
Poster: Angry Birding:
Evaluating Application Exceptions as Attack

Canaries

Tolga Ünlü, Lynsay A. Shepherd, Natalie Coull, and Colin McLean
Division of Cyber Security

Abertay University
Dundee, United Kingdom

Email: {t.unlu1200,lynsay.shepherd,n.coull,c.mclean}@abertay.ac.uk

Abstract—Application exceptions are anomalous events occur-
ring within the application. These can be caused by common
issues such as simple programming errors; however, they can
also originate from the side-effects of a trial-and-error process
used in active attacks. Utilising attacker-induced exceptions as
a canary for intrusion detection has been demonstrated as a
feasible technique for SQL injection detection, but this has not
been applied to other types of attacks. This paper proposes an
approach to consider attacker-induced application exceptions as
attack canaries. The work is part of an ongoing investigation
on integrating detective defences into applications through es-
tablished development practices.

Index Terms—Honeytoken, Canary, Intrusion Detection, Ex-
ception Monitoring, Developer-Centred Security

I. INTRODUCTION

Monitoring exceptions is an approach to detect whether the

normal flow of an application has been disrupted by events

such as database or business logic errors. While exceptions

can be critical in determining the root cause of an error, they

are also a valuable source of information to prepare attacks,

if they are exposed to malicious actors. For example, the

payload of an SQL injection (SQLi) attack is prepared and

adapted by utilising database error messages. This trial-and-

error process applied against the injection payload is also

required for blind SQLi attacks, where a successful or failed

execution of a payload is inferred from side-channels based on

execution time or returned content. A trial-and-error process is

an essential stage of executing a successful attack in general,

as this provides attackers with the opportunity to observe

potentially exploitable vulnerabilities in a target application.

Application developers can also take advantage of this ex-

ploratory behaviour by monitoring attacker-induced exceptions

from within the application. These attacker-induced exceptions

are similar in functionality to a canary1 and can, combined

with other high-fidelity attack indicators, make applications

attack-aware [15]. Previous research has demonstrated the

feasibility and effectiveness of the canary concept with the

use of honeytokens for web intrusion detection [2] [13] [4] [9]

1A concept originating from coal miners using canary birds, less tolerant
to toxic gases than humans, as a means of monitoring the air quality.

[7]. Honeytokens are a deception-based detection method for

malicious activities by luring attackers into interacting with

fictitious but attractive artefacts such as seemingly sensitive

parameter names. In contrast, the research proposed in this

paper seeks to complement existing deception-based canary

research via an evaluation of attacker-induced exceptions

generated by common data sinks in web applications. The

concept of using attack canaries based on exceptions is a

developer-centred attempt at making the integration of intru-

sion detectors usable. Additionally, the proposed evaluation

aims to explore whether exception-based attack canaries can

emerge as a generic defence mechanism for web applications.

The evaluation is part of a larger research project on enhancing

attack-awareness integration through improving modern and

established web application development practices.

II. PROBLEM STATEMENT

Prior attack-awareness research has revealed that integration

methods often fail to augment techniques already used by

developers but require additional manual effort [8] [14] [16].

Furthermore, a survey conducted by Braun et al. [3] has shown

that the most prevalent web application frameworks at the time

of the analysis do not provide defence mechanisms similar to

Control-Flow Integrity (CFI) techniques2 for native software

applications. A preliminary review of PHP-based web applica-

tion frameworks indicates that this has not changed as of the

time of writing, including mechanisms that utilize exceptions.

For web frameworks in general, the most similar mechanism

to the proposed attacker-induced exceptions appears to be the

SuspiciousOperation exception classes of the Django

web application framework [6]. However, these represent a

limited set of security issues rather than actual attacks and

require manual assignment by a developer. The OWASP

AppSensor project [15], while considering actual attacks and

also providing a reference implementation, is primarily a

prescriptive guide for developers on how to instrument web

applications with detection and response points.

2CFI techniques prevent a program’s control flow from being hijacked
by monitoring deviations of the executed control flow from a pre-computed
representation of a program’s control flow.

701

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Tolga Ünlü. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00052

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
52

III. MOTIVATION

Attacker-induced exceptions could provide a similar benefit

in the case of intrusion detection as stack canaries do for

buffer overflow attacks against native software applications [5].

For example, OpenRASP, an open-source Runtime Application

Self-Protection (RASP) solution, implements SQLi detection

through exception monitoring and demonstrates the feasibility

of this approach for one type of attack [1]. Other types of

attacks could also be detected with this approach, in particular

those which also utilise error states or exceptions of the target

application, such as Server-Side Request Forgery (SSRF).

From an integration perspective, extension-level instrumenta-

tion as performed by OpenRASP is not necessary since ex-

isting exception handling mechanisms at the application-level

can implement the same functionality in a more lightweight

manner, without increasing the attack surface. Improving

exception-based monitoring of application issues can also be

more appealing to developers, as intrusion detection can be

aligned with the quality assurance efforts of development

teams. The augmentation of existing development practices

and tooling is also an opportunity to improve the experience

of developers, alongside the usability of the tools and practices

[12].

IV. PROPOSED APPROACH

The following section outlines the proposed evaluation,

which consists of a monitoring setup to record attacker-

induced exceptions, and an analysis of the recorded exceptions.

Section II discussed a preliminary review on PHP-based web

application frameworks, which will also be the language used

in the proposed evaluation due to its wide-spread adoption

on the web - 79.2% of the websites recognized in the daily

updated report on server-side programming languages by

W3Techs [17].

$$_GGEETT $$_PPOOSSTT

HHTTTTPP

AAttttaacckk
TTeesstt CCaasseess

</></>

ttrryy {{

}}
ccaattcchh((EExxcceeppttiioonn $$ee)){{
lloogg(($$ee));;
}}

DDaattaa

SSiinnkkss

EExxcceeppttiioonn
LLooggss

Fig. 1: Overview of the attacker-induced exception monitoring

setup

A. Monitoring Setup

The setup, as seen in Figure 1, primarily consists of an

instrumented PHP script with a selected set of framework

components making use of data sinks from the latest PHP

environment. These components will be subject to attacks

through PHP’s default APIs for reading incoming HTTP

requests ($_GET,$_POST). Attacks will be performed by

atomic attack test cases and augmented with attacks from

offensive web security tools if needed. Exceptions generated

and monitored during an ongoing attack will be logged for

further analysis.

B. Detection Model

The type of attacks, or more specifically the attacker be-

haviour that the proposed approach aims to detect focuses on

those that attempt to exploit taint-style vulnerabilities in the

target application. A taint-style vulnerability emerges when a

sensitive data sink, e.g. an API to insert data into a database,

can receive tainted data from an untrustworthy data source

such as an API to read incoming HTTP requests, where all

parts of the request are in control of the user.

C. Component and Sink Selection

It is important that the selection criteria for the data sinks

reflect the variety of possible destinations where data can

flow within web applications in general. Regarding the instru-

mented PHP script in the monitoring setup, the sinks of choice

will be the common built-in PHP APIs for file system, web

and database interaction. The sinks determine the framework

components which will make use of these. Figure 2 shows an

example with cURL which is used in PHP web applications for

HTTP communication. cURL is used by libraries like Guzzle

which also provides the HTTP client functionality for web

applications built with the Laravel framework [10]. The Guzzle

HTTP client offers a set of exceptions which can be expected

to be generated during an ongoing attack [11].

FFiillee SSyysstteemm ...HHTTTTPP

DDaattaa SSiinnkkss

DDaattaabbaassee

cURL

GGuuzzzzllee HHTTTTPP CClliieenntt - EExxcceeppttiioonnss

[8]

.\RuntimeException
|___ TransferException
 |--- ConnectException
 |--- RequestException
 |--- BadResponseException
 | |--- ServerException
 | |___ ClientException
 |
 |___ TooManyRedirectsException

Fig. 2: Selection of cURL as a HTTP sink in PHP which is

used by HTTP client libraries such as Guzzle.

702

D. Exception Analysis

The objective of the analysis is to develop a mapping

methodology with which attacker-induced exceptions can be

assigned to specific types of attacks and possibly the actual

attack payload. An initial mapping methodology could be

based on a combination of specific exceptions that occur in

an active attack, considering other factors that are typical in a

trial-and-error process such as the repeated generation of the

same combination of exceptions.

E. Evaluation

The following criteria are selected to evaluate the proposed

approach to address the objectives described in section II.

This is a work in progress, thus the evaluation criteria may

be subject to change:

• Accuracy: An exception-based attack canary is, by

design, not a preventive measure. The candidate

exceptions or the combination of exceptions selected as

canaries must be reliable indicators of attacks, such that

the application can respond with defensive measures

when these canaries are triggered. Exceptions may

require additional information to be checked, e.g. details

from the incoming HTTP request, in order to reliably

determine an attack or attack payload.

• Effectivity: The evaluation must also consider the limi-

tations of the approach, and its effectiveness under cer-

tain conditions, with respect to the previously described

evaluation criteria. This includes scenarios where an

attacker might be able to skip the trial-and-error process

against the actual target and craft an exploit in a lab

environment instead. Such a scenario is not unlikely given

that many web applications are based on web application

frameworks and libraries that are open-source and thus

available to attackers for security research.

V. OUTLOOK

The proposed approach can provide insights on how es-

tablished development practices may be underutilised for

intrusion detection purposes. The motivation behind this ap-

proach and the attack-awareness research it is based on is to

understand what attack indicators can be detected within a web

application and whether it is feasible to infer generic detection

patterns from these indicators. In turn, this could result in

reusable detector components for web applications and frame-

works. The proposed approach has been primarily presented as

a defence mechanism applied at application runtime, however,

it is not limited to this scope. Existing unit and integration

testing modules in web application frameworks could also

be augmented with a security testing module that can be

used in automated tests to verify the functionality of detector

components. Future research seeks to consider whether this

form of tests might be a more usable and developer-centric

alternative to security testing with offensive security tools.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

carefully evaluating our submission and for providing

valuable feedback which helped us in guiding the revision of

our paper and poster.

REFERENCES

[1] Baidu Security Lab. OpenRASP v1.0 official version released —
Database exception monitoring and WebLogic support come as sched-
uled, 2019. https://mp.weixin.qq.com/s/JyR6LIhYau7aARH1v4Grbw.

[2] Timothy Barron, Johnny So, and Nick Nikiforakis. Click This, Not
That: Extending Web Authentication with Deception. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security, pages 462–474, 2021.

[3] Bastian Braun, Christian v. Pollak, and Joachim Posegga. A Survey
on Control-Flow Integrity Means in Web Application Frameworks. In
Nordic Conference on Secure IT Systems, pages 231–246. Springer,
2013.

[4] Joel Chacon, Sean McKeown, and Richard Macfarlane. Towards
Identifying Human Actions, Intent, and Severity of APT Attacks Ap-
plying Deception Techniques - An Experiment. In 2020 International
Conference on Cyber Security and Protection of Digital Services (Cyber
Security), pages 1–8. IEEE, 2020.

[5] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In USENIX security symposium, volume 98,
pages 63–78. San Antonio, TX, 1998.

[6] Django Software Foundation. Django Exceptions — Django docu-
mentation — Django, 2021. https://docs.djangoproject.com/en/3.2/ref/
exceptions/#django.core.exceptions.SuspiciousOperation.

[7] Daniel Fraunholz, Daniel Reti, Simon Duque Anton, and Hans Dieter
Schotten. Cloxy: A Context-aware Deception-as-a-Service Reverse
Proxy for Web Services. In Proceedings of the 5th ACM
Workshop on Moving Target Defense, pages 40–47, 2018.

[8] Calum C. Hall, Lynsay A. Shepherd, and Natalie Coull. BlackWatch:
Increasing Attack Awareness within Web Applications. Future Internet,
11(2):44, 2019.

[9] Xiao Han, Nizar Kheir, and Davide Balzarotti. Evaluation of Deception-
Based Web Attacks Detection. In Proceedings of the 2017 Workshop
on Moving Target Defense, pages 65–73, 2017.

[10] Laravel LLC. HTTP Client - Laravel - The PHP Framework For Web
Artisans, 2021. https://laravel.com/docs/8.x/http-client.

[11] Michael Dowling. Quickstart — Guzzle Documentation, 2015.
https: //docs.guzzlephp.org/en/stable/quickstart.html#exceptions.

[12] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok
Yoon. Programmers Are Users Too: Human-Centered Methods for
Improving Programming Tools. Computer, 49(7):44–52, 2016.

[13] Merve Sahin, Cedric Hebert, and Anderson Oliveira. Lessons Learned
from SunDEW: A Self Defense Environment for Web Applications.
In Proceedings of the 2020 Measurements, Attacks, and Defenses for
the Web (MADWeb) Workshop in the Network and Distributed
System Security Symposium (NDSS), 2020.

[14] Tolga Ünlü, Lynsay A. Shepherd, Natalie Coull, and Colin McLean. A
taxonomy of approaches for integrating attack awareness in applications.
In 2020 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security), pages 1–4. IEEE, 2020.

[15] Colin Watson, Michael Coates, John Melton, and Dennis Groves.
Creating Attack-Aware Software Applications with Real-Time Defenses.
CrossTalk The Journal of Defense Software Engineering, 24(5), 2011.

[16] William Jardine. Application-level purple teaming: Building detection
and response for your most exposed assets, 2020. https://www.f-secure.
com/en/consulting/our-thinking/application-level-purple-teaming.

[17] W3Techs. Usage Statistics and Market Share of Server-side Program-
ming Languages for Websites, May 2021, 2021. https://w3techs.com/
technologies/overview/programming language.

703

