 2013. Proceedings, pages 142–155, 2013.

[61] Oded Regev. On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography. In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 84–93. ACM, 2005.

[62] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. Selene:
Voting with Transparent Verifiability and Coercion-Mitigation. In
Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Bar-
bados, February 26, 2016, Revised Selected Papers, pages 176–
192, 2016.

[63] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kit-
cat, Harri Hursti, Margaret MacAlpine, and J. Alex Halderman.
Security Analysis of the Estonian Internet Voting System. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 703–715, 2014.

[64] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-
Prefix Collisions for MD5 and Colliding X.509 Certificates for
Different Identities. In Moni Naor, editor, Advances in Cryptology
- EUROCRYPT 2007, 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture
Notes in Computer Science, pages 1–22. Springer, 2007.

[65] Martin Strand. A Verifiable Shuffle for the GSW Cryptosystem. In
Financial Cryptography and Data Security - FC 2018 International
Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao,
March 2, 2018, Revised Selected Papers, pages 165–180, 2018.

[66] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K. Prasad,
Arun Kankipati, Sai Krishna Sakhamuri, Vasavya Yagati, and Rop
Gonggrijp. Security Analysis of India’s Electronic Voting Ma-
chines. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010, pages 1–14, 2010.

[67] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia
Yu, and William Whyte. Efficient Lattice-Based Zero-Knowledge
Arguments with Standard Soundness: Construction and Applica-
tions. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, pages 147–175, 2019.

Appendix A.
Epoque with Return Codes

In Section 3, we have presented the Epoque e-voting
protocol which protects against malicious tallying author-
ities. In this section, we describe how Epoque can be
extended so that it is also verifiable in the presence of cor-
rupted voting devices (recall Section 2.3). More precisely,
our extension enables each human voter to verify whether
or not her voting device submitted a ballot that contains
her actual vote. For this purpose, we extend Epoque with
a return code scheme so that the resulting voting protocol
is end-to-end verifiable.

In what follows, we will first recall the general concept
of return codes in Section A.1. After that, in Section A.2,
we will explain the idea of our return code scheme for
Epoque. In Section A.3, we will elaborate on the prop-
erties of Epoque with return codes, including its security
and its (negligible) overhead.

A.1. General concept of return codes

On a high level, a return code scheme works as
follows. In addition to the existing protocol participants,
we require a return code authority (RCA). The original
voting protocol is extended as follows:

A.1.1. Generating return codes. For each human voter
Vi and each possible candidate j ∈ {1, . . . , ncand}, the
return code authority generates a unique return code rci,j .
Then, the return code authority sends the return code sheet

(rci,1, . . . , rci,ncand) (30)

to voter Vi on a channel different from the one that the
voter uses to cast her ballot. Furthermore, RCA posts Vi’s
return code sheet in a “secret” (e.g., encrypted) form on
the bulletin board so that only the trustees can jointly
open it (a threshold scheme may be used here to avoid
introducing single points of failure, and likewise the RCA
may be distributed).

A.1.2. Reconstructing return codes. As before, voter
Vi enters her chosen candidate j to her voting device.
Then, the voting device generates and submits Vi’s ballot
to the bulletin board. Now, the trustees take as input Vi’s
“secret” return code sheet and the voting device’s “secret”
candidate j′, and securely reconstruct Vi’s return code

287

rci,j
′

that belongs to candidate j′ chosen by the voting
device. The trustees post rci,j

′
on the bulletin board.21

The voter can now verify whether or not rci,j = rci,j
′

holds true, i.e., whether her voting device submitted her
actual candidate j.

A.1.3. Security. The main idea is that if the return code
authority and the voter’s voting device do not collude, then
undetectably manipulating the voter’s choice is as hard as
correctly guessing the respective return code. Since each
return code is chosen uniformly at random, vote privacy
is not affected.

A.2. Idea of Epoque with return codes

We now present the idea of our return code technique.
For the sake of simplicity, we focus on the case of two
candidates, i.e., where each voter can either vote for “0”
or “1”.

In addition to the cryptographic primitives of Epoque
(Section 3.2), we require a cryptographic hash function
that maps tuples of the message space of the commitment
scheme Mcom to {0, 1}l. The bit length l ≥ 1 should
be chosen such that (i) human voters can successfully
check with high probability whether or not two random
elements from {0, 1}l are equal, and (ii) the probability
of collisions under h is bounded by some small δ.

A.2.1. Generating return codes. For each voter, the
return code authority RCA chooses a blinding element
β uniformly at random from the message space of the
commitment scheme Mcom. Then, the voter’s return codes
are h(β) for candidate 0 and h(β + 1) for candidate 1.
The voter’s return code sheet is

�rc = (h(β), h(β + 1)) . (31)

The return code authority RCA sends �rc to the voter
who verifies whether or not it contains any duplicates. If
yes, the voter contacts the voting authority and reveals the
malformed return code sheet. If not, the voter accepts the
return code sheet.

Now, analogously to the ballot casting procedure of
the voters, the return code authority

1) shares β among the trustees:

〈β〉 = (β1, . . . , βnT
), (32)

2) commits to all of these shares, i.e., for each Tk

(γk, ρk)← Com(prmcom, βk), (33)

3) encrypts each tuple (βk, ρk) using Tk’s public pa-
rameters prmk and RCA’s identity, i.e., for each Tk

εk ← Enc(prmk,RCA; (βk, ρk)). (34)

Eventually, the return code authority publishes
(γk, εk)

nT

k=1 on the bulletin board.

A.2.2. Verification of committed blinded return code
sheets. Analogously to the ballot verification, each trustee
Tk verifies whether εk decrypts to a valid opening of γk.
If this is not the case, then Tk publishes the individual
secret key of RCA w.r.t. its master public key mpkk.

21. It could also be returned to the voter on any channel not controlled
by the voting device.

A.2.3. Reconstruction of return code. For each trustee
Tk, let (v′k, r

′
k) be the result of decrypting ek (Sec-

tion 3.2). In other words, v′ =
∑

k v
′
k ∈ {0, 1} is the

choice submitted by the voting device. Now, each trustee
Tk publishes the tuple

(ṽk, r̃k)← (v′k + βk, r
′
k + ρk) (35)

which can be publicly verified by Open(prmcom, ṽk, ck +
γk, r̃k).

After all trustees have published their opening values,
then

ṽ ←
nT∑
k=1

ṽk (36)

is publicly computed and the reconstructed return code
h(ṽ) is sent to the voter, by a channel other than her
voting device.

A.2.4. Extended voter verification. Observe that, due to
the homomorphic and binding property of the commitment
scheme,

ṽ =

nT∑
k=1

ṽk =

(
nT∑
k=1

v′k

)
+

(
nT∑
k=1

βk

)
= v′ + β (37)

holds true (with overwhelming probability), where v′ ∈
{0, 1} is the vote cast by the voter’s voting device. There-
fore, ṽ equals to β if the voting device has cast a “0-vote”
and to β + 1 if it has cast a “1-vote”.

The voter verifies whether h(ṽ) equals to the return
code associated to the candidate v ∈ {0, 1} that she has
chosen. If this is not the case, the voter can publish a
complaint.

A.3. Properties

We elaborate on the properties of the return code
scheme.

A.3.1. Additional channels. In the description above, we
have deliberately abstracted away from the channel that
the human voter Vi uses to receive her return code sheet
�rc from the return code authority RCA, and from the one
that she uses to read the reconstructed return code from
the bulletin board B.

It is obvious that the channel from RCA to Vi is
supposed to be authenticated as otherwise the adversary
could choose the return code sheet on RCA’s behalf.
Furthermore, in order to protect Vi’s vote privacy against
a public observer, we also require that this channel is
untappable. In practice, RCA could send �rc to Vi via
postal mail or a second (trusted) device.

We also require that the channel used by Vi to read
h(ṽ) from B is authenticated. To see why, assume that
Vi votes for the first candidate but the corrupted voting
device VSDi submits a ballot for the second one. Now,
the trustees output β + 1 so that the reconstructed return
code equals to h(β + 1). However, if the channel from
Vi to B was not authenticated, the adversary (who knows
β+1, hence β) could simply show h(β) to Vi who would
not complain even though her ballot was manipulated. In
practice, one could send the reconstructed return code to

288

Vi via a second (trusted) device. For example, if VSDi is
Vi’s personal computer, then the second device could be
her mobile phone to which h(ṽ) is sent as SMS.

A.3.2. Verifiability. As described in Section A.2, if the re-
turn code authority RCA is honest, then the reconstructed
return code h(ṽ) equals to the return code on �rc for the
candidate that the (possibly corrupted) voting device voted
for. Hence, under the above assumptions on Vi’s channels,
a corrupted voting device VSDi cannot tamper with Vi’s
vote without this manipulation being detected by Vi (with
a certain probability).

We note that the return code scheme is not dispute-
free. In fact, if a voter complains that her reconstructed
return code was not correct, then it is not clear who is
dishonest: the voter or her voting device? This is a general
issue that, as far as we know, applies to virtually all
return-code schemes in the literature. Then again, recall
that the idea of return codes is not to completely remove
trust from the voting devices but to mitigate it. Therefore,
in case several voters (independently from each other)
complain that their return code check was not successful,
then this provides some evidence that something went
wrong. Subsequent investigations can then help to single
what caused the issue (e.g., a bug of the voters’ voting
software).

A.3.3. Privacy. Observe that if the return code authority
is honest, then β perfectly blinds Vi’s vote. Hence, vote
privacy is not affected by the return code scheme.

A.3.4. Overhead. The return code scheme does not add
any overhead to creating and submitting ballots. For the
trustees, the overhead is minimal, too. In addition to the
steps in Epoque, each trustee Tk merely has to decrypt
nV IBE ciphertexts and to do nV plaintext additions.

Appendix B.
Identity-Based Encryption (IBE)

B.1. Definition

An identity-based encryption (IBE) scheme is a tuple
of algorithms (KeyGenibe,Extr,Enc,Dec) where:

• KeyGenibe is a ppt algorithm which takes 1�

and outputs the public parameters prmibe ∈
{0, 1}poly(�) and a master secret key msk. The
public parameters prm contain a definition of the
message space Mibe = M �

ibe, the ciphertext space
Cibe = C�

ibe, the set of identities ID, and the master
public key mpk.

• Extr is a deterministic polynomial-time algorithm
which takes prmibe,msk, id ∈ ID and outputs the
individual secret key mskid corresponding to iden-
tity id.

• Enc is a ppt algorithm which takes prmibe, id ∈ ID,
m ∈Mibe and outputs a ciphertext c ∈ Cibe.

• Dec is a deterministic polynomial-time algorithm
which takes prmibe,mskid, c ∈ Cibe and outputs
either m ∈Mibe or ⊥.

These algorithms must satisfy that for all id ∈ ID, m ∈
Mibe, we have m = Dec(prmibe,mskid, c), where c ←
Enc(prmibe, id,m) and mskid ← Extr(prmibe,msk, id).

B.2. IND-ID-CPA security

Let (KeyGenibe,Extr,Enc,Dec) be an IBE scheme.
The (IND-ID-CPA) challenger Ch is a ppt algorithm that
takes as input a bit b, public parameters prmibe, a master
secret key msk and that serves the following types of
queries:

1) For id ∈ ID, the challenger returns the in-
dividual secret key corresponding to id, i.e.,
Extr(prmibe,msk, id), if the challenger has not yet
returned a ciphertext for identity id (second query
type).

2) For two messages m0,m1 ∈ Mibe of the same
size and a challenge identity id ∈ ID, the
challenger returns the challenge ciphertext c ←
Enc(prmibe, id,mb) if the challenger has not yet re-
turned the individual secret key corresponding to the
challenge identity id (first query type) and if this
query type has not yet been called before.

Let (KeyGenibe,Extr,Enc,Dec) be an IBE scheme
with security parameter � and let Ch be the challenger
(as defined above). Then the IBE scheme is IND-ID-CPA-
secure, if for every ppt adversary A, we have that

|Pr[(prmibe,msk)← KeyGen(1�);

b′ ← ACh(1,prmibe,msk)(1�, prmibe); b
′ = 1]

− Pr[(prmibe,msk)← KeyGen(1�);

b′ ← ACh(0,prmibe,msk)(1�, prmibe); b
′ = 1]|

is a negligible function in �.

Appendix C.
General Computational Model

In this section, we explain the computational model
for our security analysis (Section 7) in more detail.

Process. A process is a set of probabilistic polynomial-
time interactive Turing machines (ITMs, also called pro-
grams) which are connected via named tapes (also called
channels). Two programs with a channel of the same name
but opposite directions (input/output) are connected by
this channel. A process may have external input/output
channels, those that are not connected internally. At any
time of a process run, one program is active only. The
active program may send a message to another program
via a channel. This program then becomes active and after
some computation can send a message to another program,
and so on. Each process contains a master program, which
is the first program to be activated and which is activated
if the active program did not produce output (and hence,
did not activate another program). If the master program
is active but does not produce output, a run stops.

We write a process π as π = p1‖ · · · ‖pl, where
p1, . . . , pl are programs. If π1 and π2 are processes,
then π1‖π2 is a process, provided that the processes are
connectible: two processes are connectible if common
external channels, i.e., channels with the same name, have
opposite directions (input/output); internal channels are
renamed, if necessary. A process π where all programs
are given the security parameter 1� is denoted by π(�). In
the processes we consider, the length of a run is always

289

polynomially bounded in �. Clearly, a run is uniquely
determined by the random coins used by the programs
in π.

Protocol. A protocol P is modeled via a process, where
different participants and components are represented via
one ITM each. Typically, a protocol contains a scheduler
S as one of its participants which acts as the master
program of the protocol process (see below). The task
of the scheduler is to trigger the protocol participants and
the adversary in the appropriate order. For example, in the
context of e-voting, the scheduler would trigger protocol
participants according to the phases of an election.

The honest programs of the agents of P are typically
specified in such a way that the adversary A can corrupt
the programs by sending the special message corrupt.
Upon receiving such a message, the agent reveals all
or some of its internal state to the adversary and from
then on is controlled by the adversary. Some agents,
such as the scheduler, will typically not be corruptible,
i.e., they would ignore corrupt messages. Also, agents
might only accept corrupt messages upon initialization,
modeling static corruption. This is the case for our security
analysis of Epoque.

We say that an agent a is honest in a protocol run r if
the agent has not been corrupted in this run, i.e., has not
accepted a corrupt message throughout the run. We say
that an agent a is honest if for all adversarial programs
πA the agent is honest in all runs of π̂P‖πA, i.e., a always
ignores all corrupt messages.

Property. A property γ of P is a subset of the set of all
runs of P.22 By ¬γ we denote the complement of γ.

Appendix D.
Judging Procedure of Epoque

In this section, we precisely define the honest program
π̂J of the judge J in Epoque. Recall that we assume that
J is honest. We note that the honest program π̂J of J, as
defined below, uses only publicly available information,
and therefore every party, including the voters as well as
external observers, can run the judging procedure.

The program π̂J, whenever triggered by the scheduler
S, reads data from the bulletin board and verifies its
correctness, including correctness of posted complaints.
The judge outputs verdicts (as described below) on a
distinct tape. More precisely, the judge outputs verdict in
the following situations:

(J1) If a party a deviates from the protocol specification
in an obvious way, then J blames a individually
by outputting the verdict dis(a). This is the case
if the party a, for example, (i) does not publish
data when expected, or (ii) publishes data which
is not in the expected format, or (iii) publishes a
NIZKP which is not correct, etc.

(J2) If, at the end of the ballot submission phase, the

list of ballots �b published by bulletin board B

22. Recall that the description of a run r of P contains the description
of the process π̂P‖πA (and hence, in particular the adversary) from which
r originates. Therefore, γ can be formulated independently of a specific
adversary.

contains more than two ballots of the same voter,
or a ballot with an invalid NIZKP, or two ballots
that contain the same (partial) entries, then the
judge outputs the verdict dis(B).

(J3) If, at the beginning of the tallying phase, trustee
Tk publishes the correct individual secret key
mskik of voter Vi and eik decrypts (using mskik) to
an invalid opening of cik, then the judge outputs
the verdict dis(VSDi).

(J4) If, at the beginning of the tallying phase, trustee
Tk publishes either (i) an incorrect individual
secret key, or (ii) a correct individual secret key
mskik of voter Vi and eik decrypts (using mskik) to
a valid opening of cik, then the judge outputs the
verdict dis(Tk).

(J5) If, during the tallying phase, trustee Tk publishes
vjk and rjk such that 0←− Open(prmcom, v

j
k, c

j
k, r

j
k),

where cjk ←
∑nV

i=1 c
i,j
k , then the judge outputs the

verdict dis(Tk).

If the judge J outputs dis(Tk) for some Tk, then the
judge outputs reject on a distinct tape, and the protocol
aborts immediately. Otherwise, the judge outputs accept.

Appendix E.
Accountability

In this section, we first recall the accountability frame-
work and definition that has been introduced in [51]. Af-
terwards, we apply this definition to analyze accountability
of Epoque.

E.1. Accountability Framework

To specify accountability in a fine-grained way, the no-
tions of verdicts, constraints and accountability properties
are used.

E.1.1. Verdicts. A verdict can be output by the judge (on
a dedicated output channel) and states which parties are
to be blamed (that is, which ones, according to the judge,
have misbehaved). In the simplest case, a verdict can state
that a specific party misbehaved (behaved dishonestly).
Such an atomic verdict is denoted by dis(a) (or ¬hon(a)).
It is also useful to state more fine grained or weaker
verdicts, such as “a or b misbehaved”. Therefore, in the
general case, we will consider verdicts which are boolean
combinations of atomic verdicts.

More formally, given a run r of a protocol P (i.e., a
run of some instance π̂P‖πA of P), we say that a verdict ψ
is true in r, if and only if the formula ψ evaluates to true
with the proposition dis(a) set to false if party a is honest
in r, i.e., party a runs π̂a in r and has not been (statically)
corrupted in r. For the following, recall that the instance
π̂P‖πA is part of the description of r. By this, we can talk
about sets of runs of different instances.

E.1.2. Accountability constraints. Who should be
blamed in which situation is expressed by a set of ac-
countability constraints. Intuitively, for each undesired
situation, e.g., when the goal γ(ϕ) is not met in a run
of PEpoque, we would like to describe who to blame.

290

More formally, an accountability constraint is a tuple
(α, ψ1, . . . , ψk), written (α ⇒ ψ1 | · · · | ψk), where α
is a property of P (recall that, formally, this is a set of
runs of P) and ψ1, . . . , ψk are verdicts. Such a constraint
covers a run r if r ∈ α. Intuitively, in a constraint Γ =
(α ⇒ ψ1 | · · · | ψk) the set α contains runs in which
some desired goal of the protocol is not met (due to the
misbehavior of some protocol participant). The formulas
ψ1, . . . , ψk are the possible (minimal) verdicts that are
supposed to be stated by J in such a case; J is free to
state stronger verdicts. Formally, for a run r, J ensures
Γ in r, if either r /∈ α or J states a verdict ψ in r that
implies one of the verdicts ψ1, . . . , ψk (in the sense of
propositional logic).

E.1.3. Accountability property. A set Φ of accountabil-
ity constraints for a protocol P is called an accountability
property of P. An accountability property Φ should be
defined in such a way that it covers all relevant cases
in which a desired goal is not met, i.e., whenever some
desired goal of P is not satisfied in a given run r due to
some misbehavior of some protocol participant, then there
exists a constraint in Φ which covers r. In particular, in
this case the judge is required to state a verdict.

E.1.4. Notation. Let P be a protocol with the set of agents
Σ and an accountability property Φ of P. Let π be an
instance of P and J ∈ Σ be an agent of P. We write
Pr[π(�) �→ ¬(J : Φ)] to denote the probability that π, with
security parameter 1�, produces a run such that J does not
ensure Γ in this run for some Γ ∈ Φ.

Definition 4 (Accountability23). Let P be a protocol
with the set of agents Σ. Let J ∈ Σ be the judge,
and Φ be an accountability property of P. Then, the
protocol P is Φ-accountable w.r.t. the judge J if for
all adversaries πA and π = (π̂P‖πA), the probability
Pr[π(�) �→ ¬(J : Φ)] is negligible as a function of �.

E.1.5. Individual accountability. In practice, so-called
individual accountability is highly desirable in order
to deter parties from misbehaving. Formally, (α ⇒
ψ1 | · · · | ψk) provides individual accountability if for
every i ∈ {1, . . . , k} there exists a party a such that ψi

implies dis(a). In other words, each ψ1, . . . , ψk determines
at least one misbehaving party.

E.2. Accountability of Epoque

We are now able to precisely analyze the accountabil-
ity level provided by Epoque. For this, we first define the
accountability constraints and property of Epoque. Then,
we state and prove the accountability theorem.

E.2.1. Accountability constraints. The accountability
theorem for Epoque (see below) states that if the adversary
breaks the goal γ(ϕ) in a run of PEpoque, then (at least)
one misbehaving trustee can be blamed individually (with

23. Similarly to the verifiability definition, we also require that the
judge J is computationally fair in P, i.e., for all instances π of P, the
judge J states false verdicts only with negligible probability. For brevity
of presentation, this is omitted here (see [51] for details). This condition
is typically easy to check. In particular, it is easy to check that the
judging procedure for Epoque does not blame honest parties.

a certain probability). The accountability constraint for
this situation is ¬γ(ϕ)⇒ dis(T1)| . . . |dis(TnT

). Now, the
judge J ensures this constraint in a run r if r �∈ ¬γ(ϕ) or
the verdict output by J in r implies dis(Tk) for some Tk.

E.2.2. Accountability property. For PEpoque and the goal
γ(ϕ), we define the accountability property Φ to consist of
the constraint mentioned above. Clearly, this accountabil-
ity property covers ¬γ(ϕ) by construction, i.e., if γ(ϕ) is
not satisfied, these constraints require the judge J to blame
some trustee. Note that in the runs covered by this con-
straint all verdicts are atomic. This means that Φ requires
that, whenever the goal γ(ϕ) is violated, an individual
trustee Tk is blamed (individual accountability).

For the accountability theorem, we make the same
assumptions (V1) to (V2) as for the verifiability theorem
(see Section 7.2). Now, the following theorem states the
accountability result of Epoque.

Theorem 3 (Accountability). Under the assumptions (V1)
to (V2) (Section 7.2) and the mentioned judging pro-
cedure run by the judge J, PEpoque(nV, nT, ncand, μ) is
Φ-accountable w.r.t. the judge J.

Recall that, following [51], this accountability theorem
implies the verifiability theorem (Theorem 1). The proof
is provided in [14].

291

