
Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency
Side-Channel Attacks

Hans Winderix
imec-DistriNet

KU Leuven
Leuven, Belgium

hans.winderix@kuleuven.be

Jan Tobias Mühlberg
imec-DistriNet

KU Leuven
Leuven, Belgium

jantobias.muehlberg@kuleuven.be

Frank Piessens
imec-DistriNet

KU Leuven
Leuven, Belgium

frank.piessens@kuleuven.be

Abstract—Recent controlled-channel attacks exploit timing
differences in the rudimentary fetch-decode-execute logic
of processors. These new attacks also pose a threat to
software on embedded systems. Even when Trusted Ex-
ecution Environments (TEEs) are used, interrupt latency
attacks allow untrusted code to extract application secrets
from a vulnerable enclave by scheduling interruption of
the enclave. Constant-time programming is effective against
these attacks but, as we explain in this paper, can come with
some disadvantages regarding performance. To deal with
this new threat, we propose a novel algorithm that hardens
programs during compilation by aligning the execution time
of corresponding instructions in secret-dependent branches.
Our results show that, on a class of embedded systems
with deterministic execution times, this approach eliminates
interrupt latency side-channel leaks and mitigates limitations
of constant-time programming. We have implemented our
approach in the LLVM compiler infrastructure for the San-
cus TEE, which extends the openMSP430 microcontroller,
and we discuss applicability to other architectures. We make
our implementation and benchmarks available for further
research.

Index Terms—Embedded systems; side-channel attacks;
controlled-channel attacks; compiler hardening.

1. Introduction

With the rise of the Internet of Things (IoT) and
the increasing deployment of connected devices in crit-
ical domains such as healthcare and industrial sensing
and actuation, embedded systems move into the focus
of attacks. Many embedded systems are based on in-
expensive low-power processors that lack sophisticated
security mechanisms of high-end CPUs, but still need
to execute cryptographic operations and computations on
confidential data. To mitigate this attack vector, embedded
Trusted Execution Environments (TEEs) [5], [12], [19],
[21], [29], [32], [37] have been developed to provide
enclaved execution for trusted code, which then runs in
isolation from an untrusted context.

State-of-the-art TEEs typically adhere to an execution
model that enables the interruption of trusted enclaves by
untrusted code. Furthermore, low-end embedded TEEs are
built upon CPUs with predictable instruction execution
times, due to the absence of performance-enhancing tech-
niques that introduce timing variations such as caches,

branch predictors and out-of-order pipelines. As shown
by Van Bulck et al. [43], this combination of features
gives rise to a noiseless class of microarchitectural timing
side-channels that rely on interrupt latency.

Listing 1: A secret-dependent branch that is vulnerable to
a timing attack. The FALSE path consumes four cycles,
the TRUE path only one.

1 CMP R12 , R13 ; 1 c y c l e
2 JEQ . TRUE ; 2 c y c l e s
3 . FALSE
4 ADD R12 , R13 ; 1 c y c l e
5 ADD R13 , R14 ; 1 c y c l e
6 JMP # .END ; 2 c y c l e s
7 . TRUE
8 SUB R14 , R12 ; 1 c y c l e
9 .END

10

11 ; R12 , R13 and R14 a r e l i v e h e r e

Listing 2: A secret-dependent branch with balanced execu-
tion times. Balancing execution times closes the start-to-
end timing leaks but leaves the interrupt latency channel.

1 CMP R12 , R13 ; 1 c y c l e
2 JEQ . TRUE ; 2 c y c l e s
3 . FALSE
4 ADD R12 , R13 ; 1 c y c l e
5 ADD R13 , R14 ; 1 c y c l e
6 JMP # .END ; 2 c y c l e s
7 . TRUE
8 SUB R14 , R12 ; 1 c y c l e
9 NOP ; 1 c y c l e

10 NOP ; 1 c y c l e
11 NOP ; 1 c y c l e
12 .END

Start-to-End Timing Attacks. An attacker can extract
secrets by observing the time it takes a system to perform
some computation. Since the practical relevance of this
attack was demonstrated [13], [28], timing attacks and
mitigations have attracted widespread interest, in particu-
lar for cryptographic software. Listing 1 shows an assem-
bly program for the popular TI MSP430 microcontroller.
Assuming that the comparison in line 1 depends on a
secret, this program is vulnerable to start-to-end timing
attacks since the .TRUE and .FALSE branches can be
distinguished based on their execution times, which leaks
information about the secret.

667

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Hans Winderix. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00050

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
50

To mitigate software-level attacks, including side-
channels, techniques have been proposed to analyse and
transform source code such that the resulting program is
semantically equivalent to the input program but does not
exhibit specific vulnerabilities. We refer to these tech-
niques as program hardening. A technique that is often
used to harden programs for low-cost embedded devices
against start-to-end timing vulnerability is to manually
equalise the execution time of secret-dependent branches,
as illustrated in Listing 2. The .TRUE branch is padded
with compensation code in the form of no-op instructions
to match the execution time of the .FALSE branch.
Although research [22] has shown that on high-end sys-
tems such balanced branch implementations can be broken
by exploiting microarchitectural details of the underlying
execution platform, it was believed that this is not the
case for the simple microarchitectural designs of resource-
constrained embedded devices.

Interrupt Latency Attacks. Van Bulck et al. [43] have
demonstrated that simple microcontrollers are vulnerable
to microarchitectural attacks too. They present Nemesis,
the first controlled-channel attack [33], [47] against low-
end embedded processors with a TEE, which exploits
timing differences in the fetch-decode-execute operation
of processors. Being able to precisely schedule interrupts
(e.g., by programming a timer), and then abusing the
microarchitectural property that interrupts are only served
upon instruction retirement, an attacker can observe the
interrupt latency.

As instructions can take a variable amount of CPU
cycles to execute, Van Bulck et al. [43] illustrate con-
vincingly that this observable variance is sufficient to
distinguish the execution of secret-dependent branches
and thereby extract application secrets from a vulnerable
enclave. Balancing the start-to-end execution time, as done
in Listing 2, does not provide protection. A Nemesis
attacker is able to distinguish different executions based
on the interrupt latency of individual instructions. The
corresponding 2-cycle jmp (line 6) and 1-cycle nop (line
10) instructions demonstrate this vulnerability.

On high-end systems, the predominant strategy to
harden software against information leakage through tim-
ing side-channels is by adhering to the constant-time pol-
icy [4], [8], [11], [16], [42]. Constant-time programming
is a security policy that, among others, forbids secret-
dependent jumps altogether, which effectively prevents
attackers from inferring secrets from secret-dependent
control-flow. Not having secret-dependent branches is
effective as a countermeasure against interrupt latency
attacks too.

However, compared to the balancing approach from
Listing 2, constant-time transformations often result in
larger and less efficient code. We illustrate this in List-
ing 3, which contains the if-converted code from Listing 1.
If-conversion is a technique to convert control dependen-
cies into data dependencies, which has been used before to
eliminate secret-dependent branches [18], [35]. The 16-bit
MSP430 architecture lacks predicated instructions, so we
cannot use the technique proposed by Coppens et al. [18].
Therefore, in the example, we apply if-conversion based
on Molnar et al. [35], which consists of the derivation of
a mask from the branch condition, and the application of

that mask in such a way that, although the instructions
from both branches are executed, only the effects of
one branch are taken into account. In our example, we
compute the mask, either 0xFFFF or 0x0000, in register
R10, and its inversion in R11. Before each computation,
we store the original value of the result in the temporary
register R9. Although the resulting code is free of timing
leaks, it comes with a much higher cost with respect
to code size and performance, compared to keeping but
balancing the branches. This is due to the use of additional
registers and extra instructions.

Listing 3: The if-converted code from Listing 1 results in
secure but less efficient code.

1 ; S t ep 1) Compute masks
2

3 CMP R12 , R13 ; i f R12 i s R13
4 MOV R2 , R10 ; b i t 1 o f R2 i s 1
5 RRA R10 ; s h i f t r i g h t
6 AND #1 , R10 ; R10 i s 0 o r 1
7 ADD #−1, R10 ; t r u e mask
8 MOV R10 , R11
9 XOR #−1, R11 ; f a l s e mask

10

11 ; S t e p 2) Apply i f−c o n v e r s i o n
12

13 ; . FALSE
14 MOV R13 , R9
15 AND R10 , R9 ; a p p l y t mask
16 ADD R12 , R13 ; ADD
17 AND R11 , R13 ; a p p l y f mask
18 BIS R9 , R13 ; b i t w i s e OR
19 MOV R14 , R9
20 AND R10 , R9 ; a p p l y t mask
21 ADD R13 , R14 ; ADD
22 AND R11 , R14 ; a p p l y f mask
23 BIS R9 , R14 ; b i t w i s e OR
24

25 ; . TRUE
26 MOV R12 , R9
27 AND R11 , R9 ; a p p l y f mask
28 SUB R14 , R12 ; SUB
29 AND R10 , R12 ; a p p l y t mask
30 BIS R9 , R12 ; b i t w i s e OR

Objective. Our objective is to automatically harden soft-
ware for resource-constrained devices against leaking sen-
sitive information via the interrupt latency channel with
less overhead than if-converting the sensitive parts of the
application. The approach must be automated to allow de-
velopers to create secure software using familiar program-
ming abstractions. Timing leaks should be transformed out
as late as possible in the compilation pipeline, preferably
in the compiler backend. This renders the transformation
source language independent, reduces the chance of later
passes from breaking the protections, and it allows for
earlier passes to be implemented without consideration of
security concerns.

Contributions. Our contributions with this paper are as
follows:

1) We present the first algorithm designed to protect
embedded programs from sensitive information leakage
through the recently disclosed interrupt latency controlled-
channel attack [43]. Our algorithm is capable of hard-
ening programs with non-trivial control-flow graphs by

668

supporting nested branches, statically bounded (nested)
loops and function calls. Our algorithm is also effective
as a countermeasure against start-to-end timing attacks.
2) We present an implementation of our algorithm for the
MSP430 platform as a compiler pass in the LLVM [31]
compiler infrastructure, supporting all MSP430 opcodes.
On this deterministic microcontroller, our approach elim-
inates information leakage through interrupt latency side-
channels completely. We target Sancus [37], an open-
source TEE which extends the openMSP430 microcon-
troller. Our implementation is independent of high-level
languages, eliminates vulnerable code introduced in early
compiler passes, and can also be made independent of
the target platform. We also discuss applicability to other
architectures.
3) We conduct an empirical evaluation of our approach on
a set of synthetic programs that exhibit a wide range of
control-flow patterns, and on a set of third-party programs
taken from five different sources.
4) Our results indicate that constant-time programming
is not always the only defence to protect software from
timing side-channel attacks, an assumption that seems to
be widely accepted by the security community. We show
that under certain systems models, alternatives to constant-
time programming exist for hardening software against
these attacks in a more efficient way.
5) We make our implementation and evaluation available
at https://github.com/hanswinderix/sllvm.

Outline. We have structured this paper to first provide an
intuitive description of our transformation in Section 2.
In Section 3 we present the static analysis and program
hardening phases of our transformation algorithm in de-
tail; a complete example of how our approach affects a
program is given in Section 4. We develop an LLVM-
based implementation and elaborate on an experimental
evaluation of our defence in Section 5. Finally we discuss
related work and the difficulties of a comparative ex-
perimental evaluation of compiler-based defences against
side-channel attacks in Section 6, and draw conclusions
in Section 7.

2. The Defence

In this section we elaborate the objectives and assump-
tions for our hardening transformation, and provide an
intuitive outline of how the approach works. Our objective
is to automatically harden software for low-end processors
against leaking secret-dependent control-flow through the
interrupt latency channel. We aim to accomplish this by
making latency traces of the victim’s execution inde-
pendent of secrets. Here, a latency trace is represented
by the the list of latencies of the executed instructions
along a path in the victim. We propose an algorithm that
transforms a low-level program representation, such that
instructions of alternative execution paths, that originate
from a common secret-dependent branch, and that have
the same distance from the branching instruction, have
equal execution times. We realise this by intelligently
inserting “dummy” instructions, which behave like no-
ops (cf. Sect. 4 for a realistic example). Then, neither
observing the execution time of different branches, nor re-

peatedly interrupting the program and measuring interrupt
latency, allows an attacker to infer sensitive information.

2.1. Assumptions

Our algorithm requires semantic information regard-
ing the sensitivity of program variables which must be
provided by the application developer in the form of
source code annotations. We assume that these annotations
correctly express the sensitivity of the program variables.
This information is automatically propagated throughout
the compiler pipeline where we rely on established static
analyses to infer more refined information such as be-
haviour about loops and the level of sensitivity of inter-
mediate variables.

System Model. We restrict the scope of our defence to
light-weight processors that are common in embedded
devices and in the IoT. For our defence, these execution
platforms must feature an instruction set with determin-
istic execution times. Our defence further requires the
instruction set to allow for the construction of a dummy
instruction for every possible latency class. We define
such a dummy instruction to be an instruction without
observable side effects besides its time to execute. With
this model we specifically target low-end processors that
lack advanced microarchitectural features such as caches,
branch speculation, or out-of-order execution.

Our target processors can feature strong isolation con-
cepts such as TEEs, e.g. Sancus [37] or TrustZone [5],
that prevent untrusted code execution to directly access
a protected application’s memory address space. Here,
controlled-channel attacks [47] may be mounted against
the protected victim application, where the attacker lever-
ages untrusted code execution to control system events
such as interrupts. Issuing these attacker-controlled events
then leads to the victim application leaking its secret state
into the untrusted context.

Attacker & Leakage Model. In this paper we follow the
attacker model of Van Bulck et al. [43], where an attacker
is capable of scheduling interrupts to interrupt code that
executes in a TEE so as to gather information about the
internal state of this otherwise protected execution. We
then assume a leakage model where program execution
leaks its latency trace, i.e. the number of executed instruc-
tions and the latency of each individual instruction. Van
Bulck et al. [43] have shown that this leakage model is
applicable to stored program computers with a multi-cycle
instruction set where either every individual instruction is
uninterruptible and thus executes to completion or where
instructions are abandoned to service pending interrupts
and restarted when the corresponding Interrupt Service
Routine (ISR) is done handling the interrupt.

2.2. Applicability

To demonstrate the generality of our work, we show
that a number of popular processors, which have been em-
bedded in tens of billions of devices, adhere to the model
that is described in the previous section. More specifically,
we discuss three low-end architectures that feature a two-
stage pipeline, i.e, the next instruction is fetched while the

669

current is being executed. These are simple architectures
without advanced features, such as branch speculation and
caches, which renders the execution times of individual
instructions predictable. We provide an implementation of
our defence, which automates the program transformation,
as a pass in the LLVM compiler backend for one of these
architectures, the TI MSP430.

8-bit AVR (Atmel). AVR is a family of 8-bit micro-
controllers developed by Atmel that targets low-end em-
bedded systems. AVR is based on a modified Harvard
architecture where special LPM instructions exist to ac-
cess read-only data stored in program memory. AVR
instructions [7] take between one and three clock cycles
to execute. The number of CPU cycles that are consumed
by a conditional branch instruction depends on whether
the branch is taken or not. Special arrangements, such as
disabling interrupts for a few cycles or address masking,
have to be made for conditional branches to work around
their non-determinism. The number of cycles required
for the other instructions is completely determined at
compile-time. Table 1 lists a possible selection of dummy
instructions that covers the different latency classes of
the AVR core instruction set. For a three-cycle dummy
instruction, the compiler must reserve one ordinary and
one pointer register which increases the register pressure
as these registers cannot be used anymore for values with
overlapping live ranges.

TABLE 1: A set of dummy instructions that covers the
latency classes of the complete AVR core instruction set.

Instruction Cycles Size (bytes)

SUBI R0, $0 1 2
CPSE R0, R0 2 4
LPM R0, Z 3 2

16-bit MSP430 (Texas Instruments). The MSP430 is
a microcontroller family from Texas Instruments built
around a 16-bit processor and designed for low-cost
and low-energy embedded applications. According to the
MSP430xxx family user’s guide [26] the execution of an
MSP430 instruction is completely deterministic and takes
between one and six clock cycles. The actual number of
cycles depends on the addressing modes of the source and
destination operands, not the instruction type itself. Jump
instructions always take two cycles to execute, regardless
of whether the jump is taken or not.

TABLE 2: A set of dummy instructions that covers the
latency classes of the complete MSP430 instruction set.

Instruction Cycles Size (bytes)

MOV #0, R3 1 1
MOV #42, R3 2 1
MOV 2(PC), R3 3 2
BIC #0, 0(R4) 4 2
MOV @R4, 0(R4) 5 2
MOV 0(R4), 0(R4) 6 3

Table 2 lists a possible selection of dummy instruc-
tions that covers the different latency classes of the

MSP430 instruction set. We present and evaluate an im-
plementation of our defence for this processor in Sect. 5.

32-bit Cortex-M23 (ARM). The ARM Cortex-M fam-
ily is a group of 32-bit processor cores with a micro-
controller profile, optimised for low-cost and low-energy
microcontrollers [6]. The Cortex-M23 core supports the
ARMv8-M baseline instruction set and can be combined
with TrustZone [5] technology. Instructions take between
one and five clock cycles to execute, except for the integer
multiplication and division instructions, whose execution
time is implementation-dependent. As with the AVR case,
a conditional branch consumes one or two CPU cycles
depending on whether the branch is taken or not. Thus,
similar measures have to be taken to neutralise the non-
determinism of this instruction. The number of cycles
required for the other instructions is completely deter-
mined at compile-time. The Cortex-M23 core does not
implement the IT instruction and thus does not support
conditional execution. Table 3 lists a possible selection
of dummy instructions that covers the different latency
classes of the ARMv8-M baseline instruction set. The
cycle counts are based on a system with zero wait-states
on the AHB bus, no single-cycle I/O port, a hardware mul-
tiplier speed of 32 cycles and a hardware divider speed of
34 cycles. For the 4-cycle, 32-cycle and 34-cycle dummy
instructions, the compiler must reserve one register, for the
5-cycle dummy instruction three registers. This increases
register pressure as these registers cannot be used anymore
for values with overlapping live ranges.

TABLE 3: A set of dummy instructions that covers the
latency classes of the Armv8-M baseline instruction set.

Instruction Cycles Size (bytes)

MOV R0, R0 1 2
B <label> 2 2
B.W <label> 3 2
BXNS R0 4 2
LDM R0, R1, R2 5 2
MULS R8, R8, R0 32 2
UDIV R8, R8, R0 34 4

2.3. Alignment Algorithms

Alignment algorithms are a class of algorithms that
perform a program transformation such that corresponding
instructions of alternative execution paths have equal exe-
cution times. Instructions correspond when they originate
from a common branch and when they are located at the
same distance from that branch. Alignment algorithms
perform the following operations:

Equalise Path Lengths. Convert the program’s control-
flow graph (CFG) into a functionally equivalent one
such that, for every secret-dependent branch, every path
through the corresponding CFG region of that branch has
the same number of basic blocks.

A basic block is a sequence of instructions that is al-
ways entered at the beginning and exited at the end of that
sequence. Equalising path lengths can be accomplished,
e.g., by inserting dummy basic blocks or by duplicating
basic blocks.

670

Algorithm 1 Algorithm for computing the level structure based on a breadth-first traversal starting from the region’s
entry basic block. Each path through the region is assumed to contain an equal number of basic blocks.

1: function COMPUTELEVELSTRUCTURE(Entry : BasicBlock,Exit : BasicBlock)
2: CurLevel← 0
3: Result[CurLevel]← {Entry}
4: while Exit /∈ Result[CurLevel] do
5: CurLevel← CurLevel + 1
6: Result[CurLevel]← ∅
7: for all u ∈ Result[CurLevel − 1] do
8: for all u→ v do
9: ASSERT(¬ VISITED(v))

10: Result[CurLevel]← Result[CurLevel] ∪ {v}
11: for all u→ v do
12: VISITED(v) ← true

13: ASSERT(|Result[CurLevel]| = 1)
14: return Result

Compute the Level Structure. For every secret-
dependent branch, compute the level structure of the
corresponding CFG region. The level structure of a CFG
region is a partition of the region’s basic blocks into
subsets (levels) that have the same distance from the
region’s entry block. Algorithm 1 shows how to compute
the level structure based on a breadth-first traversal of
an acyclic CFG with equal path lengths. The equal path
length property guarantees that, during the traversal, no
basic block is visited at more than one level, and that the
region’s exit block is reached for all paths simultaneously.

Align Basic Blocks. For every secret-dependent branch,
equalise the execution times of corresponding instruc-
tions, such that basic blocks at the same level of the
level structure have the same latency trace. This can
be accomplished, e.g., by inserting dummy instructions,
reordering instructions or strength reducing (or enhanc-
ing) instructions, where the latter transformation rewrites
instructions into functionally equivalent ones, but with
different execution times.

2.4. A Naive Algorithm

We now consider a naive alignment algorithm. Fig-
ure 1a depicts an acyclic CFG where basic block A ter-
minates in a secret-dependent branch instruction. Step 1,
equalising the path lengths, can be accomplished by seri-
alising every possible path through the CFG based on a
topological order of the basic blocks, such that each level
either contains an empty dummy basic block or a clone,
i.e., a copy of another basic block. This is illustrated in
Figure 1b. Step 2, the computation of the level structure,
can then be done with Algorithm 1. For step 3, the level-
wise alignment of the basic blocks, it suffices to add
dummy instructions to the empty dummy basic blocks
such that their latency trace matches the latency trace of
the clones.

This approach is suboptimal for several reasons. First,
opportunities for sharing basic blocks between different
paths are disregarded. Second, compensation code for all
the paths in an inner region is added to the paths that
are not part of that region. As already observed in prior
work by Agat [3], this unnecessarily increases the size of

A

H

B C

D E

F G

(a)

A

H

B′

D′

F′

B′

E′

F′

B′

E′

G′

C′

E′

F′

C′

E′

G′

C′

G′

(b)

A

H

B C

D E

F

G

G′

(c)

Figure 1: Two alternative strategies to equalise path
lengths. For all these CFGs, basic block A ends in a
secret-dependent branch. A vulnerable CFG (a), length
equalisation based on topological order (b), and a more
efficient approach (c).

the resulting code. Third, corresponding instructions with
equal execution times are not taken advantage of.

To improve on these issues, operations that negatively
impact performance, such as duplicating basic blocks and
inserting dummy instructions, should be kept to a mini-
mum. Finding this minimum is a challenging optimisation
problem.

671

2.5. A More Efficient Algorithm

We now present a high-level overview of our approach
which performs the three operations from Section 2.3 in
a single pass. We also take advantage of opportunities
to reduce the duplication of basic blocks and the inser-
tion of dummy instructions. Furthermore, our algorithm
supports function calls, nested branches and loops with
statically known bounds. The algorithm can be extended
to handle loops with statically unknown bounds, as long
as the termination condition does not depend on sensitive
information. Supporting this requires analysing the loop
condition and the operations on the induction variable(s)
to be able to duplicate them in the compensation code.

Computing the Level Structure. Instead of sequentially
(1) equalising path lengths, (2) then computing the level
structure, and (3) then performing a level-wise alignment
of the basic blocks, our algorithm aligns the basic blocks
of a level as soon as the members of that level have been
determined. A single operation computes the next level of
the level structure and equalises path lengths based on a
breadth-first traversal of the CFG.

Empty Basic Blocks. When computing the next level of
the level structure, one of the successors of a basic block
of the current level may be identified as the region’s exit
block, while not being the case for (some of) the other
blocks of the current level. This means that the corre-
sponding path is shorter than (some of) the other paths.
This situation is illustrated in Figure 2a. To remedy this,
we lengthen the shorter path by inserting an empty basic
block right before the exit block, illustrated in Figure 2b.
When more than one path prematurely exits the sensitive
region, it suffices to insert a single empty block that can
be shared amongst all lengthened paths.

A

C

B

(a)

A

C

B

(b)

A

D

B C

(c)

A

D

B C

C′

(d)

Figure 2: For all these CFGs, basic block A ends in a
secret-dependent branch. The vulnerable CFG in (a) is
hardened in (b) by adding an empty block, to be aligned
later with basic block B. Another vulnerable CFG in (c)
is hardened in (d) by cloning basic block C in C′ and by
adding a shared empty block as the successor of both B
and C, to be aligned later with C′.

Cloning Basic Blocks. When performing a breadth-first
traversal of a CFG region with unequal path lengths, it is
possible that a basic block is visited more than once. Such
a block can not be aligned multiple times, as this will
break a previously hardened level. Our algorithm deals
with this situation by cloning already visited blocks, as
illustrated in Figure 2d.

A

E

B

C

D

(a)

A

E

B

C

D

(b)

Figure 3: For all these CFGs, basic block A ends in a
secret-dependent branch. The vulnerable CFG in (a) is
hardened in (b) by adding a dummy loop in the right path
to compensate for the loop in the left path.

Loops. When our algorithm detects a natural loop, it first
recursively hardens the CFG region that corresponds to
that loop. Then, the latency trace of the hardened loop is
computed which is used to create compensating dummy
loops (cf. Figure 3). Programs with sensitive loops that
are not statically bounded are rejected.

Aligning a Set of Basic Blocks. In his seminal work
on transforming out timing leaks, Agat [3] proposes a
technique to align a set of basic blocks by performing
a crosswise padding of every basic block with the low-
slice of the others. A downside of cross-copying is that
equal execution times of corresponding instructions are
not taken advantage of, which would avoid inserting un-
necessary dummy instructions.

Figure 4 illustrates our alignment strategy. For every
basic block, we maintain an instruction iterator, which is
initialised to point to the first instruction of the basic block
it represents. Each of these instruction iterators in turn
takes on the role of the reference iterator. The execution
times of corresponding instructions are compared to the
execution time of the reference instruction. When the
execution times match, the comparing iterator is advanced,
otherwise a compensating dummy instruction is inserted.
After checking all corresponding instructions, the refer-
ence iterator is advanced.

Trusted Function Calls. An iterator pointing to a call
instruction temporarily takes on the role of the reference
iterator. Then, a hardened and a dummy version of the
callee are generated, the call is replaced by a call to its
hardened version, and a call to the dummy version is
inserted in the other paths. Finally, the reference iterator
is advanced and its temporary role ends.

Putting It All Together. Applying our path length equal-
isation strategy to the vulnerable CFG from Figure 1a
demonstrates the impact of the chosen strategy. As illus-
trated by Figure 1c, in order to equalise the path lengths of
the vulnerable CFG, our algorithm needs to add only two
blocks: one dummy block and one clone. The topological
order-based approach from Figure 1b requires 11 clones
and 19 dummy blocks.

Similarly, our strategy to align a set of basic blocks
limits the number of instructions of the basic blocks from
Figure 4 to four, and only adds four dummy instructions in
total. Applying cross-copying would result in basic blocks
with nine instructions, or 19 additional instructions.

672

1

2

1

2

3

2

3

1

(a)

1

2

1

2

3

1

2

3

1

(b)

1

2

1

2

3

1

2

3

1

(c)

1

2

3

1

2

3

1

2

3

1

(d)

1

2

3

1

1

2

3

1

1

2

3

1

(e)

Figure 4: Aligning a set of basic blocks from a vulnerable (a) to a hardened set (e). Shaded blocks represent reference
blocks, arrows indicate where the instruction iterators are pointing to, dummy instructions are underlined.

3. The Algorithm

In this section, we present our algorithm in more
detail. We decompose it in a static analysis and a program
hardening phase; we focus on the latter.

3.1. Static Analysis

The static analysis phase consists of a number of
compile-time analyses that conservatively approximate the
run-time behaviour of the program under analysis. Static
analysis informs the program hardening phase. Note that
this paper does not aim to advance the state-of-the-art in
static analysis, and we consider this orthogonal research.
At the expense of less efficient output programs, an al-
gorithm can reduce its reliance on static analysis; and at
the expense of more work for the programmer, an algo-
rithm can rely more on programmer annotations. These
approaches are taken in related work, such as in [18].

First of all, the control-flow analysis computes the
program’s control-flow graph (CFG). A node in the CFG
represents a basic block, an edge stands for a possible flow
of execution from one block to another. The dominance
analysis computes the dominance and post-dominance
relations between the CFG nodes. The outcome of this
analysis, the dominator tree, is useful, e.g., to determine
if a basic block is control-dependent of a secret-dependent
branch, or to find the exit block of a sensitive CFG region.
Loop analysis uses the CFG to identify natural loops and
special loop blocks, such as the loop pre-header, header,
latch and exit blocks. Loop analysis also computes the
trip count of sensitive loops. Reaching definitions analy-
sis (RDA) collects information about which assignments
reach which instruction operands. Finally, the sensitivity
analysis is responsible for the identification of the differ-
ent sensitive regions in the CFG, based on the security
annotations from the developer and the RDA results.

3.2. Program Hardening

Algorithm 2 contains simplified pseudo-code for our
program hardening phase, which consists of a number of
elementary operations that we discuss in the following.

AlignSensitiveBranch. The parameters of this opera-
tion are the entry and the exit blocks of the sensi-
tive branch region to align. This operation first invokes
ComputeNextLevel to retrieve the first level of the level
structure based on its entry block, and then traverses
the region in level-order until it reaches the exit block.

Every iteration deals with two possible cases. First, if a
loop has been detected, all contained regions in the loop
are aligned, and a dummy loop is inserted before every
basic block from the current level. Otherwise, the basic
blocks in the current level are aligned with each other, as
described in section 2.

ComputeNextLevel. The operation ComputeNextLevel is
at the heart of our alignment algorithm. It determines the
next level to align, equalises paths lengths, clones basic
blocks and detects loops. The end of a sensitive branch
region is reached when the given level is the last level of
the region’s level structure. This is the case when every
basic block of that level has the exit block as its single
successor (line 13). A loop is found when one of the
successor blocks is the header of a natural loop (lines
14-18). To determine the next level, ComputeNextLevel
computes the union of the direct successors of all basic
blocks belonging to the given level (lines 19–29). Three
cases are dealt with. First, an empty basic block is added
to every path that prematurely reaches the exit block,
making the empty block an element of the next level.
Second, already aligned successor blocks are cloned, and
each clone is added to the next level. Third, if the first two
cases do not apply, it is the successor block itself that is
added to the next level.

AlignContainedRegions. This operation aligns all the
contained regions of the given loop. First it recursively
invokes AlignContainedRegions for every directly nested
loop. Then, it recursively invokes AlignSensitiveBranch
for every directly nested branch. The recursive nature of
this operation makes sure that eventually all the contained
regions, at any nesting level, are aligned.

InsertDummyLoops. This operation inserts a dummy
loop before every basic block that belongs to the given
level, such that every dummy loop produces the same
latency trace as the given loop. Note that the caller of this
operation must make sure that the given loop is already
aligned. We define the footprint of an aligned loop as the
latency trace of a single iteration. By definition, every
iteration of an aligned loop produces the same latency
trace. We represent a footprint as a list of basic blocks.

InsertDummyLoops iterates over all the basic blocks
of the given level, (line 38), inserts a dummy block for
each footprint block (lines 39-44, 59), and aligns each
dummy block with the corresponding footprint block (line
51). For every loop header block that is encountered
along the way, a compensating loop preheader is inserted,
and instructions are generated that initialise the induction

673

Algorithm 2 A simplified version of the alignment algorithm

1: procedure ALIGNSENSITIVEBRANCH(Entry : BasicBlock, Exit : BasicBlock)
2: (Loop, Level)← COMPUTENEXTLEVEL({Entry}, Exit)
3: while Level �= ∅ do
4: if Loop = None then
5: ALIGNBASICBLOCKS(Level)
6: else ALIGNCONTAINEDREGIONS(Loop)
7: Level← INSERTDUMMYLOOPS(Level, Loop)

8: (Loop, Level)← COMPUTENEXTLEVEL(Level, Exit)

9: function COMPUTENEXTLEVEL(Level : List of BasicBlock, Exit : BasicBlock)
10: Loop← None
11: NextLevel← ∅
12: Successors← FLATTEN({ SUCCESSORS(x) | x ∈ Level})
13: if ∃x ∈ Level : |SUCCESSORS(x)| > 1 ∨ FIRST(SUCCESSORS(x)) �= Exit then
14: LoopHeaders← {x | x ∈ Successors, ISLOOPHEADER(x)}
15: if LoopHeaders �= ∅ then
16: Header ←FIRST(LoopHeaders)
17: Loop←LOOPFOR(Header)
18: NextLevel← Successors \ {Header})
19: else Empty ← CREATEBASICBLOCK

20: for all Block ∈ TOPOLOGICALSORT(Level) do
21: for all Successor ∈ SUCCESSORS(Block) do
22: if Successor = Exit then
23: CONNECT(Block �→ Exit, Block → Empty → Exit)
24: NextLevel← NextLevel ∪ {Empty}
25: else if ISALIGNED(Successor) then
26: Clone← CLONEBASICBLOCK(ORIGINAL(Successor))
27: CONNECT(Block �→ Successor, Block → Clone)
28: NextLevel← NextLevel ∪ {Clone}
29: else NextLevel← NextLevel ∪ {Successor}
30: BREAKCYCLES(Block, Level)

31: return (Loop,NextLevel)

32: procedure ALIGNCONTAINEDREGIONS(Loop)
33: FOREACH(LOOPS(Loop), λx.ALIGNCONTAINEDREGIONS(x))
34: FOREACH(SENSITIVEBRANCHES(Loop), λx.ALIGNSENSITIVEBRANCH(x))

35: function INSERTDUMMYLOOPS(Level : List of BasicBlock, Loop)
36: NextLevel← {LOOPEXIT(Loop)}
37: for all Block ∈ Level do
38: LoopHeaders← ∅, P rev ← None
39: for all Ref ∈ FOOTPRINT(Loop) do
40: BB ← CREATEBASICBLOCK

41: if Prev �= None then
42: CONNECT(Prev �→ Block, Prev → BB)
43: else
44: FOREACH(PREDECS(Block), λx.CONNECT(x �→ Block, x→ BB))

45: if ISLOOPHEADER(Ref) then
46: PreHeader ← BB
47: BB ← CREATEBASICBLOCK

48: CONNECT(PreHeader → BB)
49: PUSH(LoopHeaders,BB)
50: PUSHANDINITINDUCTIONREGISTER(PreHeader)

51: ALIGNBASICBLOCKS({Ref, BB})
52: if ISLOOPLATCH(Ref) then
53: Exit← CREATEBASICBLOCK, Header ← POP(LoopHeaders)
54: CONNECT(BB → Header, BB → Exit)
55: UPDATEANDCOMPAREINDUCTIONREGISTER(BB)
56: POPINDUCTIONREGISTER(Exit)
57: BB ← Exit
58: CONNECT(BB → Block)
59: Prev ← BB
60: NextLevel← NextLevel ∪ {Exit}
61: return NextLevel

674

register after pushing the current value of that register
on the stack (lines 45-50). When encountering the loop
latch block, a back edge to the dummy header is created,
and a dummy loop exit block is inserted. Instructions to
update and compare the induction register, and to restore
the previous value of the induction register are generated
(lines 52-57). The return value of this operation is the last
aligned level so far, which consists of all the loop exit
blocks (lines 36, 60).

3.3. Complexity

Let us briefly consider the worst case performance of
our algorithm, which occurs under two conditions. First,
all corresponding instructions before hardening must have
different execution times, in which case the performance
of our transformation degenerates to that of the cross-
copying method from Agat [3]. Second, every node (in
the first half) of the CFG must end in a two-way branch.
These conditions will result in a blow-up that grows
exponentially in the number of levels, which negatively
impacts both code size and execution time. It is possible
to mitigate the size blow-up by factoring out common
dummy code into dedicated functions. We leave this for
future work.

4. A Comprehensive Example

Listing 4: Comprehensive example program in C, featur-
ing nested loops, nested if statements and function calls.

1 i n t b a r (i n t a , i n t b) ;
2

3 i n t foo (s e c r e t i n t a , i n t b) {
4 i n t r e s u l t = 3 ;
5

6 i f (a < b) {
7 f o r (i n t i =0 ; i <3; i ++) {
8 i n t j , r ;
9

10 i f (a == 12)
11 b a r (i , j) ;
12

13 f o r (j =0 ; j <3; j ++)
14 r = b a r (i , j) ;
15

16 i f (b == 12)
17 b a r (r , r * r) ;
18 }
19 }
20 r e t u r n r e s u l t ;
21 }

We present an example with non-trivial control-flow
to demonstrate the working of our defence. Listing 4
contains an excerpt from the ifthenlooplooptail
benchmark program (cf. Sect. 5). The function foo con-
tains function calls, nested if-statements and nested loops.
The secret annotation in the function signature of foo
signals our implementation that parameter a of foo con-
tains sensitive information.

Figures 5 and 6 respectively show the vulnerable CFG
and the hardened CFG of foo. In hardened programs,
symbol names with the _nds_ and the _ndd_ prefixes
represent hardened and dummy versions of the corre-
sponding unhardened function.

...
cmp r10, r9
jge BB9

clr r8

...
ret

cmp #12, r9
jne BB4

call #bar

mov #3, r7

call #bar
add #-1, r7
tst r7
jne BB5

cmp #12, r10
jne BB8

call #bar

inc r8
cmp #3, r8
jne BB2

Figure 5: Vulnerable CFG of Listing 4.

5. Implementation and Evaluation

In this section we discuss our reference implementa-
tion. We also present an experimental evaluation, where
we consider effectiveness and performance.

5.1. Implementation

We implemented the algorithm as a MachineFunction
pass in the LLVM [31] MSP430 back-end, where we
systematically traverse all assembly level functions to
align the sensitive branches. By leveraging LLVM, we
avoid having to implement a whole range of compiler
infrastructure ourselves. Moreover, the target independent
code generator framework makes it possible to write target
independent algorithms.

We chose the openMSP430 as our target architecture
because it presents a small and stable open-source exe-
cution platform, for which a TEE has been implemented
through the Sancus extensions [37]. The Nemesis attack
has been demonstrated on this architecture [43], and
orthogonal research to detect vulnerable programs [40]
and to defend against Nemesis with hardware modifica-
tions [14] have been presented based on the openMSP430
and Sancus. As we project in Sect. 2, implementing our
defence for other architectures such as AVR or certain
ARM cores should be possible.

To be secure, the program hardening phase must be
informed by sound analyses. It would not be secure, for
example, if the secret-dependent condition of a branch
is analysed as secret-independent. Hence, we rely on

675

...
cmp r10, r9
jge BB10
jmp BB1

clr r8
mov #42, r3
jmp BB11

mov #42, r3
nop
mov #42, r3
jmp BB17

mov 2(r0), r3
nop
jmp BB2

push r10
clr r10
jmp BB18

cmp #12, r9
mov #42, r3
jne BB13
jmp BB3

call #_nds_bar
mov #42, r3
mov #42, r3

mov #42, r3
call #_ndd_bar
mov #42, r3
jmp BB4

mov #3, r7
jmp BB14

mov 2(r0), r3
nop
jmp BB5

call #_nds_bar
add #-1, r7
tst r7
nop
mov #42, r3
jne BB5
jmp BB15

mov #42, r3
jmp BB6

cmp #12, r10
jne BB16
jmp BB7

call #_nds_bar
mov #42, r3
mov #42, r3

mov #42, r3
call #_ndd_bar
mov #42, r3
jmp BB8

inc r8
cmp #3, r8
nop
mov #42, r3
jne BB2
jmp BB12

mov #42, r3
jmp BB9

...
ret

mov #42, r3
mov #42, r3
mov #42, r3
jmp BB19

call #_ndd_bar
mov #42, r3
jmp BB20

mov #42, r3
jmp BB21

push r10
clr r10
jmp BB22

call #_ndd_bar
nop
nop
inc r10
cmp #3, r10
jl BB22
jmp BB23

pop r10
jmp BB24

mov #42, r3
mov #42, r3
jmp BB25

call #_ndd_bar
mov #42, r3
jmp BB26

nop
mov #42, r3
inc r10
cmp #3, r10
jl BB18
jmp BB27

pop r10
jmp BB9

Figure 6: Hardened CFG of Listing 4.

sound analyses only, also in the presence of pointers and
aliases. Therefore, some valid C programs will be rejected.
For instance, our implementation is not able to compute
the trip count of all statically bounded loops. However,
our implementation is complete enough to accept all
the programs of our two benchmark suites. Sound over-
approximations of the analysis do have a performance im-
pact. For example, our implementation might incorrectly
classify insensitive branches as sensitive. This is secure
but it obviously has a negative impact on performance.

Our implementation of the RDA and sensitivity analy-

ses leverage the LLVM compiler infrastructure by building
upon its control-flow, dominance and loop analyses. We
kept these data-flow analyses simple by imposing strict
well-formedness criteria (e.g. to be able to detect the
loop trip count) and by providing sometimes imprecise
(but sound) information (e.g. concerning the sensitivity of
intermediate values). An improved static analysis is out
of scope of this paper.

Adding annotations to the source code that reflect the
intended security semantics is the task of the developer
by indicating which function parameters are secret (cf.
Sect. 4). To this end, we modified Clang, the LLVM
front-end for the C family of programming languages.
We conservatively consider global variables to be se-
cret, do not distinguish between the secrecy of pointers
and the memory they point to, neither do we allow to
declassify secret variables. Improving the expressiveness
of our annotation model will have a positive impact on
performance. We leave this as future work.

5.2. Benchmark Suite

An existing suite of annotated benchmark programs
with timing side-channel vulnerabilities would be ideal for
evaluating our implementation. Unfortunately, to the best
of our knowledge, there is no such suite. For this reason,
we composed a meaningful benchmark suite ourselves,
that consists of (1) a set of twelve synthetic programs,
featuring a wide range of control-flow patterns, and specif-
ically designed for this kind of evaluation, and (2) ten
realistic third-party programs that have been used before
in the evaluation of related work.

The twelve synthetic benchmark programs we created
are derived from the unit tests that we used to test our
implementation. These unit tests, and consequently the
derived benchmark programs, exhibit diverse CFG pat-
terns in order to achieve high code coverage, which is
necessary to assess the effectiveness of our approach.
These CFG patterns range from simple triangle-shaped
branches, over branches with loops, to multi-level nested
branches containing loops and function calls.

Furthermore, we selected ten third-party benchmark
programs from five independent sources: six bench-
mark programs from related academic work [34], [43],
two programs from a competitive embedded benchmark
suite [25], one program from the Botan cryptographic
library [1], and one program from the runtime of Texas In-
struments’ MSP430-GCC-OPENSOURCE [27] compiler.
First, in [34], Mantel and Starostin experimentally evalu-
ate four source-to-source transformations for mitigating
timing side-channel vulnerabilities. For this evaluation,
four Java programs programs from different domains with
different degree of sophistication were selected; we ported
these programs to C: (1) square-and-multiply modular
exponentiation from RSA, (2) computation of a share’s
value, (3) Kruskal’s algorithm for calculating the min-
imum spanning tree (MST) of a graph, and (4) mod-
ular multiplication from the IDEA cipher. Second, we
included code from the two Sancus case studies from the
Nemesis [43] paper: (1) a password comparison routine
from Texas Instrument’s MSP430 serial Bootstrap Loader
(BSL) implementation and (2) a secure I/O application
that prevents an untrusted operating system from reading

676

a secret PIN code. Third, we selected the two programs
from the competitive benchmark suite from Texas Instru-
ments [25] which do not consist of straight-line code and
thus have branches: the 8-bit and the 16-bit switch case
programs. Fourth, the Botan cryptographic library [1] pro-
vides an implementation of the key schedule function of
the Twofish block cipher with a control dependency on the
secret key, which we also used for our evaluation. Finally,
since integer multiplication is not natively supported by
all MSP430 microarchitectures, a software routine is avail-
able in the the compiler runtime. Our evaluation includes
a slightly modified version of the integer multiplication
routine provided by Texas Instruments’ MSP430-GCC-
OPENSOURCE toolchain [27].

The majority of our benchmark suite consists of non-
cryptographic code. Real-world cryptographic code is typ-
ically written in a constant-time fashion, and such code
does not contain secret-dependent control-flow. For in-
stance, Wu et al. [46] analysed 19,708 lines of C/C++
code from real-world cryptographic libraries and identified
only a single secret-dependent if-statement across these
libraries. Our benchmark suite does contain primitive op-
erations that are often used in cryptographic code: integer
multiplication, modular multiplication, and modular ex-
ponentiation. Non constant-time implementations of these
primitives can render cryptographic code vulnerable to
side-channel attacks.

5.3. Experimental Setup

We conducted our experiments on a Dell Optiplex
9020 desktop with a Haswell quad-core Intel i7-4790
CPU, clocked at 3.6 GHz, with 16 GB of RAM, and run-
ning Ubuntu 20.04 with a generic 64-bit Linux 5.4.0 ker-
nel. We compiled our experiments with version 0.9b of Se-
curity Enhanced LLVM (SLLVM) [45], which is adapted
from LLVM 13.0.0. We assembled and linked the ex-
periments with version 8.3.0.16 of the Texas Instruments
MSP430-GCC-OPENSOURCE C compiler toolchain. We
linked against the SLLVM development versions of the
Sancus [37] support library and the Sancus compiler run-
time. We ran the experiments on the cycle-accurate Sancus
simulator which is based on the openMSP430.

Every benchmark program is similarly structured: the
main function invokes the entry function of a Sancus
enclave that performs a sensitive computation. To achieve
maximal branch and path coverage, the entry function is
invoked several times, each time with different but care-
fully chosen input parameters in order to trigger different
execution paths. Each such invocation corresponds to what
we will refer to as an experiment.

To normalise the results, we established a baseline
where we performed each experiment with our defence
disabled. To determine the effectiveness and the overhead
of our approach, we then performed each experiment with
our defence enabled. The results that we report are based
only on the code that is executed in the enclave.

Finally, to obtain cycle-accurate timing measurements,
we ran the compiled benchmarks on the Sancus simulator,
which produces a waveform file that represents the state
of the CPU during simulation. From the waveform file, we
then extracted the latency trace for each experiment. Since

the Sancus instruction execution times are deterministic,
this is exactly as on real hardware.

5.4. Experimental Results

We verified the effectiveness of our defence by a man-
ual inspection of the latency traces of the experiments. For
all experiments, we are able to reveal the secret-dependent
control-flow prior to hardening, demonstrating that every
benchmark is indeed vulnerable to the Nemesis attack.
Hardening the code with our defence effectively renders
all experiments observationally equivalent regarding in-
struction latency. Thus, all interrupt latency and start-to-
end timing vulnerabilities are eliminated. For instance,
Figure 7 and Figure 8 depict the latency traces for the
three experiments of the diamond benchmark before and
after hardening, respectively.

Figure 7: Latency traces of the vulnerable experiments
for the diamond benchmark. Each figure corresponds to
the latency traces of one experiment. The arrows point
to instructions that are sufficient to distinguish the three
experiments.

Figure 8: Latency traces of the hardened experiments for
the diamond benchmark. Each figure corresponds to the
latency trace of one experiment. The experiments cannot
be distinguished anymore.

677

TABLE 4: Synthetic benchmark suite. Each row contains the performance results of one benchmark. Columns 2 and
3 contain the absolute measurements for the vulnerable baseline, columns 4, 5 and 6 contain the overhead of our
defence relative to the vulnerable baseline. Columns 3 and 5 contain a value for each experiment, where an experiment
corresponds to a unique flow of execution. Column 6 contains the overhead relative to the execution time of the longest
execution path.

Benchmark Vulnerable Baseline Overhead of Hardening
Size Execution time Size Execution time Execution time

(bytes) (cycles) (relative to optimum)

call 302 112, 91 1.09x 1.05x, 1.30x 1.05x
diamond 284 102, 101, 103 1.16x 1.13x, 1.14x, 1.12x 1.12x
fork 264 90, 91 1.06x 1.07x, 1.05x 1.05x
ifcompound 384 370, 371, 372 1.06x 1.02x, 1.02x, 1.02x 1.02x
ifthenloop 284 143, 96 1.27x 1.19x, 1.77x 1.19x
ifthenloopif 342 179, 108 1.38x 1.60x, 2.66x 1.60x
ifthenlooploop 308 378, 101 1.54x 1.36x, 5.08x 1.36x
ifthenlooplooptail 350 387, 387, 113 1.63x 1.25x, 1.25x, 4.27x 1.25x
indirect 274 95, 97 1.18x 1.19x, 1.16x 1.16x
loop 400 2841 1.06x 1.02x 1.02x
multifork 290 92, 100, 96, 99 1.19x 1.18x, 1.09x, 1.14x, 1.10x 1.09x
triangle 266 92, 94 1.09x 1.09x, 1.06x 1.06x

Geometric mean 1.21x 1.32x 1.15x

The performance results of the synthetic benchmarks
are summarised in Table 4. Each row in this table contains
the results of one benchmark program. The second and the
third column contain the absolute measurements of the
vulnerable baseline in terms of code size and execution
time. Column four contains the overhead in code size of
each compiled benchmark program relative to the code
size of the compiled vulnerable baseline. Column five
contains the overhead in execution time for each hardened
experiment relative to its corresponding vulnerable base-
line experiment. As said before, each benchmark is used
for one or more experiments, which explains the multiple
values in columns three and five,

Program hardening techniques that make sure that the
execution time of secret-dependent code is constant, such
as ours and the if-conversion technique [18], [35], hit a
fundamental performance limit which is determined by the
execution path with the longest execution time. Indeed, to
ensure that the different execution paths through a secret-
dependent region have equal execution times, it is impos-
sible to do better than this optimum. This is the reason
for the sometimes large differences in overhead between
experiments of the same benchmark. For instance, the
overhead of the second experiment of the ifthenlooploop
benchmark (5.08x) corresponds to the empty then ex-
ecution path through the secret-dependent region. After
hardening however, this execution path is padded with a
large number of dummy instructions to match the much
longer alternative path. The loops further amplify this
effect. Therefore, we believe that it is sometimes better
to report the overhead in execution time relative to the
execution time of the longest execution path. The last
column of Table 4 contains this metric.

We summarised the performance results of the third-
party benchmark programs in Table 5. To be able to com-
pare our technique with constant-time programming, we
created a straight-line version for each of these programs
by manually performing if-conversion at source code level
according to the technique proposed by Molnar et al [35].
To prevent the compiler from introducing branches again,
and thus undoing the carefully if-converted code, we

compiled all versions of this second batch of benchmarks
with optimisations disabled. On average, the overhead
of the third-party benchmark suite is on par with the
overhead of the synthetic suite. Overall, if-conversion
performs worse than our technique, although for some
benchmarks (keypad, mulhi3, mulmod8, sharevalue, and
twofish), our approach produces slightly larger binaries,
which is a consequence of compiling with optimisations
disabled.

Based on the empirical results of these experiments,
we conclude that on average our approach results in an
increased code size of 22% and in an increased execution
time of 17%. On the target architecture, our transformation
also outperforms if-conversion, for which we observed
overheads of 35% and 76% for the third-party benchmark
programs. We believe our overheads are reasonable given
the offered security. As part of future work, we would like
to investigate some optimisations that can further reduce
this overhead.

6. Related Work

As Kocher points out in his seminal work on tim-
ing side-channels [28], making software run with fixed
timings is hard. Unexpected timing variations can be
introduced by performance improving techniques such as
compiler optimisations and microarchitectural features. A
long line of research [2], [24], [33], [38], [39], [47], [48]
has successfully demonstrated attacks that exploit features
found in modern out-of-order processors, including vir-
tual memory, caches and branch predictors. Brumley and
Boneh [13] show the feasibility of remote timing attacks.

6.1. Compile-Time Defences

Transforming out timing leaks by balancing secret-
dependent branches was first proposed by Agat in [3],
where a sound transformational security type system for
a simple imperative language is described. The transfor-
mation equalises the execution time of sensitive branches
by cross-copying skip instructions. Kopf and Mantel [30]

678

TABLE 5: Third-party benchmark suite. Each row contains the performance results of one benchmark. Columns 2
and 3 contain the absolute measurements for the vulnerable baseline. Only the path with the longest execution time is
reported. Columns 4 and 5 contain the overhead of our defence relative to the vulnerable baseline, columns 6 and 7
the overhead of if-conversion.

Benchmark Vulnerable Baseline Overhead of balancing Overhead of if-conversion
Size Execution time Size Execution time Size Execution time

(bytes) (cycles)

bsl 394 984 1.12x 1.20x 1.27x 1.47x
keypad 672 1119 1.28x 1.56x 1.24x 1.81x
kruskal 634 2460 1.14x 1.08x 1.16x 1.24x
modexp2 702 23537 1.05x 1.31x 1.05x 1.32x
mulhi3 416 904 1.37x 1.59x 1.34x 2.01x
mulmod8 482 425 1.49x 1.07x 1.40x 1.36x
sharevalue 480 3398 1.06x 1.04x 1.05x 1.07x
switch16 402 115 1.41x 1.09x 2.29x 4.65x
switch8 402 115 1.41x 1.09x 2.29x 4.65x
twofish 8872 92745 1.06x 1.00x 1.02x 1.02x

Geometric mean 1.23x 1.19x 1.35x 1.76x

propose a unification-based approach to balance instruc-
tions. Dewald et al. [20] apply Agat’s idea in practice,
with a non-transformational security type system to detect
unbalanced branches on the AVR platform.

In comparison, our algorithm leads to more efficient
code than the technique described by Agat, as hardened
programs typically consist of fewer dummy instructions.
We also believe it is important to separate the concerns of
transformation and verification. Not requiring a compiler
pass to be formally verified, makes it possible to realise
complex transformations. A simple and elegant, but for-
mally proven verifier can then provide strong guarantees
that the resulting code is free of timing leaks.

The current trend to counter timing side-channels is to
adhere to the constant-time policy. Modern out-of-order
architectures take a central role in this line of research
and balancing execution timings is not effective on these
systems. The constant-time programming policy avoids
secret-dependent control-flow altogether [4], [8], [16]–
[18], [35], [41], [42], [46]. This policy is effective against
the Nemesis attack, since there are no secret-dependent
branches, only straight-line code. On high-end processors,
where attackers can exploit advanced microarchitectural
features, adhering to the constant-time policy is arguably
the only reliable and future-proof defence, although re-
cent work [15], [23] shows that classical constant-time
programming is not effective either in presence of out-
of-order and/or speculation. On the other hand, low-end
architectures such as AVR, MSP430, and certain ARM
and RISC-V cores have very different microarchitectural
designs with deterministic timings which allow for more
relaxed policies.

Automated approaches to detect and mitigate tim-
ing vulnerabilities have been proposed [10], [36], [44].
Language-based techniques that deal with side-channels
typically focus on the detection of side-channels, rather
than program hardening through code transformation. Fur-
thermore, existing proposals for program transformations
are often limited to simple, theoretical languages.

A compiler lowers high-level language abstractions
into low-level processor instructions, enabling it to control
how information may leak. Similar to how compilers
optimise code, based on execution models of the target

architecture and algorithms, e.g. for register allocation and
instruction scheduling, it is possible to create architecture-
specific leakage models to support the automatic detec-
tion and hardening of vulnerable code. Compiler-based
approaches have been proposed at different abstractions
levels [16]–[18], [20], [41], [46]. Mantel and Starostin [34]
experimentally evaluate four source-to-source transforma-
tions for mitigating timing side-channel vulnerabilities:
cross-copying [3], conditional assignment [35], transac-
tional branching [9], and unification [30].

Our work presents a novel defence that mitigates
timing side-channels and interrupt-latency attacks on
lightweight embedded platforms, and that aims to reduce
performance overheads on these platforms. In difference
to all related work, we have implemented our defence in
the backend of a compiler. We argue that timing leaks
should be transformed out as late as possible in the com-
pilation pipeline, preferably in the compiler backend. This
renders the transformation source-language independent,
reduces the risk of later compiler passes from breaking
the protections, and allows for earlier passes to be im-
plemented without security considerations. The LLVM
X86CmovConversion pass, e.g., converts x86 CMOV in-
structions into branches when profitable, possibly breaking
the security hardening by an earlier if-conversion [18].

6.2. Comparability of Experimental Results

Compile-time defences against low-level side-channel
attacks are bound to be rather specific to an execution
platform and a leakage model, but also to a compiler
architecture, source languages and intermediate program
representations, and even application domains. With a
focus on mitigating a novel attack on embedded execu-
tion platforms, our work is no different. To the best of
our knowledge, there are neither generic benchmarks nor
related works that evaluate a defence designed to pre-
vent information leakage through interrupt side-channels.
While embedded execution platforms similar to AVR or
MSP430 microcontrollers are rather wide-spread, soft-
ware development for these platforms is typically done
in low-level languages and many toolchains and compiler
front-ends for higher-level languages do no support code

679

generation for embedded platforms. This makes it diffi-
cult to directly compare our transformation with existing
work that typically focuses on desktop architectures. In
the following paragraphs we focus on explaining why a
comparison with relevant and recent related publications
is currently not feasible. Developing a benchmark and
evaluation approach for the security-enhancing compila-
tion to embedded platforms would be interesting but goes
far beyond the scope of this paper.

Most recently, Wu et al. [46] evaluated an LLVM-
based program transformation that hardens cryptographic
library code against both instruction and cache timing
side-channels. The authors introduce a new compiler in-
trinsic, which we would have to implement for embed-
ded target architectures, and the results of a comparison
would be highly dependent on the quality of this imple-
mentation. Furthermore, implementation artifacts of [46]
are not available in source code, requiring us to either
re-implement the proposed algorithms or exchange the
output of intermediate compilation stages across different
versions of LLVM. We deem these options to be either
not viable, or to yield unreliable results.

In [34], Mantel and Starostin experimentally evaluate
transformations that remove timing side-channel vulner-
abilities. The evaluation relies on four relatively simple
benchmark programs, comparable with the ones we use.
However, the programs in [34] are written in Java, com-
pilation of which to the MSP430 is not supported. We
do not expect a comparison of Java byte-code with native
embedded code to yield reliable results as both runtime
environments vary fundamentally in feature-richness.

The use of if-conversion in a compiler backend to
eliminate secret-dependent timing is first proposed by
Coppens et al. in [18], and evaluated based on three ex-
ponentiation functions and an RSA implementation from
the OpenSSL library. We argue that these benchmarks are
rather trivial in terms of control-flow complexity as they
cover only a subset of the cases contained in our bench-
mark. The OpenSSL function is an interesting use case
that we may consider in future work; still, a direct com-
parison is not possible since Coppens et al. target the x86
architecture and implementation artifacts of the program
transformations are not available. The transformations
in [18] are similar to what is proposed by Molnar et al.
in [35]. Molnar et al. evaluate these transformations based
on two implementations of cryptographic algorithms, RC5
and IDEA. Reproducibility and comparability is again not
feasible due to the unavailability of these transformations
in a recent compiler toolchain.

A code transformation that is based on the execution of
“decoy paths”, which are later merged through predicated
store instructions, is proposed by Rane et al. in [41].
While the program transformations appears to be similar
to [18], [35], Rane et al. implement their approach as a
transformation of a program’s Intermediate Representation
(IR) in LLVM. A mean performance overhead of 16.1x is
reported. While this overhead is worse than what we report
in this paper, differences between the target architectures
and attacker models do not warrant a direct comparison.
The benchmarks from [41] are not publicly available.

A range of related publications, including e.g., [36]
and [3] do not evaluate the performance and size of the
post-transformation code at all.

6.3. Orthogonal Approaches

Recently, Busi et al. [14] propose a hardware-based
countermeasure against interrupt-latency attacks for inter-
ruptible Sancus [37] enclaves. Their approach changes the
fetch-decode-execute operation of the processor so as to
pad out observable timing differences. In contrast to our
work, this approach requires hardware modifications and
is thus not applicable to off-the-shelf devices, including
the ones already deployed in the field.

7. Conclusion

We present and evaluate an automated approach to
harden embedded enclave programs at compile time
against sensitive information leakage through a novel
class of side-channel attacks. Our approach is based on
a semantics-preserving program transformation to guar-
antee that branches in secret-dependent control flow each
have the same number of instructions with the same per-
instruction execution times. We implement and evaluate
our transformation as a compiler pass that operates on
low-level machine IR in LLVM, showing that interrupt la-
tency vulnerabilities are eliminated. Our approach is appli-
cable to programs for low-end processors with predictable
instruction execution times; we evaluate a prototype of the
compiler pass for the TI MSP430 microcontroller, and
project the feasibility of implementing the defence for
AVR and certain ARM-based processors. Our results indi-
cate that smaller and more efficient code can be generated
for these processors than by following the constant-time
policy, while still securing against timing side-channels.
This allows us to conclude that balancing branches can
be preferable over constant-time programming in some
situations. We anticipate that our approach will enable
the hardening of embedded enclave programs beyond
cryptographic functions, e.g., in critical control systems
or IoT devices.

In future work we may extend our approach to pro-
vide protection against additional side-channel attacks,
consider a range of possible optimisations in our algo-
rithm and implementation, extend the comparison with
the constant-time policy, and envisage an evaluation on
an extended application scenario. Another future line of
work could be a formalisation and correctness proof of
the algorithm.

Acknowledgments

We thank Jo Van Bulck, Raoul Strackx and Job Noor-
man for helpful discussions about this work. We thank Jo
Van Bulck and Raoul Strackx for comments on an early
draft of this paper. We thank the anonymous reviewers
for helpful comments that helped improving the paper.
This research is partially funded by the Research Fund
KU Leuven, and by the Flemish Research Programme
Cybersecurity. This work was partially supported by a gift
from Intel Corporation.

680

References

[1] “Botan: Crypto and TLS for Modern C++,” https://github.com/
randombit/botan/.

[2] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of
simple branch prediction analysis,” in Proceedings of the 2nd
ACM symposium on Information, computer and communications
security. ACM, 2007, pp. 312–320.

[3] J. Agat, “Transforming out timing leaks,” in Proceedings of the
27th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. ACM, 2000, pp. 40–53.

[4] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th USENIX Secu-
rity Symposium (USENIX Security 16), 2016, pp. 53–70.

[5] T. Alves and D. Felton, “TrustZone: Integrated hardware and
software security,” ARM white paper, vol. 3, no. 4, pp. 18–24,
2004.

[6] ARM, “Cortex-M23,” https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m23.

[7] Atmel, “AVR Instruction Set Manual,” 2016,
https://ww1.microchip.com/downloads/en/devicedoc/
atmel-0856-avr-instruction-set-manual.pdf.

[8] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of
side-channel countermeasures: the case of cryptographic “constant-
time”,” in 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF). IEEE, 2018, pp. 328–343.

[9] G. Barthe, T. Rezk, and M. Warnier, “Preventing timing leaks
through transactional branching instructions,” Electronic Notes in
Theoretical Computer Science, vol. 153, no. 2, pp. 33–55, 2006.

[10] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne,
“A first step towards automatic application of power analysis coun-
termeasures,” in 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2011, pp. 230–235.

[11] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact
of a new cryptographic library,” in International Conference on
Cryptology and Information Security in Latin America. Springer,
2012, pp. 159–176.

[12] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “TyTAN: Tiny trust anchor for tiny devices,” in Design
Automation Conference (DAC ’15). IEEE, 2015, pp. 1–6.

[13] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[14] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T.
Mühlberg, and F. Piessens, “Provably secure isolation for interrupt-
ible enclaved execution on small microprocessors,” in 33rd IEEE
CSFW. IEEE Computer Society, 2020.

[15] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan,
T. Rezk, and G. Barthe, “Constant-time foundations for the new
spectre era,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020, pp.
913–926.

[16] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang,
R. Jhala, and D. Stefan, “FaCT: A flexible, constant-time pro-
gramming language,” in 2017 IEEE Cybersecurity Development
(SecDev). IEEE, 2017, pp. 69–76.

[17] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT: a
DSL for timing-sensitive computation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2019, pp. 174–189.

[18] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on
modern x86 processors,” in 2009 30th IEEE Symposium on Security
and Privacy. IEEE, 2009, pp. 45–60.

[19] W. Daniels, D. Hughes, M. Ammar, B. Crispo, N. Matthys, and
W. Joosen, “S μ v-the security microvisor: a virtualisation-based
security middleware for the internet of things,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference: Industrial
Track, 2017, pp. 36–42.

[20] F. Dewald, H. Mantel, and A. Weber, “AVR processors as a
platform for language-based security,” in European Symposium on
Research in Computer Security. Springer, 2017, pp. 427–445.

[21] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART:
Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust,” in 19th Annual Network and Distributed System
Security Symposium (NDSS ’12), 2012.

[22] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1,
pp. 1–27, 2018.

[23] R. Guanciale, M. Balliu, and M. Dam, “Inspectre: Breaking and
fixing microarchitectural vulnerabilities by formal analysis,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 1853–1869.

[24] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–Bringing
access-based cache attacks on AES to practice,” in 2011 IEEE
Symposium on Security and Privacy. IEEE, 2011, pp. 490–505.

[25] T. Instruments, “MSP430 competitive benchmarking,” 2005, http://
www.mcuzone.com/work/DIMM144-CPU-MSP430/slaa205a.pdf.

[26] ——, “MSP430x1xx Family: User’s Guide,” 2006, https://www.ti.
com/lit/ug/slau049f/slau049f.pdf.

[27] ——, “MSP430-GCC-OPENSOURCE,” 2020, https://www.ti.com/
tool/MSP430-GCC-OPENSOURCE.

[28] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Annual International
Cryptology Conference. Springer, 1996, pp. 104–113.

[29] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan,
“TrustLite: A security architecture for tiny embedded devices,” in
EuroSys ’14. ACM, 2014, p. 14 pages.

[30] B. Köpf and H. Mantel, “Transformational typing and unifica-
tion for automatically correcting insecure programs,” International
Journal of Information Security, vol. 6, no. 2-3, pp. 107–131, 2007.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in International Sym-
posium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 2004, pp. 75–86.

[32] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović,
“Keystone: A framework for architecting TEEs,” arXiv preprint
arXiv:1907.10119, 2019.

[33] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 557–574.

[34] H. Mantel and A. Starostin, “Transforming out timing leaks, more
or less,” in European Symposium on Research in Computer Secu-
rity. Springer, 2015, pp. 447–467.

[35] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The
program counter security model: Automatic detection and removal
of control-flow side channel attacks,” in International Conference
on Information Security and Cryptology. Springer, 2005, pp. 156–
168.

[36] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2012, pp. 58–75.

[37] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling,
“Sancus 2.0: A low-cost security architecture for IoT devices,”
ACM Transactions on Privacy and Security (TOPS), vol. 20, pp.
7:1–7:33, 2017.

[38] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” in Cryptographers’ track at
the RSA conference. Springer, 2006, pp. 1–20.

[39] C. Percival, “Cache missing for fun and profit,” 2005.

[40] S. Pouyanrad, J. T. Mühlberg, and W. Joosen, “SCFMSP: static
detection of side channels in MSP430 programs,” in Proceedings
of the 15th International Conference on Availability, Reliability and
Security, 2020, pp. 1–10.

681

[41] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 431–446.

[42] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code
constant time?” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2017. IEEE, 2017, pp. 1697–1702.

[43] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt
Logic,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 178–
195.

[44] C. Wang and P. Schaumont, “Security by compilation: an auto-
mated approach to comprehensive side-channel resistance,” ACM
SIGLOG News, vol. 4, no. 2, pp. 76–89, 2017.

[45] H. Winderix, “Security Enhanced LLVM,” Master’s thesis,
KU Leuven, 2018, https://distrinet.cs.kuleuven.be/software/sancus/
publications/winderix18thesis.pdf.

[46] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2018, pp. 15–26.

[47] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
640–656.

[48] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719–732.

682

		2022-08-24T13:32:05-0400
	Preflight Ticket Signature

