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Abstract—The Coronavirus Disease (COVID-19) has caused
millions of casualties across the globe. One inexpensive and
noninvasive screening method for COVID-19 is the analysis of
chest X-ray (CXR) images for pathological features in the lungs.
These features are difficult to detect by humans, but convolutional
neural networks (CNN) have proven effective at extracting
them. This paper uses four ImageNet-pre-trained CNNs: VGG16,
DenseNet201, ResNet50, and EfficientNetB3 to perform transfer
learning to a task of COVID-19 CXR image detection on a
dataset containing COVID-19, healthy, and viral pneumonia CXR
images. We compare the performance of the retrained CNNs
using standard measures and investigate the features they use for
their predictions using local interpretable model-agnostic expla-
nations (LIME). The networks are retrained on two classification
tasks: Task 1 consists of classifying healthy and COVID-19 CXR
images and task 2 consists of classifying viral pneumonia and
COVID-19 CXR images. We find that DenseNet201 and VGG16
achieve higher accuracies than ResNet50 and EfficientNetB3 in
both tasks. However, the LIME explanations reveal that VGG16
does not learn disease-relevant features in the lungs, while
DenseNet201, ResNet50, and EfficientNetB3 use regions in the
lungs to make their predictions. This observation is reinforced
by comparing LIME explanations with ground-truth lung regions
on an unseen dataset. The prospect of using ”black box” deep
neural networks for automatic screening of CXRs for COVID-
19 can be improved with LIME-enabled investigations of model
performance.

Index Terms—COVID-19, chest X-rays, machine learning,
explainability

I. INTRODUCTION

The Coronavirus pandemic has taken over 24,000 lives
in Canada alone and continues to spread at alarming rates
throughout the world despite the roll-out of several vaccines,
public health safety measures, and rapid tests [1]. The Coron-
avirus disease (henceforth COVID-19, or COVID) causes mild
respiratory illness in most infected people, but some develop
life-threatening cases of pneumonia.

The spread of COVID-19 is currently being controlled in
large part through the use of clinical screening tests. The most
common test is the reverse transcription polymerase chain
reaction (PCR) test, which uses respiratory tissue samples to
screen for the disease [2]. However, this test can be painful,
invasive, and in short supply. Instead, less intrusive methods
such as diagnostic radiology [3] can be used to diagnose
COVID-19 non-invasively. This method includes the analysis
of chest X-Ray (CXR) images for features of COVID-19 in

the lungs. However, these features are shared by other types of
viral pneumonia, so it is critical to be able to distinguish the
CXR images of patients with COVID-19 from healthy patients
as well as patients with other respiratory diseases.

Automatic feature recognition through the use of deep
learning techniques is now widely used in biomedical ap-
plications. For medical imaging applications, convolutional
neural networks (CNNs) have proven to be extremely effective
at extracting subtle features that are not readily perceptible
by humans. Many researchers have recently published papers
using CNNs to detect COVID-19 in CXR images due to two
main factors: the increasing availability of CXR image datasets
and the broad access of free machine learning (ML) software
and tools [4], [5]. The transfer learning technique is also
a major contributor to the successful results in many such
papers.

Transfer learning allows researchers to train only the final
(top) layers of a very deep CNN using a relatively small
dataset while retaining the predictive power of the rest of the
pre-trained network. This technique was used by Chowdhury
et al. to fine-tune several pre-trained ImageNet models to
detect COVID-19 in CXR images [6]. The same concept
was also applied by Apostolopoulos and Mpesiana to classify
COVID-19 in CXR images among both healthy patients and
several types of viral and bacterial pneumonia [7]. Image
augmentation is also used to compensate for relatively small
COVID-19 datasets. Techniques such as random rotations and
translations of the training images were used by Alazab et al.
to artificially increase the size of their dataset from 98 to 1,000
training images and achieve competitive COVID-19 detection
results [8]. Many papers report validation accuracies of over
95% [9].

Although there has recently been a large amount of research
on detecting COVID-19 using CXR images, the interpretability
of the models has often been neglected. This aspect of artificial
intelligence is of paramount importance in the medical field,
since healthcare professionals do not generally trust black-
box models [10]. In this paper, we aim to interpret the per-
formances of four popular pre-trained ImageNet CNNs using
Local Interpretable Model-agnostic Explanations (LIME) [11].
We compare the performance of VGG16 [12], DenseNet201
[13], ResNet50 [14], and EfficientNetB3 [15] for the detection
of COVID-19 cases in CXR images and discuss the validity
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of a common model training methodology using explained
predictions of both seen and unseen data.

II. METHODOLOGY

We used transfer learning with four very deep CNNs
(VGG16, DenseNet201, ResNet50, and EfficientNetB3) pre-
trained on the ImageNet dataset in order to alleviate the need
to have a large CXR dataset and long training times [16].

A. Dataset and classification tasks

We used the COVID-19 Radiography Database [4] for the
classification tasks in this study. This dataset contains 3,616
COVID-19 positive, 10,192 healthy, and 1,345 viral pneumo-
nia CXRs. Two sub-datasets were created from the COVID-19
Radiography Database for two different classification tasks.

Dataset 1 contained only the COVID-19 and healthy CXRs
and was used to train the CNNs to classify patients as either
healthy or having COVID-19. This set used 3,616 COVID-19
positive CXRs and a random sample of 3,616 healthy CXRs.
Dataset 2 contained the COVID-19 and viral pneumonia CXRs
and was used to train the CNNs to classify a patient suffering
from COVID-19 or another viral pneumonia. This dataset used
1,345 viral pneumonia CXRs and a random sample of 1,345
COVID-19 positive CXRs. The two classification tasks are
shown in Fig. 1.

The same validation scheme was used for both classification
tasks: 80% of the data was used in training and 20% of the data
was held out for validation. The models were trained using the
Adam optimizer with accuracy as the main validation metric
and binary cross entropy as the loss function. The performance
metrics are discussed further in section II-C. All models and
experiments used the same image preprocessing steps: images
were all resized to dimensions 256×256 and the proper pixel
normalization was done according to the requirements of each
CNN.

B. CNN models

Four pre-trained CNNs were used for transfer learning
in this paper: VGG16, DenseNet201, ResNet50, and Effi-
cientNetB3. The model architectures and ImageNet weights
were included in the Tensorflow Python package. The transfer
learning architectures are shown in Fig. 1.

We removed the top classification layer from the pre-trained
networks and froze the model weights from the remaining
layers during training. A new fully connected layer with two
hidden units was appended to the top of the networks with a
softmax activation function for the binary classification tasks
described in the following section.

C. Performance metrics

The performance of the CNNs in detecting COVID-19
pneumonia was evaluated using three performance metrics:
accuracy, sensitivity, and specificity. These are defined in (1),
(2), and (3). True positives (TP) refer to the correctly classified
COVID-19 cases, false negatives (FN) refer to the incorrectly
classified COVID-19 cases, true negatives (TN) refer to the

Fig. 1: CNN architecture for the both the healthy vs. COVID-
19 and viral pneumonia vs. COVID-19 binary classification
tasks.

correctly classified healthy (or viral pneumonia) cases, and
false positives (FP) refer to the incorrectly classified healthy
(or viral pneumonia) cases.

It was important to measure not only accuracy, but also
sensitivity and specificity because of the nature of the classi-
fication tasks. For example, it may be advantageous to have a
conservative classifier that has a high sensitivity for COVID-
19 detection at the expense of specificity. It could also be
argued that a classifier with a low specificity (and thus more
FP) could result in unnecessary follow-up screenings.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

D. Interpretable explanations of CNN predictions

The predictions of the CNNs were explained using Lo-
cal Interpretable Model-Agnostic Explanations (LIME) [11].
LIME is a method for training a simple, interpretable linear
model to approximate the decision function of any black box
model such as a CNN. For image classifiers, LIME begins by
creating an interpretable representation of the input images in
the form of superpixels, which are collections of pixels that
share similar properties such as pixel intensity.

To explain a given instance, LIME samples instances similar
to the original instance and gets predictions for them using
the original black box model. It then uses the sampled in-
stances and predictions as a new training dataset to which
an interpretable linear model (explainer) is fit. The explainer
is then used to generate explanations in the form of saliency
maps depicting regions of an image that contribute to a given
prediction.

LIME explainers were fit to five instances for each model
using SP-LIME [11], an algorithm that picks the most repre-
sentative and least redundant explanations to show the user.
The resulting explanations were analyzed to determine the
trustworthiness and expected generalizability of each model.

Additionally, we used the RNSA Pneumonia Detection
Competition dataset [17] to validate that the CNNs learned
important features in the CXR images when detecting COVID-
19 and viral pneumonia. This dataset consists of 8,964
pneumonia, 8525 healthy, and 11,500 non-pneumonia disease
CXRs. The pneumonia CXR images also included ground
truth bounding boxes for the affected regions. We used the
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TABLE I: Performance metrics for the CNNs trained on the
two classification tasks.

Task Model Accuracy Sensitivity Specificity

Healthy
vs.
COVID

VGG16 95.71 92.39 99.03
DenseNet201 96.47 96.4 96.54
ResNet50 93.15 90.59 95.71
EfficientNetB3 92.39 89.62 95.15

Viral vs.
COVID

VGG16 100 100 100
DenseNet201 99.25 98.51 100
ResNet50 96.84 94.79 98.88
EfficientNetB3 92 84.01 100

pneumonia CXR images as the input to our models trained
on both classification tasks and compared their LIME expla-
nations with the ground truth regions. While it was difficult to
make a performance metric comparison of the models using
this unseen dataset since it did not include the COVID-19
CXR images, the ground truth regions in the pneumonia CXR
images provided a way to verify the trustworthiness of the
predictions generated by the pre-trained models using our
common transfer learning methodology.

III. RESULTS

Two different classification tasks were performed using
four pre-trained CNN models. Task 1 consisted of classifying
healthy and COVID-19 CXR images and task 2 consisted of
classifying viral pneumonia and COVID-19 CXR images.

A. Results of healthy vs. COVID-19 classification task

The performance of the CNNs for the healthy vs. COVID-19
classification task on the validation dataset is shown in Table
I. All models achieved relatively high classification accuracy,
sensitivity, and specificity, but DenseNet201 scored higher
than the other CNNs in both accuracy and sensitivity. VGG16
achieved a similar accuracy to DenseNet201, but scored
significantly worse in sensitivity and subsequently better on
specificity. ResNet50 and EfficientNetB3 underperformed on
the validation metrics. Interestingly, the specificity of VGG16,
ResNet50, and EfficientNetB3 was considerably greater than
their sensitivity, indicating a bias toward predicting patients as
healthy.

Although the high accuracy scores were encouraging, we
proceeded to train LIME explainers on several instances of
healthy and COVID-19 CXR images. Fig. 2 shows repre-
sentative samples of explanations for one correct COVID-19
prediction and one correct healthy prediction from the two
models with the best performance: VGG16 and DenseNet201.
The left column shows the original images being explained, the
middle column shows the LIME explanation superpixels that
contributed to predicting the correct class, and the right column
shows the superpixels that contributed against predicting the
correct class.

Fig. 2a and Fig. 2b showed that VGG16 prioritized super-
pixels of high pixel intensity in its predictions. The areas that
contributed to both predictions were not centered around the
lungs, as one would expect for this type of classification, but

were instead located at the bones around the shoulders and
lower abdomen. This provided evidence against the claim that
the VGG16 model learned relevant features in the lungs that
could help distinguish a COVID-19 CXR from a healthy one.

DenseNet201 used more areas in the thorax to make its
predictions, as shown in Fig. 2c and Fig. 2d. Both the COVID-
19 and healthy predictions were made with contributions from
superpixels in the lungs. However, there were also superpixels
present in the shoulder and lower abdomen. DenseNet201
had more convincing explanations showing that it may have
learned some relevant lung features, but there were also
unexpected superpixels in the explanations that detracted from
this conclusion.

While VGG16 and DenseNet201 performed similarly in
terms of accuracy, sensitivity, and specificity, the explanations
provided by LIME allowed us to examine the potential gen-
eralizability of the models. Since VGG16 used the brightest
white superpixels in the CXR images to make its predictions,
it may not achieve good performance on a dataset with
different dynamic range or pixel intensity characteristics. The
DenseNet201 explanations contained superpixels in the lungs,
suggesting that it was more successful in learning lung features
that could be used to classify unseen datasets.

B. Results of COVID-19 vs. viral pneumonia classification
task

The performance of the CNNs on the viral pneumonia
vs. COVID-19 classification task on the validation dataset is
shown in Table I. Again, VGG16 and DenseNet201 clearly
surpassed ResNet50 and EfficientNetB3 in validation accuracy
and sensitivity. The very high accuracy achieved by VGG16
and DenseNet201, as well as the high specificity achieved by
all the models, may be attributed to the smaller size of the
task 2 dataset.

The LIME explanations for the top two top performing
models are shown in Fig. 3. VGG16 did not use superpixels
containing the lungs, according to Fig. 3a and 3b. The COVID-
19 prediction was made using the regions in the sternum,
abdomen, and part of the CXR background. The viral pneumo-
nia prediction contained some superpixel regions in the lungs,
but also in the shoulder, abdomen, and background. This was
similar to the VGG16 behavior in Task 1, where the model
clearly did not learn features in the area of the lungs. This
provided evidence that the model would not generalize well to
unseen data and therefore its predictions could not be trusted.

The explanations of DenseNet201 shown in Fig. 3c and
Fig. 3d appeared to be more reasonable. There were more
superpixels that contributed to the correct class prediction from
the lungs than VGG16, although there were also some super-
pixels in unexpected areas such as the clavicle and abdomen.
This reinforced that DenseNet201 was better able to extract
important features in the lungs to classify viral pneumonia and
COVID-19. However, the small training dataset limited the
effectiveness of the model, so more experiments with a larger
training set would be required for more conclusive results.
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(a) VGG16 COVID prediction

(b) VGG16 healthy prediction

(c) DenseNet201 COVID prediction

(d) DenseNet201 healthy prediction

Fig. 2: LIME explanations for Task 1: Original image (left);
superpixels that contributed toward predicting the correct class
(middle); superpixels that contributed toward predicting the
incorrect class (right)

C. Comparison of ground truth pneumonia regions and model
explanations

To assess the validity of LIME explanations, we predicted
the class of viral pneumonia CXR images from the unseen
RNSA dataset described in section II using the four CNNs
trained on the classification tasks. We then generated LIME
explanations showing the superpixel regions that contributed
to those predictions and overlayed ground truth bounding
boxes representing the location of pneumonia in the lungs,
as illustrated in Fig. 4. Although the model classification
tasks were not directly compatible with the unseen dataset
because it did not contain COVID-19 CXRs, predicting the
class of pneumonia CXRs as per the CNN model allowed us
to compare the superpixels used for prediction with the ground
truth regions.

The models trained for task 1 all predicted that the CXR in
the left column of Fig. 4 contained COVID-19. This demon-
strated that every model was capable of correctly detecting the
presence of a disease in the CXR. However, it is clear that the
LIME explanation of the VGG16 prediction does not align
with the ground truth pneumonia regions. The explanation

(a) VGG16 COVID prediction

(b) VGG16 viral prediction

(c) DenseNet201 COVID prediction

(d) DenseNet201 viral prediction

Fig. 3: LIME explanations for Task 2: Original image (left);
superpixels that contributed toward predicting the correct class
(middle); superpixels that contributed toward predicting the
incorrect class (right)

revealed that VGG16 used a region in the lower abdomen and
the black background of the CXR next to the patient’s head
in order to make its prediction, further reinforcing the results
found in the previous analysis of VGG16 lime explanations:
the model did not learn any important features in the lungs
contributing to the pneumonia pathology. The explanation
regions of the DenseNet201 prediction align much better to
the ground truth region, indicating that the model was able
to extract relevant lung features. ResNet50 and EfficienNetB3
also had LIME explanation superpixels contained within the
ground truth regions, but there were also extraneous superpixel
regions in irrelevant parts of the CXR. This suggests overfitting
to non-pathological features similar to VGG16.

The models trained for task 2 also predicted that the CXR in
the right column of Fig. 4 contained COVID-19. This could be
considered a misclassification, since task 2 entails classifying
viral pneumonia and COVID-19 CXR images. However, the
cases of viral pneumonia in the training dataset differed from
those found in the unseen dataset, further complicating the
direct comparison of model performance on the unseen dataset.
Nevertheless, the characteristics of the LIME explanations
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(a) Task 1: VGG16 (b) Task 2: VGG16

(c) Task 1: DenseNet201 (d) Task 2: DenseNet201

(e) Task 1: ResNet50 (f) Task 2: ResNet50

(g) Task 1: EfficientNetB3 (h) Task 2: EfficientNetB3

Fig. 4: Comparison of ground truth pneumonia regions (red
boxes) and model explanation superpixels (yellow regions)

were similar to those of the task 1 models. VGG16 again
failed to learn features in the lungs, as evidenced by the
lack of superpixels in the ground truth regions. DenseNet201,
ResNet50, and EfficientNetB3 all showed a combination of
superpixels inside and outside the ground truth regions. Due
to the viral pneumonia type mismatch, the three models were
less effective at extracting the features in the unseen CXR that
contained signs of pneumonia.

IV. CONCLUSION

This paper analyzed the performance and interpretability
of transfer learning using four pre-trained deep CNNs. The
popular CNN architectures VGG16, DenseNet201, ResNet50,

and EfficientNetB3 were trained and validated on two clas-
sification tasks: classifying healthy and COVID-19 CXR im-
ages and classifying viral pneumonia and COVID-19 CXR
images. All models achieved similar results to previous work
and DenseNet201 and VGG16 outperformed ResNet50 and
EfficientNetB3 in terms of validation accuracy, sensitivity, and
specificity in both tasks.

The LIME explanations for the models revealed deficiencies
in their feature extraction processes. In both classification
tasks, the VGG16 explanations showed that the model used
parts of the CXR image irrelevant to pneumonia pathology,
such as the shoulder or lower abdomen, to make its predic-
tions. This casted doubt on the model’s ability to perform
well on unseen datasets. The DenseNet201 explanations were
more promising, showing several regions in the lungs that
contributed to its predictions. This indicated that the model
extracted important features in the lungs corresponding to
COVID-19 and viral pneumonia pathology.

In order to verify that the models with better explanations
were truly learning COVID-19 and viral pneumonia features,
each model predicted the class of unseen pneumonia CXR im-
ages with ground truth bounding boxes containing the location
of pneumonia in the lungs. Comparing the superpixel regions
from the LIME explanations with the ground truth regions
demonstrated an important observation: a model that achieves
a high validation accuracy may not have learned relevant
features which will allow it to generalize to unseen data.
VGG16 and DenseNet201 achieved the highest accuracies in
both classification tasks, but the experiment revealed that only
DenseNet201 had actually extracted features corresponding to
the regions of pneumonia in the lungs.

The transfer learning methodologies and classification tasks
presented in this work are common in recent literature. There-
fore, the insights regarding the interpretability and trustwor-
thiness of the CNNs in this paper have wider applicability.
Our work demonstrated that using the machine learning inter-
pretability method LIME to investigate the features used by
the machine learning models helped to identify more reliable
and trustworthy models.
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