
Extractor: Extracting Attack Behavior from Threat
Reports

Kiavash Satvat

University of Illinois at Chicago

ksatva2@uic.edu

Rigel Gjomemo

University of Illinois at Chicago

rgjome1@uic.edu

V.N. Venkatakrishnan

University of Illinois at Chicago

venkat@uic.edu

Abstract—The knowledge on attacks contained in Cyber
Threat Intelligence (CTI) reports is very important to effectively
identify and quickly respond to cyber threats. However, this
knowledge is often embedded in large amounts of text, and
therefore difficult to use effectively. To address this challenge, we
propose a novel approach and tool called EXTRACTOR that allows
precise automatic extraction of concise attack behaviors from
CTI reports. EXTRACTOR makes no strong assumptions about the
text and is capable of extracting attack behaviors as provenance
graphs from unstructured text. We evaluate EXTRACTOR using
real-world incident reports from various sources as well as
reports of DARPA adversarial engagements that involve several
attack campaigns on various OS platforms of Windows, Linux,
and FreeBSD. Our evaluation results show that EXTRACTOR can
extract concise provenance graphs from CTI reports and show
that these graphs can successfully be used by cyber-analytics
tools in threat-hunting.

I. INTRODUCTION

Cyber Threat Intelligence (CTI), as commonly reported

in technical reports, whitepapers, blogs, and newsgroups, is

a valuable source of information about cyber-attacks. These

reports describe many aspects of an attack in natural language,

including the sequence of actions, effects on the system under

attack, and Indicators of Compromise (IOC). The knowledge

contained in CTI reports is essential for cyber operations and

response personnel, system administrators, as well as vendors

of intrusion detection and prevention products.

Previous studies [52], [45], [89] utilize various NLP tech-

niques to automatically extract knowledge available in CTI

reports in the form of IOCs (i.e., [52], [89]) and threat actions

(i.e., [45]). While these works provide a good starting point

towards automated extraction of threat elements (IOCs and

threat actions) from CTI reports, they do not extract the rela-

tionships between IOCs and threat actions, in order to provide

a comprehensive view of the attack behavior. Such attack

behavior extraction is essential in threat-hunting activities.

In particular, extracting attack behavior and the attack’s big

picture requires extracting the entities involved (e.g., files and

sockets), actions (e.g., system calls), the causal and temporal

dependencies between them, as well as information flow

between the entities. Extracting the attack behavior requires an

approach that is able to understand "who did what to whom",
“when” and “where” from the natural text. This task presents

several challenges.

Challenge 1: Verbosity. Threat reports are infused with a sig-

nificant amount of irrelevant text; often, only a small portion of

the report describes attack behavior. For instance, a description

of the malware’s geographical origin, though interesting, does

not contribute to the description of the malware behavior in a

system.

Challenge 2. CTI text complexity An important assumption

of the previous approaches is that the text structure of CTI

reports is (a) relatively simple [52] or (b) that it follows

a specific grammatical structure [45] or (c) assuming some

patterns in describing concepts [88] or (d) considering stable

grammatical relations in the presentation of the sentence in

the form of subject, verb and object [52], [45]. While these

assumptions do not interfere with the goal of these works to

extract IOCs and threat action in isolation, in fact, the majority

of CTI reports contain much more complex domain-specific

contexts (see Section II), which makes the extraction of attack

behavior and causal inference more challenging. The CTI

reports’ syntactic and semantic complexities, the prevalence

of technical terms, and lack of proper punctuation in these

reports [62] can easily impact the interpretation of the report

and extraction of attack behavior.

Challenge 3. Relationship Extraction. IOCs and threat ac-

tions can be extracted using approaches like string matching

and classifiers, as suggested by [52] and [45]. However,

extracting the big picture, while maintaining concise causal,

temporal, and information flow of the attack throughout the

report is far more complex and challenging. In fact, accurately

interpreting the complex logic in technical reports is known

to be an open problem in NLP [62].

In this paper, we introduce EXTRACTOR1, which addresses

these challenges. The main goal of EXTRACTOR is to con-

cisely extract the full picture of the attack behavior from

the technical reports in the form of a graph. EXTRACTOR

overcomes the first challenge by proposing a novel text

summarization approach that discerns the attack behavior text

from the rest. To overcome the second challenge and to

optimize overall system performance, EXTRACTOR uses a set

of techniques to transform a highly complex text into a more

consumable form. To address the third challenge, EXTRACTOR

uses a novel approach Semantic Role Labeling (SRL), which

allows us to extract the attack behavior and subject, object,

and actions of the sentence by inferring the fact of "who did
what to whom", “when” and “where” (details of these steps

discussed in Sections II and III). Finally, the result of SRL in

the final step is presented in the form of a graph describing the

1https://github.com/ksatvat/Extractor

598

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Kiavash Satvat. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00046

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
46

The malware connects to the Command & Control (CnC) server.

The "Authorization.exe" malware has keylogger functionality.
It stores the logged keystrokes in the following file: [CWD]\.tmp
When the "Authorization.exe" malware is executed it :

Creates a copy of itself in the following locations: %APPDATA% %USERNAME%

Tries to open the following file: [CWD]\Authorization.exe.config
Entrenches in the system for persistence in the following registry locations:

HKCU\...\bf7a7ffda58092e10 HKLM\...\bfda58092e10

Beacons to the following C2 node IP:.* over TCP port 1177:"217.66.231.245”
Makes the following modification to the registry to bypass the Windows Firewall:

HKLM\...\msnco.exe
The downloaded file is decoded, written to disk as %APPDATA%\...\ccSvcHst
The following files created when the Authorization.exe malware executed: msnco.exe
authorization.EXE-0AD199D6.pf
Msnco.exe and Authorization.EXE-0AD199D6.pf are created by Authorization.exe.

IP:.** 1: send 2: recieve

keystrokes

Authorization.exe

3: write

CWD\.tmp

4: write

5: log

6: fork

Authorization.exe

6: exec

%APPDATA%

7: write
%USERNAME%

8: write

CWD\Authorization.exe.config
9: open 10: write

HKLM\...\bfda58092e10

11: write

HKCU\...\bf7a7ffda58092e10

12: write

HKLM\...\msnco.exe

13: write

217.66.231.245

14: send

%APPDATA%\ccSvcHst

15: decode

16: write

17: write

Msnco.exe

18: write

Authorization.EXE-0AD199D6.pf
19: write

Fig. 1. The report (the left) is a free adaptation from the njRAT [80], where the irrelevant sentences are removed. This example demonstrates the language
complexities, which will be discussed throughout the paper. In the corresponding provenance graph (the right), nodes signify system entities, and the edges
point to system calls. The rectangle, oval, pentagon, and diamond represent the file, process, registry, and socket, respectively.

attack’s steps, artifacts, the causal information flow between

the entities involved.

In addition to the main goal of extracting the full attack

picture, EXTRACTOR follows two more goals:

Goal 1: Actionable Intelligence. We want to automatically

construct what we call actionable intelligence. We want to

extract from a CTI report only information that is ready to be

used for detection, or threat hunting without needing further

actions or processing from people or tools. This means that the

attack behaviors we extract from the text must be observable
in the system audit logs and can be effectively used for

threat detection. This is an important goal for every approach

that extracts attack information from CTI reports. In fact, we

envision the deployment of EXTRACTOR as a first step in a

threat hunting operation.

Goal 2: Process a Large Number of CTI Reports accurately.

We want to process a large number of CTI report, blogs, and

attack descriptions from threat detection centers. Accomplish-

ing this goal would enable analysts to automatically tap from a

vastly larger source of knowledge than it is currently possible.

Applications of EXTRACTOR. As has been widely demon-

strated, the presence of a concise attack behavior description

is preferable to have a simple collection of IOCs in detecting

threats [59], [84], [39], [55], [50], [56]. EXTRACTOR is able to

build graph representations that represent such concise descrip-

tion from CTI reports, thus guiding intrusion detection and

threat hunting systems. Another envisioned use of EXTRAC-

TOR is that of extracting information from a variety of CTI

sources related to the same attack in different organizations.

This is to obtain a complete picture of how the same malicious

actor might behave in different scenarios.

EXTRACTOR surpasses the state of the art significantly

by making several important contributions. In particular, EX-

TRACTOR: 1) significantly expands the range of CTI reports

that can be processed, 2) extracts significantly more complex

details than the previous studies (e.g., [52], [45], [89]); this

includes extraction of causal dependency and temporal order

of attack, 3) implements a novel application of extracting

semantic relationships among artifacts of an attack that enables

it to obtain a much better picture of the attack, 4) implements

several novel applications of text simplification and reduction

(or summarization) that enable condensing the text without

losing useful information.

This paper is organized as follows. In Section II, we provide

a more detailed description of the problem and some back-

ground information. In Section III, we describe our approach

in detail. In Section IV, we give a short overview of the

implementation and different tools used. Section V presents

the evaluation. Section VI provides a discussion, while Sec-

tions VII and VIII contain related work and conclusions,

respectively.

II. PROBLEM AND BACKGROUND

A. Problem Description
As mentioned in the introduction, the main goal of this

paper is to extract actionable graphs representing attack be-

havior from generic CTI reports. By actionable we refer to the

important goal of using the extracted knowledge as a signal in

threat hunting. We refer to these graphs as provenance graphs.

Provenance graphs are a common representation of kernel

audit logs [49], [48]. They represent events (system calls) in

a system as edges between entities (processes, files, sockets).

Provenance graphs have recently been successfully used for

threat detection and forensic analysis in a large number of

studies [41], [59], [84], [39], [55], [50], [56].

An example of the text contained in CTI reports, inspired

by the njRAT attack [80], is shown in Figure 1. This example

will be used throughout the paper to illustrate different aspects

of our approach. An example of the corresponding provenance

graph extracted from that text is also shown in Figure 1 on the

right side. As can be noticed, the provenance graph contains

nodes that represent entities (processes, registry keys, etc.)

involved in the attack and edges that represent the actions

carried out by those nodes. In addition, the names of the

nodes are such that can be observed in the audit logs, and

edges connecting the nodes represent system calls that also

appear in the audit logs (goal 1: actionable intelligence). In

addition, the graph contains only attack behavior-related nodes

599

and no other information (main goal of full attack picture and

conciseness). We note that the natural text in Figure 1 does

not have any particular structure (goal 2: process CTI reports

written in natural language).

There are several challenges in extracting concise and

actionable provenance graphs from CTI reports written in

natural language. First, we need to distinguish attack behavior

text from the rest of the report. This implies extracting from

the natural text only the kind of relations that describe attack

behavior and that can be observed in audit logs, while filtering

out the rest of the text. Therefore, we need to understand the

relations and actions occurring among system entities men-

tioned in the text to map those actions to system calls, which

are represented as edges in the provenance graphs. Second, we

need to overcome CTI text complexities, which may impact

our graph extraction. This implies resolving different kinds

of ambiguities and complexities present in natural language

writing. We describe the challenges that must be solved in

more detail next.

B. Challenges

Verbosity. In general, CTI reports can be verbose. Sentences

containing useful information may be nested inside the text

that is not strictly related to the attack, e.g., introductory

details. For instance, out of 42 pages DustySky report [7],

only 11 sentences describe the actual attack behavior that can

be observed in audit logs. We separate useful content from

non-useful using a novel summarization technique (See III-C).

CTI Text Complexity. The language used in the cybersecurity

domain has several peculiarities that NLP tools/techniques

(developed for more generic domains) often struggle with.

This makes it challenging to use these tools as they are. We

list some of these peculiarities below.

Punctuation. Many CTI reports do not use sentence-ending

characters ‘.,!,?’ to delimit sentences. This makes it

hard for the popular NLP toolkits, such as Stanford [14],

NLTK [54], and spaCy [9], to understand the real sentence

boundaries in CTI reports, resulting in texts with long sen-

tences, each of which contains several shorter sentences. For

instance, from the observation of 4020 threat reports from

the Microsoft threat report center, we notice that writers tend

to pack many actions within one sentence, therefore making

the average sentence length equal to 52 words (with some

examples as long as 313 words per sentence). In contrast,

the average English text on which NLP tools are usually

trained and designed for, contains approximately 14.4 words

per sentence [5].

Domain-specific words. Words denoting objects in the cyberse-

curity domain may have different meanings and contexts from

words used in the common English language, on which NLP

tools are trained. For instance, IP addresses, paths, process

names, system call names, and many other terms often are

misunderstood by common NLP tools. This challenge must

be met by a mechanism that brings domain insight to assign

meanings to the terms.

Fig. 2. POS tags and DP tree obtained from [9] (on the top) and [13] (on
the bottom). Tags inside the boxes represented POS and tags on the arches
signify the dependencies. The figure shows examples of imprecise tagging of
the technical cybersecurity sentences by statistical models.

Ellipsis. This term denotes a gap in a sentence that: 1) has

a missing subject, or 2) has a missing object [24]. This

structure is not common in natural English writing [64], but it

is very common in CTI reports where attacks are described as

sequences of actions. For instance, Creates a copy of
itself in the following locations in Figure 1

represents an example of ellipsis subject.
Pronouns. Pronouns are very commonly used in English [70].

Ignoring pronouns may result in their appearance as nodes in

the provenance graph in the place of the referent entities.

Other linguistic structures. Structural complexities and the use

of various linguistic techniques such as anaphora, nominaliza-

tion, and lists (III-B) can confuse common NLP tools. The

overall effect is that many subjects, verbs, and objects are

misclassified and unresolved.

Relationships Extraction. Overcoming the previous chal-

lenges can help to pinpoint the correct entities that are im-

portant in an attack description. The next step is to determine

“who did what to whom”, “when” and “where” or in other

words, we need to discover the relationships between process

and system objects and their mapping to audit events. Current

approaches related to this task, such as statistical dependency

parsers are known for performance degradation on sentences

drawn from domains different from that of natural English

text [57], [58]. To resolve this issue, we need a more com-

prehensive approach that takes the sentence’s semantics into

account rather than only relying on the sentence’s syntactic

structure (i.e., pure use of dependency parsing, as used by [52],

[45], [89]). As we will show in detail in the next section, to

solve this challenge, we use Semantic Role Labeling (SRL), a

processing model that can detect semantic relationships among

entities in a sentence.

Before continuing with the description of our approach, we

provide a brief background on the NLP techniques that are

used throughout the paper.

C. NLP Background

Part of Speech (POS). POS tagging assigns a syntactic role

to each word in a sentence (e.g., noun, verb, etc). In some

cases, however, POS model may fail to correctly tag words.

In Figure 2, adjectives following and downloaded are

incorrectly tagged as verb (VBG/VBN).
Dependency Parsing (DP). DP assigns grammatical connec-

tions and dependencies between words in a sentence. Example

of DP tags include nsubj for sentence subjects, obj for sentence

600

Raw
Report

Attack
summary

ESR PR ER

Resolution

Sentence
Verbosity

Word
Verbosity

Summarization

Passive Active
Conversion

HomogenizationTokenization

Normalization

Passive

Active

Causal
Inference

Semantic Role
Labeling (SRL) SEE

Graph Generation

Resolved
text

Normalized
text

System call dictionary Noun dictionary

Graph Builder

Fig. 3. An overview of EXTRACTOR architecture

TABLE I
LIST OF GENERAL ARGUMENTS USED IN SRL (BASED ON PROPBANK[67])

Label Role (argument) Label Role (argument)
ARG0 Agent ARG3 Starting point, Benefactive, Attribute
ARG1 Patient ARG4 Ending point
ARG2 Instrument, Benefactive, Attribute ARGM Modifier

objects, etc. However, if the sentence complexity increases, DP

may not be able to detect tags and the relations between words

accurately. In addition, DP taggers may not be able to assign

the correct tags, especially if they are not trained on context

containing technical language. Common errors include tagging

past participle forms as adjectives, verbs as nouns, etc. Another

drawback of utilizing DP in our current problem is that the

tags they produce only refer to grammatical relations, such as

subject, object etc. Therefore, they cannot help in tasks that

require an understanding of the semantics between different

sentence components. These relationships may include tem-

porality (when something happens), modality (how something

happens), etc. In fact, a much deeper understanding is needed

to accomplish our goals.

Figure 2 demonstrates examples of POS tags and DP trees

driven by spaCy [9] (top) and Stanford [13] (bottom), where

incorrect tags such as following and downloaded (as discussed

earlier) caused the incorrect generation of DP relations as

subject and objects. Another example is the verb Beacon at

the top sentence which incorrectly tagged as a proper noun

(i.e., NNP). More about POS and DP can be found at [27]

and [22].

Semantic Role Labeling (SRL). SRL essentially determines

“who did what to whom”, “when” and “where” [67]. SRL

is a more recent NLP technique, which can assign semantic

labels to phrases and words in a sentence, where each label

specifies the semantic role that each phrase or word plays in

the sentence in association with the predicate or verb of the

sentence. In SRL, the tags assigned to sentence components

are called arguments (denoted by ARG). Some argument

examples and the corresponding semantic roles are shown in

Table I.

III. APPROACH

In a nutshell, EXTRACTOR operates by performing different

rounds of transformations on the text to bring it from a highly

complex and potentially ambiguous form to a simpler form.

This simplified text is further processed to obtain a provenance

graph that can be successfully used for threat detection. An

overview of EXTRACTOR is shown in Figure 3. EXTRACTOR

has four major components: 1) Normalization, 2) Resolution,

3) Summarization, and 4) Graph Generation. Normalization
is responsible for an initial round of sentence simplification

and transformation to a canonical form. Resolution resolves

ambiguities in those sentences (these two components help

to address CTI text complexity challenge). Summarization
removes the portion of text that is not strictly related to the

attack behavior, and that cannot be observed in the logs.

Finally, Graph Generation is responsible for resolving the

temporal and causal order among the events in the text and for

building the final provenance graph (this component addresses

the Relationships Extraction challenge). Some of these com-

ponents may be assisted by a set of dictionaries that contain

terms related to CTI language (relying on domain-specific

dictionaries of concepts is a common approach in many

knowledge-based NLP systems [76], [71], [78]). In particular,

EXTRACTOR uses two dictionaries. First, our system call

synonym dictionary, which contains verbs representing system

calls (e.g., write, fork) and their corresponding synonyms.

These synonyms represent the possible verbs that can be used

in CTI reports and very likely refer to a system call. Second,

our CTI nouns dictionary contains noun phrases commonly

used in CTI reports, as well as different textual representations

of the same concept. The former contains 87 verbs represent-

ing system calls, while the latter holds over 1112 common

noun phrases in the CTI report. Both dictionaries are depicted

in Figure 3, and will be further discussed in Section IV.

A. Normalization

To address the CTI text complexity challenge and maximize

the accuracy of the techniques used by EXTRACTOR, we

must first have some canonical sentence form. We achieve

this through Normalization, which is responsible for breaking

long and complex sentences into shorter sentences appearing

in a canonical form, which is easier to process. Intuitively, we

would like each sentence to express a single action so that

the subject and object of the action and the action itself be

easier to identify. Normalization is comprised of Tokenization,

Homogenization, and Conversion. These steps perform the

detection of sentence boundaries, word homogenization, and

passive-to-active verb conversion, respectively. We describe

each of these steps next.

Tokenization. Correctly defining sentence boundaries is very

important as several techniques used by EXTRACTOR operate

at the sentence level. However, existing sentence tokeniz-

ers (e.g., NLTK [54]) usually take only classic punctuation

(‘.,!,?’) into account when discovering sentence bound-

aries and perform poorly on CTI reports. In fact, in this

domain, there is a high prevalence of long sentences containing

601

The malware connects to the Command & Control (CnC) server IP:.* .

The "Authorization.exe" malware has keylogger functionality.

It Authorization.exe stores write the logged keystrokes in the following file: [CWD]\.tmp

When the "Authorization.exe" malware is executed it Authorization.exe :

Authorization.exe Creates write a copy of itself Authorization.exe in the following locations: %APPDATA% %USERNAME%

Authorization.exe Tries to open the following file: [CWD]\Authorization.exe.config `

Authorization.exe Entrenches write in the system for persistence in the following registry locations: HKCU\...\bf7a7ffda58092e10 HKLM\...\bfda58092e10 .

Authorization.exe Beacons send to the following C2 node IP:.* over TCP port 1177:"217.66.231.245"

Authorization.exe Makes the following modification modify to the registry HKLM\...\msnco.exe to bypass the Windows Firewall: HKLM\...\msnco.exe

The downloaded file %APPDATA%\...\ccSvcHst is decoded, written to disk as %APPDATA%\...\ccSvcHst

The following files msnco.exe authorization.EXE-0AD199D6.pf created when the Authorization.exe malware executed: msnco.exe authorization.EXE-0AD199D6.pf

Msnco.exe and Authorization.EXE-0AD199D6.pf Authorization.exe are created creates writes by Authorization.exe Msnco.exe and Authorization.EXE-0AD199D6.pf

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Tokenization

Homogenization

Passive to Active Conversion

Pronoun Resolution (PR)

Ellipsis Subject Resolution (ESR)

Entity Resolution (ER)

Homogenized orInput

verb

VerbEllipsis Subject

Input Resolved

.

It

d it Addddddd

pronounReference Referencef

Aitself

.

.

.

.

.

.

.

.

.

Fig. 4. Transformation steps to turn a CTI report into a digestible form. A free adaptation from the njRAT [80] where irrelevant sentences are removed.
Lines with pointer signifies the reference and the strike-lined pointer shows the original phrase and its substituted output. The figure best appears in color.

multiple actions and non-standard sentence delimiters. For

instance, in Microsoft threat reports, the average sentence

length is almost four times higher than that of common English

sentences.

To solve this problem, we design an enhanced tokenizer

specialized for CTI reports. In particular, in addition to the

classic sentence delimiters, our tokenizer uses new lines,

bullet points, enumeration numbers, and titles and headers,

as sentence delimiters to partition long sequences into sets

of shorter ones. After breaking long sentences into shorter

sequences of words, each short sequence is ‘promoted’ to

a sentence if it satisfies one of the following cases; 1) the

sequence starts with a capitalized subject, it contains all the

components necessary to form a complete sentence (subject,

predicate, object), and the preceding and subsequent sequences

also form complete sentences; 2) the sentence starts with a

verb contained in the system calls dictionary, it contains all the

components necessary to form a complete sentence minus the

subject, and the preceding and subsequent sequences also form

complete sentences. The latter case represents the common

phenomenon (in CTI reports) of Ellipsis Subject (see Section

II-B). If none of the above two cases is satisfied, we consider

the sentence as an unbreakable full sentence.

As an example of this procedure, consider Figure 4, which

illustrates several techniques described in the paper. In this

figure, the long sentence spanning lines 4-9 in Figure 4 is first

partitioned into shorter sequences (one per line in the figure).

Next, each sequence is tagged by a POS tagger and DP, and

checked if it satisfies one of the two conditions above. In the

figure, the sequence at line 4 satisfies the conditions of the first

case, while the sequences at lines 5-9 satisfy the conditions of

the second case (ellipsis subject).

The result of the tokenizer is a set of shorter sentences that

is more likely to describe a single action.

Homogenization. CTI reports often contain constructs and

synonyms that can introduce ambiguities and impact the final

results’ quality. For example, C2, C&C, and Command and
Control are different representations of the same entity,

while verbs like stores, saves may represent an action

that corresponds to a write system call. Homogenization is

the process by which multiple textual representations of the

same concept are replaced by the same textual representation.

We perform Homogenization for noun phrases and verbs

using two specially built dictionaries, which map different

jargon and synonyms of nouns and verbs present in CTI

reports to entities and actions that can be observed in audit

logs. For instance, each among C2, C&C, Command and
Control is mapped to IP:.*, which is a wildcard repre-

senting IP addresses. In the same manner, we translate verbs

that are synonyms with a system call inside the system call

dictionary with that system call verbs.

Homogenization significantly reduces text’s heterogeneity

and supports our goal of providing actionable intelligence. We

decide that the single word that is chosen to represent all the

other words of a synset is one that is highly likely to be as a

system entity that is observable in the logs or a system call.
Conversion. As the last step of text normalization, EX-

TRACTOR converts passive voices to active. This conversion

helps with discovering system subjects (processes) and system

objects, as well as making causality inference more accurate,

as discussed in Subsection III-D.

To perform this conversion, we first detect passive sentences

using POS and DP tagging. This kind of sentence is pre-

dominantly represented by specific and known patterns in DP

trees. For instance, consider the sentence the downloaded
file is deleted by the malware. In the DP tree, is
is tagged as an auxiliary (and passive) verb, deleted as a

verb and head of the DP tree, the downloaded file is a

noun phrase that is the subject of a passive voice (nsubjpass)

and by malware is the object (obj). Note that in some

cases, the agent does not appear in a passive sentence but is

implied. For instance, in line 10 in Figure 4, the agent is the

malware, but no references to it appear in the sentence. Using

these patterns, EXTRACTOR can detect passive sentences and

distinguish between passive sentences with explicit agents and

those with implicit agents. In the former case, it switches the

agent and the subject, and it conjugates the passive verb to an

active verb.

The final result of this step is that long sentences are

transformed into short ones in an active form, likely to express

602

one action per sentence.

B. Resolution

After Normalization, Resolution reconciles implicit refer-

ences that refer to the same entity into the actual referent.

These implicit references must be made explicit for two

reasons. First, implicit references reduce the accuracy of

the subsequent steps and make the final provenance graph

ambiguous and imprecise. Second, audit logs contain only

explicitly named entities, and every threat hunting approach

cannot match system processes to pronouns and other implicit

references. More thorough and fascinating discussions on such

linguistic structures can be found at [81], [65], [83].

Ellipsis Subject Resolution (ESR). As discussed in Section

II, ellipsis subject is a linguistic structure where a sentence’s

subject is not present. This kind of structure is shared in a large

number of CTI reports and used for describing a sequence of

actions carried out by the same actor (process or attacker)-

Section V presents the popularity of this phenomenon in

various sources. The omitted subjects confuse the state-of-

the-art NLP toolkits, thus resulting in the loss of the narrative

sequence and the story relationships (subject and object of an

action). All the actions described in lines 5-9 in Figure 4 are

examples of ellipsis subjects.

To address this problem, we developed an Ellipsis Subject

Resolver (ESR) module. This module utilizes POS and DP

parsing along with the system calls dictionary. The first step

in resolving this problem is the detection of sentences with

missing subjects. This step uses POS and DP together with

the system calls dictionary, as was described in the discussion

about the Tokenizer (Subsection III-A). Once this kind of

sentence is detected, ESR builds a list of candidate subjects

among the entities appearing in the sentences preceding the

current sentence. Next, the module picks the most probable

candidates from the list based on the distance (computed as

the number of sentences) of that candidate from the sentence

with the missing subject. In particular, the closer candidate has

a higher probability of being picked. For instance, in Figure 4,

the subject is missing in the sentences in lines 5-9. The ESR

module detects the subjects and other objects in the previous

sentences, and it chooses the pronoun it occurring right before

the colon as the subject.

Pronoun Resolution (PR). Pronoun resolution is the pro-

cess by which pronouns are mapped and substituted to the

antecedent entities that they refer to. Processing documents

(building a provenance graph) without PR can result in the

appearance of several nodes (i.e., pronouns) for a single entity.

For instance, in Figure 4, the pronoun it and itself in

lines 3 and 5 should be replaced with the actual subject

Authorization.exe.

To resolve pronouns, we adapt a popular coreference res-

olution model, NeuralCoref [10]. We noticed that this model

works best in resolving pronouns in the CTI reports domain,

especially after the previous steps of ESR, and Tokenization.

Figure 4, lines 4, 5, and 6 demonstrate the resolved pro-

nouns (i.e., it and itself) and their corresponding reference

(Autorization.exe).

Entity Resolution (ER). Entity resolution is the process

by which noun or verb phrases that refer to another entity

inside the same sentence are substituted by that entity or are

eliminated as redundant. This is a vast task to perform in

general, however, we point out that we are interested only in

extracting actionable information and, therefore, can focus on

performing ER only on entities and actions that are likely to

appear in audit logs. In fact, from a preliminary observation of

a large number of CTI reports, we noticed that redundancies

among those entities and actions appear under mainly three

distinct linguistic forms:

Anaphora. An anaphora is the use of a word or pronoun

to refer back to another word or phrase that was previ-

ously used in the sentence to avoid repetition. For instance,

in line 11 of Figure 4, The following files refers

to mscno.exe authorization.EXE-0AD199D6.pf.

This form is prevalent in CTI reports, where it is used to

describe lists of entities participating in some common action.

Nominalization. This is a form where an auxiliary verb is used

together with a noun in place of a verb. For instance, makes
a modification in place of modifies. This form is often used

with actions that represent system calls. In particular, it appears

approximately 3524 times in the TrendMicro and 1261 times

in Microsoft blogs. Another similar form related to system

calls appears as an auxiliary verb followed by an actual verb

related to a system call, e.g., tries to open instead of opens in

Figure 4.

To resolve these cases, we use a combination of POS

tagging and DP with domain knowledge contained in CTI
nouns dictionary or in a corpus of common phrases appearing

in each case (e.g., the following files is a common anaphora).

In particular, if one of the above three forms is detected in the

text, we retrieve the DP and POS tags of the other words in

the vicinity of that form and check that they follow specific

patterns. In particular, for anaphoras, we check that a list of

noun phrases follows the main sentence where the anaphora

appears and replace the anaphora with the noun phrases. For

nominalizations, we check that the noun present in the corpus

is the object of a preceding auxiliary verb and replace that

noun with its verb form (e.g., makes the modification
→ modifies). For auxiliary verbs, we detect if an infinitive

form precedes a verb that may represent a system call and

replace the whole phrase with the actual verb (tries to
open → open).

After the Resolution step is completed, the text consists

of sentences having explicit subjects, objects, and verbs. The

amount of text is also reduced somewhat by the ER module.

However, the major text reduction step is executed after

Resolution and is described next.

C. Text Summarization

To reduce verbosity and obtain a concise description of the

attack behavior that can be directly used to detect the attack,

a significant amount of superfluous text must be removed.

603

Our analysis shows increased activities by this group. The Malware 3feef9a0206308ee299a05329095952a was compiled on 9 April 2009. Svchost.exe
checks for malware detection tools and run two processes (mailing.exe and svnmsm.exe). However, the file could also change the registry HCKU\...\Run.
Older variants were also seen creating only one subprocess. When executed, the files will delete the %TEMP%.

BERT
non-productiveProductive

Our analysis shows increased activities by this group. The Malware
3feef9a0206308ee299a05329095952a was compiled on 9 April 2009. Older variants were also
seen creating only one subprocess.

Svchost.exe checks for malware detection tools and run two processes
(mailing.exe and svnmsm.exe). However, the file could also change the
registry HCKU\...\Run.When executed, the files will delete the %TEMP%.

Svchost.exe, checks for malware detection tools, and run two process (mailing.exe and
svnmsm.exe). The file change the registry HCKU\...\Run. The files will delete the %TEMP% .

Bi-LSTM

However the file could also change the registry HCKU\...\Run

ARGM-DIS PATIENTAGENT ARGM-MOD ARGM-ADV VERB

Word-verbosity Remover
(However:ARGM-DIS) (could:ARGM-MOD) (also:ARGM-ADV)

1

S
entence-verbosity

W
ord-verbosity

Summarized
Attack behavior

A slice of threat report

Fig. 5. The architecture of the Text summarizer. The module reduces the verbosity using BERT, BiLSTM, word-verbosity remover.

Ideally, only the sentences that describe actions that may be

observed in the audit logs should be preserved. To do this, EX-

TRACTOR must understand which sentences strictly describe

attack behavior and which sentences do not. Previous related

work uses topic classification [52], [45] to identify topic-

related context among out-of-domain contexts (e.g., advertise-

ment text versus technical text). While these approaches are

successful in separating irrelevant content (such as ads) from

technical content, they are not powerful enough to separate the

latter into behavioral content that describes observable attack

actions from other “technical” content, which serves as an

introduction or context description. We refer to this problem

as sentence verbosity. An example of sentence verbosity is

shown in Figure 5. In the figure, the text of the report is

shown at the top. The sentences in the box on the top left

corner, labeled by Productive, contain a description of the

malware’s actual behavior, which can be observed in audit

logs, and which can, therefore, be useful for detection. The

sentences on the top right corner, labeled by non-productive
contain the complementary description of the malware but no

actions that can be observed in audit logs. Even though the

two text portions are technical in nature and about the same

topic, we are only interested in the productive text and want

to remove the non-productive one.

Another problem that needs to be solved is what we refer

to as word verbosity. In particular, inside each sentence, there

usually appear word constructs, such as adverbial and adjecti-

val phrases, which do not contribute to the behavior description

and can be safely removed (e.g., However, could, and

also in the figure).

To deal with these problems, we design a two-step approach.

This approach is shown in Figure 5 and is composed of a

BERT classifier, which deals with sentence verbosity, and a

BiLSTM network, which deals with word verbosity.

Sentence Verbosity. To distinguish sentences that describe

actual threat behavior from the ones that do not represent threat

behavior, we need to go beyond topic classification and have

a deeper understanding of the text. Intuitively, productive sen-

tences express more “direct” connections between the subject

and the object than the other sentences. Thus, to classify these

connections, a linguistic model of the text must build a finer-

grained representation of the words’ context.

Currently, one of the best models to build such fine-grained

representation is BERT (Bidirectional Encoder Representa-

tions from Transformer) [28]. Unlike Word2Vec [1] and GloVe

[2] word representations, BERT builds contextual representa-

tions of the words that take into account both the text before

a word and the text after a word. In other words, BERT con-

siders the context surrounding each word. In addition, BERT

learns embeddings for subwords, that is sub-components of a

word derived from stemming. This allows the model to more

effectively deal with out-of-vocabulary words. In general,

this capability is beneficial for the technical cybersecurity

documents, which may contain lexically complex phrases that

do not appear in BERT’s training set. As a result, BERT can

classify sentences into productive and non-productive much

better than other approaches. In particular, we labeled 8,000

threat sentences under two classes of productive and non-

productive, and trained BERT on this set. The results are

promising and are shown in detail in Section V.

Word Verbosity. The second step of the Text Summarizer

removes unnecessary words from the productive sentences

that it receives as input from BERT. It is composed of two

phases, a BiLSTM network that derives the semantic roles

of the sentence components and a word remover phase. We

found that BiLSTM works best for this purpose since it can

handle long-distance dependencies that appear in technical

documents.

After a sentence is processed by a BiLSTM network, its

components are tagged as Agent, Patient, and Action, and

other types of arguments (e.g., in Figure 5 the word However
is labeled as ARGM-DIS, a discourse marker that connects

a sentence to a preceding sentence). In the next phase, the

unnecessary sentence components are removed. In theory, this

can be done only by keeping the Agent, Action, and Patient
components of the sentence. However, in certain cases, this

604

The downloaded file is decoded , written to disk as %APPDATA%\Norton360\Engine\5.1.0.29\ccSvcHst .

ARG1 ARG2

ARGM-ADV
ARG1 ARG2

Raw SRL: [(ARG1: The downloaded file, V: decoded, ARG2: to disk) , (ARG0: The downloaded file, V: written,
ARG1: as %APPDATA%\Norton360\Engine\5.1.0.29\ccSvcHst)]

Pruned SRL: [(ARG1: *, V: write, ARG2: %APPDATA%\Norton360\Engine\5.1.0.29\ccSvcHst)]

Patient

Patient Verb

BenefactiveVerb

Benefactive Adverbial argument

ARG0 ARG1

ARG1 ARG0

Authorization.exe modifies HKEY_LOCAL_MACHINE\...\msnco.exe to bypass the Windows Firewall.

Raw SRL: [(ARG0: Authorization.exe, V: modifies, ARG1: HKEY_LOCAL_MACHINE\...\msnco.exe to bypass
the Windows Firewall) , (ARG0: Authorization.exe, V: bypass, ARG1: the Windows Firewall)]

Pruned SRL: [(ARG0: Authorization.exe, V: write, ARG1: HKEY_LOCAL_MACHINE\...\msnco.exe)]

Patient

Patient

Verb

Verb

Agent

Agent

Fig. 6. Examples of semantic roles and relations. Roles are generated
according to the PropBank annotations. Words on the arch present the labels
and roles are signified by words on the top/bottom of the rectangles.

approach would remove important information. For instance, a

sentence such as when malware.exe is executed may be labeled

as ARGM-TMP (a temporal marker), and removed by a naive

approach, leading to the removal of an important part of the at-

tack. To make this second phase more precise and not remove

sentence components that may contain important objects like

malware.exe, we use the System Entity Extractor (SEE) which

will be introduced in Section III-D2. In particular, a sentence

component that is tagged for removal will be removed if it

does not contain any entities that can be generated by the

rules of the SEE component.

Text Summarization is one of the central components of

EXTRACTOR. It is responsible for greatly reducing the text’s

complexity and quantity while keeping the most important

sentences that describe observable behavior.

D. Graph Extraction

After the previous steps, the resulting text is in a form where

the system subjects (e.g., process), objects (e.g., file, socket),

and actions (e.g., exec) are explicit, well ordered, and a large

part of the superfluous text is eliminated. In this last step,

EXTRACTOR addresses the challenge of relationship extraction

to extract a provenance graph from the simplified text.

Even though the text at this step is very simple, a naive

graph extraction that assigns nodes to subjects and objects,

and edges to the verbs would create ambiguous and large

graphs. This is because several roles and relationships between

subjects and objects may be expressed in the same sentence.

To deal with this problem, we use Semantic Role Labeling

(SRL) and a set of rules to extract the causality relations and

directions of information flow. These are described next.

1) Semantic Role Labeling (SRL): As mentioned in Section

II, SRL is a technique that discovers the semantic roles in the

sentence. To give an intuitive overview of the power of SRL,

consider the two examples in Figure 6, one in the active and

one in the passive form. SRL is able to extract two roles from

each sentence (denoted by Raw SRL) and understand which

noun is the patient (that is the one the action falls on, denoted

by ARG1) and which is the agent (the noun carrying the

action, denoted by ARG0). For the purpose of our discussions,

a SRL role can be thought of as an action. SRL is, therefore,

able to correctly associate each component in a sentence with

a semantic tag.

EXTRACTOR considers all the possible arguments related to

a verb detected by SRL as potential subjects or objects of the

attack and then prunes out those which are not system entities.

For the pruning process, we use the SEE module (see Section

III-D2), which detects possible system entity names (e.g., file

or process names, IP, and registry keys). In particular, the SEE
module analyzes each node and prunes out the whole node or

part of the node name that does not match one of the regular

expressions or application names. The result of the pruning in

Figure 6 is denoted by Pruned SRL.

Actions to System Calls Transformation. After SRL, EX-

TRACTOR performs a second homogenization step over the

verb roles detected by the SRL module. This step is necessary

to correct eventual errors due to POS and DP taggers’ inef-

ficiency, which might allow verbs to slip through and remain

in their original form (untranslated to system calls). After this

step, we prune away those roles created by SRL that do not

represent a system call action. For instance, after this second

pruning step, the second role related to the verb bypass in

the top half of Figure 6 is pruned out.

2) Graph Builder (GB): The final step of our approach is to

construct the graph from the output of SRL. The GB operates

in two steps. First, it merges the SRL arguments that have the

same text into the same node, and using SEE prunes out words

that are not system entities. Next, GB builds the graph using:

1) Node-edge-node triples. For every sentence, if it has

at least three roles including a verb role (a system

call representation as a connector) and two nodes, GB

generates the edge and node pairs.

2) Edge direction. EXTRACTOR determines the direction of

the edges by using a small map of edge directions associ-

ated with the system calls dictionary. This is discussed in

more detail the Causal Inference paragraph later in this

section.

System Entity Extractor (SEE). We developed the SEE
module to extract concise nodes that represent system entities

from the roles generated by SRL, and to prune out the

futile part of speeches that cannot constitute possible system

entities. SEE detects possible system entity names (e.g., file

or process names, IP, registry keys) using over 32 different

regular expressions and a database of application names or

well-known processes. In particular, the SEE module analyzes

each noun phrase and prunes out the whole phrase or the part

of it that does not match one of the regular expressions or

application names. For example, in the sentence, The mal-
ware deleted the regex.exe., SEE prunes out the

(ARG0) into asterisk (* - which in query processing systems

will be inferred as any) and turns (ARG1) into regex.exe. This

step is essential to have concise and accurate names for the

system entities that can be used to search the audit logs for

threat detection. This module also defines the shape of the

nodes in the final graph, where the rectangle, oval, pentagon,

and diamond represent the file, process, registry, and socket,

respectively.

605

Causal Inference. This step determines the correct direction

of the edges in the graph to represent causality and information

flow among nodes. To infer this direction, it uses a mapping

of system calls to the direction of system flows. The mapping

contains entries that associate with each system call the direc-

tion of the edge between the subject and the object (e.g., for

the send system call the flow goes from subject to object, while

for the recv it goes from object to subject). Besides, this step

addresses negated verbs, which may appear in CTI reports. In

fact, in the casual inference, we detect the negation using SRL

tags and purge the negated roles if there are no conditional

clauses that influence the role. For instance, svchost.exe
does not create explorer.exe will be purged as no

conditional clauses influences this sentence.

The output of the last step is a provenance graph that clearly

shows the entities that participate in and are affected by the

attack as nodes, as well as the system calls connecting them

as edges. An example of such a graph related to the running

example is shown in Figure 1.

IV. IMPLEMENTATION

In this section, we briefly describe some additional imple-

mentation details, tools, and techniques used by EXTRACTOR.

NLP toolkits. We used a combination of various state of the

art NLP toolkits to implement our approach. These include the

spaCy POS and DP tagger, NLTK, and Stanford [9], [13], [54].

We use SpaCy in Tokenization, Homogenization, Resolution,

and Passive to Active Conversion steps to determine the POS

and DP tags of the different sentence components. In partic-

ular, we used the large pre-trained statistical model version 2

[82] of spaCy as the model outperforms the other statistical

models in dealing with CTI reports.

Tokenization. Our sentence tokenizer is built on top of the

NLTK sentence tokenizer. NLTK (Natural Language ToolKit)

is a common NLP toolkit, containing several libraries and sta-

tistical natural language processing developed for the English

language. We chose NLTK because we found that it works

better than others (spaCy, Stanford) and it is more consistent

in dealing with text in the CTI domain.

Text Summarization. We used a 12 hidden layer BERT [28]

to discern the productive sentences from the non-productive
ones. To train our model, we used 8,000 labeled sentences. To

understand the words’ roles in the text summarizer, we used

a re-implementation of a deep BiLSTM model [40]. Since the

model was not fine-tuned to handle cybersecurity sentences,

we trained the model using 3,000 manually labeled sentences.

SRL. To implement SRL, we use the method described

on [79], deployed by [34], which is becoming increasingly

popular in the NLP area. To adopt the system and receive

more precise output in the cybersecurity domain, we further

retrain the model with 2,000 cybersecurity sentences related

to the areas in which we notice that the system fails to predict

the roles properly. For further completeness, we evaluated and

presented the result of our retraining (see Section V-D).

Dataset and Dictionary Construction. To build dictionaries

and our datasets, we used our pool of CTI reports scraped from

TABLE II
SYSTEM CALL VERBS AND THEIR CORRESPONDING SYNONYMS IN

SYSTEM CALL DICTIONARY.

System call Synonyms

Write write, form , entrench, place, exfiltrate, deploy, implant, drop, install,
putfile, compose, create, copy, save, add, modify, append, create

Read survey, read, gather, download, navigate, locate, get,
acquire, check, detect, record, exfiltrate , extract, obtain

Unlink unlink, delete, clear, remove, erase, wipe, purge, expunge
Send send, transfer, post, postsinformation, move, transmit, deliver, push, redirect

Receive receive, accept, take, get, collect
Connect connect, click, browse, portscan, communicate

Fork fork , clone, spawn, issue, set

EXEC use, execute, executed, run, launch, call,
perform, list, invoke, inject, open, target, resume

Exit exit, terminate, stop, end, finish, break off, abort, conclude
MMAP allocate, assign

various sources. We used different sources of namely APT

report repository [6], Microsoft Threat Center [8], Symantec

Security Center[16], Threat Encyclopedia [18], and Virus

Radar [20] to ensure the diversity and coverage.

For our text summarizer, we annotate a balanced dataset of

8,000 sentences sampled from various sources and annotated

with two categories: productive and non-productive sentences.

In total, 3,800 sentences are annotated as productive, 4,200

messages are annotated as non-productive sentences. We split

our dataset into 4,800 sentences for training, 1,600 sentences

for validation, and 1,600 sentences for the test. We used

distinct sets for test and evaluation.

We perform annotation in an iterative fashion, and three

subject matter experts were involved in the annotation of our

datasets. We request each annotator to annotate the collected

data into one of the two categories of productive and non-

productive. Then, on several discussions with the annotators,

we discuss and clarify the notion of the attack behavior (i.e.,

productive) versus the rest (i.e., non-productive) to ensure

the understanding of attack behavior is accurate. Following

prior guidelines and studies (i.e., [33] and [30]), the annota-

tion task begins in an iterative fashion. In each round, 200

messages are assigned, and disagreements are discussed with

each annotator. After each round of discussions, 100% inter-

annotator agreement (IAA) is achieved as measured by Cohens

kappa coefficient. After three initial rounds of annotations, the

annotators are assigned the remaining 7,400 sentences, where

an IAA of 91% is obtained. The final round of disagreements

are discussed, and labels are finalized by one of the authors

of this paper.

An alternative solution to translate the verb phrases into the

corresponding system call is to use tools like WordNet [60]

and Thesaurus [17] (researchers like [45] have previously used

this kind of approach). However, we noticed that we could

achieve better results by creating a simple though effective

dictionary. To build our dictionaries, similar to the process

of annotating our dataset, we worked with a team of three

security experts in an iterative fashion. The members were

involved in reviewing and annotating 3000 randomly selected

technical threat reports from various sources over a period of

one year. Then, in an iterative fashion, the extracted phrases

and their corresponding synonyms have been discussed and

606

agreed. Similarly, the system calls dictionary is derived from

WordNet [60] and Thesaurus [17]. These synonyms have been

extracted and discussed in several discussions to assure the

quality. Tables II presents this dictionary. Also, Table XIII, in

Appendix, represents examples of the noun dictionary.

V. EVALUATION

To evaluate EXTRACTOR, we designed three experiments,

each performed on CTI reports with distinct writing styles.

In the first experiment (§V-A), EXTRACTOR generates graphs

from a set of public CTI reports describing real-world inci-

dents. In the second experiment (§V-B), EXTRACTOR builds

graphs from the descriptions of attacks in the DARPA Trans-

parent Computing program [19] evaluations. Finally, in a

large scale experiment (§V-C), EXTRACTOR processed 4,100

unstructured CTI reports from Microsoft Security Intelligence

[8] and 11,600 reports from TrendMicro [18] to extract prove-

nance graphs as further discussed in Section V-C.

In the first two experiments, we evaluate EXTRACTOR in

two distinct ways: (1) We measure EXTRACTOR’s capability

in capturing all relevant attack behaviors using the ground

truth present in the reports. To this end, we report precision,

recall, and F1-score. (2) To demonstrate the usefulness of

EXTRACTOR in supporting threat hunting, we use a threat

hunting system, POIROT [59], with the graphs generated

by EXTRACTOR. Finally, to evaluate the scalability of our

approach, we perform a large scale experiment, which is

discussed in Section V-C.

Threat Hunting. To evaluate the usefulness of the graphs

generated by EXTRACTOR for threat detection, we used

POIROT system [59]. This system takes as input a small

provenance graph, called query graph, representing attack

events, and searches for embeddings of that graph in a

much larger provenance graph built from the audit logs of

the systems under attack. The query graphs in POIROT

are manually built by experts after reading CTI reports and

represent the attack activities described in those reports. In

our evaluation, we use the same CTI reports to automatically

build graphs with EXTRACTOR and use those graphs as query

graphs for POIROT. In this way, we compare graphs built

by human experts and graphs built by EXTRACTOR and the

usefulness of both kinds of graphs to detect threats. We define

an operation of P (G1, G2) = S, where G1 represents the

graph built by EXTRACTOR, and G2 represents the larger

provenance graph representing the audit logs of the systems

under attack. Next, we use POIROT to search for G1 within

G2 and retrieve the similarity score S. If S is bigger than the

POIROT threshold (t ≈ 0.3), then G1 is successfully located

in G2, indicating a successful detection of a threat. Otherwise,

no attack has been detected. For more details on POIROT, refer

to [59].

In all the experiments, we measure EXTRACTOR’s false

positive and false negative edges. By false positive edges, we

refer to the edges included in the extracted graph, which do not

represent attack activities. By false negative edges, we refer to

edges that should have been included in the extracted graph.

TABLE III
CHARACTERISTICS (NODES |V| AND EDGES |E|) OF THE EXTRACTOR VS.
MANUAL GRAPH AND RESULTS OF THREAT DETECTION IN CTI REPORTS,

SCORE P (G1, G2) AND DETECTION OUTCOME DO.

Scenario Manual EXTRACTOR Score Do|V| |E| |V| |E|
njRAT [80] - fig. 7 14 14 32 32 0.4

Carbanak [47] - fig. 10-(a) 10 10 22 31 0.4

HawkEye [87] - fig. 10-(b) 17 34 29 31 0.4

DeputyDog [61] - fig. 10-(c) 5 4 11 12 0.4

DustySky [7] - fig. 10-(d) 9 10 12 21 0.6

Uroburos [35] - fig. 10-(e) 12 15 19 23 0.5

We point out that these notions of false positive and false

negative edges refer only to the presence (or lack thereof)

of nodes and edges in the final graph and not to the actual

detection of the threat using that final graph. In fact, many

detection tools might be able to use a small set of nodes and

edges as IOCs. As a specific example, the tool we used in this

paper, POIROT, employs approximate graph matching using

graphs with extraneous or missing edges [59], and is robust

to a certain degree of false-positive and false-negative edges.

A. Evaluation on Public CTI reports.

In the first set of experiments, we evaluate EXTRACTOR

using public CTI reports. For comparison purposes, we choose

the same reports chosen by the authors of POIROT [59].

This experiment allows us to 1) compare the graphs gen-

erated by EXTRACTOR and the graphs generated manually

by the authors of POIROT, and 2) use POIROT to perform

threat hunting using the graphs generated automatically by

EXTRACTOR and see if the attack is successfully detected.

In this experiment, the audit logs contain events generated

by benign activities and events generated by executing the

malware instances and the same attack activities described

in the CTI reports in a controlled and isolated environment,

as described by the authors of POIROT [59]. Table XIV, in

the Appendix, provides additional details about each malware

sample.

Table III represents the characteristics of EXTRACTOR

graphs versus manual graphs and the result of threat detection

in these public CTI reports. The first column shows the

malware name, the reference to the CTI report, and the

reference to the extracted provenance graph figure. The next

four columns show the number of nodes (V (G)) and edges

(E(G)) of the graphs manually drawn by the POIROT authors

and the ones automatically generated by EXTRACTOR. As

can be seen, the numbers of nodes and edges extracted by

EXTRACTOR are comparable with the ones built manually. The

main reasons for the difference in the number of nodes and

edges are due to 1) the use of wildcards in the manual graphs

(e.g., the use of C=*.tmp in manual instead of [CWD]\.tmp
and C:\Extracted\.tmp), 2) nodes and edges that are picked

by EXTRACTOR but are not presented in the manual graph

(e.g., 2: exec - 10: exec), as the human has abstracted these

details away. Finally, columns six and seven present the results

of threat hunting, which was obtained by conducting these

607

TABLE IV
PRECISION, RECALL, AND F1-SCORE OF GRAPHS GENERATED FROM THE

CTI REPORTS, CALCULATED BY COMPARING EDGES IN THE AUTOMATED

GRAPH AGAINST THOSE IN THE CTI REPORT GROUND TRUTHS.

Scenario Precision Recall F1-Score
njRAT 0.90 1 0.95

Carbanak 0.87 1 0.93
Uroburos 0.85 0.96 0.90
DustySky 0.85 0.94 0.90
HawkEye 0.93 0.93 0.93

DeputyDog 1 0.92 0.96

malware attacks in the presence of suitable benign activities,

and collecting the audit records. An approximate matching

algorithm [59] was used to match the EXTRACTOR-generated

graph inside a larger provenance graph generated from the

audit logs of the systems under attack. In all scenarios, our

detection score surpassed the detection threshold (t ≈ 0.3),

and the attack was detected successfully. In summary, through

this experiment, we can conclude that the EXTRACTOR-

generated graphs are as useful as human-generated graphs in

threat detection.

While the results of the threat detection (Table III) using

EXTRACTOR’s graphs confirm EXTRACTOR’s capability in

capturing relevant attack behavior, to further evaluate the

performance of EXTRACTOR and to measure its ability in

capturing all relevant attack behaviors, we report precision,

recall, and F1-score (Table IV). For this evaluation, we use

the reports themselves as the ground truth and check if the

activities captured in the graph are present or not in the

report. We do not use the graphs generated by the experts

in POIROT as ground truth, since many of those graphs

contain wildcard nodes representing sets of processes. Table

IV presents the performance of EXTRACTOR. As shown in

Table IV, EXTRACTOR successfully captured attack behavior

from the reports (with an average F-1 score 93%). However, as

expected, due to language complexities, EXTRACTOR yields a

small number of false positives and false negatives. Sometimes

this is due to inverted edges, but more often this is due

to EXTRACTOR not fully resolving some ambiguities or not

detecting some entities in the text. For instance, in Uroburos

pairs credprov.tlb, load, explorer.exe and *,
fork/exec, winview.ocx are spurious nodes and edges

(see Figure 10-(e) in the Appendix). However, these did not

impact threat detection (Table III).

Attack Descriptions. Figure 7 shows the graph generated by

EXTRACTOR from [80], where the malware modifies several

registry components and writes to several files. The divisions

into left and right subgraphs in the figure reflects the report’s

structure, where it describes the actions performed by malware

using various processes (authorization.exe, *). Also, Figure 10,

in the Appendix, presents other graphs generated from public

CTI reports, discussed at [59], except OceanLotus [31], in

which the attack behavior is described in a figure rather than

natural language description.

Figure 10-(c) shows the graph generated using EXTRACTOR

TABLE V
CHARACTERISTICS (NODES |V| AND EDGES |E|) OF EXTRACTOR VS.

MANUAL GRAPHS AND RESULTS OF THREAT DETECTION IN DARPA TC
CAMPAIGNS, SCORE P (G1, G2) AND DETECTION OUTCOME DO.

Scenario Number of
sentences

Manual EXTRACTOR score Do|V| |E| |V| |E|
Simple APT 8 15 17 13 13 1.0

Micro APT 9 13 15 15 17 0.9

Drakon APT 10 10 14 14 11 0.9

GatherApp 8 7 10 8 8 0.8

HelloWorld 8 7 10 8 8 0.9

GatherApps 8 14 14 13 12 0.8

Webshell 9 7 9 12 8 0.6

Metasploit 9 21 22 15 11 0.6

from the report [61]. The figure demonstrates various system

calls executions with specific system entities and the asterisks

processes (* inside the rectangle). The figure shows several

important attacker activities and how they are connected. The

graph disconnectedness is due to the writing style where the

author referred to the same entity by very different names

in separate sentences. For instance, the two nodes * and

8aba4b5184072f2a50cbc5ecfe326701 represent the

same entity but they are separated in the graph.

Figure 10-(d), in the Appendix, shows the graph generated

using EXTRACTOR from the report [7]. Due to the text

complexity, EXTRACTOR generated three false positive edges

16.exec, 17.exec, and 18.exec. Figures 10-(a), 10-(b), and

10-(e), in the Appendix, respectively, demonstrate Carbanak,

HawkEye, and Uroburos graphs.

In all the cases, POIROT was able to detect the attacks,

even in the presence of false positive edges.

B. Evaluation on the DARPA Transparent Computing Dataset.

In this experiment, we utilized the DARPA Transparent

Computing campaign dataset to automatically generate the

attack behavior graphs from the natural language description

of the attack. During these campaigns, red-teams conducted

attacks on infrastructure defended by blue teams. These attacks

were carried out on four systems, including one client, one

mail server, a web server, and an SSH server over a period of a

couple of weeks. The text descriptions of the attacks processed

by EXTRACTOR were written by the red-team members as

part of the ground truth release of the exercises. These reports

are shorter and more concise than those in the public CTI

reports. In addition to textual descriptions, they also contain

graph representations of the attacks generated by the red-

team members. The graphs generated by EXTRACTOR were

compared with these graphs as ground truth.

Table V describes the results of this experiment. For each

attack (named in the first column), it shows the report’s size

in sentences (in the second column) and the manual graph’s

size generated by the attackers and by EXTRACTOR. The

differences between the manual and EXTRACTOR’s graphs are

minimal due to the shorter size of the CTI reports and their

conciseness. Columns seven and eight represent the results

of threat hunting where POIROT [59] was used to detect the

608

*
IP:.*

1: connect

File Manager
2: exec

3: exec
4: exec

5: exec
 Remote Shell

6: exec
 Process Manager

7: exec

 Registry
8: exec

Keylogger

9: exec

 Get Passwords

10: exec

Mozilla Firefox , Google Chrome , Opera

11: searche

Server

12: exec

Open Folder

13: exec
Builder Window

14: exec

CWD\.tmp

Authorization.exe
15: write

Authorization form may - 2013 -
115444.scr

16: write

Authorization.exe

17: write

%APPDATA%\msnco.exe

%APPDATA%\msnco.exeo

18: write
19: write

C:\Documents_and_Settings\%USERNAME%
\Start_Menu\Programs\Startup\b6554e5bcfef391ff7

a7ffda58092e10.exe

20: write

22: fork

HKEY_CURRENT_USER\Software\Microsoft\Windows\Curr
entVersion\Run\b6554e5bcfef391ff7a7ffda58092e10 23: write

24: write

25: write

C:\Documents_and_Settings\%USERNAME%
\Start_Menu\Programs\Startup\x086554e5bcfef

391ff7a7ffda58092e10.exe

26: fork27: write

C:\WINDOWS\Prefetch\
AUTHORIZATION.EXE-0AD199D6.pf

28: write

C:\Documents_and_Settings\%USERNAME%
\Start_Menu\Programs\Startup\b6554e5bcfef391ff7a7ffda58092e10.

29: write

C:\WINDOWS\Prefetch\
NETSH.EXE-085CFFDE.pf

30: write
C:\WINDOWS\Prefetch\

MSNCO.EXE-1616CBE8.pf

31: write
C:\Extracted\.tmp

32: write

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Curr
entVersion\Run\b6554e5bcfef391ff7a7ffda58092e10

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Share
dAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplicati

ons\List\%APPDATA%\msnco.exe.

 Remote Cam

Run File

Remote Desktop

CWD\Authorization.exe.config

21: exec
CWD\Authorization.exe.config

Fig. 7. Graph generated by EXTRACTOR from njRAT [80]

TABLE VI
PRECISION, RECALL, AND F1-SCORE OF THE GRAPHS GENERATED FROM

DARPA REPORTS, CALCULATED BY COMPARING EDGES IN THE

AUTOMATED GRAPH AGAINST THOSE IN THE DARPA REPORTS.

Scenario Precision Recall F1-Score
Simple APT 1.00 1.00 1.00
Micro APT 0.88 1.00 0.94

Drakon APT 1.00 0.84 0.91
Gather App 1.00 0.88 0.94
HelloWorld 1.00 1.00 1.00
GatherApp 1.00 1.00 1.00
Webshell 0.89 0.89 0.89

Metasploit 0.91 0.91 0.91

EXTRACTOR-generated graph inside the provenance graph

generated from the audit records, which includes both attack

and benign activities. In all scenarios, our detection score

surpassed the detection threshold (t ≈ 0.3), and the attack

was detected successfully.

Table VI shows the performance of EXTRACTOR and its

capability in capturing all relevant attack behaviors on the

DARPA reports. The result shows improvement in the perfor-

mance of EXTRACTOR on the DARPA CTI reports compared

to the public CTI reports (Table IV). This is due to the

simplicity of the DARPA reports, which resulted in generating

fewer false positives. Similar to the CTI reports, most false-

negatives are due to the EXTRACTOR model not being able to

drive the relation from the sentence.

To further examine the possibility of generating false detec-

tion signals, we ran POIROT on a benign dataset of audit logs

of the DARPA TC program, and provided in input the (attack)

graphs extracted by EXTRACTOR. The dataset includes 12GB

benign audit logs from the different operating systems, in-

cluding Windows, Linux, FreeBSD. Our threat detection using

POIROT raised no false signals. This experiment explicitly

shows that EXTRACTOR graphs are concise enough not to raise

false detection signals in benign environments.

C. Large Scale Experiment

To evaluate the scalability of our approach and its accuracy

with additional writing styles, we process with EXTRACTOR

a large number of unstructured CTI reports from two major

CTI sources, namely Microsoft Security Intelligence [8] and

TrendMicro Threat Encyclopedia [18].

The main challenge in this kind of evaluation is the absence

of ground truth. While in the first two cases there were graphs

to compare with, these CTI sources do not provide such

graphs. However, the reports themselves point to a way to

overcome such a challenge, described next.

Reports from these sources usually contain several sections

including threat summary, technical description, and solution

where they describe the overview of the attack, the technical

attack details, and the steps required to remove the attack.

While the first section provides some general information

such as infection rate and risk and severity level about the

threat, the second and the third sections provide valuable

technical insight about the attack and how to reverse its

impacts. Often, the last two sections of these reports are

similar but antithetical to each other. In other words, while

an attack description section describes the steps taken to

compromise a system, including files created and executed,

processes compromised etc, a solution section details the

steps needed to remove the attack’s artifacts, i.e., the same

files created, and compromised processes. For instance, the

sentence Delete <systemfolder>\sysformat.exe
from HKEY\CURRENT\USER\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run from

the solution sections outlined the action required to

undo the threat action described as Adds registry
value: sysformat with data: <system
folder>\sysformat.exe in the registry
key: HKEY\CURRENT\USER\Software\Microsoft\
Windows\CurrentVersion\Run in the attack
description section. As another example, the sentence check
for the open connection to 10.13.13.1 from

the solution section maps to the connects to command
and control sever 10.13.13.1 from the attack
description section. We note, at this point, that the solution
section does not have these characteristics across all the

reports. Indeed, it often amounts to instructions on how

609

TABLE VII
THE REPORTS AND GRAPHS’ CHARACTERISTICS AVERAGED ACROSS ALL REPORTS.

Scenario Number of
Reports

Smallest
Report

Largest
Report

Avg. Number
of Sentences

Avg. Sentences
After Summarization

Avg. Attack Behavior Avg. Removal Avg. MCS
Score|V| |E| |V| |E|

Microsoft 4020 19 63 32.26 19.02 18 17 7 6 0.91
TrendMicro 11600 17 59 31.93 14.22 16 15 5 4 0.85

njRAT Carbanak Uroburos DustySky HawkEye DeputyDog
0

50

100

150

200

250

34

217

53

193

90

4234

202

50

131

72

33
21

32
15 11 18 12

N
u
m

b
er

o
f

S
en

te
n
ce

s

Original Report Topic Classification Text Summarization

Fig. 8. The number of candidate sentences after applying text summarization,
compared to the number of sentences in the raw report and the number of
sentences after Topic Classification (TC).

to download and execute a patch file, which does all the

clean-up and patching work. However, it is relatively easy to

automatically distinguish between larger solution sections that

contain detailed clean-up steps, and smaller solution sections

that instruct to run a patch file, and filter out the latter. The

reports in [3] and [4] are examples such CTI reports, while

more examples can be found at [18] and [8].

To evaluate EXTRACTOR, in this experiment, for each report

that contains both an attack description and a detailed solution,

we build the provenance graphs related to each section by

omitting the other section from the rest of the report. Then we

invert the graph obtained from the solution and calculate its

similarity with the graph obtained from the attack description
section. To measure the similarity between the two graphs, we

use the Maximum Common Subgraph (MCS) [75], a metric

that measures the containment of a smaller graph inside a

larger graph. (We use this metric for this large scale evaluation

as it is considerably simpler than the notion of alignment used

in [59]).

Table VII shows the results of this experiment. In this

table, the second column shows the number of the evaluated

reports. The third and fourth columns describe the length

of the smallest and largest report. The third and the fourth

columns show the average number of sentences before and

after text summarization. The average attack description and

average solution columns show the average number of nodes

and edges build from the technical details and removal section,

and finally, the last column measures the similarity between

the two graphs. As can be seen, the average similarity measure

between the extracted graphs is equal to 0.91 for Microsoft and

0.85 for TrendMicro. This means that EXTRACTOR correctly

extracts the graphs from the text in a majority of the cases.

For further comprehensiveness of this experiment, we also

performed manual ‘spot-checks’, where we manually evalu-

TABLE VIII
THE PERFORMANCE EVALUATION OF CNN AND LSTM NEURAL

NETWORKS VERSUS BERT LANGUAGE MODEL ON SENTENCE-VERBOSITY

TASK. THE BEST RESULT ARE BOLDED.

Scenario Precision Recall F-1 Score
CNN 0.895 0.895 0.897

LSTM 0.883 0.894 0.887
BERT 0.950 0.957 0.953

TABLE IX
EACH CELL REPRESENTS THE MCS AGAINST THE BASELINE GRAPH

GENERATED BY EXTRACTOR, WITHOUT (W/O) ACTIVATING THE

CORRESPONDING MODULE. ONE DENOTES RESULTS THAT ARE THE SAME

AS THE BASELINE, WHILE ZERO SIGNIFIES NO MATCH BETWEEN BASELINE

VERSES THE GRAPH DRAWN WITHOUT THE CORRESPONDING MODULE.

Scenario w/o w/o Resolution
Toke. Homo. w/o ESR w/o PR w/o ER

njRAT 0.40 0.28 0.50 0.90 0.81
Carbanak 1.00 0.42 0.88 0.88 0.97
Uroburos 0.85 0.41 1.00 0.85 1.00
DustySky 0.71 0.0 1.00 1.00 1.00
HawkEye 0.90 0.15 0.90 0.83 1.00

DeputyDog 1.00 0.16 1.00 1.00 0.83

ated 50 randomly chosen reports. The individual assessments

were then discussed and agreed upon in a meeting. The

false-negatives and false-positives are generated due to the

unresolved complexities and are still minimal, considering the

complexity of the report, and are in line with our previous

result. Our precision, recall and F1-score was 0.88, 0.93, 0.90.

D. Fine Grained Performance Evaluation

In this subsection, we provide more fine-grained evaluations

on some of the most important steps of our approach.

Text Summarization. Previous work in automatic extraction

of knowledge from CTI reports [52], [45] uses topic classifica-

tion (TC) to discern irrelevant content such as advertisements

from the CTI reports. In EXTRACTOR, we use a different

approach for text summarization aimed at achieving a finer-

grained summarization. Figure 8 shows these two approaches

side by side. To do topic classification, similarly to the

previous approach [52], we ran a Support Vector Machine

(SVM) classifier on 1500 technical CTI sentences versus

1000 sentences of advertisement and about author details. We

evaluated the model using 10-fold cross-validation, achieving

a precision of 97% and a recall of 99%. As can be seen in the

figure, our text summarization approach significantly reduces

the size of the text compared to Topic Classification.

Finally, Table VIII presents the result of the Sentence
Verbosity removal using the states of the art approaches,

attesting that BERT outperforms other popular models.

610

TABLE X
THE AVERAGE NUMBER OF TIMES EACH MODULE INVOKED. TABLE

SHOWS THE PREVALENCE OF CHALLENGES DISCUSSED IN SECTION II.
Homo REFERS TO Homogenization.

Scenario # of
Reports Homo. Passive to

Active
Resolution

ESR PR ER
Microsoft 4020 27.90 2.07 5.49 4.59 4.60

TrendMicro 11600 23.32 1.34 2.52 5.69 5.31

Ablation Study. To demonstrate the contribution of each

EXTRACTOR module toward the final graph, we performed an

ablation study to measure the similarity of the graph generated

in the absence of that module compared to the baseline (having

all modules active).

Table IX shows results of our ablation study. Each column

represents the result of the MCS similarity score of EXTRAC-

TOR’s generated graph in the absence of that component(w/o).

The baseline for this study is the overall performance of

EXTRACTOR, set at 1. Each column shows the loss of

performance when any specific component is omitted in the

overall approach. The table also shows the diversity in the

writing styles and the fact that every single technique matters

(as there is no column with all 1’s), showing the need to

combine these different techniques across the various reporting

scenarios. Our results show that all the different modules

in EXTRACTOR successfully contribute to various degrees,

depending on the text style, to the concise graph generation. In

particular, they enable EXTRACTOR to process a wide variety

of writing styles successfully.

In addition, we examined the impact of the steps of Nor-

malization, Resolution, and Summarization, by not performing

these steps and rather building the graphs from the raw reports.

Figure 9 shows that the size of such graphs is in the hundreds

of edges, while the size of the graphs obtained by the full

chain of modules is much smaller.

Table X shows the prevalence of challenges discussed in

Section II in two of the major threat report websites [8] and

[18]. Each column represents the number of times that each

module has been invoked (we avoid adding tokenizer as it

has been reflected in Table VII). The second column shows

the total number of analyzed reports. The third and the fourth

columns outline the average number of homogenized instances

and passive to active conversation, respectively. Finally, the

resolution column presents the results of ESR, PR, and ER.

Table XI presents the SRL’s performance before and after

retraining. Finally, Table XII shows the performance of the

SEE module in picking correct and meaningful nodes. To

evaluate our SEE’s completeness, we ran our SEE module on

1,000 public reports used by [89] and compared SSE results

against their result as a baseline. Table XII presents the result

of this evaluation.

VI. DISCUSSION AND LIMITATIONS

False Positives and False Negatives. As shown in Tables

IV and VI there are extraneous nodes or edges in the

EXTRACTOR generated graphs. As discussed in Sections II

njRAT Carbanak Uroburos DustySky HawkEye DeputyDog
0

200

400

600

800

294

665

184

486

194

133

32 31 23 21 31 12

G
ra

p
h

si
ze

(N
u
m

b
er

o
f

ed
g
es

)

Graph without first 3 modules EXTRACTOR

Fig. 9. The size of the generated graph before and after utilizing Normaliza-
tion, Resolution, and Summarization modules.

TABLE XI
THE PERFORMANCE EVALUATION BEFORE AND AFTER TRAINING THE

SRL MODEL ON CTI DATA, WHERE WE USED 80%, 20%, 20% FOR THE

TRAIN, TEST, AND VALIDATION, RESPECTIVELY.

Scenario Precision Recall F-1 Score
SRL(Base) 0.83 0.82 0.84

SRL(Retrained) 0.92 0.93 0.93

TABLE XII
THE PERFORMANCE OF SEE MODULE.

Scenario Precision Recall F-1 Score
SEE 1 0.98 0.99

and III, we note that some loss of precision in extraction

is inevitable due to general issues in dealing with natural

language complexity. What is, therefore, the significance of

these extraneous nodes and edges (or missing ones) in the

EXTRACTOR generated graph with respect to the ’big picture’

of the threat hunting problem? To answer this, we note our

choice of a threat hunting approach that uses approximate

matching [59], facilitates us to successfully identify the threat

despite the extraneous information. In fact, we can go on to

argue that such approximate techniques are required of the

general threat-hunting problem, as it is likely that not all of the

activities described in a threat report are likely to manifest in a

host due to intrinsic factors (e.g., the non-deterministic factors

such as randomness or time affecting the execution of a threat

binary) in the activity-based provenance graphs. Therefore, the

approximation that is inherently needed for threat-hunting is

able to work with the small loss of precision inherent to NLP,

as shown in Section V.

Limitations and Future Works. EXTRACTOR’ s performance

may diminish in scenarios where the description of an action

spans several sentences or a paragraph, where subject or object

resolution might face challenges based on how the threat report

was authored. As an instance of this challenge, see the dis-

cussion about Figure 10-(c) in Section V-A. EXTRACTOR may

deal with this issue if additional information in the form of

alternate reports is made available to resolve these challenges.

Another way to resolve this is to facilitate mechanisms in

EXTRACTOR to actively collaborate with the human operator

to resolve these entities.

Another limitation of our graph-based approach is that it

611

is not applicable to attacks that involve timing, side-channel

inference, etc. The graphs describing the attack behavior are

modelled after audit logs that do not capture information at a

granularity that enables these attacks to be detected. However,

this limitation is common with other approaches that involve

provenance graph-based detection or threat hunting. Similarly,

our approach only extracts the attack behaviors described

in the natural language and cannot resolve the behaviors

represented in other forms like figures and charts.

Various modules of EXTRACTOR use dictionaries to en-

hance the overall performance. While we have tried to be

complete in choosing appropriate words, there may be reports

where people use words that are not in the dictionaries.

Therefore, there can be room to improve the dictionaries

further. Using the Named Entity Recognition (NER) system

may also enhance the approach in translating noun phrases into

unified system representations. Moreover, future works may

extend the EXTRACTOR to infer the graph from unstructured

vulnerability reports. These graphs can be further used to

detect possible vulnerabilities within the application.

VII. RELATED WORK

Provenance Graph Analytics. Several research projects

utilize system audit logs for attack reconstruction and forensic

analysis, and threat hunting [42], [36], [37], [59], [53], [73].

Hercule [69] rebuilds attack stages through comparing logs

collected from various sources. Bilge et al. [23] leverage

NetFlow logs for detecting botnet C&C channels. Oprea et

al. [66] uses web proxy and DNS logs to identify infections

in enterprise networks.

King et al. [49], [48] introduced the practice of constructing

provenance graphs from kernel audit logs. Several studies have

used provenance graphs in attack detection and forensics [43],

[51], [85], [38]. Hossain et al. [43], Xu et al. [85], and LogGC

[51] proposed reduction techniques that reduce the size of

the graph while maintaining the accuracy needed for forensic

analysis. EXTRACTOR can be a companion to these approaches

to provide a clear picture of attacks.

NLP and Threat Information Extraction. Several open

standards such as STIX [15], MISP [72], and OpenIOC [11]

have been proposed to exchange knowledge about IOCs in an

interoperable way. However, unlike our approach, these stan-

dards are more focused on exchanging IOCs than describing

how those IOCs are connected and how the attacks behave

(see the examples at [12]). Companies that use threat exchange

standards instead of only relying on the exchange of high-level

threat data can benefit from the publicly available knowledge

in the wild. On the other hand, these threat exchange standards

are limited in usage, as companies are not equally interested

in sharing their data. Moreover, the exchanged data does not

contain technical details such as the affected registry, file path,

and the application name as they can be a privacy leakage

of the company’s private information. As in many cases, the

organizations’ internal policies prevent the sharing of data with

outside entities [77], [26].

The VirusTotal Graph [21] also differs from our work as

it only represents the high-level view of the attack, mainly

including hashes, IPs, and domains involved in a possible

threat scenario. Also, unlike our approach, VirusTotal’s report

is generated based on the analysis of sample malware, while

EXTRACTOR by having access to the publicly available reports

(which can include the VirusTotal) allows utilization of public

CTI, converting raw reports into actionable knowledge.

iACE [52] proposes a graph mining approach to extract

IOCs from security articles. ChainSmith [89] uses NLP to

extract IOCs from security articles and further categorize them

into campaign stages. TTPDrill [45] proposes an ontology

which helps to understand the characteristics and specifications

of cyber threats. It uses NLP and Information retrieval (IR)

to extract the threat actions from reports. The work of [46]

creates TTP chains from reports, using DP rules. Unlike these

approaches, EXTRACTOR focuses on extracting the attack

behavior and captures system-level causality in the form of

the provenance graphs.

SemFuzz [86] performs fuzzing guided by information

extraced from vulnerability reports. Feng et al. [32] use NLP

to generate network signatures from unstructured vulnerability

reports. They use those signatures in intrusion detection and

firewall systems. Dong et al. [29] use Named Entity Recog-

nition and Relation Extraction to extract software name and

version and report inconsistency between major vulnerability

databases. Even though, somehow related, EXTRACTOR’s goal

and techniques are essentially different from these works.

Featuresmith [88] generates a feature set for detecting

Android malware from security literature. In contrast, EX-

TRACTOR aims to build a provenance graph that represents the

actual behavior of the attack. Privee [90] leverages machine

learning to retrieve web policies. The work of [74] and [68]

relate the app description with permissions using NLP. The

works of [63] and [44] identify users’ sensitive inputs in

Android app. EKLAVYA [25] uses NLP to recover function

signatures from binary code.

VIII. CONCLUSION

EXTRACTOR automatically builds a provenance graph from

CTI reports written in natural language. We evaluate EXTRAC-

TOR using various threat reports and real-world attack sce-

narios. EXTRACTOR successfully extracts graphs that match

those drawn manually by security experts, and those graphs

were successfully used for threat detection.

IX. ACKNOWLEDGMENTS

We would like to thank reviewers for their helpful review

comments and suggestions to the manuscript. Thanks are

especially due to our anonymous shepherd who provided many

useful suggestions for refinement. This work was supported by

DARPA under SPAWAR (N6600118C4035) and NSF (CNS-

1918542). The views, opinions, and/or findings expressed are

those of the authors and should not be interpreted as repre-

senting the official views or policies of the U.S. Government.

612

REFERENCES

[1] “word2vec,” 2013, available at: https://code.google.com/archive/p/word2vec/.

[2] “GloVe: Global Vectors for Word Representation,” 2014,
https://nlp.stanford.edu/projects/glove/.

[3] “Bkdr_kuluoz.en,” 2015, available at:https://www.trendmicro.com/vinfo/
us/threat-encyclopedia/malware/bkdr_kuluoz.en.

[4] “Backdoor:win32/rbot.fg,” 2017, available at:https://www.microsoft.
com/en-us/wdsi/threats/malware-encyclopedia-description?Name=
Backdoor:Win32/Rbot.FG&threatId=68811.

[5] “Sentence length has declined 75% in the past 500
years,” 2017, available at:https://medium.com/@theacropolitan/
sentence-length-has-declined-75-in-the-past-500-years-2e40f80f589f.

[6] “Apt and cybercriminals campaign collection,” 2019, available at:https://
github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections.

[7] “Operation dustysky,” 2019, available at:https://www.clearskysec.com/
wp-content/uploads/2016/01/OperationDustySky_TLP_WHITE.pdf.

[8] “Global threat activity / microsoft security intelligence,” 2020, available
at:https://www.microsoft.com/en-us/wdsi/threats.

[9] “Industrial-strength natural language processing,” 2020, available
at:https://spacy.io/.

[10] “Neuralcoref 4.0: Coreference resolution in spacy with neural networks.”
2020, available at:https://github.com/huggingface/neuralcoref.

[11] “OpenIOC,” 2020, available at: http://openIOC.org.
[12] “Sample STIX reports,” 2020, https://stixproject.github.io/examples/.
[13] “Stanford corenlp – natural language software,” 2020, available at:https:

//stanfordnlp.github.io/CoreNLP/.
[14] “Stanford tokenizer,” 2020, available at: https://nlp.stanford.edu/

software/tokenizer.shtml.
[15] “Structured threat information expression (stix) 1.x archive website,”

2020, available at:https://stixproject.github.io/.
[16] “Symantec security center,” 2020, available at:https://www.broadcom.

com/support/security-center.
[17] “Synonyms,” 2020, https://www.thesaurus.com.
[18] “Threat encyclopedia,” 2020, available at:https://www.trendmicro.com/

vinfo/us/threat-encyclopedia/.

[19] “Transparent Computing,” 2020, https://www.darpa.mil/program/transparent-
computing.

[20] “Virus Radar Threat Encyclopaedia,” 2020,
https://www.virusradar.com/en.

[21] “VT Graph,” 2020, https://www.virustotal.com/gui/graph-overview.
[22] E. AI, “Annotation specifications,” 2020, available at:https://spacy.io/api/

annotation.
[23] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclo-

sure: detecting botnet command and control servers through large-scale
netflow analysis,” in Proceedings of the 28th Annual Computer Security
Applications Conference, 2012, pp. 129–138.

[24] C. Chen and V. Ng, “Chinese zero pronoun resolution with deep neural
networks,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2016, pp. 778–
788.

[25] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 99–116.

[26] J. M. de Fuentes, L. González-Manzano, J. Tapiador, and P. Peris-Lopez,
“Pracis: Privacy-preserving and aggregatable cybersecurity information
sharing,” computers & security, vol. 69, pp. 127–141, 2017.

[27] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[28] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[29] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in 28th {USENIX} Security Symposium ({USENIX} Security 19), 2019,
pp. 869–885.

[30] S. K. D’Mello, “On the influence of an iterative affect annotation
approach on inter-observer and self-observer reliability,” IEEE Trans-
actions on Affective Computing, vol. 7, no. 2, pp. 136–149, 2015.

[31] ESET, “Oceanlotus old techniques, new backdoor,” 2018, available
at:https://www.welivesecurity.com/wp-content/uploads/2018/03/ESET_
OceanLotus.pdf.

[32] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang, H. Zhu, and
L. Sun, “Understanding and securing device vulnerabilities through
automated bug report analysis,” in SEC’19: Proceedings of the 28th
USENIX Conference on Security Symposium, 2019.

[33] K. Fort, Collaborative Annotation for Reliable Natural Language Pro-
cessing: Technical and Sociological Aspects. John Wiley & Sons, 2016.

[34] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. E.
Peters, M. Schmitz, and L. Zettlemoyer, “Allennlp: A deep semantic
natural language processing platform,” CoRR, vol. abs/1803.07640,
2018. [Online]. Available: http://arxiv.org/abs/1803.07640

[35] Gdata, “The uroburos case: new sophisticated rat identified,”
2015, available at:https://www.gdatasoftware.com/blog/2014/11/
23937-the-uroburos-case-new-sophisticated-rat-identified.

[36] A. Goel, W.-C. Feng, D. Maier, and J. Walpole, “Forensix: A robust,
high-performance reconstruction system,” in 25th IEEE International
Conference on Distributed computing systems workshops. IEEE, 2005,
pp. 155–162.

[37] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The taser intrusion
recovery system,” in Proceedings of the twentieth ACM symposium on
Operating systems principles, 2005, pp. 163–176.

[38] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over provenance
graphs,” in Network and Distributed Systems Security Symposium, 2018.

[39] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

[40] L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep semantic role label-
ing: What works and what’s next,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 473–483.

[41] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “{SLEUTH}: Real-
time attack scenario reconstruction from {COTS} audit data,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
487–504.

[42] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence ex-
plosion in forensic analysis using alternative tag propagation semantics,”
in 2020 IEEE Symposium on Security and Privacy (S&P). IEEE, 2020.

[43] M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin, B. He, S. D.
Stoller, G. Fang, F. Piessens, E. Downing et al., “Dependence-preserving
data compaction for scalable forensic analysis,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1723–1740.

[44] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“{SUPOR}: Precise and scalable sensitive user input detection for
android apps,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 977–992.

[45] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill:
Automatic and accurate extraction of threat actions from unstructured
text of cti sources,” in Proceedings of the 33rd Annual Computer
Security Applications Conference. ACM, 2017, pp. 103–115.

[46] G. Husari, E. Al-Shaer, B. Chu, and R. F. Rahman, “Learning apt
chains from cyber threat intelligence,” in Proceedings of the 6th Annual
Symposium on Hot Topics in the Science of Security, 2019, pp. 1–2.

[47] KasperSky, “Carbanak apt the great bank robbery,” 2015, available
at:https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/
2018/03/08064518/Carbanak_APT_eng.pdf.

[48] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings of
the nineteenth ACM symposium on Operating systems principles, 2003,
pp. 223–236.

[49] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality.” in NDSS, 2005.

[50] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation.” in NDSS, 2018.

[51] K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit log,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 1005–1016.

[52] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing
the ioc game: Toward automatic discovery and analysis of open-source
cyber threat intelligence,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 755–766.

613

[53] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

[54] E. Loper and S. Bird, “NLTK: the natural language toolkit,” CoRR,
vol. cs.CL/0205028, 2002. [Online]. Available: https://arxiv.org/abs/cs/
0205028

[55] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, 2015, pp. 401–410.

[56] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, 2016.

[57] McClosky, Charniak, and Johnson, “Automatic domain adaptation for
parsing,” in Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics, 2010, pp. 28–36.

[58] D. McClosky, E. Charniak, and M. Johnson, “Reranking and self-
training for parser adaptation,” in Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics. Association for
Computational Linguistics, 2006, pp. 337–344.

[59] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 1795–1812.

[60] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[61] N. Moran and V. Nart, “Analysis of a new hawkeye variant,” 2013,
available at:https://www.fireeye.com/blog/threat-research/2013/09/
operation-deputydog-zero-day-cve-2013-3893-attack-against-japanese-targets.
html.

[62] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 919–936.

[63] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications,” in 24th
{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp.
993–1008.

[64] S. Nariyama, “Subject ellipsis in english,” Journal of Pragmatics,
vol. 36, no. 2, pp. 237–264, 2004.

[65] V. Ng and C. Cardie, “Improving machine learning approaches to
coreference resolution,” in Proceedings of the 40th annual meeting on
association for computational linguistics. Association for Computa-
tional Linguistics, 2002, pp. 104–111.

[66] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “Detection
of early-stage enterprise infection by mining large-scale log data,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2015, pp. 45–56.

[67] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Computational linguistics, vol. 31,
no. 1, pp. 71–106, 2005.

[68] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}: To-
wards automating risk assessment of mobile applications,” in Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 527–542.

[69] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via com-
munity discovery on correlated log graph,” in Proceedings of the 32Nd
Annual Conference on Computer Security Applications, 2016, pp. 583–
595.

[70] J. W. Pennebaker, “The secret life of pronouns,” New Scientist, vol. 211,
no. 2828, pp. 42–45, 2011.

[71] M. Pfaff and H. Krcmar, “Natural language processing techniques for
document classification in it benchmarking,” in Proceedings of the 17th
International Conference on Enterprise Information Systems-Volume 1.
SCITEPRESS-Science and Technology Publications, Lda, 2015, pp.
360–366.

[72] M.-O. S. T. I. Platform, “Open standards for threat information sharing,”
2020, available at:http://www.misp-project.org/index.html.

[73] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: collect-
ing high-fidelity whole-system provenance,” in Proceedings of the 28th
Annual Computer Security Applications Conference, 2012, pp. 259–268.

[74] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 1354–1365.

[75] J. W. Raymond and P. Willett, “Maximum common subgraph isomor-
phism algorithms for the matching of chemical structures,” Journal of
computer-aided molecular design, vol. 16, no. 7, pp. 521–533, 2002.

[76] E. Riloff et al., “Automatically constructing a dictionary for information
extraction tasks,” in AAAI, vol. 1, no. 1. Citeseer, 1993, pp. 2–1.

[77] F. Sadique, S. Cheung, I. Vakilinia, S. Badsha, and S. Sengupta,
“Automated structured threat information expression (stix) document
generation with privacy preservation,” in 2018 9th IEEE Annual Ubiq-
uitous Computing, Electronics & Mobile Communication Conference
(UEMCON). IEEE, 2018, pp. 847–853.

[78] J. Shang, L. Liu, X. Ren, X. Gu, T. Ren, and J. Han, “Learning
named entity tagger using domain-specific dictionary,” CoRR, vol.
abs/1809.03599, 2018. [Online]. Available: http://arxiv.org/abs/1809.
03599

[79] P. Shi and J. Lin, “Simple BERT models for relation extraction and
semantic role labeling,” CoRR, vol. abs/1904.05255, 2019. [Online].
Available: http://arxiv.org/abs/1904.05255

[80] F. C. Solutions, “njrat,” 2013, available at:https://app.box.com/s/
vdg51zbfvap52w60zj0is3l1dmyya0n4.

[81] W. M. Soon, H. T. Ng, and D. C. Y. Lim, “A machine learning approach
to coreference resolution of noun phrases,” Computational linguistics,
vol. 27, no. 4, pp. 521–544, 2001.

[82] spaCy, “en_core_web_lg,” 2020, available at:https://spacy.io/models/en#
en_core_web_lg.

[83] R. Sukthanker, S. Poria, E. Cambria, and R. Thirunavukarasu, “Anaphora
and coreference resolution: A review,” CoRR, vol. abs/1805.11824,
2018. [Online]. Available: http://arxiv.org/abs/1805.11824

[84] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian
networks for probabilistic identification of zero-day attack paths,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 10, pp.
2506–2521, 2018.

[85] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 504–516.

[86] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 2139–2154.

[87] X. Zhang, “Analysis of a new hawkeye variant,” 2019,
available at:https://www.fortinet.com/blog/threat-research/
hawkeye-malware-analysis.html.

[88] Z. Zhu and T. Dumitraş, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 767–778.

[89] Z. Zhu and T. Dumitras, “Chainsmith: Automatically learning the
semantics of malicious campaigns by mining threat intelligence reports,”
in 2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2018, pp. 458–472.

[90] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for auto-
matically analyzing web privacy policies,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 1–16.

X. APPENDIX

TABLE XIII
SAMPLE OF NOUN PHRASES AND THEIR CORRESPONDING SYNONYMS IN

NOUN DICTIONARY.

Noun Synonyms

IP:.*

’CC server’, ’CC’, ’command and control sever’,
’C2 server’, ’c2’, ’candc server’, ’C2 node’, ’CandC’,

’CandC’, ’command controle sever’, ’C2’, ’CandC server’,
’CC server’, ’CommandControle sever’, ’Command Controle’,...

TEMP
’%TEMP%, ’<TEMP> ’, ’Windows temporary folder’,

’temporary folder’ , ’%Temporary folder%, ’TMP’,
’%Temp Folder%’ ’%Temp directory%,...

Home Folder

’%HOMEPATH%’, ’<HOMEPATH>’,
’%HOME_PATH%’, ’<HOME_PATH>’, ’%HOME%’,

’<HOME folder>’, <HOME Directory>’,
’USER PATH’, ’%USER Directory%’,...

614

TABLE XIV
MALWARE REPORTS DETAILS AND CHARACTERISTICS.

Scenario Year Risk Submitted
Samples Primary target Malware MD5 Description

njRAT [80] - fig. 7 2013 High 30
Middle eastern governments,
energy sectors, and telecom

industries.
2013385034e5c8dfbbe47958fd821ca0

The malware has several capabilities, including logging keystrokes, uploading and downloading files,
recording the victim’s camera, steal user credentials stored in the system, open a reverse shell, and

manipulations of the process, file, and registry, etc.

Carbanak [47] - fig. 10-(a) 2015 High 109
Banking and financial

institutions
1e47e12d11580e935878b0ed78d2294f

The malware has several capabilities, including logging keystrokes, uploading and downloading files,
recording the victim’s camera, steal user credentials stored in the system, open a reverse shell, and

manipulations of the process, file, and registry, etc.

Uroburos [35] - fig. 10-(e) 2014 High 4
"the most significant breach of
U.S. military computers"[35]

51e7e58a1e654b6e586fe36e10c67a73
The malware exploits vulnerabilities in Java (CVE-2012-1723), Adobe Flash (unknown)

or Internet Explorer 6, 7, 8 exploits (unknown), and is capable of performing a wide range of tasks.

DustySky [7] - fig. 10-(d) 2015 High 79
Intelligence gathering
with Political motives

0756357497c2cd7f41ed6a6d4403b395
The malware is written in .NET by a politically-motivated group with primary targets in the

Middle East, Europe, and the United States and can collect a wide range of details from the target system.

HawkEye [87] - fig. 10-(b) 2019 High 3
A wide range of industries

and sectors
666a200148559e4a83fabb7a1bf655ac

The malware has several capabilities, including stealing email credentials, logging keystrokes,
taking screenshots, USB propagation, stealing Bitcoin wallet info, Antivirus, firewall checking, etc.

DeputyDog [61] - fig. 10-(c) 2013 High 8 Against Japanese Targets 8aba4b5184072f2a50cbc5ecfe326701 ZeroDay CVE-2013-3893 against Microsoft internet explorer - Japan

*

210.176.3.130

1: send
2: receive

img20130823.jpg

3: write

C:\Documents and Settings\All
Users\Application Data\28542CC0.dll

8aba4b5184072f2a50cbc5ecfe326701

4: write
HKLM\SOFTWARE\Micros
oft\Windows\CurrentVersio

n\Run\28542CC0

5: write

180.150.228.102

6: send

7: receive

111.118.21.105/css/
sun.css

8: receive

IP:.*

sun.css

9: send
10: receive

downloadmp3server.servemp3.com

11: send

12: receive

 (c) DeputyDog (d) DustySkye

* Plugin.exe1: fork

1d9612a869ad929bd4dd16131ddb133a

2: fork

3: write

4: write

ns.suppoit.xyz

5: send
6: receive

supo.mefound.com

7: send
8: receive

45.32.13.169

9: send
10: receive

IP:.*

11: send
12: receive

vboxmrxnp.dll

13: read

vmbusres.dll

14: read

vmGuestlib.dll

15: read

16: exec

17: exec

18: exec

%TEMP%

19: write

20: exec

%TEMP%\temps

21: write

* 1: write

%system32%\com
2: write

svchost.exe

3: write

avp.exe

4: read

avpui.exe

5: read

%COMMON_APPDAT
A%\Mozilla

6: write

7: read

HKCU\Software\Microsoft\Windows\C
urrentVersion\Internet Settings

8: read

%AppData%\Mozilla\Firefox\
%ProfileName%\prefs.js

9: read

10: fork

msgina.dll

10: write

11: exec

svchost.exe

11: fork

kldconfig.plug

12: read

IP:.*

13: receive

14: log

screenshots

15: log

16: fork

winlogon.exe

16: write

17: fork

termsrv.dll

18: write

csrsrv.dll

19: write
20: write

21: write

22: send

23: send

24: send

%TEMP%

25: write

HKLM\SYSTEM\ControlSet001
\services\ACPI

26: write

HKLM\SYSTEM\ControlSet002
\services\ACPI 27: write

HKLM\SYSTEM\CurrentControlSet\
services\ACPI

28: write

\.\PHYSICALDRIVE0

29: write

30: write

31: write

 (a) Carbanak

keystrokes

 (e) Uroburos

*

credprov.tlb

1: fork

%APPDATA%\Microsoft

2: fork
3: fork

4: fork
4: exec

%APPDATA%
\Microsoft\shdocvw.tlp

5: fork

6: fork6: exec

shdocw.tlp

7: write

HKCU\Software\Classes\CLSID\{42aedc87-2188-41fd-
b9a3-0c966feabec1}\InprocServer32=%APPDATA%\shdocvw.tlp

8: write

winview.ocx

9: write

10: fork
10: exec

C:\Documents and Settings\user1\Application
Data\Microsoft\shdocvw.tlb

11: unlinkC:\Documents and Settings\user1\Application
Data\Microsoft\oleaut32.dll

12: unlink
C:\Documents and Settings\user1\Application

Data\Microsoft\oleaut32.tlb
13: unlink

C:\Documents and Settings\user1\Application
Data\Microsoft\credprov.tlb

14: unlink

C:\Documents and Settings\user1\Application Data\
Microsoftibadcodec.dll

15: unlink

C:\Documents and Settings\user1\Application
Data\Microsoft\libadcodec.tlb

16: unlink

explorer.exe
17: write

18: load
19: load 20: fork 20: exec

IP:.*

21: write

mskfp32.ocx

22: write

msvcrtd.tlb

23: write

winview.ocx

%APPDATA%
\Microsoft\credprov.tlb

%APPDATA%
\Microsoft\credprov.tlb

rundll32.exe

RegAsm.exe 1: fork
*2: fork

clipboard
logger

3: fork

keyboard
logger

4: fork

vbc.exe
5: forks

6: read

7: read

credentials

8: read

9: write

10: fork

Mozilla Thunderbird

11: fork

12: fork

IncrediMail

13: fork

Groupmail

14: fork

MSNMessenger

15: fork

Yahoo!Pager

16: fork

Yahoo!Messenger

17: fork

Windows Mail

18: fork

bot.whatismyipaddress.com

19: send

IP:.*
20: receive

21: fork

Chrome

22: fork

Safari

23: fork

Opera

24: fork

Sunbird

25: fork

Firefox

26: fork

Thunderbird

27: fork

28: fork

YandexBrowser

29: fork

Vivaldi browser

30: fork

tmp
31: read

 (b) HawkEye

Internet Explorer

collected credentials

SeaMonkey

Qualcomm EudoraOutlook

Fig. 10. Graphs after generalization, keeping IOCs and asterisking unknown system entities.

615

