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ABSTRACT The current epidemic, population growth, and decreasing arable lands lead to a severe food
crisis, which calls for productive and efficient agricultural methods to ensure a sustainable food supply for
mankind. Crop monitoring is considered to be a potential solution for the improvement of food production.
Current crop monitoring combines agriculture methodologies with other advanced technologies, including
sensing technology, geographical information systems (GIS), Internet of Things (IoT), information and
communication technology (ICT), robotics, and drone techniques to increase production with low labor
cost. The high-throughput plant phenotyping is crucial for crop monitoring on the data acquisition of
large-scale crop characteristics. The high-throughput plant phenotyping studies aim to achieve fast and
precise large-scale crop monitoring techniques with minimum environmental impact by applying special
plant phenotyping platforms. The phenotyping platforms are integrated with various sensors and data
communication systems, which can help to achieve automatic data acquisition and transmission. This paper
reviews the current high-throughput plant phenotyping development in crop monitoring, including sensors,
communication protocols, data management, and plant phenotyping platforms. State-of-art challenges are
reviewed and discussed. Also, the paper provides discussions on the current situation, upcoming challenges,
and possible future trends for researchers in this field.

INDEX TERMS High-throughput, plant phenotyping platforms, crop monitoring, sensing technology,
communication protocols.

I. INTRODUCTION

AGRICULTURE has played a vital role in the devel-
opment of the socio-economic condition and human

civilization [1]. With the ever-increasing population, rapid
urbanization, and the unexpected outburst of the pandemic,
the supply chain of the food has been adversely affected [2],
[3]. A recent report stated that by the year 2060, the world
population would reach around 9.3 billion [4]. This crisis
indicates that additional efforts and techniques are required
to multiply the food production to feed the world’s popula-
tion [5]. Therefore, food production needs to be increased
under the limited space condition to mitigate future food
supply issues. One method is to employ crop monitoring

practices with effective and efficient technologies to help
overcome the food supply problems [6].
Crop monitoring is an effective agriculture method. It

combines agriculture methodologies with advanced tech-
nologies, which include sensing technologies, geographi-
cal information systems (GIS), Internet of Things (IoT),
information and communication technology (ICT), robotics,
and drones techniques to increase the yield with relatively
low labor cost [7]–[10].
The crop characteristics are influenced by various factors

such as soil condition, temperature, crop moisture con-
tent, plant disease, etc. Even the same type of crop plants
planted in a different field will have other characteristics.
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In traditional farming practice, the farmers need to visit
the agriculture fields frequently to monitor crop conditions.
However, this monitoring process is laborious and can con-
sume up to 70% of farmer’s time [11], [12]. Hence, advanced
technologies such as sensor networks, ubiquitous comput-
ing [13], [14], and grid computing with satellite navigation
services can improve the monitoring process and help make
beneficial decisions for farmers.
Various sensors and their networks can constantly mon-

itor the crop phenotyping with high accuracy, while the
sensing data can be transferred to a secured platform
through suitable communication protocols. Besides, robotic,
unmanned ground vehicles (UGV) and unmanned aerial vehi-
cles (UAV) are applied as a platform where sensors are
installed to collect plant characteristics data. These data
can be used to design decision-making platforms for the
farmers [11]. To acquire and deal with large-scale plant
characteristics data, studies regarding high-throughput plant
phenotyping are essential [15]. Through high-throughput
plant phenotyping, detailed and non-invasive large-scale
plant information is enabled to be acquired throughout
the plant life cycle for agricultural decision making and
production increase [16]–[19].
This paper aims to aid the researchers in acquiring the

knowledge of the sensing technologies for high-throughput
plant phenotyping, the current challenges, and advancing the
state-of-the-art. The paper summarizes the plant phenotyping
parameters, communication protocols, and data manage-
ment analyzes the current plant phenotyping sensors, and
highlights the features of various sensor types, communica-
tion protocols, and data management methods. Furthermore,
the paper reviews the up-to-date plant phenotyping plat-
forms available for high-throughput plant phenotyping. This
paper aims to provide an insight for the researchers to
resolve the current challenges in high-throughput plant
phenotyping. Compared with existing review papers, this
study includes more comprehensive information on high-
throughput plant phenotyping. It covers all the relevant
details on high-throughput plant phenotyping, from basic
plant phenotyping parameters and plant phenotyping sen-
sors to sensing platforms, communication protocols, and data
management.
The paper is organized as follows. Section II introduces the

concept of plant phenotyping, the essential parameters, and
communication protocols for plant phenotyping. Section III
reviews the sensors used for high-throughput plant phenotyp-
ing. Section IV describes the up-to-date plant phenotyping
platforms for plant phenotyping. Section V summarizes this
paper and highlights the current challenges that need to be
addressed and potential solutions.

II. OVERVIEW OF HIGH-THROUGHPUT PLANT
PHENOTYPING
A. HIGH-THROUGHPUT PLANT PHENOTYPING
The term plant phenotyping refers to the plant appearance
and performance, which can be written as P = G × E,

FIGURE 1. The process of high-throughput plant phenotyping.

where P indicates the plant appearance and performance, G
indicates the plant genotype, E indicates the environmental
variables. In other words, plant phenotyping is the result
of genotype and environmental variables on the plant [20].
Plant phenotyping is related to the quantitative and qualita-
tive plant traits, which is essential for studying plant response
to environmental conditions. Hence, it does not only include
the plant itself but also includes the response of plants in
a specific environment, such as a specially controlled envi-
ronment (greenhouse, etc.) or the natural environment [21].
The target of plant phenotyping is to provide an analysis
of plant traits to acquire its influence factors, which can
help the plants to have a better yield in limited growing
environments [20]. With the rapid development of electrical,
computer science, and sensor technologies, high-throughput
plant phenotyping has been a trendy field of study [22].
High-throughput plant phenotyping means automatic, non-
invasive phenotyping systems, which have the ability for
automated data acquisition, processing, analysis, and visual-
ization [21]. Currently, the requirements for high-throughput
plant phenotyping research are increasing because it plays a
crucial role in crop monitoring [20], [23]. Fig. 1 illustrates
the process of high-throughput plant phenotyping.

B. SENSING PARAMETERS FOR HIGH-THROUGHPUT
PLANT PHENOTYPING
The plant phenotyping parameter is an essential part for high-
throughput phenotyping studies. Recent studies show that the
phenotyping parameters of economic crops (including bar-
ley [24], wheat [25], sorghum [26], maize [27], tomato [28],
bean [29] and cotton [30]) are taken into account. These plant
phenotyping parameters can be grouped into two categories:
morphometric and physiological [22]. Fig. 2 presents some
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FIGURE 2. Plant phenotyping parameters.

of important plant phenotyping parameters in morphometric
and physiological phenotyping.
Morphometric phenotyping is a mathematical descrip-

tion of biological forms based on the geometric definition
of an object’s size and shape [31]. Detailed morphome-
tric information can help understand the effect of plant
genes and the environmental condition on plant develop-
ment. In morphometric phenotyping parameters, the plant
height, stalk length, stem diameter, and leaf morphology (leaf
length/width/area/angle) are crucial parameters because they
are directly related to the plant growth [22]. The limitation of
morphometric phenotyping parameters is that these param-
eters only stay on the external plant phenotyping, which is
not enough to fully represent plant conditions like water or
nutrient content [21].
Physiological phenotyping is about all the internal activ-

ities of plants, such as photosynthesis, plant nutrition, envi-
ronmental stress, etc. Although many high-throughput plant
phenotyping kinds of research still focus on morphometric
phenotyping, the measurement of physiological phenotyping
has been expected as an essential part of studying plant gene
and plant performance relationships. In a physiological view,
many abiotic (water, light, radiation, temperature, humidity,
and soil condition) and biotic (human influence, pathogens,
and disease) factors will affect plant cellular responses, ulti-
mately determining plant performance. The physiological
phenotyping parameters contain high dimensional data such
as biomass, NDVI, chlorophyll, plant/water stress, leaf water
content, disease resistance, and plant nutritional status. The
limitation of physiological phenotyping is that the detection
processes are relatively more sophisticated and expensive
than morphometric phenotyping [21], [32].

C. COMMUNICATION PROTOCOLS FOR
HIGH-THROUGHPUT PLANT PHENOTYPING
Data communication is another essential part of high-
throughput plant phenotyping because it enables sensing
data transmission. Through communication protocols, sen-
sors can exchange the plant phenotyping data over the
network. Different protocols have various frequency bands,
data rates, transmission ranges, energy consumption, and
costs [33]. Therefore, the choice of communication protocols

FIGURE 3. CropQuant system. (Concept adapted from [37]).

depends on actual applications. The commonly used com-
munication protocols include IEEE 802.11 (WiFi), WiMax,
BlueTooth, Cellular, LoRaWAN, and NB-IoT. The follow-
ing contents briefly describe these communication protocols.
Table 1 presents the comparison of these communication
protocols.

1) IEEE 802.11 (WiFi) is a series of the Wireless
Local Area Network (WLAN) communication stan-
dards, including the IEEE 802.11, 802.11a, 802.11b,
802.11g, 802.11n, 802.11ac, 802.11ax standards. The
state of art standard is 802.11ax (also called WiFi
6), which was developed in May 2014 to improve
the throughput-per-area in high-density scenarios [34].
Different standards have various technical parame-
ters; the frequency band of WiFi varies from 5 to
60 GHz, while the rated speed varies from 0.25 Mb/s
to 6.75 Gb/s. The latest standard reaches a signifi-
cant rate speed of 6.75 Gb/s, with 2.4GHz and 5GHz
frequencies. Besides, the current range of WiFi covers
from 20 m to 100 m [33], [34]. With relatively sta-
ble and high data rates, WiFi has become a universal
solution for many applications, including crop mon-
itoring [35]. The study [36] applied WiFi to do the
data transmission in their system, which is an imaging
technology and cloud technology-based system. Their
system can achieve real-time crop detection and crop
growth status recording. The result of this work shows
that this system can complete real-time detection and
data transmission in the field of crop monitoring [36].
Zhou et al. [37] introduced a large-scale automatic
field phenotyping platform, CropQuant, which is a
low-cost Internet of Things (IoT) powered system. By
using high-resolution time-lapse photography, in-field
evaluation, and a WiFi-based data exchange system,
this platform can achieve continuous crop monitor-
ing [37]. Fig. 3 shows the principle of the CropQuant
system.
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TABLE 1. Comparison of communication protocols.

2) WiMAX (Worldwide Interoperability for
Microwave Access) is a high-speed wireless
data communication protocol based on IEEE 802.16
standard [38]. It provides a data rate from 1.5 Mb/s to
1 Gb/s. The new standard version 802.16m can reach
the data rate of 100 Mb/s through mobile stations and
up to 1 Gb/s through fixed stations [33]. The WiMAX
frequency band varies from 2 to 66 GHz, while the
covering range can reach a maximum of 50 km.
However, these features are also accompanied by rela-
tively high cost and medium energy consumption [39].
The study [40] applied Wimax-based technology to
develop an agriculture monitoring system, which can
integrate the wireless sensor network and send the
data to the central server [40].

3) Bluetooth is a kind of low energy consumption and
low-cost wireless data communication protocol based
on the IEEE 802.15.1 standard. The Bluetooth stan-
dard can build a communication link between portable
devices, such as laptops, over 8 to 10 m. It pro-
vides a personal area network (PAN) communication
on the 2.4 GHz band. The data rate ranges from 1
Mb/s to 24 Mb/s in different standard versions [33],
[41]. Kuhlgert et al. [42] designed a device called
MultispeQ to collect large-scale, high-quality field
data. The MultispeQ can provide useful plant pheno-
typing such as chlorophyll and pigment information.
These plant phenotyping data can be transmitted from
the MultispeQ to mobile phones or laptops and be
saved to their data management platform. The com-
munication method between the MultispeQ and other
devices is Bluetooth or micro-USB. Their study shows
that this system can measure, send, store and analyze
the plant phenotyping data [42].

4) Cellular, also called mobile communication, is suit-
able for portable devices which have the requirement
of high data transmission rate. There are four gen-
erations of cellular standards, which include second
generation (2G including GSM and CDMA), third gen-
eration (3G including UMTS ad CDMA2000), fourth
generation (4G including LTE), fifth-generation (5G

NR) [33], [43]. Based on this kind of communica-
tion protocol, portable devices can communicate over
cellular networks. Data rate of cellular range from
9.6 Kb/s (2G) to 1 Gbps (5G) [33], [44]. The study [45]
developed a multi-billion pixel (“gigapixel”) image
sensor system, which can detect the high-throughput
phenotyping in field settings and transmit the images
to a remote server by cellular connection. The authors
state that the data rate of 4G is enough for gigapixel
images uploading in their system [45].

5) LoRaWAN is a new communication protocol for long-
distance data communication. It has the advantage of
long-range data transmission. The LoRaWAN network
applies a new technique to achieve multiple messages
received through various channels during data trans-
mission. By using the new design, LoRaWAN can
increase the data communication range and network
size while keeping a long battery life [46]. To sum
up, LoRaWAN has a high capacity and low energy
consumption with limited data rates. Its data rates
can reach the requirements of standard agriculture
sensors [39]. Singh et al. [47] developed a LoRaWAN-
based sensor network to monitor tomato crops in the
greenhouse. The LoRaWAN will transmit the raw sen-
sor data to the LoRaWAN gateway and forward it to
a working network. Then a data parser will subscribe
to the data from the working network and use the data
for visualization and store [47].

6) NB-IoT is the Low Power Wide Area Network
(LPWAN) radio technology standardized by 3GPP.
It focuses on indoor, low energy consumption, low
expense, and high connection density communication
work. Although it applies the subset of LTE (Long
Terminal Evolution) standard, it removes some fea-
tures of LTE to reduce the energy consumption and
cost [39], [46]. The study [48] stated an intelligent
plant temperature control system based on NB-IoT
low-rate narrow bandwidth network. The system can
do the data transmission within an indoor distance
and achieve automatic regulation of plant growth
temperature. The result of this study shows that the
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FIGURE 4. CCD and CMOS sensors [73].

system can stably regulate a beneficial condition for
plant growth [48].

D. DATA MANAGEMENT FOR HIGH-THROUGHPUT
PLANT PHENOTYPING
The massive data generated from the high-throughput plant
phenotyping process must be managed. The managed data
will be used for processing and analysis to obtain the
plant phenotyping results. The database management system
(DBMS) needs to be applied to maintain and control access
to plant phenotyping data [51]. The database management
systems can be divided into relational and non-relational.
A relational database is a set of tables that store and
provide data access. The row in the table is a unique
ID, and corresponding columns contain attributes of the
data. The non-relational database does not apply tables as
a data storage structure. It provides a solution for large-
scale data storage requirements of the Internet. According
to the difference in structure and application scene, the non-
relational database can be divided into key-value stores, doc-
ument stores, and XML databases [52]. The frequently-used
relational database management systems include MySQL,
PostgreSQL, Microsoft SQL Server, Oracle, and Microsoft
Access. The frequently-used non-relational database manage-
ment systems include MongoDB, Redis, and CouchDB. Most
real-time plant phenotyping data can use relational databases
since they are suitable for the representation of tables [53].
Schmidt et al. [54] developed a distributed information
system called Phenomics to manage massive plant pheno-
typing data. In the developed system, a relational database
management system PostgreSQL was applied to save plants’
treatments and measurements data. The plant data are divided
into various parts in database tables (like experiments,
plants, locations) [54]. Reynolds et al. [55] developed a
distributed plant phenotyping management system called
CropSight. In the developed system, a relational database
management system, MySQL, was applied for storing vari-
ous data, including images, weather data, and experimental
settings [55].
With the enormous development of cloud storage, various

organizations have started to upload their data to cloud stor-
age since it can provide a low-cost and convenient method
for large-scale data storage. Through the Internet, users can
access the stored crop data anytime and anywhere [56]. The
current commercial cloud storage systems include Amazon
S3, Microsoft Azure, Alibaba Cloud, etc. [56].

III. SENSORS FOR HIGH-THROUGHPUT PLANT
PHENOTYPING
Currently, many sensors have become essential elements
for plant phenotyping parameters measurement as it could
provide fast and noninvasive information of plants [20].
Many advanced technologies have been integrated with sen-
sors to perform the plant phenotyping work, such as image
techniques [57], machine learning [58] and communication
techniques [59]. Studies show that the traditional and even
new sensors are integrated for plant phenotyping parameters
measurement, which includes visiable spectrum image sen-
sor [60], thermal image sensor [61], NIR image sensor [24],
multi-spectral image sensor [62], hyperspectral image sen-
sor [63], Light detection and ranging (LiDAR) [64], ultrasonic
sensor [65], fluorescence sensor [66], depth image sensor [67]
and etc. The following subsections discusses different types
of sensors that are being widely used for plant phenotyping.

A. VISIBLE SPECTRUM IMAGE SENSOR
The visible spectrum is the segment of the electromagnetic
spectrum that human eyes can view-typically, visible spec-
trum wavelengths about 400 to about 780 nm [68]. A visible
spectrum image sensor can collect visible light and create
images based on red, green, and blue wavelengths (RGB)
for accurate color representation [69]. The visible spec-
trum image sensor mostly consists of charge-coupled device
(CCD) silicon sensors and active-pixel sensors (CMOS) [69].
Photons fall on the sensor surface and generate a charge,
which can be transferred into a visible copy on the device.
Therefore, a visible spectrum image sensor can obtain vis-
ible radiation of an object to form an RGB image, which
can be used to present a plant’s physical information (mor-
phological and texture features), biotic stress, and plant
status [22]. Afterimage processing and analysis, various plant
phenotyping parameters (including plant height, stalk height,
stem diameter, leaf length/width/area/angle and biomass)
could be acquired [60]. Visible spectrum image sensors are
low-cost, simple, and ubiquitous. Moreover, the technical
parameters of visible spectrum image sensors such as light
sensitivity, image resolution, and ability to focus have been
significantly improved every year [70]. Besides, with the
rapid development of computer vision, implementing com-
puter vision technology to extract helpful information from
RGB images has become a key method for plant phenotyping
studies. It can automate the data acquisition of the plant phe-
notyping parameters. This can help save time and cost for the
farmers because they do not have to go to the fields for plant
monitoring and measurement. In addition, the applications
of deep learning and convolutional neural networks in plant
image analysis have greatly improved the high-throughput
plant phenotyping work efficiency [71]. Furthermore, high-
throughput platforms have been greatly developed and can
provide a controlled environment to study the plant responses
to the environment [72]. Therefore, visible spectrum image
sensors in high-throughput plant phenotyping studies are
gaining popularity. Fig. 4 presents the CCD and CMOS
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FIGURE 5. Visible spectrum image sensor principle.

sensor. Fig. 5 shows the visible spectrum image sensor prin-
ciple. When the visible spectrum image sensor starts to work,
then the light of the plant will enter through the lens. Then,
photons fall on the CCD/CMOS sensor surface and generate
a charge. That charge will be converted to a voltage, ampli-
fied, and processed by an analog to digital Converter (AD
converter). After that, the image processing unit will process
the digital signal and generate a digital image.
One methodology for applying visible spectrum image

sensors in high-throughput platforms is using multiple image
sensors to take many images of plants from different views.
This can help to acquire consistent and accurate pheno-
typing parameters. The research [74] applied the visible
spectrum image sensors based on LemnaTec 3D Scanalyzer
(LemnaTec, GmbH, Wuerselen, Germany) high-throughput
platform to take RGB images of barley plants in three
different views (one top view image and two side-view
images with a 90-degree horizontal rotation). These RGB
images were used to predict barley growth and estimate the
biomass. The result of this research shows that there is a high
correlation between visible spectrum image-based biomass
estimation and actual plant biomass. This indicates that the
visible spectrum image sensor-based phenotyping system
had good performance on high-throughput plant phenotyp-
ing estimation [74]. Similarly, [24] developed an integrated
framework for high-throughput plant phenotyping data anal-
ysis. This new framework can extract plant phenotyping
parameters from noninvasive images regularly. The multiple
image sensors were also used to take three different views of
RGB images to measure the status and biomass of the plant
for the barley plants and store the data. This study shows
that the framework data are precious to the plant develop-
ment and biomass variation. It also helps to quantify further
plant growth and performance features [24]. The study [66]
also used the LemnaTec 3D Scanalyzer system (LemnaTec
GmbH, Aachen, Germany) to take three different views of
RGB images of two different salinity tolerance rice cultivars
for plant assessment. The RGB images were used for plant
height; the images were also applied to estimate approxi-
mation biomass. The result from this study shows that the
projected shoot area obtained by RGB image analysis has a
strong positive correlation with biomass on older plants [66].
Similar study methods are also applied to the sorghum [75]
and wheat plants [76].

Combining the digital image sensor and UAV is another
popular methodology in plant phenotyping studies. The
study [77] built a high-throughput plant phenotyping plat-
form based on UAV for soybean yield estimation and crop
maturity prediction. The designed system applied a fast and
inexpensive method for plant evaluation and improved crop
breeding efficiency. The result of this study shows that
the traditional yield estimation method could be greatly
improved, and high accuracy (93%) has been achieved in
soybean maturity classification [77].
The studies above did not mention the relationship

between plant phenotypes and genomics. Therefore, the
study [78] developed a high-throughput rice phenotyp-
ing facility (HRPF) and collaborated it with genome-wide
association studies (GWAS). A visible spectrum image
sensor-based high-throughput platform can obtain morphol-
ogy parameters (including plant height, green leaf area, plant
compactness) and rice biomass. Plant compactness is a new
trait that traditional plant phenotyping methods cannot be
defined and obtain among these morphology parameters.
Their novel work shows that the new high-throughput plant
phenotyping method performs better than the conventional
plant phenotyping method. It can provide valuable plant
gene identification information. Besides, the use of multiple
phenotyping tools includes in-depth information and insight
into the relationship between plant phenotyping and genetic
architecture [78].
One big challenge of the visible spectrum image sensor-

based plant phenotyping is the difficulty of object distinction
between plant and background with similar plant colors such
as grapevine and field. A study conducted by [79] used a nor-
mally visible spectrum image sensor to compute grapevine
leaf surface areas and fruit-to-leaf ratios. They segmented
RGB images into four classes (leaf, stem, grape, and back-
ground) by depth reconstruction, color classifier, and edge
detector. The segmented images help to acquire the leaf sur-
face areas and fruit-to-leaf ratio. The study result shows a
good determination coefficient and minor error compared
with the traditional method. This research found a possi-
ble way to solve the challenge of object distinction in plant
phenotyping. This advance may improve the development of
high-throughput plant platforms and image acquisition [79].
Although significant progress has been made so far

for applying visible spectrum image sensors on plant
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FIGURE 6. Infrared spectrum principle.

phenotyping, such as the visible spectrum image sensor-
based high-throughput platform and image analysis, the
limitation of digital image sensors still needs to be consid-
ered. Firstly, the visible spectrum image sensor is limited
to visual spectral bands [80], which means it may lose
some spectrum information such as infrared spectrum.
Various spectra can provide different details about the plant
phenotyping, such as plant water content and plant temper-
ature [72]. This will lead the high-throughput platforms to
apply more sensors for efficient plant information. Secondly,
the performance of the visible spectrum image sensor is
easily affected by the varying light conditions [22]. The
study [81] explored a method to use the visible spectrum
image sensor scene mode to measure nitrogen nutrition of
corn without additional artificial illumination. Therefore, the
development of visual spectrum image sensor scene mode
may be a potential solution to the problem of light effect.

B. INFRARED SPECTRUM IMAGE SENSOR
The wavelength of the infrared spectrum is about 780 nm
- 1000 µm. The light wavelength is just outside the visible
range of the human eyes, and it can offer unique details about
plants [82]. Based on the wavelength, the infrared spectrum
can be divided into five parts: near-infrared (NIR), short-
wave infrared (SWIR), mid-wave infrared (MWIR), long-
wave infrared (TIR/LWIR), and far-infrared (FIR). Fig. 6
shows the infrared spectrum principle. Some properties of the
plant are related to infrared light, which could be potentially
helpful for plant phenotyping analysis [72].
Near-infrared (NIR) image sensor contains Indium

Gallium Arsenide (InGaAs) sensors. Because of its spectral
sensitivity, the NIR image sensor can detect near-infrared and
short-wave infrared spectrum, which is useful for measuring
leaf water content [72]. Compared with visible light, NIR
and SWIR lights could be greatly reflected by plant tissue,
and the reflection is influenced by leaf thickness, which is
related to leaf water content. Many studies have applied the
NIR image sensor in leaf water content measurement and
plant drought response. Fig. 7 presents the reflectance under
different leaf water content. When the leaves have a regular
water content (healthy), the reflection of near-infrared light
is larger than blue, green, and red light. When the water
content of leaves decreases (stressed), the reflection of near-
infrared light will gradually reduce. After the leafs withered
(dead), the near-infrared reflection will be almost the same

FIGURE 7. An illustration of leaf reflectance [83].

FIGURE 8. NIR image sensor [84].

as blue, green, and red light. Fig. 8 shows the image of the
NIR sensor.
The research [85] used a NIR image sensor to detect plant

water content. Their study is based on a standard plant fea-
ture that leaf dehydration will decrease NIR light’s absorp-
tion. The result of the study shows that some wavelengths
(970/1200 nm) have lower sensitivity due to small absorp-
tion troughs, while some wavelengths (1450/1930/2500 nm)
have much higher sensitivities of leaf water indices to leaf
water content [85]. The research [24] applied multiple image
sensors to extract phenotyping parameters of barley by non-
invasive imaging constantly. In this system, the NIR image
sensor was used to obtain the plant water content [24].
The study [86] introduced that the morphometric and plant
drought response of grapevines can be acquired through RGB
and NIR image analysis. The result of this study shows that
NIR is related to the levels of plant drought and enhances
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FIGURE 9. Thermal infrared image sensor [89].

the role of the NIR image sensor in plant drought response
study [86].
NIR image sensor also has similar limitations as digital

image sensor. It is limited to specific bands, and the other
wavelength information will be lost in the NIR image. The
potential solution is to apply multiple image sensors together
or use the hyperspectral image sensors instead of NIR image
sensors [72].
Thermal infrared (TIR) image sensor can detect the long-

wave infrared (LWIR) spectrum. Thermal infrared imaging
is a remote, non-invasive technology that can provide tem-
perature mapping of an object. Thermal infrared imaging
has been widely applied in many areas such as aerospace,
automotive industry, medicine, and security. All the objects
above 0 ◦C will emit infrared rays, which can be represented
as surface temperature. The higher temperature of the surface
will have a greater infrared radiation intensity.
Therefore, thermal infrared imaging technology can con-

vert the radiation into temperature data. The main advantages
of thermal imaging are it can be operated remotely. It is non-
invasive, easy to handle, and has higher accuracy than other
sensors. Besides, thermal infrared imaging can acquire a tem-
perature map of the captured region with a fast response,
not the simple spot temperature data. In addition, unlike
other imaging systems, thermal infrared imaging does not
have a strict requirement for illumination, which means it
can effectively work in a dark environment. The thermal
infrared image sensor is comprised of infrared detectors’
signal processing parts. The infrared detectors can detect
the intensity of radiation and convert it into an electrical
signal, which will be translated into a thermal image in the
signal processing part [87]. Thermal infrared images can be
used to represent plant temperature, plant water stress, and
plant quality [72], [88]. Fig. 9 presents the thermal infrared
sensor and a thermal infrared image.
Matos et al. [90] used thermal infrared image sensors to

study the influence of environment temperature and light
changes on the plants. They used different temperature
and light environment conditions to test the plant’s growth
rate. This study shows that temperature might primarily
influence plant growth rate. In addition, the temperature
variation did not affect the size of the leaf cell length [90].
Crusiol et al. [91] applied the thermal infrared image to
evaluate the temperature of soybean plants and their water

FIGURE 10. Multi-spectral sensor [93], [94].

status. A thermal infrared image sensor was integrated with
an unmanned aerial vehicle (UAV) to capture the thermal
infrared image of plants. This work shows the relationship
between plant thermal infrared behavior and soil water avail-
ability. The lower soil moisture conditions will lead to higher
plant temperatures. Besides, this work shows the value of
applying UAV and thermal infrared image sensors for plant
water monitoring and crop management [91].
The thermal infrared image sensor plays a vital role in

the temperature mapping of the plant. Due to its power-
ful advantages, various thermal infrared image sensors have
already been applied in plant phenotyping. However, the
thermal infrared image sensor is easily affected by environ-
mental conditions, and it is hard to detect the difference in
minor temperature variations [80]. The study [87] introduces
that the thermal infrared image sensor can be divided into
the uncooled and cooling device. The uncooled device can
be operated at room temperature, and most studies used it.
Although these uncooled devices are inexpensive, their reso-
lution and image quality is lower than the cooling device. The
cooled thermal infrared imaging devices have high resolution
and can detect a difference of slight temperature varia-
tions (0.1 ◦C). However, the cooled thermal infrared imaging
devices are expensive and need to be maintained under 0 ◦C.
With the development of new materials, the cooled thermal
infrared imaging devices may solve the current problems of
the thermal infrared image sensor and become the typical
sensor for plant phenotyping measurement [87].

C. MULTI-SPECTRAL IMAGE SENSOR
Multi-spectral imaging is primarily developed for space-
based imaging. It has been successfully applied in many
fields, such as environment, national defense, and agricul-
ture. The multi-spectral image sensor can detect light with
a few discrete wide spectral bands (generally 3 to 10).
Therefore, it can provide more detailed spectral information.
In the agricultural field, multi-spectral image sensors are
usually used to detect the information of visible spectrum
and near-infrared spectrum, which can be used to measure
some specific plant phenotyping such as plant stress, water
stress, disease detection and normalized difference vegeta-
tion index (NDVI) [80], [92]. Fig. 10 presents the images of
the multi-spectral sensor and camera. Fig. 11 presents the
multi-spectral principle.
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FIGURE 11. Multi-spectral and hyperspectral principle.

Andrade-Sanchez et al. [95] used a multi-spectral crop
canopy image sensor to measure the cotton canopy
reflectance. The multi-spectral image sensor has three chan-
nels for detecting the visible and NIR spectrum. The canopy
reflectance data in the infrared spectrum regions were
implemented to calculate the normalized difference vege-
tation index (NDVI) [95]. Zaman-Allah et al. [96] used
an unmanned aerial platform (UAP) equipped with sensors
to get multi-spectral images of maize’s performance under
low nitrogen stress. The study results show that the study
indicates that UAP based platform can effectively assess
crop performance under low nitrogen stress. The NDVI data
from multi-spectral images have a strong correlation with
ground-measured data [96]. Patrick et al. [97] applied multi-
spectral image sensor for tomato spot wilt disease resistance
in peanuts research. Their study used a quadcopter with a
multi-spectral image sensor to get multi-spectral images for
high-throughput plant phenotyping of tomato spot wilt dis-
ease resistance among twenty different genotypes of peanuts.
The multi-spectral images were analyzed and processed into
several vegetation indices (each plot has a further distribu-
tion of pixel intensities), which can be applied to develop a
model for plant disease assessment by working with manu-
ally acquired data. The result of the study shows it can save
time and provide more reliable results than human visual
work [97]. Kumar et al. [98] used a multi-spectral image
sensor mounted on an unmanned aerial vehicle (UAV) to
get the near-infrared, green, and red band images, which
were applied to achieve the vegetative index for maize crop
health monitoring. The study results show that this method
successfully detects the water-stressed area. The irrigation
process and crop health monitoring have been optimized
through this study [98]. Mardanisamani et al. [99] applied a
multi-spectral image sensor with five spectral channels (red,
blue, green, near the infrared, and red edge) on a quadcopter
to get the images of wheat and canola from two breeding
field trials. A deep convolutional neural network was used
on these images to build a detection model for plant lodging.
The result of this study shows that the model can achieve

real-time plant lodging classification and reduce the work
cost [99].
The limitation of the multi-spectral image sensor is that

it is limited to a few spectral bands. Few spectral bands
may not be enough for some applications. A hyperspectral
image sensor that provides hyperspectral details might solve
this problem because the hyperspectral images have more
measured wavelength bands than multi-spectral images [80].
Besides, employing a combination of image sensors could
also be a potential solution for this limitation.

D. HYPERSPECTRAL IMAGE SENSOR
Hyperspectral images have hundreds of narrow spectral
bands, which means they can provide enough spectral
information for object analysis. The main difference between
the multi-spectral and the hyperspectral image sensor is
the number of wavebands and bandwidth being detected.
Hyperspectral image sensor provides a potential method for
more accurate and detailed plant phenotyping information
than any other type of sensor. With the development of
hyperspectral image sensors, it has become one of the
most powerful sensors in the field of remote sensing [100].
Therefore, the hyperspectral image sensor is turning into
a gradually popular method for high-throughput plant phe-
notyping as it can provide valuable insights into the plant
conditions such as water content, plant stress, and chloro-
phyll [101]. In high-throughput plant phenotyping studies,
the hyperspectral image sensor is usually applied to plant
stress, plant quantitative assessment, and plant condition
monitoring [102]. Fig. 11 presents the hyperspectral princi-
ple. Fig. 12 presents the images of the hyperspectral image
sensor and camera.
Seiffert et al. [105] applied the hyperspectral image sen-

sors to do the quantitative assessment of various genetically
different tobacco varieties under different growing environ-
ments. The artificial neural networks were used to analyze
the hyperspectral images in their study. This study shows that
the different genotypes and growing conditions will lead to
the difference in plant spectrum [105].

VOLUME 1, 2022 9500121



MA et al.: A REVIEW ON SENSING TECHNOLOGIES FOR HIGH-THROUGHPUT PLANT PHENOTYPING

FIGURE 12. Hyperspectral sensor [103], [104].

As the plant condition monitoring area, [106] stated a
method to classify the nutrition state of the crop through
hyperspectral imaging. In their research, artificial neural
networks were used to predict a plant’s nutrition condi-
tion based on leaf age or intra-leaf pixel position. The
result shows that their method can boost classification
performance, where leaf age had a more substantial impact.
Besides, the result also indicates that different spectral
bands have different weights on plant nutrition condition
prediction [106].
Römer et al. [107] applied unsupervised learning on the

hyperspectral images, which are acquired by a hyperspec-
tral image sensor SOC-700. Their work model can compare
the plant spectrum with observed typical spectra to mea-
sure if the plant is suffering from stress. The result of
this study tests the plant drought stress detection in cereals
and provides a method to visualize the plant stress [107].
Mahlein et al. [108] developed specific spectral disease
indices (SDIs) for the detection of sugar beet diseases. They
tried to test all possible combinations of light wavelength
to get the best-weighted variety on the hyperspectral imag-
ing data set. The result of this study shows that the spectral
disease indices can improve disease detection and crop mon-
itoring in agriculture practice [108]. Asaari et al. [109]
did the detection of plant responses to drought by hyper-
spectral images for drought-tolerant maize selection. Their
study used the standard normal variate (SNV) method to
reduce illumination effects due to hyperspectral images being
easily affected by illumination. The different plant spec-
tra were compared to assume the plant trait’s variation.
The result of this study successfully detects the drought
stress responses of maize and plant recovery effects after re-
watering [109]. Yang et al. [110] developed a convolutional
neural network (CNN) model to analyze the hyperspectral
images for estimating the cold damage of corn seedlings.
This study shows that the spectral analysis result based
on CNN modeling correlates with the chemical method
result. The study provides a reference for plant cold damage
study [110].
Although the hyperspectral image sensor is very promising

for plant phenotyping applications, the limitations of hyper-
spectral image sensors still need to be considered. Currently,
significant problems are the challenge of image processing,
image analysis, and the heavy price of sensors [72], [80].
Many advanced methods like unsupervised learning [107],
image fusion, artificial neural networks [105], [106] and

FIGURE 13. Depth Image Sensor [114].

FIGURE 14. Depth image sensor principle.

convolutional neural network [110] may become potential
solutions for the image processing and analysis problems.

E. DEPTH IMAGE SENSOR
A depth image sensor can provide images with real-time
depth information. The current principle of depth camera
can be divided into three parts: structure light, time-of-flight
(ToF), and stereo depth. Fig. 14 presents the three depth
image sensor principles. In the structure light method, the
structural projector will emit patterned light on the object.
Since the projected light pattern is known, the image sensor
could provide depth information based on the deformation of
pattern [111]. In the time-of-flight (ToF) method, the projec-
tor will emit light to the object. Because the speed of light is
known, the time that light flight to an object and is reflected
the image sensor will provide depth information [112]. Two
image sensors (spaced a small distance apart) will be applied
to take two images in the stereo depth method. Because the
distance between the two image sensors is known, the com-
parison of two images will provide depth information [113].
Based on these principles, depth image sensors can pro-
duce an image showing the distance between the object and
the image sensor [22]. The popular depth image sensor is
currently an RGB-D image sensor equipped with a digital
image, depth, and infrared emitters. Since RGB-D image
sensor can simultaneously provide RGB and depth images
of an object, it has been widely integrated into various appli-
cations such as 3D reconstruction, object recognition, and
remote control [67]. Fig. 13 presents the image of depth
image sensor.
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FIGURE 15. LiDAR [120], [121].

In the high-throughput plant phenotyping field, the RGB-D
image sensor has shown its impressive ability for 3D
plant phenotyping and automation of agricultural appli-
cations [115]. Seiffert et al. [67] applied Kinect RGB-D
image sensor to capture RGB and depth images of plants
for the segmentation of plant leaves. This study shows
the success of 3D segmentation of individual plant leaves,
which could be used for plant stress and disease resistance.
Paulus et al. [115] proved the reliability of a low-cost RGB-D
image sensor for plant traits (height, width, volume, surface,
and compactness) measurement from the 3-D reconstruction
of the plant. Bahman et al. [116] applied Intel RealSense
D435 depth image sensor for non-invasive and automated
plant height measurement. In this study, the depth image
sensor was set up on the top of the plants. Image segmenta-
tion was applied to reduce the background impacts in plant
height measurement. The plant height are calculated by using
the distance of the depth camera from the ground subtract-
ing the shortest length of the depth camera from the plant
and the height of the pot. The result of this study shows
high correlations and accuracy between depth image sensor
measured plant height and actual plant height [116].
The limitations of depth image sensors are low reso-

lution, short sensing distance, and sensitivity to optical
interference [117].

F. LIDAR
Light detection and ranging (LiDAR) (also called laser
scanner) is a popular remote sensing technique in many
fields such as robotics, smartphones, transport, agriculture,
etc. LiDAR can measure the distance by illuminating the
object with laser light and measuring the reflection [118].
Differences in laser return time can be used to make digital
3-D representations of the thing. After computer processing,
the 3-D data from LiDAR can provide an accurate estimated
model of object [57]. In high-throughput plant phenotyping
research, LiDAR is usually used for 3-D reconstruction of
plants and estimation of plant’s traits [64], [119]. Fig. 15
presents the image of LiDAR and pulsed time of flight
reference design. Fig. 16 presents the LiDAR principle.
Eitel et al. [122] applied LiDAR for biomass and crop

nitrogen estimation on wheat. The plant biomass and
nitrogen concentration show a strong relationship with

FIGURE 16. LiDAR principle.

LiDAR-derived results; this proves the ability of LiDAR
to improve crop nitrogen management in the wheat-growing
section [122]. Jimenez-Berni et al. [123] mounted a LiDAR
on a ground-based platform to estimate canopy height,
ground cover, and above-ground biomass of maize. In their
study, red reflectance image and canopy height were applied
for the ground cover estimation, while the 3D voxel index
(3DVI) and 3D profile index were used to estimate biomass.
This study shows that all the estimated parameters have
a strong relationship with LiDAR. Their work provides a
more efficient and reliable method for plant phenotyping
measurement [123].
Sun et al. [124] did a cotton plant growth analysis by

using LiDAR. The LiDAR was implemented to measure
plant height, canopy area, and plant volume. The result rep-
resents a strong relationship between manual measurements
and LiDAR measurements [124]. Besides, [125] utilized the
LiDAR data for corn plant. The leaf area, leaf distribution,
and 3D model were automatically extracted from LiDAR
point clouds by Difference of Normal (DoN). The result
of this study shows overall 94.10% of the accuracy assess-
ment [125]. In addition, [126] used LiDAR and other sensors
to do a tree induction classification for the identification of
post-harvest growth [126]. Sirault et al. [127] applied LiDAR
to capture the structural dynamic of plant growth [127].
Although LiDAR provides a method to measure some

plant traits accurately, some limitations need to be addressed.
The end of LiDAR is that it has a high sensitivity to slight
variations in path length [80]. Besides, high accurate LiDAR
is very expensive [22]. According to [128], multiple LiDAR
sensors might be a potential solution for the sensitivity
problem because of their features of long-range and high
resolution. Besides, the MEMS LiDAR sensors could be a
good choice. About the high-cost problem, with the devel-
opment of LiDAR manufacturing, high accurate LiDAR will
gradually become affordable [128].

G. FLUORESCENCE SENSOR
Fluorescence sensors can measure chlorophyll by detect-
ing fluorescence. Generally, a fluorescence sensor uses a
charge-coupled device (CCD) sensitive to fluorescence sig-
nals. Since the plant chlorophyll will use the external light
to excite the photosynthesis, the FLUO images can be cap-
tured by giving an external light excitation such as visible or
UV (ultraviolet) light. The plant’s metabolism will change
when photosynthesis is affected by environmental conditions.
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FIGURE 17. Fluorescence sensor principle.

FIGURE 18. Fluorescence sensor [130].

Therefore, the fluorescence sensor can be used for plant
stress and plant disease detection [57], [129]. Fig. 17 presents
the fluorescence sensor principle. The control system sends
the instruction to an external light emitter, which will emit
visible or ultraviolet light to the surrounding environment.
The plant will use external light to excite its photosynthe-
sis. At the same time, the fluorescence sensor will measure
chlorophyll data and send data to the process system to
acquire the plant condition. Fig. 18 shows the image of the
fluorescence sensor.
In [66] work, they applied a fluorescence sensor on the

LemnaTec 3D Scanalyzer system. A fluorescence sensor
captured the FLUO images through constant blue light exci-
tation. These images could be applied for the detection
of plant diseases like senescence, necrosis, and chloro-
sis [66]. Chen et al. [24] also used fluorescence sensor
on the LemnaTec system. The FLUO images were applied
to detect signals of chlorophyll fluorescence. The chloro-
phyll fluorescence excited by constant blue light can be
used to describe the plant’s health condition in a drought
environment [24].
A fluorescence sensor is a powerful tool for plant phe-

notyping because it can measure the chlorophyll related
to the plant’s metabolism. However, the limitations of
the fluorescence sensor are the requirement for intensive
illumination and the view limitation [22]. Besides, most
FLUO images are limited to single leaves or the seedling

FIGURE 19. AS7263 spectral sensor principle [132].

level of model crops. The research [57] suggested that a
more robust data analysis software might be a potential
solution for large-scale plant phenotyping. In addition, a
standard procedure needs to be developed for fluorescence
image processing to achieve large-scale plant phenotyping
task [57].

H. LOW COST PLANT PHENOTYPING SENSORS
1) AS7263 SPECTRAL SENSOR

The “ams multi-spectral sensor” product includes low-cost
spectral sensors that can detect multiple channels in the vis-
ible and near-infrared spectrum. In these spectral sensors,
the AS7263 near-infrared (NIR) spectral sensor is a low-cost
plant phenotyping sensor based on the near-infrared spec-
trum principle. The AS7263 spectral sensor has six near the
infrared channel, which can detect 610, 680, 730, 760, 810,
and 860 nm wavelengths. Fig. 19 shows the AS7263 spec-
tral sensor principle. Since the NIR lights could be greatly
reflected by plant tissue, the AS7263 spectral sensor can be
applied to detect the quality. Sripaurya et al. [131] imple-
mented an AS7263 spectral sensor to do the banana quality
measurement by attaching the sensor to the banana peel. The
AS7263 spectral sensor will emit light to banana tissue by its
LED driver. Then, the reflected light from banana tissue will
pass through the sensor’s six near the infrared channel. The
reflected light intensity results are related to banana proper-
ties and maturity stages [131]. The study shows that low-cost
multiple channels near-infrared (NIR) spectral sensor can be
applied to estimate the quality parameters of banana fruits.

2) LOW-COST CHLOROPHYLL METER

Chlorophyll is important for the determination of health con-
dition [133]. However, the current commercial chlorophyll
meters (SPAD-502 chlorophyll meter, CL-01 chlorophyll
meter, and MC-100 chlorophyll meter) are relatively expen-
sive. There is a demand for a low-cost chlorophyll meter.
Evan Hutomo et al. [134] developed a low-cost chlorophyll
meter (LCCM) based on the light reflectance mechanism.
The chlorophyll meter includes one near-infrared LED, and
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FIGURE 20. Low-cost chlorophyll meter (LCCM) principle [134].

one red LED as resources of light. One TSL250 photodiode
was used to convert light intensity to the output voltage.
Fig. 20 shows the low-cost chlorophyll meter (LCCM)
principle. The result of this study shows that the low-
cost chlorophyll meter can measure the chlorophyll with
a high coefficient of determination in correlation with the
SPAD-502 chlorophyll meter’s result [134].

3) FLIR LEPTON

The FLIR Lepton is a low-cost long-wave infrared image
sensor for thermal image generation. The current FLIR
Lepton has two versions (Lepton 3.5 : 160 × 120 pixels
and Lepton 2.5 : 80 × 60 pixels) and can easily integrate
into multiple platforms [135]. Acorsi et al. [136] assessed
the performance of the FLIR Lepton 3.5 in both ground
and aerial situations based on the result from the com-
mercial infrared thermometer. Their study shows that FLIR
Lepton has comparable measurement performance to more
expensive in-ground and aerial models. Besides, the study
demonstrates that FLIR Lepton accuracy decreased towards
increasing flight altitudes. Additional calibration can be the
solution for measurement accuracy problems at high flight
altitudes [136]. Bruno et al. [137] applied FLIR Lepton 3.5
integrated with a Raspberry Pi to generate thermal images
of crops. The evaluation of yield thermal images can predict
crop water stress. The study shows that FLIR Lepton 3.5 can
work as a low-cost and non-invasive infrared image sensor
for determining the status of crops.

4) RASPBERRY PI SERIES CAMERAS AND SENSORS

The Raspberry Pi series cameras are a series of low-cost
cameras, which includes one Raspberry Pi Camera Module
2 and one Raspberry Pi Camera Module 2 with no infrared
filter (NoIR). The module 2 camera has a Sony IMX219
8-megapixel image sensor and can be used to take RGB
images. The module 2 NoIR camera includes the same Sony
IMX219 8-megapixel image sensor but excludes an infrared
filter. Therefore, the module 2 NoIR camera is suitable
for capturing infrared images. Sangjan et al. [138] applied
Raspberry Pi Module 2 and Module 2 NoIR cameras-based
sensor system for automated in-field spring wheat plant
phenotyping measurement. The study used low-cost sensor
systems with dual cameras to capture RGB images and NoIR
images and extract information. The image analysis calcu-
lated the plant height, vegetation index, and NDVI data.

The proposed sensors system provides a low-cost method
for high-throughput plant phenotyping [138].
Table 2 presents the summary of the plant phenotyping

sensors. Table 3 presents sensors related parameters.

IV. SENSING PLATFORMS FOR HIGH-THROUGHPUT
PLANT PHENOTYPING
With the development of sensor technology, automatic con-
trol technology, aeronautics, and computer engineering, plant
phenotyping platforms have significantly been applied to do
plant phenotyping research. A plant phenotyping platform
can facilitate high-throughput plant phenotyping study by
providing an automatic measurement solution for multiple
plant phenotyping parameters. Many research institutions
have introduced or developed different plant phenotyping
platforms to integrate various sensors. The current plant
phenotyping platforms can be divided into two parts: ground-
based phenotyping platform and aerial-based phenotyping
platform [22], [57]. The following subsections will discuss
different types of plant phenotyping platforms.

A. GROUND BASED PLANT PHENOTYPING PLATFORMS
Ground-based phenotyping platforms include conveyors,
vehicles, or robotics with sensing sensors. Various sensors
are installed on different positions and heights for measur-
ing multiple plant phenotyping. Besides, the power system,
microcontroller, GPS receiver, encoder, and other accessories
will be installed on the platform to help the whole system
work successfully [144]. The ground-based plant phenotyp-
ing platforms can reduce human labor and improve work
efficiency. It plays an essential role in high-throughput plant
phenotyping application [22].
The ground-based plant phenotyping platforms are suitable

for sensor deployment. Various sensors can be applied on
platforms and achieve multiple plant phenotyping measure-
ments. Besides, ground-based plant phenotyping platforms
are ideal for GPS/GIS tagging, which can help the platform’s
position check and automatic work. Moreover, ground-based
phenotyping platforms can capture plant data at the plot
level, which makes the data in high spatial resolution with
relatively simple post-processing [57].
The ground-based plant phenotyping platforms also have

some limitations. It generally takes a long time to cover a
field. Therefore, large-scale plant phenotyping measurements
of plants in a short time are impossible with ground-based
phenotyping platforms [57].
Companies or universities have developed many ground-

based plant phenotyping platforms. The ground-based plant
phenotyping platforms are summarized in Table 4.

1) LEMNATEC 3D SCANALYZER

LemnaTec designs LemnaTec 3D Scanalyzer platform for the
quantitative, non-invasive analysis of large scale plants. Each
plant can be continuously imaged by various image sensors,
employing different spectra to get additional plant phenotyp-
ing information. The large-scale significant plant data will
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TABLE 2. Summary of the plant phenotyping sensors.

play an essential role in plant analysis. All plant data is
available in the database within minutes of imaging for plant
development. These comprehensive data will be helpful for
physiological and genetic plant modeling, which can provide
deep insights into plant phenomics and plant breeding [24],
[66], [74], [86].

2) HIGH-THROUGHPUT RICE PHENOTYPING FACILITY

High-throughput rice phenotyping facility works on the rice
traits. Group G1 will be transported to the conveyor from the
greenhouse by an automatic guided vehicle on this platform.
Then the G1 plants will be transported to the inspection
unit, where the G1 plants are constantly measured by X-ray
devices and image sensors. After that, another group, G2,
will be swapped with G1 and measured by the inspection
unit. The inspection unit applies a control software LabVIEW
8.6 (National Instruments, USA) for image capturing, image
processing, and data communication [78].

3) PHENOVISION

PHENOVISION is a greenhouse system for high-throughput
plant phenotyping of crops. Plant Pots are transported

through a conveyor belt system. The imaging cabins can
apply up to three image sensor systems including visual spec-
trum image sensors, thermal infrared image sensor and state-
of-the-art hyperspectral imaging system in a light-controlled
conditions to get the plant phenotyping data [145].

4) LEEAGRA 3434 DL

The LeeAgra 3434 DL is a kind of ground vehicle. It has a
height of 1.93 m and provides minimal impact to the ground
plants. A boom is attached in the front of the tractor, where
various sensors and instrument components are installed for
plant phenotyping measurement [95].

5) LEICA SCANSTATION 2

Leica ScanStation 2 is a laser instrument. The LiDAR scan-
ner (TLS) uses a 532 nm pulsed green laser. In the range of
0–50 m, the LiDAR scanner can work with a 4 mm beam
diameter, sample density of 1 mm, and 50 kHz rate [122].

6) PHENOMOBILE LITE

Phenomobile Lite is an advanced phenotyping buggy with
the advantages of being adaptable and easy to handle for
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TABLE 3. Sensors attributes.

field plant phenotyping applications. It has a flexible space
for different sensor equipment. This ground platform can
provide a non-destructive high-throughput plant phenotyping
solution by rapidly scanning field crops [146].

7) SPIDER DL

The Spider DL is a tractor platform for plant phenotyping
work. It has large tires, which can provide minimal plant
disturbance. Its lightweight (3300 lb) can reduce the damage
to the field and make transportation easier [124].

8) TEXAS A&M GROUND PHENOTYPING VEHICLE

The Texas A&M Ground Phenotyping Vehicle is a ground
vehicle for plant phenotyping. It can carry various sensors
for multiple plant phenotyping data. The three meters height
and high stability can essentially reduce the disturbance to
the crops when working for corn, sorghum, and other row
crops plant phenotyping measurement [65].

B. AERIAL BASED PLANT PHENOTYPING PLATFORMS
Aerial-based plant phenotyping platforms gradually increase
since they can overcome some ground-based plant phenotyp-
ing platforms’ limitations. It has been considered an essential
component of plant phenotyping [147]. Aerial-based plant
phenotyping platforms can enable the measurement of
plant parameters from several plots within minutes. Typical
aerial platforms can be divided into manned aerial vehicles

(MAVs), unmanned aerial vehicles (UAVs), and satellites.
Currently, the more popular platform is UAVs since the
satellites have the limitation of image resolution, and the
MAVs need more manual operations. Unmanned aerial vehi-
cles (UAVs), also known as a drone, is an aircraft that can
do flight work without any humans on board. The flight
of UAVs can be operated by a human operator or autopilot
system. UAVs are excellent aerial-based platforms for taking
high-quality and vast amounts of sensing data. Sensors such
as visual spectrum image sensors, infrared image sensors,
hyperspectral image sensors, multi-spectral image sensors,
depth image sensors, and LiDAR systems can be mounted
on UAVs for multiple plant phenotyping parameters measure-
ments [80], [148]. Besides, with the rapid development of
control technology, various drones can be applied by farmers
who were trained in a short time.
The aerial-based platforms have a larger measuring area

and better efficiency than ground-based platforms. Aerial-
based plant phenotyping platforms can measure large-scale
plants quickly, which is impossible on ground-based plat-
forms. Therefore, the plant data collected by aerial-based
media can represent large-scale plant conditions without any
time delay [57].
However, aerial-based plant phenotyping platforms have a

limitation of load. The payload of a UAV varies from 0.8 to
10 kg, which means it can not bring too many sensors on the
platforms for multiple plant phenotyping measurements [80].
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TABLE 4. Ground based plant phenotyping platforms.

TABLE 5. Aerial based plant phenotyping platforms.

Besides, speed and altitude will influence the resolution
of aerial-based platform sensors, which may lead to image
loss [22].
Companies or universities have developed many aerial-

based plant phenotyping platforms. The aerial-based plant
phenotyping platforms are summarized in Table 5.

1) X8 OCTOCOPTER

X8 is an autonomously flying octocopter, which can
carry a 1 kg payload with 15 minutes flight dura-
tion. The flight system uses GPS and onboard data to
allow two control modes: full autopilot mode and manual
mode [77].

2) TAROT IRON MAN 1000 OCTOCOPTER

The Tarot Iron Man 1000 octocopter is composed of carbon
fibers. It has brushless 600 W power T-Motors for holding
fiber propellers. Its payload capacity is 4 kg and the flight
time is about 20 minutes [91].

3) AIRELECTRONICS FIXED-WING

Airelectronics fixed-wing is a UAV-based remote aerial
sensor platform. It is a fixed-wing platform that can be con-
trolled through an autopilot system. It also has the ability of
waypoint navigation and altitude control. Its payload capacity
is 1.5 kg and flight time is about 30 minutes [96].

4) DJI PHANTOM 3 QUADCOPTER

DJI Phantom 3 quadcopter system has a microcontroller,
10 DOF sensors, 3D printed supporting stand, and vibra-
tion dampeners. This system can calculate the angle of
the image sensor through built-in accelerometers and gyro-
scopes. Besides, the altitude can be determined by the built-in
barometer. When the mounted image sensor is stable and at
the target height, the plant images will be captured [97].

5) DJI INSPIRE-1 PRO UAV

DJI Inspire-1 Pro UAV has a payload capacity of 3.5 kg,
and its flight duration measured approximately 15 minutes.
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It has various intelligent flight modes, including way-
point, home lock, point of interest, and course lock. These
modes will be beneficial for getting better plant phenotyping
data [98], [149].

6) DRAGANFLY X4P QUAD-COPTER

Draganfly X4P quadcopter is designed for line-of-sight fly-
ing. It has the ability of automatic take-off and intelligent
flight navigation. Users can use normal flight mode or
build-in software to control the quadcopter [99], [150].

7) DJI M600

The DJI Matrice 600 (M600) is an aerial platform designed
for aerial photography and multiple industrial applications.
It integrates various powerful DJI technologies, including
intelligent flight control and battery management systems.
Its payload capacity is 5.5 kg and flight time is about 15
minutes [143], [151].

V. SUMMARY AND FUTURE PERSPECTIVES
As discussed in this review paper, crop monitoring could
be a potential solution to the problems of food shortage for
growing world’s population since it can provide up-to-date
information regarding crops for farmers in support of increas-
ing food production. High-throughput plant phenotyping is
believed to be a crucial part of crop monitoring on the data
acquisition of the large-scale crop characteristics. The related
advanced technologies and sensors can facilitate the devel-
opment of high-throughput phenotyping for crop monitoring.
It is believed that with the development of new technolo-
gies, crop monitoring with high-throughput phenotyping will
gradually become the central part of agriculture. Below is
the summary of the significant challenges of high-throughput
plant phenotyping and future perspectives:

• High accuracy and low-cost sensor solution for plant
phenotyping measurement.

• The challenge of crop image processing and image anal-
ysis. Integration of advanced technologies like machine
learning and image fusion may become the potential
solution.

• The relationship between plant phenotyping and
genomics needs to be further studied to understand
higher-level breeding requirements and application
potential.

• High speed, wide range, low energy consumption, and
low-cost communication protocol need to be developed
for the high-quality crop monitoring system.

• Currently available plant phenotyping system can be
broadly divided into two categories:
(a) Plant phenotyping system;
(b) Plant phenotyping system + IoT based plant growth
environment monitoring system;

• The development of integrated plant phenotyping
systems for plant growth environment monitoring, plant
phenotyping measurement, data transmission, data man-
agement, and data visualization will be a future research
trend.
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