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ABSTRACT Chipless RFID systems can be considered as a special case of passive RFID systems, where
the tag contains no power source and no electronics. Instead, the tag’s information is stored in its structure
and accessed through its electromagnetic (EM) scattering response. However, robust response detection,
which is primarily a function of the measurement method, measurement equipment, and processing method
used, is still a major challenge in the chipless RFID field. The consequences of not properly capturing
a tag response include, incorrectly assigning an ID or incorrectly reporting a sensing parameter. Due to
the criticality of these challenges, this review seeks to provide an overview of the current measurement
methods, equipment architectures, and processing methods as they relate to chipless RFID tag response
detection and decoding. Since chipless RFID started gaining popularity around 2005, the developments in
this area have been focused on three major categories: time-domain, frequency-domain, and spatial-domain
systems. Frequency-domain systems have emerged as the most popular among these three categories, and

thus, this review focuses on techniques used for these systems.

INDEX TERMS Chipless RFID, measurement, reader, notch detection, decoding.

I. INTRODUCTION
ADIO frequency identification (RFID) systems consist
primarily of a reader with at least one reader antenna
and a tag. Depending on how the tag operates, the systems
can be primarily classified as either active or passive. Tags
in active RFID systems have their own power source (e.g.,
a battery) that helps them broadcast their information back to
the reader, while tags in passive RFID systems are powered
by the electromagnetic wave that interrogates them. Both
types of tags contain electronics, including ICs, that allow
them to interpret reader requests and send back information,
such as their ID or connected sensor data [1], [2], [3].
Chipless RFID tags hold their information in their struc-
ture (e.g., the resonators, antennas, microstrip lines, etc.
that make up the tag) and scatter this information to the
reader when they are interrogated with an electromag-
netic (EM) wave. Chipless RFID can be considered as
either a subset of passive RFID or as its own category.

Chipless RFID systems can be classified based on how the
tag’s response is viewed as time-domain, frequency-domain,
or spatial-domain [4], [5], [6], [7], [8]. Frequency-domain
based systems are the most common since they tend to pro-
vide for the highest coding capacity, and therefore they are
the focus of this review [4], [9], [10], [11].

In comparing and contrasting the different types of RFID
systems, the absence of electronics and a power source
distinguishes chipless RFID tags from active and passive
tags. Another difference between active and passive tags
and chipless tags, is that active and passive tags use their
ICs to modulate their response to the reader (i.e., transfer
stored information). This provides natural isolation of the
tag response from its background environment [1]. However,
chipless tags do not have this capability, which leads to var-
ious measurement challenges, such as limited read range
and interference from reflections due to the background
environment [1], [12], [13]. These challenges are further
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exacerbated by the regulatory limits on the allowed transmit
power for ultrawideband (UWB) interrogation of chipless
tags and the relatively small size of tags at microwave
frequencies, both of which limit the scattered power detected
by the reader [14], [15]. All of these measurement challenges
can result in not properly capturing a tag’s response, which
can then lead to incorrectly assigning an ID or incorrectly
reporting a sensing parameter [16], [17], [18], [19].
Attempts to address these chipless RFID measurement
and response detection challenges have been made both on
the tag side and the reader side. However, robust response
detection, which is primarily a function of the measurement
method, measurement equipment, tag, environment in which
the tag is, and processing method used, is still a major
challenge in the chipless RFID field. Tag/reader misalign-
ment can additionally intensify these issues and cause further

challenges [19], [20], [21], [22], [23], [24], [25], [26], [27].

Due to the criticality of these challenges, this review seeks
to provide an overview of the current measurement methods,
equipment architectures, and processing methods as they
relate to chipless RFID tag response detection and decoding
for frequency-domain tags. This is done in one place and
in a comprehensive manner so that interested readers can
be fully informed of these issues and challenges, as well
as of the variety of proposed solutions at their disposal. To
this end, Section II discusses the quantities, namely radar
cross-section (RCS) and S-parameters, that are commonly
measured and considered as the chipless RFID tag response,
while Section III discusses the roles polarization, desired
reading distance, monostatic vs bistatic setups, and calibra-
tion techniques play in how the tag response is measured.
Section IV provides an overview of the hardware, both
off-the-shelf and custom, that has been used to measure and,
in some cases, decode the tag response. Section V examines
the techniques used to pre-process, detect response features
of interest, analyze, and decode the tag response. Lastly,
Section VI provides a comparison of some measurements
that have been reported in the literature and showcases
the diversity of chipless RFID measurement methods and
response detection/decoding approaches.

Il. MEASUREMENT QUANTITY SELECTION

When it comes to measuring a frequency-domain chipless
RFID tag, there is a choice to be made primarily between
measuring the S-parameter(s) (e.g., the complex reflection
coefficient, Sy, or the complex transmission coefficient, Sy1)
of the tag or its radar cross-section (RCS) and whether to
measure them in a monostatic or a bistatic configuration.
RCS can be thought of as a target’s equivalent area that
would be seen by a radar, and it is proportional to the ratio
of the power scattered by the target to the power that was
incident on the target. As such, RCS is a scalar quantity (i.e.,
it does not contain phase information) and the units of RCS
are m? or dB square meter (dBsm) [28], [29]. S-parameters
are ratios of reflected and received waves to the transmit-
ted wave. S-parameters are complex (i.e., have a real and
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FIGURE 1. Simulation of tag response: a) model of eight circular slot tag,
b) simulation setup used for waveguide interrogation, and c) tag responses generated
with different simulation setups.

imaginary component) and are unitless. Both the RCS and
S-parameters are functions of the polarization, frequency, and
incidence angle of the interrogating wave [28], [29], [30].

While there are similarities between RCS and S-parameter,
there are also differences. The former is a far-field distance
independent quantity while the latter is distance dependent.
Another difference between RCS and S-parameters is that
while S-parameters can be directly measured by a vector
network analyzer (VNA), the RCS cannot. Instead, the RCS
is calculated from measured quantities like received power or
S-parameters in conjunction with some type of a calibration
procedure [4], [29], [31]. Thus, determining RCS through
measurement can be performed in several different ways [4].
Fig. 1 is provided to illustrate the relationship between RCS
and S-parameters.

Fig. 1 shows simulated S1; and RCS responses of a tag
with eight circular slot resonators, which was presented in
more detail in [32], [33]. The responses were simulated
using CST Studio Suite®) in a couple of different ways. The
first response was simulated using a waveguide port and by
setting the boundary conditions such that plane-wave interro-
gation was performed and the complex reflection coefficient,
S11, response was generated. Next, a waveguide with an engi-
neered flange was used to interrogate the tag at three different
reading distances, namely: 0 mm, 10 mm, and 20 mm [34].
The setup for this simulation case is shown in Fig. 1b. Lastly,
plane-wave interrogation was used with a RCS probe placed
at a distance of 100 mm to extract the RCS vs. frequency
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response of the tag. In comparing the responses in Fig. lc,
the distance dependence of the S| responses and the simi-
larities in terms of number of notches between the S;; and
RCS responses can be seen. These notches, as well as other
response features, could be used to assign a binary code
or determine a sensing parameter (i.e., decode the response)
depending on the application. The response feature detection
and decoding mechanisms used in the chipless RFID field
are discussed in more depth in Section V. It should also be
noted that the difference in magnitude between the S;; and
RCS responses is due to a difference in quantity definitions
(voltage vs. power) and units (dB vs dBsm), rather than
reading distance.

One approach to determining the RCS is to measure the
received power (P,) and use the radar range equation to solve
for the RCS (o) of a tag as [14], [31], [35]:

G,P,;G,o)?
- onoor 0
4r)’R
P, (47)°R*
Gtarget = B G G A2 2

In this equation P, and P, represent the received and trans-
mitted powers, respectively, while R represents the distance
to the target (i.e., tag), A represents the operating wavelength,
and G, and G, represent the gain of the transmit and receive
antennas (i.e., reader antenna) that are used to interrogate
the target. This approach requires the careful measurement
of power, gain, and distance in order to accurately determine
the RCS [14], [31], [35]. It should also be noted that this is
a simplified version of the radar range equation that does not
take into account parameters like receiver noise, polarization
losses, and required SNR for detection [15], [36].

A second method relies on the relationship between
S-parameters and RCS and again employs the radar range
equation. Assuming that the gain of the transmit and receive
antennas are equal (G), this relationship can be expressed
for S,1 (the complex transmission coefficient/the S-parameter
measured at port 2 when a signal is transmitted from port
1) as follows [29], [37], [38], [39], [40], [41]:

15211 = Vo G—)g 3
VAR
This approach can also be done with a Si; (the com-
plex reflection coefficient/the S-parameter measured at port
1 when a signal is transmitted from port 1) measurement
using the following equation:

G*)\?
@n) R+
Equations (3) and (4) reveal that while it is possible to
determine RCS from a complex Sy; or Si; measurement,
it is not possible to determine the complex Sp; or Sy
from RCS (i.e., only the magnitude of Sp; or Sy; can be
determined) [29], [37], [38], [39], [40], [41]. Similar to the
previous method, this approach is contingent upon the accu-
rate knowledge of antenna gain and target distance and also

IS11] = “4)
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relies on accurate measurement of the target’s Sp; or Sij
response [29], [31], [37], [42].

Another method combines Sp; measurements of a target
and a calibration standard with the radar range equation.
In this approach, the calibration standard, such as a metal
plate or sphere, is used to help achieve more accurate RCS
measurement results [35]. The Sy response of a target can
be related to the power as follows:

20

( 21!11rget>
Plarget =P %10 (5)

In equation (5), Prgrger is the power received from the target
and Sj; is measured in dB. By combining equations (5)
and (1) and using the following relationship, the RCS of
the target can be expressed in terms of the RCS of the
calibration standard and the S;; measurements of the target
and the calibration standard:

P target __ Otarget (6)
Py Ostd
(S21targer 7S21§[d )
20
Otarget = Ostd * 10 (N

In equation (7), both S;; measurements are in units of
dB [35]. The RCS of the selected calibration standard (o)
should be well-defined analytically so that it can be used in
equation (7) [35], [36], [43]. One challenge of this approach
is ensuring that the target and calibration standard are mea-
sured at the exact same location so that when their Soj
responses are subtracted coherently there is no unwanted
constructive or destructive interference.

A fourth method that was derived in [44] and discussed
in [45] utilizes Sp; measurements of a reference target and
of its background environment in conjunction with an Sy;
measurement of the tag to determine its RCS. This method
can be expressed analytically as:

St2alrget _ S;upport 2
— 1
Otarget = gsid _ qoupport * Ostd 3
21 21
support

In equation (8), S, refers to the Sy response of the back-
ground/tag measurement setup (e.g., the anechoic chamber
with a stand to hold the tag during measurements) with-
out the tag. The assumption is that the reference standard
is measured with the same setup as the tag [44], [45]. It
should be noted that in both the numerator and denomina-
tor of equation (8), coherent subtraction is performed with
the linear form of the S-parameters (not dB). Implementing
this method results in a complex RCS, which differenti-
ates this method from the others. This approach has gained
popularity in the chipless RFID field and has also been
modified for monostatic rather than bistatic measurement
setups [4], [9], [46], [47], [48], [49], [50], [51].

A fifth method was designed specifically for monostatic
setups and again combines S-parameter measurements to
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obtain the RCS, as [50]:

3p4
2 (47)°R ©)

Otarger = |S11target - Sllsupport

2)2
In equation (9), SllTx/Rx is the S;; of the reader antenna in
free-space. Just as in the previous approach, this approach
also requires that coherent subtraction be performed with the
S-parameters in linear form [50].

A sixth method was proposed for cross-polar tags (i.e.,
tags that produce a response with polarization that is orthog-
onal to that of the interrogating wave). This method, which is
very similar to the previous one, uses a background reference
measurement to subtract out the effects of the background
environment, but does not account for the antenna effects
(e.g., coupling and aperture reflections) like the previous
method [52]:

G22(1 = St1p,

(47 )3R*
TGz

cross—pol

2
S . Scmsx—pol (10)

0,
mgcrowfpul 21.ruppart

Equation (10) assumes that a dual-polarized reader antenna is
used in the measurements so that the transmit and receive
gain are the same (G) [52].

The methods depicted above demonstrate the relative com-
plexity of measuring the RCS of a tag as compared to mea-
suring its S-parameters. As was pointed out, inaccuracy in
the measurement of any of the measured parameters is propa-
gated into the calculation of the RCS [42], [53]. Additionally,
the reference measurements are distance specific so if a tag
were to be measured at a different distance, the reference
measurements would also need to be repeated. It should also
be noted that many of these methods are not feasible outside
of a laboratory setting, especially in sensing applications.
For example, a tag couldn’t be replaced with a calibration
target to determine its RCS in an embedded materials char-
acterization scenario [4], [32], [54], [55], [56], [57]. Due to
the relationship between RCS and S-parameters, which
has also been depicted in Fig. lc, both are frequently
used in the design and measurement of chipless RFID
tags [4], [58], [59].

While S-parameters and RCS are the most commonly used
chipless RFID measurement quantities, others such as power,
voltage, and electric field have also been measured. This is
especially done when custom readers, radars, or software
defined radios are used to make the measurements rather
than VNAs [60], [61], [62], [63], [64], [65].

lll. CHIPLESS RFID MEASUREMENT APPROACHES

The choice of technique used to measure the quantity of
interest is influenced by the tag design, the desired applica-
tion, and the available equipment [4]. When it comes to the
tag design, how the tag is designed to interact with the polar-
ization of the interrogating wave is a major measurement
approach determinant. In terms of their polarization response,
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FIGURE 2. Models of different types of frequency-domain chipless RFID tags:
a) co-polar linearly polarized tag [58], b) co-polar orientation insensitive tag [32],
c) co-polar dual-polarized tag (©2017, IEEE), [76], d) cross-polar tag [69], and

e) cross-polar Tx/Rx tag (©2008, IEEE), [79].

tags can be categorized as co-polarizing or cross-polarizing.
Co-polar tags are designed so that their response has the same
polarization as the interrogating wave, while cross-polar
tags are designed to have their response in the polariza-
tion orthogonal to that of the interrogating wave. In general,
co-polar tags have a higher RCS and data capacity than
cross-polar tags, but cross-polar tags tend to perform better
in real (i.e., non-anechoic) environments. This is because
background objects generally reflect with the same polar-
ization as the interrogating wave, while a cross-polar tag
produces a cross-polar response, providing for natural iso-
lation of the cross-polar tag response from the background
environment [66], [67]. Both co-polar and cross-polar tags
can be categorized as Tx/Rx tags or backscatter/RF encoding
particle (REP) tags. Tx/Rx generally consist of two patch
antennas connected by a microstrip line loaded with res-
onators, while backscatter tags consist just of resonating
elements [68].

Co-polar tags can further be delineated as either
linearly-polarized  or  orientation  insensitive  tags,
where linearly-polarized tags require precise polar-
ization alignment between the tag and the reader
antenna, while  orientation insensitive tags do
not [20], [27], [40], [45], [69], [70], [71]1, [72], [73], [74].
There are also dual-polarized tags that are a special case
of co-polar tags; they are designed to be read in two
orthogonal polarizations that are co-polar with the polar-
ization of the reader antenna. In the case of dual-polarized
tags, the reader antenna is typically either dual-polarized,
or the orientation of the reader antenna relative to the
tag is changed to measure the tag in the two polariza-
tions [69], [72], [75], [76], [77], [78]. Fig. 2 shows models
of the different types of co-polar and cross-polar tags
discussed above. A reference for each tag model is provided
which gives more details on the dimensions, substrate
material, response, frequency of operation, etc. of each
tag [32], [58], [69], [76], [79].
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There are numerous configurations with which co-polar
and cross-polar tags can be interrogated. These include the
following:

o A single linearly-polarized antenna (i.e., a monostatic
setup), such as a horn or open-ended waveguide, used
to interrogate a co-polar tag.

« A bistatic configuration of linearly co-polarized anten-
nas used to interrogate a co-polar tag.

« A single dual linearly-polarized antenna used to interro-
gate a co-polar, cross-polar, or dual-polarized tag. This
is the case of having a bistatic reader with a monostatic
reader antenna.

o A bistatic configuration of linearly cross-polarized
antennas used to interrogate a cross-polar tag.

From the list above, it can be seen that having a cross-
polar or dual-polarized tag does necessarily imply a bistatic
setup because of the use of dual-polarized antennas,
such as dual-polarized horn antennas or specialized patch
antenna arrays [15], [67], [69], [75], [80], [81]. In gen-
eral, a monostatic configuration is limited by the directivity
of the reader antenna. Using a bistatic configuration helps
overcome this and improves the signal-to-noise ratio (SNR)
of the received signal. However, bistatic configurations can
suffer from misalignment issues and coupling between the
two reader antennas [45], [69], [78], [82], [83], [84], [85],
[86], [87].

Fig. 3 shows schematics of some of the measurement con-
figurations that have been discussed in this section. This
figure is not comprehensive due to the breadth of pos-
sibilities, and instead provides illustrative examples from
which the mechanics of other setups can be extrapolated.
In Fig. 3, the polarization of the reader antenna and the
tag are indicated with red arrows and the polarization of
the transmitted and received wave are described with text.
In the case of the cross-polarized tag, the tag polariza-
tion is represented by two orthogonal red arrows with
a yellow arrow between them to represent the polarization
conversion performed by the tag. In the case of mono-
static dual-polarized measurement, two lines are used to
connect the reader to the antenna to represent that this
is a two-port measurement (i.e., a bistatic reader with
monostatic measurement setup). While a horn antenna is
used in the schematics of Fig. 3 for illustrative purposes,
there are many different types of reader antennas that are
used for making measurements of chipless RFID tags. The
reader antenna landscape will be discussed in more detail in
Section IV-B.

Co-polar and cross-polar tags can also be interrogated
with a circularly-polarized wave [69], [85], [88], [89].
When a circularly-polarized wave impinges on a surface
and is reflected, the polarization sense changes (i.e., right-
hand polarized becomes left-hand polarized and vice versa).
In general, a reader antenna that is circularly-polarized
can only send and receive with a single sense [90], [91].
This means that if tags can produce a circularly-polarized
response with the same polarization sense as the reader,
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FIGURE 3. Examples of possible measurement configurations for different types of
tags.

then the tag response becomes naturally isolated from
the environment. This is similar to the concept of cross-
polar tags, but it does not require precise alignment
between the polarization of the tag and the reader. In
other words, by using circular polarization to interrogate
a tag, orientation independence can be achieved along with
potential background isolation assuming appropriate tag
design [69], [81], [89], [92], [93], [94], [95]. It should be
noted that while circular polarization can help overcome sen-
sitivity to roll-based rotations, it does not necessarily help
with pitch- and yaw-based rotations [20], [62], [93], [96].
The reader setups used to implement circularly-polarized
orientation insensitive reading can be either bistatic or mono-
static and vary in complexity [85], [89], [93]. Additionally,
some of these circular polarization reading setups require
specifically-designed tags while others are able to read
tags with any of the polarization schemes discussed
above [69], [85]. Relatedly, measurement setups that achieve
orientation independence with linearly-polarized antennas
have also been proposed [23], [97], [98].

8000331



BRINKER AND ZOUGHI: A REVIEW OF CHIPLESS RFID MEASUREMENT METHODS, VOL. 1, NO. 1, JANUARY 2022

A. DESIRED READING DISTANCE

Interrogation with the polarization schemes described above
has been performed in both the near-field and far-field of
a reader antenna. The far-field is typically defined as start-
ing at a distance of 2D?/A away from the antenna, where
D is the primary dimension of the antenna. It should be
noted that near-field chipless RFID measurements are typi-
cally done in a monostatic configuration. The exception to
this is transmission line-based near-field readers where the
tag is placed between two waveguides or on a microstrip
line [33], [69], [99], [100], [101], [102], [103], [104]. The
desired reading distance, and consequently whether the tag
is read in the near-field or far-field, is dictated by the applica-
tion and plays a role in determining the optimal measurement
approach. As such, the reading distance has not necessarily
increased over the evolution of chipless RFID systems. This
is demonstrated in Fig. 4a where the reported reading dis-
tance is plotted against the year published for 172 different
reported works, which have compiled in the dataset available
in [105]. The different symbols represent whether the mea-
surement was done with a monostatic or bistatic setup and
the different colors represent whether a co-polar or cross-
polar tag was measured. In works where multiple reading
distances were reported, the highest one at which the tag
was successfully read according to the authors of that work
is reported in Fig. 4a. Furthermore, it should be noted that
“success” is somewhat subjective and the criteria for success
are often not provided. Therefore, some caution needs to be
taken when comparing reading distances. From Fig. 4a it
can also be seen that the reading distance is typically below
I m.

There is also a relationship between the operational
frequency range of the tag and the reading distance. This
is illustrated in Fig. 4b. In Fig. 4b, the colors are used
to help distinguish the 172 cases reported in [105] from
each other (i.e., each case is represented by one vertical
line) and illustrate the frequency ranges that have been used
in chipless RFID measurements in the literature. Fig. 4b
shows that the higher reading distances tend to be for tags
operating at lower frequencies. Note the concentration of
data along the bottom of the plot between reading distances
of 30 cm and 100 cm. The intuition behind this is that as
the frequency decreases, the tag tends to get larger, which
is associated with a larger RCS. Relatedly, increasing the
RCS has been demonstrated to be necessary for increas-
ing the read range [15], [106]. One way to increase the
RCS of a tag is by creating an array of tags [47], [106].
Additionally, at lower frequencies there is less path loss,
which results in a larger tag response magnitude relative to
that of tags that operate at higher frequencies [15]. Fig. 4b
also shows that there is a concentration of designed and
measured tags in the 3.1-10.6 GHz range (i.e., 35 of the
172 cases considered fall in this range and 131 of the
172 cases considered were measured at frequencies less than
10.6 GHz). This is largely due to Federal Communications
Commission (FCC) and European Telecommunications
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Standards Institute (ETSI) requirements for ultrawide-
band (UWB) applications which restrict the equivalent
isotropic radiated power (EIRP) [61], [67], [235], [236]. An
exception to both the frequency range and reading dis-
tance trends is reported in [157], where a combination of
a 24 GHz Van Atta Array cross-polar tag, bistatic measure-
ment setup, and a high gain transmit antenna with beam
scanning capabilities is used to achieve a reading distance
of 58 m.

Table 1 breaks down the number of each type of tag and
type of measurement setup considered across the 172 cases
in [105] and also shows the average reading distance for
the different tag/reader configurations considered in Fig. 4a.
From Table 1 it can be seen that cross-polar tags and
bistatic reading setups, on average, tend to have higher
reading distances. However, if the 58 m reading distance
case from [157] is removed from the data set, the aver-
age cross-polar tag reading distance drops to 30.0 cm, the
average bistatic reading distance drops to 44.8 cm, and
the average bistatic cross-polar reading distance drops to
34.8 cm. This means that while cross-polar tags can be
theoretically read at larger distances than co-polar tags, prac-
titioners are not always leveraging this advantage to its fullest
potential [15], [237].

Read range is defined as the largest possible distance
at which a tag can be read. While the reading distance is
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TABLE 1. Average reading distances for different measurement scenarios using the
172 cases in [105].

Parameter Value
Number of Co-Polar Measured Tags 118
Number of Cross-Polar Measured Tags 54
Number of Monostatically Measured Tags 73
Number of Bistatically Measured Tags 99
Number of Monostatically Measured Co-Polar Tags 53
Number of Bistatically Measured Co-Polar Tags 65
Number of Monostatically Measured Cross-Polar Tags 20
Number of Bistatically Measured Cross-Polar Tags 34
Average Reading Distance for Co-Polar Tags 45.5 cm
Average Reading Distance for Cross-Polar Tags 136.9 cm
Average Reading Distance of Monostatic Measurements 35.2 cm
Average Reading Distance of Bistatic Measurements 103.0 cm
Average Reading Distance for Monostatically Measured Co- 40.1 cm
Polar Tags

Average Reading Distance for Bistatically Measured Co- 49.9 cm
Polar Tags

Average Reading Distance for Monostatically Measured 22.1 cm
Cross-Polar Tags

Average Reading Distance for Bistatically Measured Cross- 204.4 cm
Polar Tags

typically shorter than the read range, they can be the same.
Read range is often measured or defined based on specific
conditions (e.g., measuring in an anechoic chamber or with
an antenna with a specific gain). In practice, the reliable read-
ing distance is typically degraded from the read range due to
a number of factors, such as polarization mismatch between
the tag and reader antenna, reflections from the background
environment of the tag, dynamic range of the receiver, and
reader antenna performance (e.g., gain, beamwidth/reading
zone, and bandwidth) [12], [15], [61], [85], [188], [237]. In
order to increase the read range, the RCS of the tag rela-
tive to the background must increase, as simply increasing
the transmit power also increases the scattering from the
background environment [9], [15], [16], [82].

B. CALIBRATION PROCEDURES

Calibration procedures can help in isolating the tag response,
which can also impact the achievable read range and reliable
reading distance. Here, calibration procedures describe those
that require specific steps be taken during the measurement
process. Signal processing procedures that are implemented
post measurement will be described in Section V. Based
on this convention, there are a number of primary ways
by which calibration is performed. The first, involves mea-
suring the background response in the absence of the tag
and then coherently subtracting this response from that of
the tag [29], [32], [238], [239]. While this helps remove
“clutter” (i.e., response due to the background environment)
from the measurement, it does not help remove the effect
of the reader antenna. Additionally, it has been shown that
background subtraction is most effective for large reading
distance measurements with there being miniscule effects
for small reading distance measurements [234]. In order to
remove the effect of the reader antenna, a reference target,
typically a large metal plate, is often used. The reference
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target is measured at the same location as the tag is to be
measured and then is used to calibrate the response. This is
done either through the procedures described for RCS mea-
surement in the previous section or by dividing the result
of subtracting the background response from that of the
tag by the Fourier transform of the time-gated metal plate
response [35], [38], [45], [123], [134]. By using a reference
target in this manner, the calibration procedure becomes dis-
tance specific (i.e., it only allows for tags to be measured
at the specific distance at which the reference target was
measured) [240]. While these approaches can be effective
in static environments where the background is not chang-
ing significantly from one measurement to the next, they
do not work as effectively when the environment becomes
dynamic (e.g., the tag and other objects in the scene are
moving) [241].

Another calibration approach that suffers from the same
distance-specific limitation, is the use of calibration tags.
For this approach, a calibration tag, which is typically a tag
with the same form factor as the tag of interest and all
the resonators removed or shorted, is measured at the same
distance as the tag of interest. The responses of the tag
of interest and the calibration tag are coherently subtracted
and this magnitude difference is examined. In dynamic
systems (e.g., sensing applications where the response is
changing over time), a measurement from a specified incre-
ment of time in the past can be used as the calibration
tag/reference measurement and subtracted from the current
response. The responses measured from calibration tags can
also be used to create a threshold of detection for the
response. Furthermore, the use of a calibration tag can also
be combined with background environment response sub-
traction and time gating [65], [100], [121], [129], [142],
[160], [222].

Time gating has also been used by itself as a calibra-
tion procedure to help reduce the effects of multi-path and
isolate the tag’s antenna mode from its structural mode.
A more detailed explanation of antenna and structural modes
is provided in Part A of Section V. Time gating can be
implemented directly on some VNAs, which are frequently
used to read frequency-domain chipless RFID tags, or in
post processing [39], [57], [94], [124]. Similarly, averaging
can also be implemented on a VNA to help increase the
fidelity of the tag response [51], [137]. Another approach,
is to calibrate a VNA either up to the connectors or up
to the aperture of the antenna, which can be done with
port extension or with calibration standards when stan-
dardized antennas like waveguides are used as the reader
antenna [54], [58], [69], [119], [120], [194].

Another approach geared towards systems with dual-
polarized or cross-polar tags involves measuring a tag
and/or the background in multiple orthogonal polarizations.
The background environment responses can either be indi-
vidually subtracted from their associated tag response or
they can be combined with each other. For example, by
subtracting the two background measurements made with
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orthogonal polarizations, an estimate of the mutual cou-
pling between the two orthogonally-polarized ports of the
reader antenna can be obtained [52], [142]. Just as with
some of the calibration procedures discussed previously,
this multiple polarization approach can also be combined
with time gating. As an example, in [75] a dual-polarized
tag and the background responses were both measured
in orthogonal polarizations and then the associated back-
ground response was subtracted from each tag response.
These background-subtracted responses were then individu-
ally time-gated and then subtracted from each other in the
frequency domain [75].

An approach which is not distance specific has also been
developed [240]. This approach involves performing a mea-
surement of the background environment and of a large metal
plate at a known distance. The metal plate response is then
subtracted from the background response and the result is
inverse Fourier transformed into the time-domain so it can be
time windowed. From this time-domain response the time of
arrival from the metal plate can be computed. Subsequently,
the tag response is measured and the background response
is subtracted from it. This background-subtracted response
is also inverse Fourier transformed for time windowing pur-
poses and from it the time of arrival of the tag response
is computed. From the time of arrival of the tag and metal
plate responses and the known distance at which the plate
was measured, the distance at which the tag is measured can
be computed. Consequently, by knowing all of these param-
eters the tag transfer function can be estimated. This process
is described and demonstrated in more detail in [240]. The
benefit of this process is that only one set of calibration
measurements is necessary in order to measure tag response
at any distance from the reader.

In general, the number of measurements required to mea-
sure a tag, including those associated with the calibration
process, can be used as a metric to indicate practical-
ity when comparing measurement approaches. Additionally,
some measurement approaches with associated post pro-
cessing procedures have been developed that explicitly
do not require calibration [241], [242], [243], [244], [245].
In [193], a table (Table 1) is provided which shows whether
one or two measurements are needed in the measure-
ment approach. In Section VI of this work, the number of
required measurements for a given approach is implied by
the calibration technique and measurement parameter.

C. APPLICATION-SPECIFIC MEASUREMENT
APPROACHES

Another aspect that dictates the measurement approach is
the application for which a tag is designed. For exam-
ple, for the purpose of assessing and mitigating the effects
of tag/reader misalignment several approaches have been
proposed, including: 1) characterizing the reading volume
of the tag using a 3D raster scanner, 2) using a specific
slot resonator tag with a reader architecture consisting of
two orthogonally located linearly co-polarized antennas, and
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3) employing a reader capable of tag polarization recog-
nition [19], [62], [98], [246]. Determining the position of
tags (i.e., tag localization) can also require the use of
multiple reader antennas arranged at specific known loca-
tions [26], [247], [248]. Another application where a specific
measurement setup may be required is sensing of environ-
mental parameters, such as temperature, humidity or pres-
sure. In these cases, a chamber is used to produce specific
conditions and the measurement setup is adjusted to meet
the constraints imposed by the chamber [159], [249], [250].
For Internet-of-Things (IoT) applications, high read range
in real environments is cited as an important system
requirement [251], [252].

The polarization schemes, reading distances, calibra-
tion procedures, and application specific measurement
approaches discussed in this section provide some insight
into the breadth and lack of standardization in the chipless
RFID field. This will be further demonstrated in Section VI
where an additional comparison of reported chipless RFID
measurements are provided. Table 2 provides a summary of
the pros and cons of the various chipless RFID measurement
approach related choices that are made when determining
how to measure a tag (e.g., measuring with a monostatic
or bistatic setup). These choices are largely independent
from each other and can be made based on the applica-
tion and available equipment. As such, no one combination
of measurement approach choices is inherently superior to
another.

IV. MEASUREMENT HARDWARE

When it comes to the measurement hardware used to imple-
ment the measurement approaches previously discussed,
there is a mix of off-the-shelf and custom solutions for
both the reader itself and the reader antenna. Factors
involved in selecting measurement hardware include, the
operating frequency, bandwidth, dynamic range, sensitiv-
ity, cost, desired read range, and measurement speed, which
can all affect the system response detection and decoding
capabilities.

A. READER ARCHITECTURE SELECTION

While this work focuses on the measurement of frequency-
coded tags, where the tag information is encoded and
viewed in the frequency-domain, the tag response can be
acquired either directly with a frequency-domain reader
or indirectly with a time-domain reader, such as a ultra-
wideband (UWB) impulse radio (IR-UWB) system. The
time-domain response can be translated to its frequency-
domain response through a Fast Fourier Transform (FFT)
operation [253], [254]. A brief description of the off-the-shelf
and custom frequency-domain and time-domain readers and
their respective limitations is provided here. Fig. 5 shows
schematics of one custom frequency-domain reader and one
custom time-domain reader for basic comparison purposes.
However, many different architectures of frequency-domain
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TABLE 2. Pros and cons of different measurement approach choices.

Measurement Pros Cons
Approach
Decision
Measurement | Distance independent. Derived quantity that

Quantity: RCS often requires multiple
measurements to
calculate, is only valid for
far-field measurements,
and is not universally
practical outside of a

laboratory setting.

Measurement | Can be directly measured. Distance dependent.
Quantity:
S-parameter
Tag Wide variety of tag design | Can be very sensitive to
Polarization: options and only requires tag/reader polarization
Co-Polar antennas with one misalignment and the

polarization to measure. response can be

Tend to have a higher RCS | overwhelmed by

and coding capacity than background reflections.

cross-polar tags.
Tag Response is naturally Measurement hardware
Polarization: isolated from the can be more complex and
Cross-Polar background. can still be sensitive to

tag/reader polarization
misalignment.

Reader Simple reader equipment Can be sensitive to
Polarization: with many different off- tag/reader misalignment
Linear the-shelf options for reader | issues.

antennas.
Reader Can help mitigate Requires more
Polarization: tag/reader misalignment specialized reader
Circular issues and potentially equipment.

provide isolation of the tag

response from the

background.
Measurement | Simple hardware as Limited by the directivity
Setup: compared to bistatic of the reader antenna.
Monostatic setups.
Measurement Higher SNR than Can have misalignment

Setup: Bistatic | monostatic setups. and mutual coupling
issues. Not generally
suitable for near-field

measurements.

Desired Less affected by Some antennas, such as

Reading background reflections and | horn antennas, are not

Distance: the tag response generally well suited for use in the

Near-field has a higher SNR. near-field due to high
phase variation.

Desired Can use a wide variety of Tag response is small due

Reading reader antennas and well to propagation loss and

Distance: Far- | suited for applications can be more easily

field where close proximity to overwhelmed by

the tag is not possible. background reflections

than in the near-field.

Performing Can remove the effects of Requires additional

Calibration background reflections and | measurements and

make the tag response
easier to detect and decode.

processing to determine
the tag response.

and time-domain readers have been proposed and there-
fore, interested readers can refer to the block diagrams of
frequency-domain and time-domain reader architectures with
more in-depth descriptions of the individual components that
can be found in [63], [236], [254], [255], [256].

Pertaining to frequency-domain readers, VNAs are the
most common off-the-shelf option [105]. While VNAs can
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FIGURE 5. Schematics of custom chipless RFID readers: a) frequency-domain
reader (©2009, IEEE) [65], and b) time-domain IR-UWB reader (©2021, IEEE) [61].

support UWB operation with high frequency resolution and
accuracy, they can be costly and bulky which has prompted
interest in the development of custom-designed and eco-
nomical readers. However, it should be noted that with
the current developments in the design and commercial-
ization of microwave components, relatively low-cost and
handheld VNAs have appeared in the market in recent
years [110], [257]. Software defined radios, which tend to be
less expensive than VNAs, and a combination of an RF sig-
nal generator and spectrum analyzer have also been used for
reading chipless RFID tags [86], [187], [216], [242]. When
it comes to custom-designed frequency-domain systems,
scalar, homodyne, and superheterodyne architectures have
also been proposed. All of these architectures have faced
some common challenges, namely: balancing voltage-
controlled oscillator (VCO) performance and cost (i.e.,
having a VCO with a wide enough bandwidth to read the tags
of interest), managing transmit power regulations, achieving
a high read range, reducing read time/system latency, and
mitigating self-interference due to signals from the transmit-
ter leaking into the receiver sub-section of the reader. By the
virtue of lacking phase information, scalar readers also suffer
from calibration-based limitations and high receiver noise
power [82], [86], [186], [254], [258], [259], [260], [261],
[262], [263]. In addressing the issue of self-interference,
self-interference cancellation boards [86], an UWB compen-
sation unit based on a polyphase power divider [186], [235],

8000331



BRINKER AND ZOUGHI: A REVIEW OF CHIPLESS RFID MEASUREMENT METHODS, VOL. 1, NO. 1, JANUARY 2022

a compensation unit based on wideband differential phase
shifters [264], and a wideband directive filter have been
proposed [260]. For the issue of noise, various techniques,
such as a moving average filter, has been proposed and
implemented on-board the reader [265], [266].

With respect to off-the-shelf time-domain readers, high-
speed digital oscilloscopes with impulse generators and
radar systems have been used [67], [170], [244], [267],
[268], [269]. The main benefit of using a time-domain reader
system 1is the spreading of the transmitted power over the
frequency band of interest with a short single pulse, which
provides for high peak power with a low average power.
In this way, these systems effectively increase the power of
the signal used to interrogate the tag while still being com-
pliant with FCC and ETSI regulations, which theoretically
increases the maximum read range of time-domain readers
over that of frequency-domain readers for some types of
tags [61], [82], [255], [270]. However, the amplitude of the
interrogation pulse is not constant over frequency; rather,
it takes a gaussian shape. Therefore, additional signal pro-
cessing is often recommended to interpret and decode the
tag response in the frequency-domain. One alternative to
this uses a set of pulses with different center frequencies to
create a more even spectrum amplitude across the overall
interrogation signal [271].

There are two primary custom-designed time-domain
reader architectures, namely: IR-UWB and chirped pulse
Fourier transform microwave (CP-FTMW). IR-UWB readers
can theoretically capture the entire tag response simultane-
ously in the backscattered short-duration pulse because they
do not need to sweep the frequency. This makes this approach
very fast, but it also means that the resulting frequency reso-
lution will suffer after the Fourier transform due to the short
duration of the pulse. CP-FTMW readers, in contrast to IR-
UWSB readers, use a broadband chirped pulse that is stretched
in time while still generally having a shorter reader time than
IR-UWB readers. This longer duration pulse provides for
the transmitted power to be more evenly distributed over the
frequency range of interest and provides for better frequency
resolution post Fourier transform [203], [236], [254].

For both IR-UWB and CP-FTMW readers, a high-
performance high-speed analog-to-digital converter (ADC)
is needed to sample the signal that is scattered from the
tag [61], [203], [236], [254]. To reduce the cost asso-
ciated with high-performance ADCs in custom solutions,
a method that uses multiple ADCs and an equivalent
time approach method have been proposed [236], [272].
In the equivalent time approach, multiple UWB impulses
are used to interrogate the tag and the reader incremen-
tally samples a few points from each backscattered pulse.
While cost effective, this approach can experience draw-
backs as a result of sampling clock jitter. However, these
issues can be mitigated with increased hardware complex-
ity [236], [268], [273]. In practice, the pulse repetition rate
can be increased and averaging can also be implemented
to increase the SNR [203]. Additional recent developments
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of custom time-domain readers include, a fully-tunable
ultra-low jitter baseband pulse generator [274], reduction in
read time through FPGA implementation optimization [236],
a dual-comb technique for increasing the frequency res-
olution while reducing the complexity of the receiver
portion of the reader design [203], a combined IR-UWB
transmitter/frequency translation reading method [61], and
a multicarrier-based receiver with a pulse distortion decoding
approach [275].

For both frequency-domain and time-domain readers,
numerous techniques have been proposed in the literature
for increasing performance. These include implementing fea-
tures like a handshaking algorithm for detecting if a tag
is present in order to reduce power consumption [276],
selectively silencing the transmitter to allow for increased
radiated power while interrogating the tag [235], using
a fast locking phase-locked loop (PLL) to allow for higher
transmitted power [186], including adaptive frequency hop-
ping and adaptive sliding window methods to reduce read
time [262], [263], and using ZF equalization to improve the
tag detection rate [277]. Increasing the number of receiver
antennas to increase receiver diversity, using a Selective-
RAKE receiver to filter clutter, using dual signal sources
to intentionally create different interrogating wave polar-
izations, and creating a reader that can read tags in two
polarizations without changing the orientation of the reader
antenna have also been proposed [98], [242], [278], [279].
Additionally, using a bank of bandpass filters in the receiver
with each filter having a center frequency corresponding to
a resonance frequency of the tag has been proposed. While
this approach reduces the reader receiver complexity and
lowers the ADC performance requirements, it also is limited
in terms of the tags it can read [63].

In comparing frequency-domain and time-domain readers,
frequency-domain readers tend to be more sensitive to the
tag response due to their input noise bandwidth and they tend
to provide higher frequency resolution. This is primarily due
to the short duration of IR-UWB pulses, which determines
the frequency resolution. However, IR-UWB readers tend to
have a faster read time than frequency-domain readers and
as discussed previously, have transmitted power advantages
that result in stronger received signals and therefore greater
potential reading distances [63], [82], [236], [254], [255]. It
should be noted that read time is dependent on the band-
width, number of frequency points, and reader architecture.
Therefore, as a metric read time needs to be considered in
the context of the application and one-to-one comparisons of
read times can only be made when similar tags are read by
both readers. This points to the potential benefit of the chip-
less RFID field agreeing on specific tag standards for testing
and comparing reader performance, which do not currently
exist.

The reader hardware for the 172 cases reported in [105]
is compared in Fig. 6. This plot depicts the highest reported
reading distance vs. the center frequency of the range over
which the tag was measured for three categories of readers,
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FIGURE 6. Comparison of time-domain and frequency-domain readers in terms of
reading distance and center frequency of the measured operational frequency
range [9, 11, 12, 16, 19, 20, 22, 32, 33, 37-39, 45-48, 51-54, 57, 58, 60-62, 65-67, 69, 70,
73,75, 76, 79, 80, 87, 93, 96, 99-105, 107-234].

namely: VNAs, non-VNA frequency-domain readers, and
time-domain readers. Fig. 6 demonstrates the similar reading
distances that are achieved in practice for frequency-domain
and time-domain readers, despite time-domain readers theo-
retically providing longer read ranges [61], [255]. However,
of the 172 cases considered, only six were done with time-
domain readers, while 156 were done with a VNA and ten
were done with other types of frequency-domain readers.
This provides evidence for both the lack of prevalence of
time-domain readers for frequency-domain chipless tags and
the potential to better leverage the advantageous features of
time-domain readers.

The evolution of the custom-designed chipless RFID
reader development landscape is depicted in Table 3. Table 3
lists the readers that have been proposed and tested in the
literature over time, and allows for comparison across archi-
tectures, required calibration complexity, bandwidth, and cost
when possible. It should be noted that some of the entries
represent incremental improvements over others and that
only readers that were prototyped were included in this table.
As can be seen from Table 3, most of the readers operate
in the 3.1 — 10.6 GHz range, which is in line with the
trends shown in Figs. 4 and 6. As previously discussed, this
frequency range is popular due to the desire for developed
readers and tags to comply with FCC and ETSI regula-
tions. There is also a tradeoff to consider when it comes
to higher frequency tags: as tags are designed to operate at
higher frequencies, they tend to become smaller and then
have a smaller average RCS over frequency and smaller
read range [54]. This means that in order to read a higher
frequency tag, readers generally need to have a higher sen-
sitivity to lower level signals so that they are able to detect
the minimum RCS value of the tag [82].

Another point of interest in Table 3 is that there is a mix
of both monostatic and bistatic setups for both frequency-
domain and time-domain readers. Cost is potentially another
metric across which readers can be compared. However, cost
is not always discussed in the published technical literature,
and when it is mentioned, the currency is not always speci-
fied and there are inconsistencies in terms of whether or not
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the cost of the antennas is included in the total reported price
of the reader. The performance of custom readers like these
in terms of measuring tags will be further demonstrated in
the comparison provided in Section VI.

B. ANTENNA SELECTION

Similar to reader hardware, the antennas used to interro-
gate a tag can be off-the-shelf or custom and depend on
factors, such as the polarization scheme and desired read
range. Additional factors for consideration include desired
gain, half power beam width (HPBW), form factor, cost,
and calibration potential. Notably, read range been shown
to be affected by the gain, beamwidth, and polarization
of the reader antenna [12], [85], [157], [280]. Ultimately,
however, the driving requirement for chipless RFID reader
antennas is the operational frequency range of the tags of
interest. In other words, the reader antenna needs to be able
to interrogate the tag over a range of frequencies that cap-
tures all of the response features of interest (e.g., all of the
resonances) [63], [85].

When it comes to off-the-shelf solutions, rectangular
waveguides and horn antennas are popular choices. Some
benefits to using rectangular waveguides are that they can
be calibrated up to their aperture with well-known stan-
dards (e.g., short, shifted short, and matched load) and are
inherently wideband as compared to basic patch antennas.
However, waveguides have a smaller gain than some other
types of antennas, such as horn antennas, and measurements
made with waveguides can suffer from flange effects. To
mitigate flange effects, engineered flanges that approximate
infinite flanges have been developed and used in the measure-
ment of chipless RFID tags [20], [34], [54], [58], [103]. Horn
antennas, on the other hand, have higher gains than open-
ended waveguides and can be more wideband (e.g., ridged
horns). However, there is a lot of phase variation in the near-
field of horn antennas and therefore, they are typically only
used in far-field measurements [90]. Horn antennas can also
be dual-polarized and are therefore often used for the inter-
rogation of cross-polar tags when a monostatic antenna setup
is desired [66], [67].

Custom options have been proposed mainly because of
the larger form factors and costs of standard off-the-shelf
options, such as horn antennas, that are commonly used in
laboratory settings and would not necessarily be suitable
for large scale commercial use [63], [236], [285]. Custom-
designed antennas can be categorized by whether they are
planar or nonplanar, their polarization characteristics, their
operational frequency range, gain, and other pertinent param-
eters. Table 4 provides a comparison of antennas that have
been custom-designed specifically for chipless RFID applica-
tions. It should be noted there are many other UWB antennas
in the literature that could be suitable for chipless RFID
applications, but all cannot be explored comprehensively
within the scope of this work. Based on the custom-designed
reader antennas reported in Table 4 there are a few trends
that can be identified, namely: 1) custom-designed reader
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TABLE 3. Comparison of custom chipless RFID readers that have been fabricated and tested.
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Freq. Monostatic wavelet based detection algorithm in hardware. by measuring a tag 100 times. 4735 20 | [190]
Startup procedure for finding
Freq. Bistatic Designed for use with cross-polar tags and dual-polarized antenna. optimum coefficients for the 4.6-5.6 | $1000 | 20 |[284]
vector modulator.
Uses a frequency translation method in the receiver which reduces the |Background measurement
. L noise bandwidth, cost, read time, and complexity of the receiver, .
Time Bistatic while still providing for a VNA competitive read range. Preliminary 3.1-10.6) 8600 | “21 | [61]
information about the tag must be known prior to measurement.
Startup procedure for finding
S Employs a directive filter and a modified gain-phase detector for optimum coefficients for the .
Freq. Bistatic leakage cancelation and accurate phase detection, respectively. vector modulator and then 4-8 $800 | “22 1[261]
background measurement
Time Bistatic i\élsu;:)lrcl:;rler system that uses pulse distortion for decoding the tag 4375 22 | 12751

antennas tend to be planar (i.e., microstrip patch antennas),
2) they tend to operate in the UWB 3.1-10.6 GHz range in
order to be compatible with the proposed custom-designed
readers and regulations, and 3) the gain varies widely from
2.6 to 26 dBi.

A consequence of many planar custom-designed reader
antennas is that they are often fabricated using printed circuit
boards (PCB). However, 3D printing has also been employed
for fabrication [69], [188]. Table 4 also shows that linear
polarization and dual linear polarization are the dominant
polarization schemes for custom reader antennas. However,
since the use of circular polarization for chipless RFID appli-
cations is relatively new, more circularly-polarized reader
antenna designs could be on the horizon [69], [92], [93].

V. RESPONSE PROCESSING
Detecting tag response features (e.g., notches, peaks, and
phase jumps) is critical for assigning a binary code or
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sensing parameter. Due to factors, such as noise, misalign-
ment, multipath, overwhelming background reflections, and
tag response collisions, a number of post processing methods
have been developed in order to extract the tag response from
the measurement and assign binary codes and sensing param-
eters as appropriate. Post processing needs and requirements
are driven by the choice of the parameter being measured,
the environment the tag is measured in, the hardware used
to make the measurements, and the calibration techniques
employed [57], [290], [291], [292].

Analysis of a tag response begins with how the response
is considered, which is limited by the measurement param-
eter (e.g., if RCS is measured then there will generally not
be phase information available to examine). For example,
the interpretation and analysis of a response considered in
magnitude and phase form may be different than that viewed
in group delay form or as the amplitude difference between
the tag of interest and a reference tag. To this end, this
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TABLE 4. Custom chipless RFID reader antennas.

= ; g = =
g ° ] = == q -
o= 52 g € |CE| 5| @
£F e E g | ES| ¥ | *
g =
ez £ £ =
Log Periodic Dipole Linearly- ~ .
Array Planar polarized 2-2.5 5.8 09 [65]
. Dual
2x2amay of dipole | Non- 1\ ooy 14854 136 | <10 | [12]
reflector antennas | Planar .
polarized
UWB Monopole Linearly- .
Patch Planar polarized 3.1-10| 2.6 10 | [12]
4x4 aperture coupled Planar Lmea_rly— 21271 20 ‘12 | [285]
patch antenna array polarized
Microstrip line for Linearly-
near-field coupling | Planar Y 5-10 NA ‘13 | [104]
. polarized
with tag
2x2 elliptical leaf Non- Linearly- .
dipole array Planar | polarized 4-6 15 13| [63]
Reflectarray with Non- Linearly- .
horn antenna feed | Planar | polarized 49-7.1) ~225 141 [286]
Single element dual-
polarized aperture Dual 6.4-
coupled microstrip | Planar linearly- . ~7 ‘15 | [147]
. 10.6
patch antenna polarized
(ACMPA)
Dual
4x4 ACMPA Planar linearly- [22-26.5| 16 ‘15 [80]
polarized
Single element .
linearly-polarized | Planar ;‘lfzrzlgd 16(')4é ~7 | 16 | [70]
ACMPA )
Reflectarray with Non- Linearly- .
horn antenna feed | Planar | polarized 46 193 18] 1287]
8x8 interleaved Dual
ACMPA with back | Planar linearly- [4.2-7.1| 26 ‘18 | [188]
reflectors polarized
Quadrifilar spiral Circularly- | 1.2- .
antenna Planar polarized 12.4 33 18 | [288]
. . Linearly- .
Quasi-Yagi antenna | Planar polarized 1.7-5.5] 53 19 | [289]
. . Dual
Septum polarizer with| Non- . 8..2- .
waveguide feeds | Planar circularly- 124 | NA 2001 169]
polarized
2x2 ACMPA with Linearly- .
back reflector Planar polarized 41581 155 20 | [233]
. Dual
4x4 dual-polarized . .
ACMPA Planar hnea_rly- 44-68| 21 20 | [232]
polarized
UWB monopole Planar Llnea_rly- -8 57 9] (1]
patch polarized
8x8 ACMPA array | Planar | LB 105 57 1 20 | 21 | [204]
polarized
2x2 circularly- Circularly- | 7.05- .
polarized array Planar polarized 8.48 15 21 (%3]

section will examine and analyze the components of a tag
response, how the resonance frequencies are determined, how
binary codes and sensing parameters are assigned, the met-
rics used to compare post processing and decoding methods,
and application specific post processing methods.

A. ANALYSIS AND PRE-PROCESSING OF THE
BACKSCATTERED RESPONSE

When a tag is measured in a real environment (i.e., not in an
anechoic chamber environment), the response often contains
interfering signals, such as noise and unwanted reflections
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from background objects. Additionally, as the reading dis-
tance increases, so does the path loss. This results in weaker
signals that can be more easily overwhelmed by the afore-
mentioned interfering signals (i.e., clutter) and is prohibitive
to increasing the quantity of information coded in the tag
(i.e., it is unproductive to increase the number of notches
in a response if they cannot be detected and decoded).
Consequently, pre-processing is often necessary to enhance
the signal quality prior to detecting response features for the
purpose of decoding (i.e., assigning a binary code or a sens-
ing parameter) [240], [293], [294]. Additionally, sometimes
pre-processing is needed to get the measured response into
a desired format (e.g., using the Hilbert transform to get the
amplitude and phase responses from a custom reader with-
out the need for a calibration tag) [240], [258], [295]. Some
popular approaches to pre-processing include, analysis of the
backscattered signal components in the time-domain (reader
mode, structural mode, and tag mode), channel estimation,
and general filtering.

The response of a tag can be broken down into three
general components in the time-domain: the reader mode
(also referred to as the rejection mode), the structural mode,
and the tag mode (also referred to as the antenna mode).
The reader mode occurs first temporally and captures the
aperture reflections and coupling of the reader antenna(s).
This is usually the largest mode and contains most of the
signal’s energy. The structural mode occurs second tempo-
rally and consists of the immediate reflections from the tag
structure (e.g., the substrate and the metallic resonators). In
these reflections, the frequency content of the interrogating
wave is not altered. In other words, the spectrum of the struc-
tural mode is effectively the same as that of the interrogating
pulse. Additionally, in the case of cross-polar tags, the struc-
tural mode is greatly reduced with respect to that of co-polar
tags [11], [216], [241], [245], [271], [294], [296], [297]. The
tag mode occurs third and consists of information related to
the tag’s resonances. It is considered to be the late time,
source-free portion of the response according to complex
natural resonance (CNR) theory [298], [299]. The tag mode
usually lasts for tens of nanoseconds while decaying expo-
nentially and is smaller in amplitude than both the reader
mode and the structural mode. There can also be additional
components in the response, such as reflections from back-
ground objects and multipath reflections. Therefore, various
filtering, subtraction, and time gating procedures have been
proposed for isolating the tag mode, which can then be trans-
formed to the frequency-domain for decoding [216], [241],
[271], [296], [297].

Fig. 7 provides an example of the three different modes of
a tag response and the process of extracting the tag mode. For
this, the process outlined in [216] was followed. For Fig. 7,
the eight circular slot tag shown in Fig. 1 was simulated
in front of a horn antenna at a distance of 30 cm. Fig. 7a,
shows the time-domain response of the tag that was obtained
through an inverse FFT (IFFT) with the reader mode (y,),
structural mode (y;), and tag mode (y;) are designated. The
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FIGURE 7. Example of 3 components of a tag response: a) reader mode (yr),
structural mode (ys), and tag mode (y;) of a tag in the time-domain, b) time-gated tag
mode after the reader mode is subtracted, and c) structural mode and tag mode of

a tag in the frequency-domain after time-gating to separate them.

horn antenna was then simulated without the tag and its
response was also transformed to the time domain. The two
signals were then subtracted to obtain the response shown
in Fig. 7b, which was then time-gated using a rectangular
window to extract the tag mode. The time window start and
stop times were determined through trial-and-error. The FFT
was taken of the structural mode and the extracted tag mode
to obtain the spectrums shown in Fig. 7c. In Fig. 7c, the three
peaks in the tag mode correspond to the three resonances
of the tag that occur in the considered frequency range (see
Fig. 1c).

One challenge when trying to isolate the tag mode from
the structural mode is determining at what time the tag
mode begins, assuming the tag mode and structural mode
are not completely overlapped with each other or the reader
mode [241], [298]. Additionally, the performance of time
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gating to isolate the tag mode is reduced for higher frequency
resonators [15]. For this reason, isolating the antenna mode
is only really possible when the tag is being measured at
a large distance from the reader antenna (i.e., at least 15 cm
according to [300]) and the tag is operating at sufficiently
low frequencies [241]. Approaches previously proposed for
determining the start time of the tag mode include, trial and
error [297], having a Tx/Rx tag with a meandering trans-
mission line between the tag antennas to create enough
temporal separation to distinguish between the structural
and tag modes easily [296], using the reading distance and
system parameters like the cable lengths to estimate the
starting time of the tag mode [57], examining the spectral
norm of the impulse response data matrix over a slid-
ing window [301], using the half Fourier transform [302],
and examining the time-frequency plot after employing the
short-time matrix pencil method (STMPM) [134], [303],
[304]. Another challenge is making sure that the window
isn’t too long since this can introduce unwanted noise into
the response. Methods, such as using knowledge of the
lowest frequency pole or estimating it from the dimen-
sions of the tag, have been proposed for this purpose
[245], [304].

After determining the start and stop times of the window
for isolating the tag mode, a variety of different types of
windows can be used to extract the tag mode. For exam-
ple, raised cosine window was used in [216] and [270],
a Hamming window was used in [245], and a Tukey win-
dow was used in [304], while the example in Fig. 7 used
a rectangular window. It should also be noted, that window-
ing can be applied to a background-subtracted response to
further reduce the effects of noise or it can be combined
with the use of a narrow beam antenna to achieve volume
gating [266], [300]. Once the tag mode is “windowed” out,
a Fourier transform can be performed to view the response
in the frequency-domain and perform further processing and
decoding [241].

Beyond analyzing the tag backscattered response, the wire-
less channel can be estimated and analyzed. This estimation
can take into account many different factors, including the
angles of arrival and departure of the interrogating wave
and the spatial gain of the tag [25], whether the tag is being
read in the near-field or the far-field with varying levels of
noise [305], multipath components [57], fading [277], cali-
bration accuracy [306], polarization dependence [293], and
estimation of the residual environment [15]. In order to mit-
igate channel effects, zero forcing (ZF) equalizers have been
proposed [277], [293].

While denoising and decluttering techniques, like moving
average filters, have been implemented in hardware, they can
also be implemented on a computer in the pre-processing
stage [265], [266], [281], [307]. Other examples of improv-
ing the tag response signal quality include, the use of
a prolate spheroidal wave function-based filter in [308],
using a general matched filter [309], using a continuous
wavelet transform as a matched filter in [244], using the
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least mean square error algorithm to do adaptive direct path
cancellation [310], and detrending the response followed by
denoising with a discrete wavelet transform [311].

B. DETECTION OF RESPONSE FEATURES AND
RESPONSE DECODING

The first step in decoding the tag response is to identify the
features of interest in the response. These features of interest
are often notches or peaks in the magnitude vs. frequency
response of the measured quantity (e.g., So; or RCS). These
features are created by the designed resonant properties of
the tag, but they can vary depending on the reader architec-
ture, how the response is viewed, and the decoding method
being used. For example, while the RCS magnitude or the
magnitude or phase of S-parameters are typically directly
examined for decoding, in [56] and [77] the tag is mea-
sured in two orthogonal polarizations and the two responses
are subtracted which creates sharp amplitude changes that
can be used to identify the resonance frequencies and assign
a binary code. Other examples of unique response viewing
approaches include, determining the zeros in the derivative
of the group delay which is itself the derivative of the phase
vs. frequency response [308] and examining the pulse distor-
tion in the response of an IR-UWB reader [275]. Decoding
can then be performed either onboard the reader, as in [65],
or in post processing on a computer. The common meth-
ods used for decoding in chipless RFID applications are
detailed below.

Some of the proposed methods for binary code assign-
ment, which is primarily done for identification applications
but has also been done for sensing applications, include the
following:

1) Method 1: Specified response features (e.g., a peak or

a notch) are 0’s. Removing an instance of the specified
response feature results in a 1 in the code [110].

2) Method 2: Specified response features are Is.
Removing an instance of the specified response feature
results in a O in the code [46].

3) Method 3: Specified response features are 1s and
removing an instance shortens the code [312].

4) Method 4: Encoding multiple bits per resonator state
in conjunction with encoding the phase deviation and
frequency position in a frequency channel [116], [117].

5) Method 5: Frequency shift coding. The bandwidth is
divided into sections and the sections are divided into
sub-sections. Each sub-section represents a possible
position of a resonance and has a different binary bit
sequence. In this way, each resonance is encoded by
multiple bits [67], [135].

6) Method 6: Concatenating the codes generated using
Method 2 when the tag is measured in two different
polarizations [139].

7) Method 7: Concatenating the codes generated by
Method 4 when the tag is measured in two different
polarizations [144].
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8) Method 8: Phase position modulation [128].

9) Method 9: Division into windows and assigning 1’s
where the response is primarily above the thresh-
old (determined via integration) and assigning 0’s
where the response is primarily below the thresh-
old [32], [194].

Methods 6 and 7 can be considered as hybrid methods
since at least two parameters are combined to create the full
code [69], [313], [314].

In terms of sensing parameter assignment, a variety of
methods beyond binary code assignment have also been
proposed [4], [194], [315]. These include the following:

1) Correlating a resonance frequency shift to a sensing
parameter [169], [315].

2) Relating a change in response magnitude to a sensing
parameter [316], [317].

3) Associating a calculated value, such as an error
estimator, with a sensing parameter [157].

4) Matching response shapes to a
parameter [154].

5) Correlating changes in tag parameters, such as gain,
impedance, or max RCS with a sensing parame-
ter [318], [319].

From the decoding methods outlined above, it can be
inferred that the more response features the decoding method
relies on, the more accurate the response detection process
needs to be.

Fig. 8 provides several illustrative examples of the ID-
based decoding methods shown above. For this example,
the 8 slot tag that was depicted in Fig. 1 is used along with
a 7 slot version (Fig. 8b) where the innermost slot resonator
has been removed. The responses for both tags are shown in
Fig. 8c along with the binary code assignment for Methods
2 and 3 using the notches as the “specified response fea-
ture”. This demonstrates how the code can be manipulated
through intentional changes of the tag structure in order to
assign different IDs. Fig. 8c shows how the response of the
8 slot tag can be decoded using Method 9. This method
was designed for use in sensing applications and thus can
capture various types of changes in the tag response as it
changes with changes in the tag environment. However, as
mentioned previously, this intensifies the measurement accu-
racy requirements since more response features are relied on
for decoding.

In terms of the extraction of resonance frequencies in
a response, a number of methods have been proposed. The
methods tend to vary based on whether or not there is a set
of expected resonance frequencies and/or a set of potential
codes to compare against [305], [320], [321]. For example,
in some ID applications the expected code is known and
this informs the detection and decoding procedure, while
in sensing applications there is not an expected response
since changes in the response are being used to determine
an unknown sensing parameter [4], [194].

sensing
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FIGURE 8. Example of binary code assignment as the tag structure is intentionally
changed: a) 8 circular slot tag model, b) 7 circular slot tag model, c) Simulated RCS
response coding for Methods 2 and 3 using notches as the response feature of
interest, and d) 8 slot and 7 slot tag RCS response coding with Method 9.

One of the simplest decoding methods is finding the
local minima or maxima in a response and comparing their
amplitudes to some preset thresholds. These thresholds can
be set by reference tags, which have codes that consist of
either all 1’s or all 0’s, or by analyzing the responses at
multiple expected reading distances and selecting a threshold
accordingly [65], [135], [258], [281]. This approach works
well if the reading distance is known and will stay consis-
tent or within a certain range. However, this is not always
the case for practical systems. Reading distance changes can
result in response amplitude variations, which could cause
bits to be misread [292]. To mitigate this, using the normal-
ized amplitude of the derivative with respect to frequency
of the tag mode response for decoding with thresholds has
been proposed. This is part of a method to estimates the
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range to solve the chipless RFID “inverse problem” [241].
However, misalignments can also cause amplitude changes
and resonance frequency shifts, which are not necessarily
taken care of by this method [4]. Another alternative that
has been proposed is the adaptive energy detection (AED)
method. The AED method divides the response into windows
and performs an energy calculation in each window to deter-
mine where to set the decoding threshold. As a result, this
approach both takes into account channel effects and tends to
have a lower probability of error than the traditional threshold
setting method, especially for low SNRs [322]. While these
threshold setting methods are applicable for ID applications,
they are not suitable for sensing applications.

Alternative response decoding methods for ID applica-
tions that can be used when all possible codes are known
include, the Maximum Likelihood (ML) and the Signal Space
Representation (SSR) methods [240], [294], [307]. In the ML
method, the measured response is compared against a set of
stored potential responses to calculate the ML values. The
response is then decoded as the comparison that produces
the highest ML value. This approach is computationally
resource-intensive particularly when the code length and set
of potential codes increases [292], [323], [324]. In imple-
mentations of the ML method, multiple tag readings have
been performed and results averaged to mitigate potential
interferences [323], the statistical properties of the chan-
nel state have been integrated into the calculations [305],
the Euclidian distance between codes has been increased
through the binary code assignment method which also
allows Euclidean distance itself to be used to decode tag
measurements [155], [325], [326], and the channel/tag com-
binations with the highest probability of occurrence has been
determined [327]. Additionally, bit-by-bit reading has been
proposed to help improve the scalability of this approach for
use with higher bit density tags [305], [321].

In the SSR approach each possible tag response, of which
there are 2° where b is the number of notches in the
response, is collected and fully described by a linear combi-
nation of orthonormal basis functions which are determined
through singular value decomposition (SVD). These possi-
ble responses are represented as constellation points against
which measured responses are compared using a minimum
distance calculation. In the end, the response is decoded
based on which constellation point it is closest to. The advan-
tages of this approach are that it allows for the response to
be more comprehensively considered during decoding (i.e.,
taking into account the Q-factor of notches rather than just
comparing to a threshold) and it has an improved detection
error rate (DER) over the threshold method. However, it
can be very computationally resource intensive, especially
for tags with high bit densities, and the DER tends to
increase as the number of notches in the response increases
[240], [292], [320], [322].

Improvements to the traditional SSR method have been
proposed, namely: the logarithmic SSR (LSSR) and the win-
dow based SVD (WB-SVD). In the LSSR method, the basis
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functions are derived without the use of SVD and decoding
is done by testing the tag response against the constella-
tion one bit at a time. These two changes greatly reduce
the computational resource requirements with an increase in
the number of tag notches, but come with the tradeoff of
increased probability of error with respect to the traditional
SSR method [240]. In the WB-SVD method (also referred to
as Smart-SVD (SSVD)), fewer points are used than the tra-
ditional SSR method which helps to reduce complexity and
processing time. Unlike the traditional SSR method, the WB-
SVD approach also takes into account channel effects, which
results in a lower probability of error. Furthermore, WB-
SVD allows for notch bandwidths to be estimated, which
is necessary for certain decoding methods (e.g., Method
5 above) [309], [322], [328].

Another method that is similar to the ML and SSR meth-
ods, is the dynamic time warping (DTW) method, which
compares the tag response to a dataset and computes cost
matrices to decode the response. By considering the tag
response more comprehensively, the DTW method allows
for similar response shapes to be matched even if they are
shifted in time or frequency or distorted. The downside to
this approach is that it is very computationally intensive.
However, it has shown better probability of detection than
the WB-SVD method [309]. These methods that compare
responses to a set of possible known codes are also mainly
suited for ID applications over sensing applications, just like
the threshold methods.

Another approach is to extract the complex natural reso-
nances (CNRs) of tags, which are considered to be aspect
independent (i.e., they do not change location due to angle
of arrival of the interrogating wave or the observation
point) [118], [134], [329], [330], [331]. It should be noted
that CNRs are sensitive to changes in tag’s substrate permit-
tivity and structure effective permittivity, which makes the
following discussed CNR extraction methods suitable for
sensing, as well as identification, applications [332], [333].
CNRs can be extracted by using methods like the singular-
ity expansion method (SEM), matrix pencil method (MPM),
short time matrix pencil method (STMPM), and spectrogram
method [19], [245], [304], [329], [333]. The latter three can
be considered as more optimized methods to estimate and
extract the poles described by SEM theory, of which there
is a detailed explanation provided in [299] and [334]. The
MPM involves solving a generalized eigenvalue problem in
order to find the poles of the response. In order to employ
the MPM, the response is transformed to the time-domain (if
needed) and then processed. In the case of processing chip-
less RFID tag responses, the additional steps of background
subtraction and deconvolving the background-subtracted tag
response with the response of a time windowed large metal
plate are taken. The deconvolved response is inverse Fourier
transformed to the time-domain and time windowed before
the MPM is applied. This means that three measurements
are needed, the results are distance dependent, and the chal-
lenges with selecting the time window beginning and length
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discussed previously are relevant here [118], [134], [271].
Another challenge facing the MPM approach is that it cannot
separate the reflections from background objects from that
of the tag. In an attempt to overcome this, separating the
poles based on their time and direction of arrival has been
proposed [298]. The MPM inherently includes singular value
decomposition (SVD), unlike other CNR extraction methods
like Prony’s method or Cauchy’s method, which helps reduce
the effects of noise. Additionally, an autocorrelation function
approach and a time-domain averaging approach have been
proposed to help further reduce the effects of noise when
employing the MPM [330], [334], [335], [336].

An alternative approach that harness the benefits of MPM
while helping to overcome some of its challenges is the
short time matrix pencil method (STMPM). The STMPM
uses a sliding time window and applies MPM at each win-
dow location to get a time-frequency plot. By examining the
convergence in this plot, one can identify the approximate
start time of the tag mode and can find the average res-
onance frequencies over time, which makes this approach
even less susceptible to noise than the MPM while also cal-
culating the CNRs more accurately. One of the limitations
of the STMPM, though, is that it has fixed resolution in time
and frequency [290], [292], [304], [334]. Improvements to
the STMPM method have also been proposed, including
a k-nearest neighbor algorithm in order to create decision
boundaries and decode the tag response [220].

The Short Time Fourier Transform (STFT) method (also
referred to as the spectrogram method) is similar to the
STMPM method in that it uses a sliding window over the
time domain response to determine the tag response from
the tag mode. One of the differences is the data presentation
format, namely, the STFT method presents the data in
a spectrogram format. Additionally, the STFT method like
STMPM and MPM traditionally requires multiple measure-
ments to isolate the tag mode before extracting the poles [19],
[245], [334]. However, the temporal separation method has
been proposed for the purpose of performing the STFT
method with only a single measurement and no calibration
process [245]. Averaging of the spectrogram over a window
of time is also used to enhance the dynamic range and robust-
ness of the tag response detection. Although, there are still
limitations with the STFT method, including fixed resolu-
tion in time and frequency, sensitivity to the window length,
and limited performance in terms of distinguishing resonant
frequencies when they are densely packed in the opera-
tional frequency band of the tag [334]. Overall, the STFT
method has been shown to be more accurate, require fewer
measurements, and require less computation time than the
STMPM and MPM methods while still being able to extract
the resonant frequency information in an aspect independent
fashion [19], [193], [245], [329].

The STMPM and STFT methods can be classified as time-
frequency approaches based on how their outputs are viewed
and interpreted. Wavelet-based methods are another type
of time-frequency approach. By employing the continuous
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wavelet transform (CWT) for a set of scaling factors and
time translations a time-frequency plot with variable resolu-
tion in one domain and multi-resolution in another domain
can be generated. This time-frequency plot, just like the ones
for the other time-frequency approaches, gives information
about the turn-on times and resonant frequencies. Similar to
the MPM, this approach has the benefit of denoising the tag
response since the CWT acts like a matched filter, but it
can still struggle with the detection of densely-packed res-
onant frequencies due to its limited frequency resolution
[244], [294], [295], [334]. In order to help with this, an
adaptive wavelet method has been proposed that provides
better resolution for high-frequency resonant frequencies
while also helping to detect tags when they are attached to
highly scattering objects [190], [292], [337]. While wavelet
methods have been primarily applied for response detection
and decoding in identification applications, they could also
potentially be used for sensing applications.

While many methods are focused on determining reso-
nance frequencies, there are additional methods that either
consider the tag response more comprehensively or aim
to extract other response features than the resonance
frequencies in the RCS or S-parameter response. One
such example is [308], where the goal is to find the
zeros in the falling edge of the derivative with respect
to frequency of the group delay. Another example is the
use of Principle Component Analysis (PCA), which con-
siders the full response of a tag under different conditions
with multiple measurements taken under each condition. The
data is then processed using SVD and principle components
are generated. The principle components can be associated
with different conditions [311], [325]. In [311], for exam-
ple, PCA was used to detect and characterize cracks in
metal samples. Machine learning based techniques have also
been considered, including in [338] and [339] where quan-
tile regression is used, in [325] where linear discriminant
analysis is used, [43] that sends tag response data to a cloud
database where various pattern recognition algorithms are
applied for supervised learning purposes, and in [223] the
Support Vector Machine approach is found to have the best
performance among four machine learning approaches tested,
to give just a few examples [207], [340], [341].

C. DECODING METRICS

As evidenced by this section, there are many different
approaches for detecting and decoding chipless RFID tag
responses. While some comparisons of the different methods
have been attempted, they are not often one-to-one compa-
rable due to factors, such as difference in reader hardware,
tag design, reading distance, measurement environment (e.g.,
anechoic chamber vs. “real” environment and whether or
not the tag is attached to a highly scattering object), and
the design of validation experiments (i.e., the number of
trials/measurements, whether misalignments and noise are
considered, etc.). Additionally, many of the comparisons use
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subjective measurement metrics, such as ranking the com-
plexity of a method on a low-medium-high scale, without
providing definitions of these classifiers [19], [77], [292],
[295], [313].

In terms of quantitative decoding performance metrics, the
two most common ones are detection error rate (DER) and
throughput. These are related to the number of successful
response decodings [65], [305], [308], [322], [342]. However,
what constitutes “success” tends to vary from one work to the
next, and is not always explicitly stated. Thus, while in some
cases a specific threshold, such as resonant depth of at least
5 dB, is used to define which bit a notch is coded with, in
others a small fluctuation in the response could be considered
a notch. This means that the same response could be decoded
differently by different users and therefore, the frequency of
success could vary between users [20]. Additionally, similar
to other chipless RFID metrics (e.g., bit density, spectral
density, coding capacity, etc.) successful decoding can also
be dependent on the coding method or sensing parameter
assignment method used [58].

DER, also referred to as the probability of error, is
expressed as follows:

N Failures

DER = (11)
Total

In equation 11, Npgajures represents the number of failed
decodings while Ny represents the number of attempted
decodings. It should be noted that DER considers whether
or not the entire response is properly decoded, while prob-
ability of error can be used to describe both the probability
of the whole response being decoded properly or individual
bits being decoded properly. Throughput, also referred to as
probability of detection, reading accuracy, success rate, and
reliability, is the inverse of the DER. As such, throughput
can be expressed as follows:

Niuceess — 1 — DER
Notal

DER and throughput can be evaluated as a function of read-
ing distance and SNR, with a higher SNR corresponding to
a higher throughput and therefore lower DER [77], [295],
[305], [342]. An example of this is provided in Fig. 9 where
probability of detection (i.e., the inverse of DER), is plotted
as a function of SNR. In this case, as the SNR increases so
does the probability of detection. Fig. 9 also demonstrates
how different decoding methods perform in relation to each
other [309].

DER and throughput have also been calculated over a read-
ing volume in front of the reader antenna. In these cases, the
throughput tends to be lower because there are measurements
being considered where there are large tag/reader misalign-
ments (i.e., <15% over the total volume as compared to
the reported 90%-99% in [292] where the measurements are
being made at the same location) [313], [343]. This is an
example of how using the same metric does not necessarily
mean that a one-to-one comparison can be made. The proba-
bility of false negative and probability of false positive have

Throughput = (12)
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FIGURE 9. Probability of detection as a function of SNR for the SVD, DTW, and
Matched Filter detection methods (©2017, IEEE) [309].

also been examined as metrics related to the probability of
error [344], [345].

Another quantitative metric of interest is bit error
rate/bit error ratio (BER). Rather than analyzing decoding
performance based on whether or not the full response is
properly decoded as in DER, BER considers the decoding
performance on a bit-by-bit basis. This metric, unlike bit
density and spectral density, considers the RCS level of the
tag and provides a measure of the detectability of the tag.
This is valuable because increasing the information stored
in a tag is pointless if that information cannot be properly
decoded. Similar to DER, BER can be calculated as a func-
tion of the SNR or clutter level and is also affected by the
tag RCS, reading distance, coding method, and measurement
setup [16], [346], [347].

Table 5 provides a list of the detection and decoding com-
parisons that have been made in the literature. Some of the
comparisons in Table 5 perform the full comparison with
the same measurement setup themselves (e.g., [309], [313],
[322], [343]), while others compare the method they are
proposing to methods that have proposed in other works
(i.e., the measurement setup, tag, etc. varies among the works
compared). Another thing to note from Table 5, is that some
works refer to methods like background response subtrac-
tion and time gating as decoding methods, while other works
may refer to these as calibration or pre-processing methods.

D. APPLICATION SPECIFIC POST-PROCESSING

Just as there are application-specific —measurement
approaches, there are also application-specific post-
processing methods. For example, post processing methods
have been developed for specific sensor architectures [157],
[350], [351], for authentication purposes [189], [207], [325],
[345], [352], and for decoding responses measured from
moving tags [337], [346], [353], [354], [355]. Another
application that has seen many specifically developed post-
processing methods is collision avoidance/tag localization
in multi-tag environments [247], [248], [356], [357], [358].
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TABLE 5. Post-processing method comparisons.

Methods Compared Comparison Metrics Year | Ref.
Valley Detection [348] and DER as a function of SNR | ‘14 [[305]
ML
Valley Detection [348], ML | DER as a function of SNR | ‘14 |[321]
on Frequency-Domain and
Time-Domain Data [305], Bit-
by-Bit ML
Threshold [349], SVD (SSR) Probability of error, ‘15 |[322]
[320], WB-SVD, and AED | complexity, processing time,
robustness with different tag
types
ML, Threshold, and SSR DER as a function of SNR | ‘15 [[327]
[320]
Matched Filter, WB-SVD, and | Probability of detectionasa | 17 |[309]
DTW function of SNR
Fixed Frequency Hopping | Number of frequency points, | 17 |[263]
(FFH), Adaptive Frequency system latency, detection
Hopping (AFH), Adaptive accuracy, algorithm
Sliding Window Frequency | complexity, dependency on
Hopping (ASW-FH), and tag type, and latency
Adaptive Sliding Window increment with number of
Adaptive Hopping (ASW-AH) tags
Threshold [350], SSR [320], Reading accuracy, ‘19 |[295]
ML [327], Wavelet [337], AC | complexity, reader type, and
analysis [295] whether the signal
processing is done in post or
in real-time
Background Subtraction and | Read success rate overa 3D | ‘19 |[343]
Time Gating reading volume
Threshold [350], SSR [320], | Throughput, what type of | ‘19 |[292]
ML [324], Mother Wavelet | objects the tag is attached to,
[292] and complexity
Adaptive Wavelet [337], Tag type, number of bits, 20 | [241]
STMPM [304], Selective calibration, whether or not
Spectral Interrogation (SSI) |reader parameters are known,
with Time Gating [271], measurement environment,
Calibration with Reference whether or not the reading
Measurements [67], STFT distance is known, whether
[245], and Extraction of or not applied to an inverse
Antenna Mode with Signal scenario
Derivation
Background Subtraction, Time | Read success rate over a 3D | ‘20 |[313]
Gating, STFT, Short Time reading volume
Prony Analysis (STPA)
MPM [118], STMPM [134, | Whether or not calibration is | ‘21 | [19]
303, 304], ISAR [346], performed, what type of
Mother Wavelet [292], Time- | objects the tag is attached to,
Frequency Domain [300], whether aspect angles are
Scalar [87], STFT [193, 245], considered, reading
Mathematical Model [243], performance over a 3D
and Spectrogram [19] reading volume
MPM and Spectrogram Variation in RCS, resonance | 21 |[329]
frequency, and Q-factor, and
computation time as a
function of window length
Temporal Separation [245] Reliability when tag is 21 | [77]
and Differential Dual- attached to different objects,
Polarization [75] memory storage, and design
complexity

Due to the breadth of application-specific post-processing

methods,
this work.

VI. MEASUREMENT AND DETECTION METHOD

COMPARISONS

further discussion will not be provided in

As evidenced in the previous sections, there is significant
diversity in the ways chipless RFID measurements are per-
formed, processed, and decoded. While the different system
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TABLE 6. Comparison of chipless RFID measurements.

g = 5 2
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2 < .2 | .28 25| %: g3 g |E |wg| %3 2
2 a g <z S5t |Z2E| 55 R EE |28|55| £E = | 5
2 0 < ® S S8 | <= = 3 s 3 S s ST =5 S £ S| &
[y 33 51 o = o =2 = = < o = 2 = =0 o .48 S = 5] )
< = & K< K<&Z |QED O o= oa 2| A O & |
Co-polar Bistatic patch | Linearly Method: 2
ID VNA antenna co- No Not specified Sor S, mag. 5-6 100 ‘05 [[107]
backscatter . -
arrays polarized Bits: 5
D bco'p olar |y | Bistatic hom Ln::irly No | Backeround | p g RCS  [3-4.5| 122 MetAhOd' : 06 [[108]
ackscatter antennas . subtraction Bits: 3
polarized
1D Tx/Rx Custom | Bistatic horn | Linearly Yes Two DC voltage | Mag.and | 5-9 15 Method: 1 | “10|[114]
freq. domain| antennas Cross- reference | out of gain phase of Bits: 8
reader polarized tags phase decoded
detector data
ID Co-polar VNA Bistatic Linearly No Not specified So1 S>1 mag. 10- 0 Method: 1 | “11|[101]
backscatter transmission co- 15
through with | polarized
two WR-75
waveguides
Sensing| Tx/Rx VNA Bistatic Linearly Yes Time gating So1 Normalized | 1.25-| 70 | Permittivity | ‘12 |[126]
Vivaldi cross- and using a S>1 mag. 6
antennas polarized reference tag difference
with ref. tag
ID  |Cross-polar| Novelda Monostatic Linearly No Averaging, RCS RCS 3-8 20 Method: 5 | 13| [67]
backscatter Radar dual- Cross- background Bits: 6
polarized polarized subtraction,
horn antenna and time
gating
D Co-polar VNA Bistatic horn | Linearly No Ref. RCS RCSand | I-11| 60 Method: 2 | ‘14 |[134]
backscatter antennas co- measurement pole Bits: 24
polarized subtraction diagram
and dividing
by the FFT
of the time-
gated
response of a
metal plate
Sensing | Cross-polar| FMCW High gain Linearly No Beam scan Power Error 24 | 5800 | Humidity |17 |[157]
backscatter Radar scanning cross- to ensure tag estimators
parabolic TX | polarized is normal to
antenna and reader
patch array
Rx antenna
ID Co-polar VNA Monostatic Linearly No Background S Si1 mag. 4.5- | 800 NA ‘18 [[188]
backscatter dual- dual- subtraction 72
polarized polarized
patch antenna
ID Co-polar VNA Monostatic Linearly No Calibrated S Si1 mag. 75-1 0.5 Method: 9 | ‘19| [58]
backscatter WR-90 co- VNA up to 12.4 Bits: 116
waveguide | polarized waveguide
with aperture
engineered
flange
D Tx/Rx IR-UWB | Bistatic horn | Linearly No Background Power Power 3-10 | 40 Method: 2 | 21 |[203]
made with antennas cross- subtraction Bits: 32
oscilloscope polarized
and arbitrary
waveform
generator
Sensing| Co-polar VNA Bistatic Circularly No Background S21 S21 mag. | 5.5-| 10 Liquid 211 [93]
backscatter circularly- cross- subtraction 9.5 differentiation
polarized polarized
arrays

components are often compared to each other (i.e., reader
antennas are compared to other reader antennas and post-
processing methods are compared to other post-processing
methods), the full systems are not often compared to each
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other. Since, many factors (e.g., antenna gain, calibration
method, detection criteria, reader architecture, frequency
range, etc.) can play a role in the achievable reading dis-
tance and other metrics, like the DER or throughput, these
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component level comparisons do not necessarily paint a full
picture.

This section aims to provide a brief comparison of
implemented measurement and detection setups across sev-
eral parameters, namely: the application, tag type, reader
hardware, reader antenna hardware and configuration, polar-
ization, measurement environment, calibration procedure,
measured quantity, format the measurement was examined
in, measurement frequency range, reading distance, decod-
ing method, and the year published. Table 6 provides
a non-exhaustive comparison with the entries being listed
in chronological publishing order. The entries were selected
to showcase a variety of different measurement and detec-
tion approaches. Interested readers can see the references
associated with Figs. 4 and 6 for more examples of chipless
RFID tag measurements [105].

In Table 6, similar to Figs. 4 and 6, the maximum distance
at which the tag was successfully measured in each refer-
ence is reported. In comparing Figs. 4 and 6 and Tables 1-6,
the following statements can be made about the chipless
RFID measurement and decoding landscape at the current
time: 1) most tags that are currently in the literature are
designed to operate below 10 GHz, 2) most tags are mea-
sured with a VNA, 3) background subtraction is one of the
most common calibration methods, 4) RCS and S-parameters
are the measurement quantity of choice an approximately
equal amount of time, 5) reading distances tend to be below
1 m for both co-polar and cross-polar tags, and 6) tags are
measured in a bistatic configuration slightly more often than
in a monostatic configuration.

VIl. CONCLUSION

This work provided a review of chipless RFID measurement
and response detection methods. Measurement quantities
namely RCS and S-parameters, were compared and an
overview of measurement approaches, which vary based on
the tag type, desired reading distance, and available equip-
ment, was also given. It was shown that despite there being
theoretically higher read ranges, most tags are measured at
distances below 1 m at this time. Additionally, many tags
are designed to operate below 10 GHz to be compliant with
various transmit power regulations. As such, the custom read-
ers and reader antennas that have been designed also tend to
operate below 10 GHz. Once the tag response has been mea-
sured, there are a wide variety of techniques that have been
proposed to detect specific response features and decode the
response. These techniques vary in complexity from averag-
ing of multiple measurements to machine learning and can
also be application specific. In order to compare system level
performance, various metrics including the DER, through-
put, and BER have been proposed and some comparisons
among processing methods and systems have been attempted.
However, due to the breadth and diversity in chipless RFID
systems, making a comprehensive comparison is an ongoing
challenge. In order to address this challenge, standardiza-
tion efforts, including standard tags for comparison purposes
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along with specific benchmark tests that clearly define the
success criteria, could be undertaken.
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