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ABSTRACT Thermographic imaging has proven to be effective for the early detection of breast cancer
and with clinical breast examination (CBE). There are many matrix factorization methods developed for
computational thermography that can be used to extract thermal variations across the acquisition time. These
methods are often used to summarize thermographic sequences and simultaneously highlight predominant
thermal patterns. Finding a single predominant infrared image capturing the prevalent patterns of changes
remains a challenging task in the field. This study presents the applications of convex factor analysis
combined with the bell-curve membership function embedding approach to tackle this task and generate
one image to represent the entire sequence. This low-dimensional (LD) representation of a thermal sequence
was then used to extract thermomics and train tuned hyperparameters random forest model for early breast
cancer diagnosis. A comparative analysis of different embedding methods and factorization approaches is
also provided. The results of the proposed method combining clinical information, and demographics yield
78.9% (75.7% and 85.9%), while the convex-nonnegative matrix factorization (NMF) alone gave 76.9%
(73.7% and 86.1%). The result of the proposed method suggests that the embedding can help preserve
important thermal patterns, which significantly aid CBE and early detection of breast cancer.

INDEX TERMS Breast cancer diagnosis, data dimensionality reduction, embedding, factor analysis,
thermomics.

I. INTRODUCTION

THERMOMICS, imaging thermal features, have been
proven to be effective in warning physicians about early

breast cancer as the second cause of death in women [1].
Thermography is proposed to be used for a clinical breast
examination (CBE) and before performing mammography
acquisition, which can provide information about any poten-
tial abnormality in thepatients [2], [3].Thermographic imaging
works due to an increase in the vasodilation and angiogenesis
blood vessel formation in the breast area because of irregu-
lar lesions. Such endocrine alterations because of the breast
lesions change the thermal profile representing vascularization
for supplying oxygen and nutrients to lesions [3], [4]. An

infrared camera can capture such changes, which ultimately
leads to finding abnormalities (see Fig. 1). Several stud-
ies substantiated the importance of thermography in sensing
hypervascularity in nonpalpable breast cancer [4]. This can
be used as a potential biomarker for an early finding of breast
cancer with the CBE and before mammography.
But the biggest challenge here is to capture such irregu-

larities using infrared technology and the transition between
raw infrared sequences to thermal patterns. Low-rank matrix
approximation methods by selecting the predominant basis
of the decomposed eigenvector matrix were being wildly
applied to extract the predominant images representing the
entire thermal stream. Some well-known techniques are
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FIGURE 1. Schematic of the application of infrared thermography to detect heterogeneous thermal patterns.

TABLE 1. Table of notations.

principal component analysis (PCT) [5], [6], nonnegative
matrix factorization (NMF) [7], Fixed Eignvector analysis [8],
incremental PCT [5], Sparse factorization [10], t-distributed
stochastic neighborhood embedding (tSNE) [11], candid
covariance-free incremental principal component thermogra-
phy (CCIPCT) [12], sparse PCT [13], [14], semi NMF [15],
[16], [17], sparse NMF [18], convex NMF [19], deep
NMF [20], and deep learning convex [21] in thermography.
An Additional difficulty in extracting low-rank matrix rep-

resentation is selecting the appropriate basis corresponding
to the maximum variance of the thermal pattern. The afore-
mentioned problem is tackled by embedding [20] and here
this study shows the application of embedding in convex
factorization analysis in thermography and to extract the
low-dimensional (LD) representation of the thermal sequence
in the form of the most predominant basis combined with
embedding [20] and use it to extract thermomics and train-
ing a classifier for early diagnosis of breast abnormality. The
proposed Bell-curve membership function for embedding
better represents the normal distribution than the previously
proposed Gaussian embedding and that may increase the
better representation of the thermal patterns and ultimately
more appropriate biomarker.

Our results were compared to the gold standard breast
cancer screening modality, mammography images, and breast
biopsy to ensure the accuracy of the model. This study shows
a modification of basis embedding in thermography [18],
[20] and another example of the reliability of thermomics
for the early detection of breast cancer. Table 1 shows the
mathematical notations used in this article.

II. METHOD
Tracking the heterogeneous thermal patterns in infrared
imaging has been demonstrated to be helpful in the early
diagnosis of breast cancer. Here, we present a methodology
for the detection of thermal patterns through factorization
analysis and a novel embedding (Fig. 2).

A. RELATED WORKS
The heterogeneous thermal patterns are an indication of an
abnormal thermal property of the parenchymal tissues [3],
[4], [11], [18], [19], [20], [21]. This can be computed using
approaches developed for computational thermography to
extract the predominant basis across thermal dimensions and
also represent temporal pattern variations in the infrared
images, i.e., different eigendecomposition and matrix fac-
torization techniques [5], [6], [7], [8], [9], [10], [11], [12],
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FIGURE 2. Workflow of the proposed approach using Convex-NMF with low rank Bell embedding method is presented.

[13], [14], [15], [16], [17], [18], [19], [20]. Principal compo-
nent analysis (PCA) in thermography or PCT [5], [6], provides
an LD representation of thermal sequence using covariance
calculation of heat matrix. This can be executed by singular
value decomposition (SVD), which shared many properties
with CCIPCT [9], [12] and sparse PCT [13], [14]. CCIPCT
and Sparse PCT are themodifications of PCTwhile converting
that algorithm into incremental without covariance calcula-
tion approach and with additional regularization parameters to
increase the speed and robustness of the model, respectively. If
we restrict the bases and coefficients of PCAwith nonnegative
constraints, we can have NMF [7], [16], [18] and if we lose
these constraints, we can modify the NMF to semiNMF [17],
[19], and Convex-NMF [18]. Sparse NMF [17], [18], [19]
is comparable in terms of methodology to Sparse PCT [13],
[14] to increase the robustness of the decomposition through
regularization terms. The deep semi NMF decomposes the
basis matrix into many hidden bases, which delivers sparse
representation. Deep basis layers also can be trained while
preserving different thermal patterns [20].
These methods are using the pairwise distance between

temporal points in thermal sequences and try to preserve
them while they are transferred onto lower dimensional
space. T-distributed stochastic neighbor embedding is also
used in thermography, but it replaces Euclidean distance
between pairwise points in thermal sequence with a stochas-
tic measure of similarity and tries to minimize the Kullback–
Leibler divergence between the probability of two-point
centered Gaussian distributions [11]. The challenge here is
to select predominant bases with any of the aforementioned
algorithms, which we address this problem with embedding
and a comparison analysis on previously developed models
to ensure the reliability of the diagnostic system.

B. CONVEX FACTORIZATION IN THERMOGRAPHY
The NMF represents linearly with the nonnegative approx-
imation of data. Heat matrix, X ∈ R

s×τ , s = nm, where N

and M are the spatial resolutions of thermal images. It gives
a linear representation of bases to construct a heat matrix,
which is very similar to PCA with nonnegative constraints. It
decomposes the stacked vectorized infrared images to a set
of vectors B = [β1,β2, . . . ,βτ ] and B ∈ R

s×τ , which is
a linear data approximation

xi ≈ Bαi i = 1, . . . , τ

s.t. αi ≥ 0 (1)

where α ⊆ H and αi ∈ R
+
s×1 called the linear combination

coefficient. The equation for the data’s full element can be
given in the matrix approximation format

xi ≈ Bαi i = 1, . . . , τ

s.t. B ≥ 0 H ≥ 0.

Solving the aforementioned problem includes computation of
the squared error or �2 equation that delivers the Euclidean
distance [22] and loss to be followed for the maximum
similarity of the bases to original images

min
B,H

f (B,H) = ‖X − BH‖2

s.t. B ≥ 0, H ≥ 0. (2)

NMF limits matrices X, B, and H to be nonnegative. B
represents predominant thermal patterns obtained from X.
But when the data matrix is unconstrained, it converts to
Semi-NMF, in which H is constrained to be nonnegative but
there is no limit for matrix B. This has duality with the
k-means clustering.
In NMF and Semi-NMF, there are no constraints for basis

vectors B, so it can be pertinent to enforce the constraint of
basis vectors within the column space of X

β� = w1�x1 + w2�x2 + · · · + wq�xq = Xw�

B = XW. (3)
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FIGURE 3. Eight examples of convex factor analysis. (a)–(d) Four healthy cases.
(e)–(h) Four abnormal cases.

This focuses on the combination of columns of X which are
needed to be convex. With that, we could get the columns β�

as weighted summaries of data points. These columns induce
the concept of the centroid, and this restricted form of B factor
refers to as Convex-NMF [15]. Fig. 3 presents eight examples
of convex factor analysis, four healthy cases [Fig. 3(a)–(d)],
and four abnormal [Fig. 3(e)–(h)] cases of convex matrix
factorization with the bell-shaped embedding function.

C. BELL-SHAPE EMBEDDING
Bases embedding is previously proposed for Deep-SemiNMF
by combining multiple decomposed bases [20]. Using matrix
factorization methods bases are generated and embedding
helps combine k predominant tensors to reduce the dimen-
sionality of presenting thermal images to one thermal image.
Motivated from the same assumptions, we argue that the
Convex-NMF converts higher temporal dimensionality to
lower temporal representation and the obtained lower dimen-
sional tensors can be considered as bases computed using
matrix factorization approaches. A set of LD represented bases
using Convex-NMF is shown as B = {β1, β2, . . . , βp}, where
B ∈ R

s×τ , s = nm. We follow the definition of the mem-
bership function, Definition 2 (taken from [20]), to highlight
and integrate the overall representation of these tensors.
Definition 2: The embedded LD representation, �, defines

by aggregating membership calculated for p bases of X, μp,
multiply by the basis itself, βi, and defined as

� =
p∑

i=1

βiηi (4)

where ηi is a membership of basis βi and is defined by

ηi = e
βi−μ

σ .

Let μ, σ mean (average) of thermal basis, and standard
deviation of ith basis in the calculation. In this definition,
� ∈ R

s×1, X ∈ R
s×τ , and p � τ . Here, we provide a deriva-

tion of this definition for bell curve Cauchy distribution as
follows.
Definition 3: The embedded low-rank matrix approxima-

tion, �̇, defined by aggregating membership calculated for p
bases of X, μp, multiply by the basis itself, βi, and defined as

�̇ =
p∑

i=1

βi ζ i (5)

where ζ i is a membership of basis βi and is defined by

ζi = 1

1 +
∣∣∣βi−μ

σ

∣∣∣
2b

where b is an obituary coefficient and can increase the atten-
tion of the membership function (b = 1 in this article). ζ i
is a generalized bell curve (or Bell-shaped Function) and
a direct generalization of the Cauchy distribution.
The insight behind applying to embed involves underlining

the thermal variation in exponential order, which improves the
thermal heterogeneity in the accumulated resulting image of
the thermal sequence, and we previously named it the avatar.

D. THERMOMICS DIMENSIONALITY REDUCTION
The extraction of quantitative features from different med-
ical imaging modalities is known as Radiomics, which
undeniably enhances computer-aided decision, which is the
diagnosis, in various cancer imaging analyses. With the help
of various filters to translate this information and deliver
analytical responses determined from such data. In infrared
thermography, radiomic features are recognized as ther-
momics [17], [18], [19], [20] and are widely employed
to diagnose breast cancer in an early stage before mam-
mography. Heterogeneous thermomics are an indicator, or
biomarker, for thermal patterns projecting vasodilation of
abnormal breast tissues [15], [17], [18], [19], [20], [21],
[22]. After generating avatars, we extract high-dimensional
(HD) thermomics using the Pyradiomics library [23].
Here, we used the embedding thermal image and region of

interest (ROI) to extract HD thermomics to qualify the ther-
mal variations. We employed many features, and we reduce
the dimensionality of thermomics using spectral embedding,
to avoid overfitting the decision-making model. Then, we
applied statistical analysis to show the connection between
these features. In this study, we propose convex factor-
ization embedding thermal for an early diagnostic system
with thermomics produced by the Convex- NMF method for
a sequence of dynamic thermographic images. The proposed
Bell-shape membership function embedding helps emphasize
bases extracted from the images as a competitor of Gaussian
embedding.
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TABLE 2. Clinical information and demographics of the breast cancer screening
database using thermal imaging.

1
 This diagnosis performed with mammography as ground truth

in this Dataset. 
2
 Healthy term is used as non-cancerous and

asymptomatic patients. 
3
 We use the term “sick”, which includes

different types of breast cancer patients diagnosed by

mammographic imaging.

III. RESULTS
Vasodilatation and blood formation were tracked using het-
erogeneous thermal patterns and has been tested on breast
cancer screening datasets [24]. We generate the results of
convex factorization embedding and compared them with the
results from other low-rank matrix approximation algorithms
to provide a comparative analysis.

A. BREAST CANCER STUDY DATA
Two hundred and eight participants, including healthy (with-
out symptoms) or sick (cancer patients or symptomatic) cases
were used to benchmark the proposed model. Cancer patients
and symptomatic cases were used by CBE, mammography,
and tissue biopsy but breast cancer cases and noncancer-
ous but with symptoms were categorized as abnormal cases.
The study group has a median age of 60 years, with Pardo,
77 (37%), 57 (27.4%) African, Caucasian 72 (34.6%), 1
(0.5%) indigenous, and 1 (0.5%) Mulatto women. 38 (18.3%)
participants were undergoing hormone replacement and 52
(25%) cases had a history of diabetes in their families. All
patients went through infrared acquisition with the following
protocol: spatial resolution of images was 640×480 pixels.
A FLIR thermal camera (model SC620) with a sensitivity
of less than 0.04 ◦C range and captures a thermal range
of −40 ◦C to 500 ◦C was utilized [24]. Table 2 shows the
clinical information and demographics of the study cohort.

B. RESULTS OF CONVEX-NMF IN THERMOGRAPHY
Convex-NMF spanned thermal sequences with 23 dimen-
sions to five LD thermal bases. Some examples of LD
representation using Convex-NMF embedding are shown in

FIGURE 4. Eight examples of convex factorization Gaussian embedding (a)–(d) four
healthy cases and (e)–(h) four abnormal cases.

Figs. 4 and 5. LD images significantly highlight hetero-
geneous thermal patterns in the breast area for more than
80 participants for breast cancer screening [sick and healthy
with symptoms, Fig. 5(e)–(h)]. However, thermal patterns
demonstrated by LD for the healthy participants represent
more homogeneity [Fig. 5(a)–(d)].

C. RESULTS OF EMBEDDING
Five LD-represented images obtained by convex factorization
methods were embedded using the proposed bell embedding
approach. To establish the level of thermal heterogeneity
in the breast area, we utilized the reference label, attached
between the breasts of the participants as a reference point
and to normalize the representation of images. Thermal het-
erogeneity is drastically heightened when applied to embed.
This can considerably discriminate symptomatic and cancer-
ous patients from healthy participants. Figs. 4 and 5 show
a visual comparison between the heterogeneity of cases
after two types of embedding, while Fig. 3 presents convex
factorization without embedding.

D. THERMOMIC FEATURES AND CLASSIFICATION
RESULTS
Three hundred and fifty four thermomics have been extracted
from the breast areas, regions of interest-ROI, from embed-
ded Convex-NMF generated avatar in four different feature
categories: 1) first-order statistics; 2) texture; 3) intensity;
and 4) spatiotemporal filtering features. To extract thermomic
features, we used the Pyradiomics python library [23]. Then,
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FIGURE 5. Eight examples, (a)–(d) four healthy cases and (e)–(h) four abnormal
cases of convex matrix factorization with bell-shaped embedding function.

features were concatenated in a matrix with 354 ther-
momics links to each vectorized thermal image. To lessen
the collinearity of these HD attributes, spectral embedding
reduces the dimensionality to seven features as an optimum
number of thermomics.
Toanalyze thehypothesis that theLDembedded thermal het-

erogeneity can be utilized as a biomarker, we trained a random
forest model with the generated LD thermomics for the study
cohort. To extract the model’s hyperparameters, we tuned the
model for different scenarios, using a grid-search-motivated
approach. The maximum depth, the random state in the tree,
and the number of trees in the forest were optimized by
changing the hyperparameters for access to our data using the
leave-one-out cross-validation technique (see Fig. 6).

For the selected thermomics using different techniques,
the classifier is fitted to the thermomic data and tested
with multivariate analysis to classify patients using leave-
one-out cross-validation. It resulted in 71.7% (69.1% and
75.1%) accuracy for clinical information and demograph-
ics and 77.6% (43.2% and 87.4%) for Convex NMF with
Gaussian embedding, which were challenged by the Bell-
shape embedding technique yielded to 76.9% (73.7% and
86.1%) accuracy and other approaches such as NMF, PCT,
Deep SemiNMF, and CCIPCT showed a close range of
accuracies with a median of 76.9% (Table 3). The highest
accuracy belonged to Convex NMD Bell-embedding with
Clinical information yielded to 78.9% (75.7% and 85.9%).
Similarly, we established the embedding technique’s strength

FIGURE 6. Hyperparameter tuning for the random forest, blue curves are
representing deep radiomics and red curves show conventional radiomics fed to the
model for the tuning using leave-one-out cross-validation.

by getting the accuracy of methods before and after embed-
ding (for the same subset of thermomics) as a comparison.
A t-test to Convex-NMF showed a significant statistical
difference among the accuracies.
The computational process was performed using Python

programming language. Convex-NMF and embedding meth-
ods showed considerably lower computational time than
other approaches, in contrast to Sparse PCT and Spare NMF.

IV. DISCUSSION
In this study, we introduced another form of LD bases
embedding in thermography to provide LD representation
of thermal patterns for diagnostic purposes. The design of
this study was for modifying the LD representation of the
HD heat matrix and replacing matrix factorization tech-
niques, i.e., [1], [2], [3], [4], [5], [6], [7], [8], [9], [14],
and [15]. This study aims to improve the performance of
HD infrared data LD representation. Previously, we proposed
embedding [20] to generate LD thermal bases, whereas here
Bell curve embedding enhances the process. Moreover, we
focused on defining a new embedding procedure to unravel
multiple LD representations and associated it with the ear-
lier presented technique to see their outcomes for nonlinear
data projection with convex matrix factorization models.
Through this process, we demonstrated a likelihood to detect
probable breast cancer patients by applying the proposed
methods as a noninvasive, and cost-effective imaging proce-
dure to aid CBE and physicians as an initial diagnostic tool
prior to performing mammography or MRI.
Embedding showed substantial enhancements in clas-

sifying abnormal patients from healthy participants [20],
changing the embedding function motivated by the Cauchy
distribution provided a wider bell shape curve and showed
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TABLE 3. Results of random forest classification in the leave-one-out cross-validation model.

considerable performance in highlighting thermal patterns
(Figs. 4 and 5). Moreover, bell-shape embedding showed
a slightly higher intensity and contrast profile of the inte-
grated bases than the Gaussian approach (Fig. 4), which
leads to the detection of more heterogeneous thermal pat-
terns (Fig. 5). This might be due to the wider plateau on the
top of the Gaussian curve in the bell-shaped function.
However, Sparse factorization approaches showed slightly

higher accuracies, Table 3, due to additive sparsity con-
straints inducing more robustness in capturing thermal
patterns. Similarly, multilayer bases and aggravating con-
straints in Deep-SemiNMF caused relatively lower accuracy
for this approach. Convex-NMF carries some properties of
NMF and with that bases behave like clustering [19], [20].
Convex-NMF performs clustering with sharper indicators.
β� is close to centroids in Kmeans. Bases are much more
restricted than the original NMF, which has large effects on
the subspace factorization. With respect to minB,Hf (B,H)

in (2) implies getting larger residual values delivering more
constraints leading more degradation of grouping thermal
patterns. Embedding not only integrates the thermal bases
but also enhances thermal properties (yet repetitious) in
factorization methods compensating for larger constraints.
The proposed approach generates HD thermomics, which

intensified the possibility of overfitting the random forest
model, the curse of dimensionality [25], [26]. We reduced the
dimensionality of thermomics by capturing the predominant
features representing thermal patterns using spectral embed-
ding, which increases the robustness of the method. Similar
to other proposed approaches [19], [20], our methodology

creates robustness versus minor motion artifacts caused by
moving patients or noise.
One limitation of this study despite theoretical success is

related to a limited number of patients. Infrared thermogra-
phy in such a setup is not easy to obtain, and a bigger cohort
of patients or another dataset with similar imaging boosts
the statistical significance of this study by increasing the
likelihood of independent validation of the system (in place
of cross-validation). A number of thermomics also can be
considered as another limitation of this study. Having more
thermomics helps to test the strength of the dimensionality
reduction method leading to capture more reliable thermal
characteristics than the current amount.
The proposed embedding system offers some improve-

ments that can be pointed out. First, embedded Convex-NMF
not only performed a factorization analysis of thermal images
but also entirely eliminates the manual selection of the
important bases. This substantially aids the thermographic
systems and is often stated to be an issue in thermog-
raphy. Second, this approach uses thermomics to obtain
heterogeneous thermal patterns. Third, the suggested system
alleviates the impact of motion artifacts which can be
a substantial help in infrared thermography applications.

V. CONCLUSION
This study tackled one of the major challenges in the LD
representation of thermal sequences, which is choosing the
predominant representative basis and proposing a bell-curve
embedding approach. Convex factorization analysis was
examined and tested for 208 thermal breast cancer screening
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FIGURE 7. Elbow technique to calculate the distortion score and find out the
optimum number of the cluster for conventional radiomics. k = 7 is optimum number,
shown by the graph, where we select k = 7 for this study.

cases. 354 thermomics were extracted to encode thermal
patterns and use them for the automatic diagnostic model.
The dimensionality was lowered by applying the spectral
embedding approach. The correctness of this approach was
comparatively evaluated with respect to state-of-the-art ther-
mographic methods, such as PCT, CCIPCT, NMF, Sparse
PCT, Sparse NMF, and Deep semi-NMF and with Gaussian
embedding. The results indicated that Gaussian and bell-
curve-embedded Convex-NMF have significant functioning
in maintaining thermal heterogeneity, which led to discrimi-
nating between abnormal and healthy participants yielded the
accuracies of 77.6% (43.2% and 87.4%), and 76.9% (73.7%
and 86.1%), respectively. The highest accuracy belonged to
77.9% (45.7% and 87.4%) with a kappa coefficient of 76.8
(43.7 and 87.6).
Future works will include more methodological develop-

ment to enhance the ability to measure thermal dimensionality
reduction with respect to the best predominant representation
of the thermographic images. Moreover, a bigger cohort of
patients would be helpful to provide the opportunity to inde-
pendently validate this system and can further confirm the
generalizability and reliability of this approach.

APPENDIX
In this study, we determined the optimum number of the
convex factorization analysis can be obtained through the
elbow approach as it is shown in Fig. 7. This approach
follows the known theorem of similarity of Convex NMF to
Kmeans clustering (Theorem A) [15].
Theorem A: Convex NMF is the relaxation of K means

clustering.
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