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ABSTRACT To extract the global temporal correlations and local features together to enhance the accuracy
for fault diagnosis, this paper proposes an effective convolutional Transformer (ECT), which can learn the
global temporal correlations using Transformer and local features with convolution at the same time. The
proposed method designs a multi-stage hierarchical structure of Transformer, which utilizes convolutional
tokenization to distill dominating sequence features from raw vibration signals while increasing the
dimension of token embedding across stages at the same time as that in CNNs. The spatial-reduction
attention (SRA) and the linear dimension reduction projections are introduced respectively to Transformer
at different stages to reduce the resource consumption of the model. Finally, the proposed method utilizes
a sequence pooling strategy on the output of Transformer to eliminate the requirement of the class token
and make the model accurate for classification. The specially designed structure makes the model flexible
and effective for planetary gearbox fault diagnosis. Experiments performed on planetary gearbox fault
simulators indicate that the ECT method has significant effectiveness and high accuracy compared with
the state-of-the-art methods for planetary gearbox fault diagnosis.

INDEX TERMS Convolutional tokenization, fault diagnosis, spatial-reduction attention, sequence pooling,
transformer.

I. INTRODUCTION

PLANETARY gearbox has been widely used in mechani-
cal systems as a critical transmission part. The operating

environment of planetary gearbox is usually harsh, which
needs to be exposed to high temperature, heavy load, big
shock, friction and other factors long-term. Its bearing and
gear, as the core components of planetary gearbox, are fre-
quently suffered from potential defects such as bearing inner
race fault, outer race fault, gear root crack, chipped teeth,
broken teeth, etc. in the long-running [1]. The potential
defects will lead to the failure of the planetary gearbox,
resulting in massive economic losses and casualties every
year. Thus, effective fault monitoring and diagnosis of plan-
etary gearbox are necessary for the timely identification of
mechanical faults. The process of machine fault diagno-
sis is generally divided into three steps: signals collection,

feature extraction, and fault classification. Traditional fault
feature extraction mainly relies on the manual selection
using mathematical-statistical methods or the signal pro-
cessing methods to extract time- or frequency- domain
features [2]–[3]. The features are then adopted for the health
condition classification. Hence, the performance of the final
classifier for fault classification is fundamentally depend-
ing on the suitability of the manually selected features.
Deep learning (DL) methods [4]–[6] have received a lot of
attention in recent years because of their ability to learn dis-
criminative features automatically from raw data. And it has
been extensively studied and applied in the field of machine
fault diagnosis [7]–[9].
DL-based fault diagnosis methods have achieved

remarkable achievements, including convolutional neu-
ral networks (CNNs) [10]–[12] and recurrent neural
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networks (RNNs) [13]–[15]. CNNs have been widely applied
in fault diagnosis because of their locality and translation
equivariance, which enable CNNs with extraordinary capa-
bility to learn the local features and easy to be trained
with small datasets [10]–[12]. Luo et al. [16] trained the
deep convolutional neural network (DCNN) with an expli-
cable training guide for fault diagnosis of planetary gearbox
and obtained ideal diagnosis results. Zhang et al. [17]
proposed a deep convolutional neural network with wide
first-layer kernels (WDCNN) for extracting features of
raw vibration signals and suppressing high-frequency noise.
Jiang et al. [18] proposed a multi-scale convolutional neural
network (MSCNN) for end-to-end gearbox fault diagno-
sis of wind turbines. Ma et al. [19] apply deep residual
learning [6] in planetary gearbox fault diagnosis to con-
struct deeper architecture with demodulated time-frequency
features. Although CNNs have promising capability in fault
diagnosis, its locality also limits the learning of global cor-
relations. RNNs are proposed to solve the problem of global
temporal correlations [13]–[15]. However, the inherent limi-
tations of RNNs, such as the sequential structure which can
not be computed in parallel and results in a large amount
of computation memory, greatly hinder their applications in
machine fault diagnosis.
Transformer [20], which is implemented completely by

self-attention mechanisms, has been the dominant standard
in natural language processing (NLP) [21]–[23] and has also
obtained remarkable achievements in computer vision (CV)
domain [24]–[25] for its strong ability to model global corre-
lations with parallel computing. Based on this advantage, this
paper proposed a vision Transformer-based method, named
effective convolutional Transformer (ECT), for accurate plan-
etary gearbox fault diagnosis with 1D signals. Since the
vision Transformer [24] lacks the inductive bias inherent
to CNNs and relies heavily on large-sized image datasets
to learn it, numerous researchers [26]–[29] introduce con-
volutions into Transformers to enhance the generalization
of various tasks. Inspired by these works and consider-
ing the limited-sized datasets in the field of machine fault
diagnosis, this paper applies the convolutions to obtain the
token embedding in the proposed ECT, which replaces the
input patching and positional embedding in the standard
Transformer. The convolutional token embedding ensures
the proposed ECT obtains the local inductive bias while
modeling the global features even with a small dataset, and
also allows the ECT more flexible to input length. Besides,
the quadratic complexity and luxury resource consumption
of large Transformers make them difficult to be directly
applied in the field of machine fault diagnosis. To reduce the
resource consumption of Transformer and keep the computa-
tion balance [30] of the attention mechanism and multi-layer
perceptron (MLP) block, our proposed ECT model further
adopts the spatial-reduction attention (SRA) [31] and the
linear dimension reduction projections to refine the model.
Therefore, the proposed ECT makes it possible to learn

both global and local features for planetary gearbox fault
diagnosis.
The proposed ECT method introduces the convolution

into Transformer to obtain convolutional token embed-
ding for Transformer input tokens. In particular, the ECT
utilizes convolutional tokenization that performs the over-
lapping convolution operation with stride on 1D sequences
to construct Transformer into multiple stages to form a hier-
archical structure as that in CNNs. The multi-stage structure
allows the ECT to capture local features and progressively
decrease the sequence length while increasing the dimen-
sion of token features across stages at the same time.
The increasing dimension of token embedding enhances the
learned attention maps. Then the SRA in Transformer block
learns the global features. Finally, a novel sequence pooling
strategy [28] is applied to remove the need for the con-
ventional class token design in Transformer and make the
identification more accurate. The special structure makes the
ECT effective and suitable for small datasets of fault signals.
ECT model combines the advantages of both Transformer
and CNN which guarantee the model to be robust and flexi-
ble to learn the global and local features simultaneously for
highly accurate fault diagnosis.
The main contributions of our work are as follows:
1) An ECT model is proposed for highly accurate plan-

etary gearbox fault diagnosis. In particular, the vision
Transformer is introduced into planetary gearbox fault
diagnosis with 1D vibration signals.
2) A multi-stage hierarchical structure by convolutional

tokenization is designed for Transformer to learn both
local and global features. The SRA technique and the lin-
ear dimension reduction projections are adopted to reduce
resource consumption. The sequence pooling strategy is com-
bined in Transformer to simplify the classification. All the
above make the ECT model more flexible and effective for
planetary gearbox fault diagnosis.
3) Extensive experiments confirm the accuracy and gen-

eralizability of our ECT method. In addition, the ECT
model outperforms the state-of-the-art CNN-based mod-
els in planetary gearbox fault diagnosis under long-range
sequences.
The paper is organized as follows. In Section II, the

framework of our proposed ECT model is introduced. In
Section III, the procedure of our proposed ECT method
for planetary gearbox fault diagnosis is presented. Then, in
Section IV, the experimental setup and results are illustrated.
At last, concluding remarks are provided in Section V.

II. THE FRAMEWORK OF OUR ECT MODEL
The proposed methodology of Transformer is introduced in
this section. Our proposed ECT approach leverages convolu-
tional tokenization to construct the multi-stage hierarchical
structure of Transformer. In particular, the Transformer
adopts the SRA and the linear dimension reduction pro-
jections in two stages of our ECT model, respectively. The
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FIGURE 1. The pipeline of Transformer model: (a) The standard Transformer.
(b) Multi-head self-attention (MHSA) vs Spatial reduction attention (SRA).

improvement of the model is potential to reduce resource
consumption effectively. In the final stage, the sequence pool-
ing strategy is used for the output of Transformer to make
the classification more accurate. The methodology details of
the ECT model are presented as follows.

A. CONVOLUTIONAL TOKENIZATION
The input of a standard Transformer [20], [24] is a sequence
of token embeddings. As shown in Fig. 1(a), the ViT [24]
divides the image into patches and flattens each patch
into a sequence to form the token embedding. The posi-
tional embedding and a class token will be added to the
sequence respectively as the input tokens. In ECT, the token
embedding is generated by convolutional tokenization which
performs the overlapping convolution operation with stride
on 1D vibration sequence at the beginning of each stage of
the Transformer. Then a layer normalization [32] is designed
following the convolution operation. For a 1D time sequence
of length Hi−1 or an output token sequence from the previous
stage xi−1 ∈ RHi−1×Ci−1 . The convolution operation f (·) with
Ci kernels of size ki and stride si is used to map xi into new
tokens f (xi) ∈ RHi×Ci , and the length Hi can be denoted as

Hi = Hi−1 − ki
si

+ 1 (1)

Then the convolutional token embedding is normalized by
layer normalization to fit in the input token of Transformer
blocks of stage i.
Convolutional tokenization enables the model to adjust

the length H of sequences and the dimension C of token
embeddings at the start of each stage by varying the con-
volution operation parameters. In this case, our model can
learn the multi-scale features and the local inductive bias for
Transformer. Furthermore, convolutional tokenization aids in
the construction of a multi-stage hierarchical structure, which
simplifies the Transformer with flexible input size and trans-
forms the token embedding into high-dimensional space to
provide comprehensive information.

B. TRANSFORMER BLOCK
The encoder module of Transformer is used for classification
tasks. The pipeline of the conventional encoder module of
the original Transformer [20] and the ViT model [24] is
shown in Fig. 1(a). The encoder module is made up of
a series of stacked encoders consisting of multi-head self-
attention (MHSA) and MLP layers. Each MHSA and MLP
layer is surrounded by a residual connection [6], which is
then accompanied by layer normalization (LN) [32]. Each
encoder layer’s output ports are listed as

y = LN
(
x′ + MLP(x′)

)
, and x′ = LN(x+ MHSA(x)) (2)

It is noted that the stacked multiple encoder layers of
Transformer take the same structure, but do not share the
same parameters. Therefore, the attention mechanism and
other structures used in Transformer are illustrated.

1) MULTI-HEAD SELF-ATTENTION (MHSA)

Transformer relies on the self-attention (SA) mechanism to
compute a representation of a sequence that relates to fea-
tures at different positions. In other words, the self-attention
mechanism enables the extracting of dependencies ignor-
ing the distance in input sequences. The sequences of input
tokens xi ∈ RHi×Cifor a self-attention module are linearly
transformed into qkv space, i.e., queries Qi ∈ RHi×Ci , keys
Ki ∈ RHi×Ciand values Vi ∈ RHi×Ci . A single-head com-
putes scaled dot-product attention for all queries and keys,
divides each by scaling factor

√
Ci, and applies a softmax

function to the values to obtain weights. The representation
of computed weighted values is given as

Attention(Qi,Ki,Vi) = softmax

(
QiKTi√
Ci

)

V (3)

Multi-head self-attention (MHSA) is proven to be more
advantageous than a single attention function, which lin-
early projects the queries, keys, and values h times using
distinct, learnt linear projections to dk, dk and dv dimen-
sions. MHSA enables the model to simultaneously attend to
information from various representation subspaces at vari-
ous points [20]. It is a SA extension that separates queries,
keys, and values for h times and runs the attention function
in parallel, as follows.

MultiHead(Qi,Ki,Vi) = Concat(headi1, . . . , headih)W
o

where headij = Attention
(
QiW

Q
ij ,KiW

K
ij ,ViW

V
ij

)
(4)

where the parameter matrices WQ
ij ∈ RCi×dk , WK

ij ∈ RCi×dk ,
WV
ij ∈ RCi×dv and Wo ∈ Rhdv×Ci are for linear projections.

Normally, dk has the same value as dv and is set as dk =
dv = dhead = Ci/h. The total computing cost is comparable
to single-head attention with full dimensionality. And a linear
aggregation is performed for corresponding values Vi.

The similarity between different tokens is determined
using the MHSA dot-product, resulting in long-range and
global attention.
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C. SPATIAL-REDUCTION ATTENTION (SRA)
In SRA [31], the spatial scales of the key K and the value V
are reduced before the multi-head attention operation (shown
in Fig. 1(b)), which results in a significant reduction in
attention computation/memory. Details of the SRA in stages
can be formulated as

SRA(Qi,Ki,Vi) = Concat(headi1, . . . , headih)W
o

where headij = Attention
(
QiW

Q
ij , SR(Ki)W

K
ij ,SR(Vi)W

V
ij

)
(5)

where the parameter matrices WQ
ij ∈ RCi×dk , WK

ij ∈ RCi×dk ,
WV
ij ∈ RCi×dv andWo ∈ Rhdv×Ci are for the linear projections,

dk = dv = Ci/h. SR(·) is the operation to reduce the spatial
dimension of the Kor V , which is written as

SR(x) = LN(Reshape(x, ri)W
s (6)

where, x ∈ RHi×Ci represents the input sequence, and
ri denotes the reduction ratio of the attention layers in
stages. Reshape(x, ri) is a reshaping operation that trans-
forms the input sequence x into a sequence of size Hi

ri
×riCi.

Ws ∈ R(riCi)×Ci is a linear projection that reduces the
sequence dimension to Ci. Then the attention operation is
as the original MHSA. It can be found that the computation
cost of attention operation in SRA is ri times lower than
that of MHSA.

D. MLP BLOCK
The MLP block with residual connection is integrated
after the attention layers. The MLP block contains a fully
connected feed-forward network composed of two linear
transformations separated by a rectified linear unit (ReLU)
activation layer. This feed-forward layer can be denoted as

MLP(x) = ReLU(0, xW1 + b1)W2 + b2 (7)

where W1 ∈ RCi×df , W2 ∈ Rdf×Ci , b1 ∈ Rdf , b2 ∈ RCi is
the weights and bias of two layers, respectively. Normally,
df = 4Ci is chosen as the dimensionality of MLP inner-layer.

E. SEQUENCE POOLING
A class token (like BERT [21]) is used in previous
transformer-based classifiers, including ViT, to map the
sequential outputs to a single class index. The sequence pool-
ing (SeqPool) strategy [28] has been shown to simplify the
model for classification by pooling the Transformer outputs
across the sequence and improve model accuracy.
The complete data sequence is pooled across a sequence

that includes important data from various parts of the input
sequence. This procedure is shown as the mapping trans-
formation T : Rb×h×c → Rb×c. The output sequences are
given as

xt = f (x) ∈ Rb×h×c (8)

where xt or f (x) is the output of the last transformer encoder,
b denotes the mini-batch size, h denotes the sequence length,
and cdenotes the embedding dimension. After that, xt is

fed to a linear function g(xt) ∈ Rc×1 and activated with
softmax as

x∗t = softmax
(
g(xt)

T
)

∈ Rb×1×h (9)

Hence, the final weighted embedding can be computed as

xs = x∗t xt = softmax
(
g(xt)

T
)

× xt ∈ Rb×1×c (10)

A weighted embedding output xs ∈ Rb×c is obtained
through pooling the second dimension. Then this output can
be sent to the MLP head for classification as that in the
previous studies.
SeqPool is the process of assigning learnable weights

across a sequence of data, allowing the model to weigh
the sequential embeddings of the latent space produced by
the Transformer encoder. Furthermore, it enables better cor-
relation of data across input data. As a result, our model
can not only give more weight to tokens containing more
information relevant to the classifier, but it can also better
utilize information across spatially sparse data.

F. THE FRAMEWORK OF OUR ECT MODEL
Our proposed ECT model designs a two-stage hierarchical
structure that utilizes convolutional tokenization to generate
convolutional token embedding from a 1D sequence for the
Transformer in different stages. The beginning of each stage
consists of the convolutional token embedding generated by
convolutional tokenization, followed by layer normalization.
The convolutional token embedding is used as the input
token of Transformer block in each stage. We use wide
kernels in the first stage to capture the important information
of vibration signals in the intermediate and low-frequency
bands, and then small kernels in the second stage to achieve
finer feature representation. Hence, the ECT model employs
kernel size k1 = 64, kernel number C1 = 64, and stride
s1 = 8 for the convolution operation in the first stage, kernel
size k2 = 7, kernel number C2 = 256, and stride s2 = 2 for
the convolution operation in the second stage.
Then Transformers use self-attention mechanisms to learn

global features of sequences. In the first stage, we replace
the original MHSA with the SRA to reduce the compu-
tation in Transformer block and the reduction ratio ri of
SRA is set at the value of 4. Attention layers are the major
context capturing unit in the Transformer. Since the dimen-
sion C2 of token embedding in the second stage is 4 times
increased than that in the first stage, the total computation
cost of Transformer block in the second stage is increas-
ing largely. To reduce the corresponding computation and
keep the computation balance of attention layers and MLP
block, we reduce the dimension of token embedding by
half via the linear projections to Q, K and V space, and
reduce the inner layer dimension of the MLP block by
1/4 instead of 4 times expansion in the Transformer block of
the second stage (shown in Fig. 2). In our ECT model, two
Transformer blocks are stacked for the first stage and three
Transformer blocks stacked for the second stage. Parallel
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FIGURE 2. The framework of our ECT model.

attention heads h = 2 are employed for the first stage and use
dk = dv = C1/h = 32. For the second stage, parallel atten-
tion heads h = 4 are employed and we reduce the dimension
of the token embedding via the linear projections to Q, K
and V space by half to still obtain dk = dv = C2/2h = 32.
Finally, sequence pooling is applied to handle the out-

put of Transformer block for the subsequential MLP head
which consists of the layer normalization and one linear
layer. And the sequence pooling removes the need for the
conventional class token in general transformers and makes
the model more accurate. For the output of the last MLP
head, the MSE loss is calculated for optimizing the model.
Our proposed ECT model combines the advantages of both
Transformer and CNN which guarantee the model in a flex-
ible size to learn global and local features simultaneously.
The framework of our ECT model is shown in Fig. 2.

III. THE PROCEDURE FOR FAULT DIAGNOSIS
The paper proposed an ECT for planetary gearbox fault
diagnosis. The framework of the proposed ECT is illus-
trated in Section II-D. Here we use the ECT method for
planetary gearbox fault diagnosis. Similar to the majority
of the deep learning methods for machine fault diagnosis,
ECT method also needs sufficient fault samples for training
to learn the excellent features and exhibit strong recognition
ability. Thus, the sensor data is first collected for training and
testing the model. Fig. 3 presents a brief planetary gearbox
fault diagnosis procedure of ECT method. In the training
procedure, abundant labeled fault and health datasets are
employed to train the ECT model, learning discriminative
features for classification. During the training procedure, the

parameters of ECT model are gradually fine-tuned accord-
ing to the label information. Additionally, the raw vibration
signal is utilized to train the model for end-to-end fault
diagnosis. The general procedure is summarized as follows:
Step 1: Collect the vibration signals under different work-

ing conditions of the experimental facilities to construct the
fault datasets.
Step 2: Divide the training data and test data from the

fault datasets, respectively, and normalize the data samples.
Step 3: Construct the ECT model with convolutional tok-

enization, Transformer blocks, sequence pooling, and MLP
head for classification according to Section II.
Step 4: Train the ECT model with training data and fine-

tune it adequately to verify the performance.
Step 5: Verify the effectiveness of our proposed ECT

method using test data for fault diagnosis.

IV. EXPERIMENT ANALYSIS
A. EXPERIMENTAL SETUP
Experiments were carried out on the planetary gearbox
vibration signals acquired from the drivetrain dynamic simu-
lator (DDS), as shown in Fig. 4, to validate the effectiveness
of our ECT model for planetary gearbox fault diagnosis.
The 608A11 vibrating sensors with a sampling frequency of
5120 Hz are chosen to collect vibration signals under vari-
ous speed-load conditions. Table 1 lists the descriptions of
various types of planetary gearbox faults.
Here the vibration signal of the planetary gearbox under

the working conditions (20Hz_0, 30Hz_2, 30Hz_4 and
40Hz_0) are collected as the experimental dataset. The
20 Hz, 30 Hz, and 40 Hz denote the working speed of
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FIGURE 3. The procedure for planetary gearbox fault diagnosis.

FIGURE 4. Experimental setup of DDS.

TABLE 1. Planetary gearbox condition descriptions.

the motor. Besides, 0, 2 and 4 denote the corresponding
load size.
In our study, the diagnostic task of the planetary gearbox

with mixture fault diagnosis is carried out. This task can be

TABLE 2. The detail of data samples.

regarded as the 9-class classification task which includes the
8 type faults and one Health type. There are four type faults
of Bearing and gear respectively, as presented in Table 1.
Firstly, we mixed the data of multiple working conditions

(20Hz_0, 30Hz_2, 30Hz_4 and 40Hz_0) to construct the
mixture dataset, which consists of 500 data samples chosen
from each planetary gearbox fault type of each working
condition, respectively. And nine-tenth samples of each fault
type from each working condition are arbitrarily chosen for
training and the rest one-tenth for testing. In other words,
there are 1800×9 samples and 200×9 samples under the
multiple working conditions kept for training and testing,
respectively. The detail can be seen in Table 2.

B. COMPARISON APPROACHES
To prove that our proposed ECT model is effective and
highly accurate for fault diagnosis of planetary gearbox, our
method is compared with the state-of-the-art classification
methods for fault diagnosis, including the 1DCNN model
which has the same number of layers as in [16], the WDCNN
in [17], the MSCNN in [18] and the convolutional Bi-LSTM
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network like in [15], and the Transformer-based models as
ViT in [24] and CCT like in [28].
The 1DCNN model utilizes the structure of [Conv1d

(1, 64, 64, 8) -> ReLu -> Conv1d (64, 128, 7, 1) ->
ReLu -> MaxPool1d (4, 4) -> Conv1d (128, 256, 3, 1)
-> ReLu -> MaxPool1d (4, 4) -> Linear (256, 9), which
obtain the same convolution operation as our ECT model
in the first stage. The WDCNN uses the same structure
as in [17]. The MSCNN utilizes the convolution kernel
size of 128 and the other hyperparameters set the same
as in [18].
The convolutional Bi-LSTM network also uses the same

convolution operation like ours to generate features for the
Bi-LSTM network. Then the Bi-LSTM network is completed
by two hidden layers with hidden_dim =128 and one Linear
(256, 9) layer for classification.
The Transformer-based models include ViT [24], Compact

Convolutional Transformer (CCT) [28] for 1D sequence and
the variant standard convolutional Transformer (SCT). The
ViT model divides the whole 2048 points sequence into
patches of size 64, which means the token embedding dimen-
sion is reshaped to 64 without convolutions. The depth of
ViT is set 5 and the head of MHSA is set 2 with head dimen-
sion of 32 the same as our ECT model for the fair contrast.
The CCT utilizes the same convolutional tokenization as in
the first stage of our ECT model to obtain the convolutional
token embedding as the input tokens of Transformer and sets
the depth of 5 and the MHSA head of 2 with head dimension
of 32 for a fair comparison. The SCT model here means the
standard convolutional Transformer model which is the same
two-stage hierarchical structure as our ECT model while
using the standard Transformer block in both two stages.
The CCT model is a “columnar” structure the same as ViT
and SCT model is the same two-stage structure as our ECT
model like the “pyramid” structure. The Transformer-based
models and our ECT model all use a dropout for the attention
and the MLP block in Transformer block with a probability
of 0.2.
In all experiments, the average accuracy (AVG) and

standard deviation (Std) of 10 random measurements are
chosen as the performance evaluation indexes. 1DCNN and
WDCNN model run 20 epochs, MSCNN and ViT model run
50 epochs. The convolutional Bi-LSTM, CCT, SCT model
and our ECT run for 30 epochs for best performance and
all these models run with a batch size of 128. The learning
rate for 1DCNN, WDCNN and the convolutional Bi-LSTM
model is set as 0.01, and for MSCNN, it is set as 0.001.
The value of the ViT, CCT, SCT and our ECT model is
set as 0.0005, and the learning rate of all models reduces
per epoch based on cosine annealing [33]. And these mod-
els are all warmed up for 3 epochs and use the primary
optimizer Adam for the training from scratch. Our works
are programmed in python 3.6.2 with torch 1.1.0, Cuda
version 9.0 and executed on the Ubuntu 16.04 operating
system.

TABLE 3. Classification accuracy of Transformer models.

C. RESULTS AND ANALYSIS
Firstly, we compare the ECT model with Transformer-based
models such as ViT, CCT and SCT, because the proposed
ECT model is improved based on these models. Here, the
ViT, CCT, SCT and our ECT are evaluated, as shown in
Table 3. The column “Head” means the head number of
MHSA with head dimension of 32 (2–4 indicates 2 heads
in the first stage and 4 heads in the second stage), which
also corresponds to different token embedding dimensions.
The column “Pool” denotes the use of the class token (CT)
or the SeqPool (SP). In these experiments, it can be found
that convolutional tokenization is more effective than the
patching from the results of ViT and CCT, for convolutions
providing the right inductive bias. The “pyramid” structure
is superior to the “columnar” structure from the comparison
between CCT and SCT, ECT model. The SCT(2-4) has fewer
trainable parameters (Params) and floating point of opera-
tions (FLOPs) than that of CCT(4) while achieving higher
accuracy, and it is more accurate than CCT(2), which indi-
cates the effectiveness of the two-stage structure. Our ECT
method adopting the SRA and the linear dimension reduction
projection techniques further improves the accuracy com-
pared to SCT(2-4) model and is even more accurate than
the SCT(2-8) model, with Params and FLOPs reduced above
60% when obtaining the same token embedding dimension
of 256 in the second stage. It indicates that our ECT model
has better performance and lower computation complexity
than the standard Transformer with the same structure. From
the results about the column “Pool”, it indicates that the
SeqPool simplifies the classification and improves the clas-
sification accuracy of Transformer compared to the class
token. The results have proved the effectiveness of our ECT
model and our proposed method helps save the resource
consumption while remaining high accuracy for planetary
gearbox diagnosis.
Table 4 compares the classification accuracy realized

by popular methods introduced in Section IV-B to further
demonstrate that our proposed ECT method has significant
performance gains for planetary gearbox fault diagnosis than
the state-of-the-art methods for fault diagnosis. It can be seen
that, when compared to 1DCNN, WDCNN, and MSCNN
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TABLE 4. Comprehensive comparison for fault diagnosis.

FIGURE 5. Performance under different input sample lengths.

CNN-based models, our ECT method achieves the highest
fault classification accuracy, demonstrating that our proposed
ECT model outperforms the CNN-based methods for fault
diagnosis. The convolutional Bi-LSTM method’s fault classi-
fication accuracy is also lower than that of our ECT method.
In other words, Transformer outperforms LSTM for sequence
learning. For comparison, the ViT and CCT(2) are chosen
as the Transformer baselines. Our ECT method is more
accurate, demonstrating the effectiveness of our proposed
structure. Furthermore, our ECT model achieves the high-
est fault classification accuracy of 99.89%, showing that our
proposed ECT method is effective for planetary gearbox fault
diagnosis.
To verify the flexibility of our ECT model and further

investigate the effectiveness of our ECT model, we change
the input data length from 1024 to 2048 and 3072 to train
the model. In addition, we chose the CCT(2) model, the
convolutional Bi-LSTM, WDCNN for comparison for they
are all flexible to the input size. Figure 5 depicts the results.
As shown in Fig. 5, the classification accuracy of our ECT
model improves as the length of the input data sequence
increases. It demonstrates that our ECT model is also flexi-
ble to input size and performs better on long-range sequence
learning. When the sample length is 3072, the ECT model

FIGURE 6. Accuracy for fault diagnosis with Gaussian noise.

can achieve 99.98% for planetary gearbox fault classification
tasks under mixed multiple working conditions. When com-
pared to the convolutional Bi-LSTM model, the ECT model
is much more robust with varying input sequence lengths,
whereas the Bi-LSTM model’s performance drops when the
length reaches 3072. The ECT model outperforms both the
CCT(2) model and the WDCNN model a lot under differ-
ent input lengths. Based on these findings, we can conclude
that our proposed ECT model can be used for effective and
accurate planetary gearbox fault diagnosis and the model is
flexible for learning long-range dependencies.

D. GENERALIZATION ANALYSIS UNDER BACKGROUND
NOISE
To validate the efficacy of our ECT model in planetary gear-
box fault diagnosis with background noise, white Gaussian
noise with signal-to-noise ratios (SNRs) ranging from −2 dB
to 10 dB with a stride of 3 dB was added to the data sam-
ples. In this part, we compare our proposed ECT model to
the CCT(2) model, the convolutional Bi-LSTM model, the
WDCNN model, and the MSCNN model. Fig. 6 shows the
detailed results of the models with different SNRs of noise.
The classification accuracy of our ECT model improves as
SNR increases, and the ECT model outperforms the CCT(2)
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model, the convolutional Bi-LSTM model, and the WDCNN
model with minor standard deviation fluctuations as SNR
increases. Although the classification accuracy of MSCNN
under noise is also very high, its standard deviation fluc-
tuates greatly, indicating that MSCNN is not as stable and
robust as our ECT model. The results prove that ECT model
has good generalization and can be robust to resist noise to
some extent.

V. CONCLUSION
In this paper, an effective convolutional Transformer (ECT)
for planetary gearbox fault diagnosis is developed. The
model employs convolutional tokenization in the construction
of the multi-stage Transformer to combine the benefits of
both CNN and Transformer for local and global feature learn-
ing. And our proposed ECT method uses spatial-reduction
attention (SRA) and linear dimension reduction projections
to refine the model in two stages to reduce the Transformer’s
resource consumption while maintaining the high classifica-
tion accuracy. Finally, the special structure combined with
the sequence pooling strategy further simplifies the model
by removing the class token and improves the accuracy of
the model. The proposed ECT model allows for variable
input data size and is effective for planetary gearbox fault
diagnosis. Experiment results validate the effectiveness and
flexibility of our ECT model, which is suitable for planetary
gearbox fault diagnosis even under noise. Compared to other
state-of-the-art methods, our ECT model is more effective
and robust for planetary gearbox fault diagnosis, especially
in learning long-range temporal dependencies.
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