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ABSTRACT Discrimination of types of seizure using the Electroencephalogram (EEG) signal has always
been a challenging task due to minuscule differences among different types of seizures. In this regard,
deep learning (DL) which has already evidenced notable performance in image recognition could be
suitable. However, a few attempts have been made so far in this regard mainly by constructing 2D
input images for DL from 1D EEG signals directly using various techniques. Besides, the quality of
the generated images has not been verified. Therefore, in this work, 2D images for the DL pipeline
have been generated from brain rhythms, which already displayed remarkable performance in analyzing
various brain activities. For this purpose, the Markov transition field transformation technique has been
employed for 2D image construction by preserving statistical dynamics characteristics of EEG signals,
which are very important during the discrimination of different types of seizures. And, a convolution
neural network (CNN) has been used for classification. Further, the quality of the 2D image along with
appropriate brain rhythms have also been investigated. For experimental validation, EEG recordings of six
different types of seizure that are provided by the Temple University EEG dataset (TUH v1.5.2) has been
taken into account. The proposed method has achieved the highest classification accuracy and weighted
F1-score up to 91.1% and 91.0% respectively. Further analysis shows that higher image resolution can
provide the best classification accuracy. In addition, the δ rhythm has been found the most suitable in
seizure type classification. In a comparative study, the proposed idea demonstrated its superiority by
displaying the uppermost classification performance.

INDEX TERMS Brain rhythms, convolution neural network, electroencephalogram, Markov transition
field, seizure type.

I. INTRODUCTION

EPILEPSY is a neurological disorder that occurs due
to abnormal electrical activities of neurons in the

brain [1], [2], [3], [4]. It is described by a quick surge
of unusual electrical activities in part or all of the brain
regions, known as epileptic seizures which can be tracked
by EEG signals. In clinical diagnosis, EEG signal has
been considered a reliable and portable method for anal-
ysis and detection of epileptic seizures [2], [3], [4]. Indeed,
such detection has been improved by involving machine
learning based methods and numerous methods have already
been proposed [1]. However, a few attempts have been

made for discriminating different types of seizures, which
is essentially important for accurate diagnosis followed by
in selection of appropriate drugs [5], [6], [7], [8]. Certainly,
traditional machine learning whose performance is mainly
dependent on predefined feature selection might not be suit-
able as minuscule differences exist among different types
of seizures. In this context, deep learning (DL), which
automatically selects appropriate features might be suit-
able [2], [3]. Being a data-driven method, it requires proper
input data preparation to achieve its best efficacy [7], [8].
Therefore, in this work, 2D input data from 1D EEG sig-
nals have been generated by the Markov transition field
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which could efficiently capture diminutive differences among
different types of seizure and the classification has been
performed by a convolution neural network (CNN) that is
already evidenced notable performance in image-based clas-
sifications tasks. In the literature, various machine learning
algorithms have been considered to discriminate differ-
ent types of seizures. For instance, Saputro et al. [9],
employed a support vector machine (SVM) along with
principal component analysis with features such as Mel
frequency cepstral coefficient (MFCC) and Hjorth descriptor
from EEG signal to classify three different types of seizure
and achieved accuracy up to 91.4%; Wijayanto et al. [10],
discriminated four seizure types using statistical variants
as features that were extracted from decomposed compo-
nents of EEG and achieved 95% of classification accuracy;
Kassahun et al. [11], classified two types of seizure by
involving different machine learning algorithms and reached
accuracy up to 77.8%. Shankar et al. [12], employed five
different machine learning algorithms to classify three types
of seizures along with seizure-free using statistical fea-
tures which were extracted directly from raw EEG and
got reasonable accuracy. However, the performance of these
methods fully relies on how and what kinds of predefined
features are chosen, which is not very recommendable
as very small differences exist among different seizure
types [5], [6], [7]. Besides, the nonlinear and non-stationary
characteristics of the EEG signal make it more challeng-
ing [6], [7], [8]. In this context, DL-based algorithms might
be suitable as it bypasses hand-crafted feature engineer-
ing and already have evidenced outstanding performance in
image-based classification, including biomedical signals, and
applied in seizure type classification [2], [3]. For instance,
Cao et al. [13], classified three types of seizures by a hybrid
deep neural network that combines squeeze-and-excitation
networks (SENet) and long short-term memory (LSTM);
Roy et al. [14], used CNN for eight types of epileptic
seizure discrimination and achieved F1-score up to 72.20%;
Ahmedt-Aristizabal et al. [8] classified seven seizure types
using raw EEG signals as input where stacked auto-encoder,
CNN, recurrent neural network (RNN), and hybrid network
recurrent CNN (RCNN) were used for classification and
achieved weighted F1-score of 94.50%.
In this view, the DL-based models, especially CNN have

displayed remarkable performance in image classification
and recognition [2], [3], [13], [18], [19], [20]. Such benefit
of the CNN has been exploited in seizure type classifica-
tion by constructing 2D input images from 1D EEG signals
by several researchers. Raghu et al. [5], used different DL
models including basic CNN, AlexNet, VGG16, VGG19,
and GoogleNet for discriminating seven types of seizure and
seizure-free, where the 2D input images were constructed by
concatenating spectrograms of 1D EEG recording of different
channels vertically. Asif et al. [6], proposed a saliency-
encoded spectrogram approach to construct 2D images from
1D EEG which were directly fed into SeizureNet (which
is the combination of several CNN blocks) and achieved

F1–score up to 94.0%. Liu et al. [16], used short-time
Fourier transform (STFT) to generate 2D input images of 1D
EEG for hybrid bilinear architecture to classify eight types
of seizures. Raghu et al. [17], considered transfer learning
and pre-trained network for eight types of seizure discrimina-
tion and achieved accuracy up to 82.5%. Shankar et al. [15],
proposed the Gramian angular field transformation technique
for 2D image generation from 1D EEG signals and per-
formed classification by CNN. In similar kinds of work [7],
they generated 2D images by employing continuous wavelet
transform (CWT), and classified six different types of
seizures and seizure-free by a hybrid DL model consisting
of CNN followed by LSTM. Indeed, transforming a 1D EEG
signal into a 2D image becomes very important especially for
the analysis of different seizure types by preserving uncertain
changes, statistical, and dynamic transition characteristics of
EEG signals for obtaining optimum system performance effi-
ciently [5], [6], [7], [8], [21], [22], [23], [24]. However, the
works did not address the issue and relevant properties of
the generated 2D images which is very crucial while con-
sidering the inputs for the deep learning pipeline. Therefore,
in this work, a new method of 2D image generation from
1D EEG signal has been proposed different aspects of the
generated images have been explored.
In this context, the aforementioned works generated the

2D input images for CNN from raw EEG signals, which can
be further enhanced by considering efficient transformation
techniques and brain rhythms for 2D image generation. In
EEG based analysis, five different types of brain rhythms —
delta (δ: 0.5 Hz– 4 Hz), theta (θ : 4 Hz– 8 Hz), alpha (α:
8 Hz– 12 Hz), beta (β: 12 Hz– 30 Hz), and gamma (γ : >

30 Hz) are considered for numerous brain activity stud-
ies very often including seizure analysis and found very
appropriate [4], [24]. Therefore, in this work, the 2D input
images have been generated from four brain rhythms (δ, θ ,
α, and β) have been used for the analysis of different types
of seizures instead of direct EEG.
For seizure recognition, very long EEG recordings

are used very often, which sometimes last more than
hours where appearances of epileptic seizures are quite
imprecise [22], [23], [24]. Such long EEG recordings are
not always suitable for computation, rather consideration
of the EEG segment might be more useful. Besides,
it could fulfill the requirement of large and diverse
input samples for DL-based classification tasks. In the
literature, several researchers classify epileptic seizures
using different duration of EEG segments — 0.5 s, 1 s,
2 s, 4 s, 5 s, 10 s, etc. and have achieved remarkable
performance [19], [20], [21], [22], [23], [24]. Therefore, in
this work, EEG segments of a certain duration of EEG sig-
nal by preserving potential descriptions and characteristics of
the original EEG signals have been considered for in-depth
analysis and classification of different types of seizures.
As mentioned, several techniques including scalogram,

gramian angular field, recurrence plot, etc. have been adopted
to encode 1D time series to 2D images [18], [19], [20],
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FIGURE 1. A system level overview of the proposed method for classification of six different seizure types — Absence seizure (ABS), complex partial seizure (CPS), focal
non-specific seizure (FNS), generalized non-specific seizure (GNS), myoclonic seizure (MYS), and tonic-clonic seizure (TCS) from EEG recordings. First, EEG recordings from
multiple channels have been pre-processed, thereafter four brain rhythms: delta (δ: 0.5 Hz– 4 Hz), theta (θ: 4 Hz– 8 Hz), alpha (α: 8 Hz– 12 Hz), and beta (β: 12 Hz– 30 Hz) have
been decomposed using band pass filter. Next, long EEG signals have been split into segments followed by their 2D image generation by Markov transition field technique.
Finally, a deep learning framework, CNN has classified six different types of seizures using generated 2D images as input.

[21], [22], [23], [24], [25]. However, these techniques fail
to preserve the statistical and temporal dynamics transi-
tion characteristics of an EEG, which is very substantial
during discriminating different seizure types. In this con-
text, Markov transition field transformation (MTF) might
be suitable as it preserves the statistical transition dynam-
ics and temporal characteristics of 1D data and has been
successfully employed in the 2D representation of 1D EEG
signal [26], [27]. Its inverse nature property offers a picto-
rial exploration of hidden patterns efficiently [26]. Therefore,
the MTF has been considered for 2D input image generation
to categorize individual and potential features among EEG
signals of different seizure types.
In this study, six different types of seizures have been

discriminated by CNN where its 2D input images have
been generated from segments of 1D EEG signal. The
images have been generated from four brain rhythms by
adopting the Markov transition field technique. Finally, gen-
erated images have been used for CNN-based classification.
Several analysis including performance evaluation, image
quality, suitable brain rhythms, and comparative evaluation
has been performed. The contribution of this study can be
summarized as:
1) Seizure type classification using brain rhythms in

a deep learning framework.
2) Finding dominant brain rhythms for seizure type

classification.
3) 2D input image encoding from 1D EEG signals of

brain rhythms for in-depth features extraction.
4) 2D input image quality analysis while using it as input

for DL-based classification.
The rest of the paper has been organized as follows:

Section II describes the proposed method. The experimen-
tal methodology has been detailed in Section III followed
by results and discussion in Section IV. Finally, conclusions
have been drawn in Section V.

II. PROPOSED METHOD
A system-level overview of the proposed idea has been
displayed in Fig. 1. Firstly, the EEG signals have been
pre-processed including noise, and artifact removal followed

by the separation of different brain rhythms. Thereafter, EEG
signals (brain rhythms) have been segmented for a certain
length which is transformed into 2D images by MTF. Finally,
generated images have been directly fed into the CNN
pipeline for the classification of six types of seizures.

A. SIGNAL PREPROCESSING (BRAIN RHYTHMS)
Generally, recorded EEG signals consist of noise and
artefacts which need to be removed and there are var-
ious methods available that can efficiently remove the
same [1], [2], [3], [4]. In this context, the brain rhythms
— delta (δ: 0.5 Hz– 4 Hz), theta (θ : 4 Hz– 8 Hz), alpha
(α: 8 Hz– 12 Hz), beta (β: 12 Hz– 30 Hz), and gamma
(γ : > 30 Hz) which are found very suitable in epileptic
seizure analysis can be easily extracted by choosing band-
pass filter of respective cut-off frequencies [24]. Next, the
EEG signal with particular rhythms has been segmented to
extract the in-depth features as the recorded EEG signals
for epileptic seizure analysis are very long. Additionally, it
benefits in DL-based classification which demands large and
diverse input samples for effective classification. Certainly,
such classification by segmentation has already been found
very effective in seizure detection. However, the segment
length may have different durations — 0.5 s, 1 s, 2 s, 4 s,
5 s, 10 s, etc. [19], [20], [21], [22], [23], [24] which are
empirically chosen. In this regards, the EEG recordings of
different brain rhythms have been segmented into several
pieces with a pre-defined span of 10 s. The segmentation has
been accomplished by 50% overlapping between two con-
secutive segments to minimize information loss. After that,
the segmented EEGs have been transformed into 2D images
by involving MTF as detailed in the following section. The
suitability of four different brain rhythms has been sepa-
rately employed to observe their suitability in discriminating
different types of seizures.

B. MARKOV TRANSITION FIELD (MTF)
The Markov transition field (MTF) is a 2D representation of
1D time series by representing the transition probabilities of
discretized samples [26], [27], [28]. During 2D encoding, it
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preserves temporal behavior and statistical dynamic transi-
tion of time series effectively. Certainly, EEG signals can be
considered time-series data, and such properties become very
important while discriminating different types of seizures
having minuscule differences in temporal behavior of EEG
signals. Besides, MTF is simple and can efficiently dis-
play dynamic and temporal characteristics. Its precise inverse
mapping property makes it more efficient by facilitating to
visualization of the diverse 2D patterns [26]. First, the MTF
technique discretizes the time series into a certain num-
ber of bins which are required to form a Markov transition
matrix. The elements of the matrices can be regarded as
transition frequency among bins, while its diagonal refers to
self-transition. Certainly, the normalization of bins measured
the transition probabilities among bins or states and repre-
sents in sequential order, i.e., preserving dynamic transition
characteristics —known as the Markov transition field. This
MTF can be formed as 2D images, which can be consid-
ered for deep learning input [27]. However, the resolution
of the generated 2D image needs to be modified for effec-
tive computation [26]. Such modification can be handled
effectively by resizing it using the blurring kernel approach.
During resizing, it takes the average pixel values of each
non-overlapping patch. Mathematically, let a time series,
S = s1, s2, s3 . . . sn}, with n sample points and N number
of bins form a Markov transition matrix. Now, the choice
of N is very crucial for the detailed visualization of hidden
dynamic transition patterns of time series. For the optimal
number of N, the bin width (B) (1) has been calculated by
the Freedman–Diaconis method [29], where, IR represents
the interquartile range of S.

B = 2 ×
(
IR(S)

n1/3

)
(1)

Next, N has been measured by (2);

N = Smax. − Smin.
B

(2)

Now, each point of the time series has been dispersed into
corresponding bins (bi, bj), where i, j∈ (1 to N). Certainly,
the S becomes a weighted transition matrix (T) of size N×N.
Actually, the matrices measure the transitions among bins
as displayed in (3), where mi,j is the transition probabil-
ity of a sample in bj followed by a sample in bi. Now,
after normalization of the matrix by

∑
mi,j = 1, T becomes

the Markov matrix. However, T ignores conditional relations
among samples of S along with temporal order. Thus, after
the normalization of T, which indicates transition probabili-
ties and represents along with the temporal order — referred
to as Markov transition field M (4).

T =

⎡
⎢⎢⎣
m1, 1 |P (st ∈ b1 | st−1 ∈ b1) ... ... m1,N |P (st ∈ b1 | st−1 ∈ bN)

... ... ... ...

... ... ... ...

mN, 1 |P (st ∈ bN | st−1 ∈ b1) ... ... mN,N |P (st ∈ bN | st−1 ∈ bN)

⎤
⎥⎥⎦
(3)

M =

⎡
⎢⎢⎣
M1 1 M1 2 ... M1 n

M2 1 M2 2 ... M2 n

... .... ... ...

Mn 1 Mn 2 ... Mnn

⎤
⎥⎥⎦ (4)

⎡
⎢⎢⎣
mi, j |(s1∈ bi , s1∈ bj) ... ... mi, j |(s1∈ bi , sn∈ bj)

... ... ... ...

... ... ... ...

mi, j |(sn∈ bi , s1∈ bj) ... ... mi, j |(sn∈ bi , sn∈ bj)

⎤
⎥⎥⎦ (5)

In M, the transition probability of a point from bi to bj is
denoted by Mi,j. Therefore, Mi,j, infers the transition proba-
bility of a point sp (sp ∈ bi) to sq, sq (sq ∈ bj) where (p, q)
∈ (1, n) in the temporal order, which indicates the tempo-
ral dependency. Certainly, Mi,i, i.e., the diagonal elements
describe the self-transition probabilities. Further, matrix M
can be regarded as a 2D image of transitions probabili-
ties of discretized sample points of time series in temporal
order, which could help to track the minuscule differences
among very similar kinds of signals with tiny variations.
Such small differences present in EEG signals among dif-
ferent types of seizures and the MTF could be suitable in this
regard.

C. 2D INPUT IMAGE
Next, the generated image from M has been reformed by
reducing the size to improve the computation of the DL
model. [26], [27], [28]. For this purpose, the blurring aver-
age kernel technique has been employed which is simple
but very efficient. Basically, it reduces the size by taking
average values of non-overlapping k×k patch with average
kernel {1/k2}k×k. It accumulates the transition probabilities
of each subsequence of size k collectively and provides bet-
ter visualization of patterns and transition statistics of time
series [26]. In seizure type classification, the size of the input
images may influence, which should be examined. For this
purpose, empirically three different image sizes have been
examined.

D. DEEP LEARNING
The DL model consists of several processing layers to learn
and extract relevant features from input data [2], [3]. In
this work, a convolution neural network (CNN) has been
considered for classification, which extracts suitable fea-
tures from input images automatically by sharing parameters
and connection sparsity [18]. However, the number of lay-
ers plays a crucial role in CNN which should be optimally
selected; as a large number of layers may extract effec-
tive features at the cost of computational complexity; on
the other hand, very fewer layers may fail to find appro-
priate features [19], [20], [21], [22], [23]. In this work, the
proposed CNN has been designed considering five hidden
layers, two affine layers, and one output layer as displayed
in Fig. 2. Each hidden layer is a stack of convolution, pool-
ing, and dropout layers, which actually guides to learn
and extracts relevant features automatically. In the con-
volution layer, the convolution operation is performed by
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FIGURE 2. The proposed pipeline of CNN. The 2D input images generated by MTF from EEG recordings of different types of seizure; K_s and S_r are kernel and stride size
respectively; Adam optimizer with β1 = 0.9, β2 = 0.99, and decay rate = 10−06; loss function is categorical cross-entropy. Finally, outcome are six different seizure types —
ABS, CPS, FNS, GNS, MYS, and TCS.

a pre-defined kernel, shifts by a pixel map over the input
matrix, and extract numerous features. Next, the outcome
passes through a non-linear activation function by a pooling
layer, which improves learning ability and robustness. The
pooling operation reduces the size of the feature dimen-
sion. In this work, rectified linear unit (ReLU) and max
pooling have been chosen as activation functions and for
pooling operation respectively. The fully connected affine
layers finally perform the classification based on the gen-
erated features by previous layers. At the last layer, the
softmax activation function has been used for final classifica-
tion. All parameters of the proposed CNN pipeline have been
detailed in Fig. 2.

III. EXPERIMENTAL METHODOLOGY
A. DATA
For validation of the proposed idea, the Temple
University Hospital, EEG dataset (TUH v1.5.2) has been
considered [30]. In this dataset, EEG recording has been
conducted by two unipolar montages approaches— Average
Reference (AR) and Linked Ears Reference (LE) [31]. For
AR, a certain set of electrodes are used as a reference,
while the LE adopts a lead connector to join either right and
left ears as reference. In this work, LE reference has been
taken into account as it provides a more steady reference
point with minimum artifacts [31]. In LE unipolar montage
approach, the EEG signals were recorded with a sampling
rate of 250 Hz and 16-bit resolution. In this study, com-
mon 19 channels — FP1_le, FP2_le, F3, F4_le, F7_le, F8,
C3_le, C4_le, O1_le, O2_le, P3_le, P4_le, Pz_le, T3_le,
T4_le, T5_le, T6_le, Cz_le, Fz_le, and Pz_le EEG record-
ing have been used. A brief description of the EEG data has
been summarized in Table 1, in which seizure types and cor-
responding recording duration have been depicted in the first
and second columns respectively. In total, EEG recordings of
40 patients have been used. Certainly, regarding the dataset
imbalance issue, recordings of different seizure types have
been selected in equal proportion to some extent for further
processing.

TABLE 1. Description of EEG dataset.

FIGURE 3. The EEG segments of δ rhythms of channel Cz for six different seizure
types.

B. EXPERIMENT SETUP
The EEG recordings of different seizure types are free from
artefacts. So, the signals are directly used from extraction
for four different brain rhythms — δ, θ , α, and β by using
a fifth-order Butterworth band pass filter with concerned
cut-off frequencies. Thereafter, the whole EEG signals of dif-
ferent seizure types have been segmented with the duration
of 10s with a 50% overlap. The EEG segment of a chan-
nel, Cz, of δ rhythm of different types of seizures has been
displayed in Fig. 3. Further, for each EEG segment, 2D
images have been generated by MTF transformation. Next,
the images have been modified for three different resolu-
tions — 32×32, 64×64, and 128×128 have been generated
by using the blurring simple average kernel technique for
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FIGURE 4. Example of three input images (with different resolutions) that are
generated by MTF for three types of seizure (CPS, GNS, and TCS). The images are of δ

rhythms of Cz channel.

measuring the optimum image quality. Besides, the adoption
of such a step could reduce computation and speeds up the
training process. The encoded 2D images from EEG record-
ing of channel Cz of δ rhythm of CPS, GNS, and TCS have
been shown in Fig. 4. Now, for training and testing of the
CNN model, the dataset has been randomly split into 80:20.
In addition, 10% of training samples have been used for the
validation of the model. The Adam with primary (β1 = 0.9)
and secondary moment estimation (β2 = 0.999) with decay-
ing rates of 1×10−06 and categorical cross-entropy have been
considered during the training of the model. In addition, the
learning rate, number of epochs, and batch size have been
set to 0.1, 100, and 128 respectively for all classification
tasks. The performance of the model has been evaluated by
considering two parameters — accuracy (η) and weighted
F1-score (F1) [7], [18]. Indeed, η sums up how well a model
performs across all categories, and it is useful when all the
classes are significant. Besides, F1 is very much impor-
tant for the analysis of biomedical data, when all sets of
data are not in equal proportion [19], [20]. Compared to
η, it gives a more precise evaluation of instances that are
wrongly identified [21], [22], [23].
The η (6) and F1 (7) of different classification tasks

achieved by the proposed CNN model have been measured,
where, Tp and Tn, refer to true positive and negative respec-
tively, whereas Fp and Fn depict false positive and negative
respectively.

η = Tp + Tn
Tp + Tn + Fp + Fn

(6)

F1 = 2 ∗ Tp
2 ∗ Tp + Fp + Fn

(7)

IV. RESULTS AND DISCUSSION
A. TRAINING AND VALIDATION
The training performance of the model has been evaluated
by measuring training (Tη) and validation (Vη) accuracy. In

FIGURE 5. The training and validation accuracy and losses w.r.t., number of epochs
for input image size of 128×128 (a) for δ and (b) for θ brain rhythms.

Fig. 5 (a) and (b), Tη and Vη with their corresponding losses
have been displayed for input images with 128×128 resolu-
tion, where bold and dotted lines indicate the accuracy and
loss, respectively. And, the left and right vertical axis dis-
play the training-validation accuracy (Tη-Vη) and loss (Tl-Vl)
respectively. As seen, the training performance is consis-
tent and improves significantly with the increasing number
of epochs. Further, the training-validation accuracy (Tη-Vη)
and loss (Tl-Vl) become steady near 100 epochs. Hence,
empirically, the model has been trained with 100 epochs
and a batch size of 128.

B. IMAGE QUALITY EVALUATION
To verify the image quality, the input images with three dif-
ferent resolutions of 32×32, 64×64, and 128×128 have been
examined individuality by measuring η and F1 scores. For
different brain rhythms, the results have been displayed in
Fig. 6 in which the vertical axis represents η and F1 scores
for different brain rhythms as indicated by the horizontal axis
for three image resolutions separately. As seen, in Fig. 6,
the highest performances were achieved for the input image
resolution of 128×128 for all brain rhythms. Further, the
classification performance becomes the highest for δ rhythm
up to with η by 88.7%, 89.1%, and 91.2% for image res-
olution of 32×32, 64×64, and 128×128 respectively. The
results show that the increase of image resolution improves
classification accuracy. Indeed, high image resolution could
increase the computation. Therefore, optimization needs to
be done following the overall system objective.

C. BRAIN RHYTHMS ANALYSIS
It is important to evaluate the dominant brain rhythm in dis-
criminating different types of seizures. For this purpose, all
brain rhythms have been individually considered for seizure
type discrimination using 128×128 images and respective η

and F1 have been measured. The results have been displayed
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FIGURE 6. The classification accuracy and F1-score for input images with three
different image resolutions of four brain rhythms.

TABLE 2. Performance metrics.

in Fig. 6. As seen, the δ rhythm reached the highest classi-
fication η and F1 score ≥ 85% compared with other brain
rhythms. Hence, the δ rhythm can be used for suitable seizure
type discrimination.
Further, analysis has been performed by considering the δ

rhythm. Now it is important to know if any specific type of
seizure is influencing the overall classification performance.
For this purpose, different combinations of seizure types
(excluding one) for δ rhythm with 128×128 image size have
been analyzed and results have been summarized in Table 2,
where first and second columns represent different combina-
tions of seizure types and performance metrics respectively.
As seen, maximum classification η and F1 have been
achieved by the proposed model during the classification of
ABS, CPS, GNS, MYS, and TCS (third row), i.e., FNS may
have some similar characteristics with other types of seizures;
in contrast, minimum classification performance for ABS,
CPS, FNS, GNS, TCS (fifth row) without MYS. Therefore,
during seizure type discrimination, FNS and MYS types
of seizures should be carefully handled. However, all the
classification results are very consistent which also validates
the efficacy of the proposed model.

TABLE 3. A comparative analysis with related works.

D. COMPARATIVE ANALYSIS
Finally, a comparative study has been performed with
recently conducted works and the results have been sum-
marized in Table 3, in which the first and second columns
represent the related works followed by their respective
methods, proposed model, and classification performance
metrics respectively. As seen, the proposed idea displays
the highest classification accuracy along with an F1–score.
The results clearly show that the proposed idea offers the
best classification performance in terms of accuracy and
F1-score.

V. CONCLUSION
In this study, six different types of seizures have been
classified by CNN where its 2D input images have been
generated from 1D EEG signal. For this purpose, four brain
rhythms, δ, θ , α, and β have been taken into account. For 2D
input image generation, the Markov transition field has been
employed, which preserves the temporal and dynamics sta-
tistical transition of EEG recordings. To check the optimum
image quality, three different image resolutions — 32×32,
64×64, and 128×128 have been taken into consideration for
the analysis of seizure types. The proposed idea has been
verified by considering the Temple University EEG dataset
(TUH v1.5.2). The proposed methods can achieve the clas-
sification accuracy and weighted F1- score up to 91.1% and
91.0% respectively. Further analysis shows that the images
with high resolution could better classification performance.
In addition, the δ rhythm has been found very suitable for
seizure type classification. In comparative evaluation, the
proposed method demonstrated its superiority by displaying
the best classification performance. Such a framework can
be extended to other domains of EEG signal analysis.
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