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ABSTRACT This article presents a novel method for accurate online extraction of semiconductor ON-
state resistance in the presence of measurement noise. In this method, the ON-state resistance value is
extracted from the measured ON-state voltage of the semiconductors and the measured load current.
The extracted ON-state resistance can be used for online condition monitoring of semiconductors. The
proposed method is based on the extraction of selective harmonic content. The estimated values are
further enhanced through an integral action that increases the signal-to-noise ratio, making the proposed
method suitable in the presence of noisy measurements. The efficacy of the proposed method is verified
through simulations in the MATLAB/Simulink environment, and experimentally. The estimated ON-state
resistance values from the online setup are compared to offline measurements from an industrial curve
tracer, where an overall estimation error of less than 1% is observed. The proposed solution maintains
its estimation accuracy under variable load conditions and for different temperatures of the device under
test.

INDEX TERMS Condition monitoring, health monitoring, online estimation, ON-state resistance, relia-
bility, semiconductor devices, state of health.

I. INTRODUCTION

THE ON-STATE voltage of semiconductors is a key
characteristic which can be used for online junction

temperature estimation, thermal modeling of semiconductor
modules, and online condition monitoring of semiconductor
devices [1], [2], [3], [4], [5], [6], [7]. It is also a useful
figure of merit for analyzing conduction losses and can help
with accurate online loss calculations [8].

Semiconductor devices sustain temperature fluctuations,
which result in thermo-mechanical degradation over time [9].
This, in turn, increases their ON-state resistance. Hence,
tracking this resistance can help in identifying the current
health state of semiconductor devices. Even though certain

standards, such as AQG 324, use the deviation in the ON-
state voltage of semiconductor devices to identify their
health state, changes in the ON-state voltage as a result of
package degradation are mainly attributed to the changes in
the ON-state resistance [10]. This is true for both unipolar
devices [11], [12] and bipolar devices [4], [11], [13]. Hence,
in online monitoring applications, regardless of the type of
semiconductor device, it is beneficial to identify the ON-state
resistance of semiconductors [1], [2], [3], [4].
For a fixed temperature and fixed gate voltage, an increase

in the ON-state resistance larger than 20% of its initial
value is reported as an end-of-life (EOL) criterion [14].
Consequently, in order to confidently detect aging, or to
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precisely estimate the junction temperature, an accurate esti-
mation of the ON-state resistance is required. The ON-state
resistance is typically extracted from the ON-state voltage
measurements and load current [8], [15], [16]. A multitude
of considerations are needed for accurate measurement of
the ON-state voltage. To begin with, the bandwidth of the
measurement system must be sufficiently high in order to
avoid measurement distortion. Moreover, the measurement
circuit must be able to withstand the high voltage of the
semiconductor device in the OFF state. The measurement
circuit should not be sensitive to temperature variations, or
distort the ON-state voltage measurement in any way (by
imposing an offset or gain error). Many circuits have been
suggested that provide high measurement bandwidths [8],
[15], [16], [17]. In [8], [17], [18], [19], and [20], the use of
a double-diode circuit is suggested, where the diodes help
to block the OFF-state voltage, and the double-diode system
allows for compensating the voltage offset created by the
blocking diode’s forward voltage. In [8], the double-diode
solution is investigated thoroughly. This design is shown to
have sufficient bandwidth, however, even with reasonable
design considerations, in some cases, the temperatures of
the two-voltage blocking diodes are stated to be 3 ◦C apart.
Considering a typical temperature coefficient of 2 mV/◦C for
the blocking diodes, this temperature difference can cause an
offset error of 6 mV [11]. Furthermore, parameter spreads
are expected in all semiconductor components. In [8], a
10-mV difference in forward voltage is observed for two
diodes with the same part numbers. For many semiconductor
devices, these levels of offset are sufficiently high to distort
the measurements, especially in the low-current operation of
the converter. This kind of offset is especially concerning
because it may change over time as a result of load variations
or temperature variations in the device.
In [16], [21], [22], and [23], depletion mode MOSFETs

(DM-MOSFETs) are used for protecting the measurement
circuit from the OFF-state voltage. This design is shown
to also have a high bandwidth when a small resistance
is placed between the gate–source terminals of the DM-
MOSFETs [16]. A significant advantage of these designs
is that the DM-MOSFET of the measurement circuit is a
resistive channel. Hence, unlike the double-diode solutions,
the circuit with DM-MOSFETs does not cause variable
offset errors. The ON-state resistance of the DM-MOSFETs
is typically much lower than the input impedance of the
measurement stage, resulting in a negligible gain error in
the measurements. In this article, the solution based on DM-
MOSFETs is used in order to avoid measurement errors
caused by temperature variations and variable offsets.
Although the measurement circuit based on DM-MOSFETs

is superior to the double-diode system in maintaining
low measurement errors, it is shown in this article that
measurement noise can cause large errors in the estimated ON-
state resistance [23], [24]. Therefore, it is important to devise
post-processing algorithms that allow accurate estimation of
the ON-state resistance in noisy environments. The effects

of noise and measurement offsets on the estimated ON-state
resistance have not been well addressed in the literature.
Moreover, methods for minimizing these effects have not
been thoroughly investigated. Furthermore, in many studies,
the measurement data of the online ON-state resistance has
not been compared with a reliable reference value. This has
been considered in [16], where the online measurements
are compared to offline measurements extracted by a curve
tracer. However, even though the presence of noise and offsets
is reported, no suitable methods for mitigating their effect
in an online setup are suggested. In [16], an estimation
error of 2.9% is reported; however, the estimations are
conducted under constant load and under low-noise conditions.
Similarly, in [24], online measurements of V–I curves have
been compared to curve-traced measurements; however, they
have shown that at nominal voltages and currents, the
switching noise significantly distorts the ON-state voltage
measurements. No solution was provided on how to overcome
the issue of the recorded measurement noise in that study.
In [8], estimation errors of ±3% are reported; however, the
comparison is made with datasheet information, rather than
offline measurements with curve tracers. A unique method of
accurate ON-state resistance estimation is proposed in [23],
where the effects of noise and offsets are considered. That
method is only applicable to modular multilevel converters,
where the existing redundancies are leveraged for achieving
a high estimation accuracy. In [18], a circuit for online
VCE measurements is presented; however, the circuit is
tested via injecting a smooth low-frequency current into the
device. That is, there is no actual switching present in the
verification hardware, and the procedure is similar to how
offline measurement systems operate. A similar argument can
be made for [25] and [26]. The issue with such experimental
setups is that when hard-switching is eliminated, lower
measurement noise and other measurement inaccuracies are
present.
The main goal of this article is to propose a method

for accurate online estimation of the ON-state resistance,
especially when measurements are subject to high levels of
measurement noise. The estimated data can then be used for
many purposes, such as online condition monitoring of the
semiconductor devices, junction temperature monitoring, etc.
The relationship between ON-state resistance, device health,
and junction temperature has been thoroughly investigated in
the literature and is not repeated in this article [2], [7], [9],
[10], [11], [12], [14], [19], [26], [27], [28]. The proposed
method in this article is a frequency-based approach for
online estimation of ON-state resistance. The efficacy of
frequency-based estimations for offline measurements is
shown in [29]. However, online estimations in practical
power electronic setups where high levels of noise are
present are not considered in that paper. In [30], another
frequency-based method is proposed for online estimation
of the ON-state resistance. That solution requires additional
hardware for injecting current into the semiconductor under
test (SUT). In this article, it is shown that no additional
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FIGURE 1. Single-phase full-bridge converter with inductive load.

hardware is needed for injecting auxiliary current into the
SUT to achieve accurate and online frequency-based esti-
mation of the ON-state resistance. The proposed solution is
mainly designed for silicon-based and silicon-carbide-based
(SiC) semiconductors, where no dynamic ON-state resistance
variations are present [15], [16]. The main contributions of
this article are as follows.
1) A novel estimation method that provides accurate

estimations even in extremely noisy environments.
2) Experimental validation of the efficacy of the proposed

solution under variable load conditions.
3) Experimental validation of estimation accuracy under

variable temperatures of the SUT.
4) Detailed assessment of accuracy through comparison

of online estimations and offline measurements from
a commercial curve tracer.

The solution proposed in this article is demonstrated on a
full-bridge converter; however, the proposed method is not
application-specific and may be used in any power converter
where the load current and ON-state voltage measurements
are available. In converters operating at much higher switch-
ing frequencies than what is reported in this article, it is also
important to ensure that the voltage and current measurement
circuits possess sufficiently high measurement bandwidth.
This article is organized as follows. Section II discusses the
converter system on which the solution is studied, followed
by a circuit diagram of the vDS,ON measurement circuit,
and an explanation of its operation. Section III presents the
proposed method for extracting rDS,ON from the ON-state
voltage measurement of semiconductor devices. Simulation
results of the proposed method are presented in Section IV,
and experimental validations are shown in Section V. Finally,
the conclusions of this article are provided in Section VI.

II. ON-STATE VOLTAGE MEASUREMENT
In this article, a single-phase full-bridge converter is chosen
for simulations and experimental verification. The circuit
diagram of the studied system is shown in Fig. 1. The
converter is controlled in open loop and an inductive load
is used to represent a typical load for power converters.
Accurate measurement of the ON-state voltage of semi-

conductors is needed for accurate estimation of the ON-state
resistance. Moreover, an online measurement system must

FIGURE 2. ON-state voltage measurement circuit using depletion-mode MOSFETs
for protection against high voltages of the SUT [21].

FIGURE 3. PCB of the protection stage for the ON-state voltage measurement circuit
in Fig. 2. (a) Input connection to the drain–source terminals. (b) M1, Rg1, and Rm1.
(c) M2, Rg2, and Rm2. (d) Protective diodes, including D1 and D2. (e) Protective Zener
diodes, including Z1 and Z2. (f) Output connection to the measurement stage.

TABLE 1. Selected components for the ON-state voltage measurement circuit of
Fig. 2.

be able to withstand the high voltages of the semiconductor
device while it is in the OFF state. Several semiconductor
ON-state voltage measurement circuits have been introduced
in the literature that provide both protection against high
voltages, and accurate voltage measurement while the
semiconductor is ON [18], [21], [22], [23]. In this article,
the isolation circuit based on self-triggering depletion-mode
MOSFETs is used. A diagram of this solution is shown
in Fig. 2, and the printed circuit board (PCB) of this
design is shown in Fig. 3. In this article, a single-position
design is considered for the DM-MOSFETs; however, the
scalability of this circuit design for higher voltages has been
demonstrated in [31]. A detailed explanation of the selected
isolation circuit is presented in [23]. The main components
used in the PCB of Fig. 3 are summarized in Table 1. In
this design, when the voltage over the SUT is less than
the breakdown voltage of the Zener diodes Z1 and Z2, the
MOSFETs M1 and M2 are in their ON state. Hence, the
sensed voltage at the measurement stage is the same as
the vDS of the SUT. However, when vDS is larger than the
breakdown voltage of Z1, a small current passes through the
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FIGURE 4. Measured vDS–iD curve (blue) of the IRFP4768 MOSFET using the
Tektronix 371A curve tracer, and at vGS = 15 V. The linear fit (red) of the measured data
indicates an ON-state resistance of 15.2 m�.

protection stage creating a negative voltage over Rg1, which
switches M1 to its OFF state. The same can be said for Z2,
Rg2, and M2 for large negative voltages of vDS; however,
in normal operating conditions, large negative voltages for
vDS are not expected. In the measurement stage, a filtering
capacitor cfilt may optionally be placed. The resistors Rm1
and Rm2 can be used to change the switching time of M1 and
M2; so, for larger values of Rm1 and Rm2, slower transitions
are expected for M1 and M2, respectively.

III. EXTRACTING THE ON-STATE RESISTANCE
In this article, the IRFP4768 MOSFET is used for simu-
lations and experimental results. The forward characteristic
of this MOSFET has been measured using the Tektronix
371A curve tracer and shown as a vDS–iD curve in Fig. 4.
The optimal linear fit to this curve is also calculated using
the least-square method and shown in the same figure. The
slope of the fitted curve represents the ON-state resistance
of the device. This value is measured to be 15.20 m�. The
measurements are conducted at room temperature of 20 ◦C
and with a gate–source voltage (vGS) of 15 V. The reverse
characteristics of this device shows an ON-state resistance of
15.25 m�. Due to the similarity of the forward and reverse
ON-state resistance, these two parameters are not separated
in this article; however, methods for realizing this separation
have been presented later in this section.
In an online setup, the circuit of Fig. 3 is connected to the

SUT. The load current (iL) as well as the ON-state voltage
(vDS,ON) are measured. Based on the switching function of
the SUT, the current passing through each device can be
estimated. For example, in the full-bridge converter of Fig. 1,
is1 which is the instantaneous current passing through the
switch sw1 can be estimated as

is1 = s1iL (1)

TABLE 2. Parameters used for the full-bridge converter system shown in Fig. 1.

where s1 represents the switching function of sw1, such that
si = 1 and si = 0 correspond to the ON-state and OFF-state
of the switch swi, respectively.
Theoretically, a single sample of vDS,ON and isi should

provide an accurate estimation of the ON-state resistance.
However, the presence of noise and other transients in
an online circuit may distort the measurements [23], [24].
Hence, a multitude of data points are necessary for accurate
estimation of the ON-state resistance. In practice, there are
limitations on available memory, and also on computational
power for conducting parameter estimations. Hence, in this
article, a suitable method for ON-state resistance estimation
is provided that:
1) requires a minimal amount of memory;
2) is computationally efficient and can be implemented

easily in simple processors;
3) provides high estimation accuracies making it suitable

for condition monitoring purposes.
The parameters of the converter system of Fig. 1 are

summarized in Table 2. For these parameters, and consider-
ing a modulation index of M = 0.7, the ON-state voltage
and current of sw1 are simulated and depicted in Fig. 5(a).
When processing the data, any measured voltage that is
clamped to the breakdown voltages of Z1 and Z2 is set to
zero. This is why the voltage measurements of Fig. 5(a) are
shown to be zero when the SUT is in the OFF state. The
voltage and current noise levels in the simulation are chosen
to be of Gaussian distribution with a standard deviation
of σv = 15 mV and σi = 300 mA, respectively. These
values are in the range of what has been measured in the
experimental setup explained in Section V. The estimated
values of ON-state resistance rDS,ON using the sampled
vDS,ON and is,1 data are plotted in Fig. 5(b), where it is
shown that single-point estimations are not suitable for
accurately estimating the ON-state resistance. Hence, post
processing of the measured vDS,ON and is,1 data is required.
In the following sections, a description of the state-of-the-art
solution as well as a description of the proposed estimation
algorithm are provided.

A. RLS-BASED ESTIMATION
Due to the piecewise linearity of the vDS–iD curve, a
recursive least-square (RLS) estimation may be used to
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FIGURE 5. (a) Simulated load current (blue) and ON-state voltage of sw1 (red) using
the parameters of Table 2. (b) Estimated ON-state resistance by dividing the measured
ON-state voltages and currents.

identify the linear relation between vDS,ON and iD, i.e., the
ON-state resistance. This method is currently regarded as
the state-of-the-art solution [23], [27].
The ON-state model of a MOSFET can be described as

v̂DS = XTA (2)

where X = [iDS 1]T , and A = [r̂DS,ON v̂0]T . v0 represents
the voltage offset, including the forward voltage of IGBTs
and diodes at low currents. The parameters v̂DS, r̂DS, and
v̂0 represent the estimated values of vDS, rDS, and v0,
respectively. After each sampling instance, the error between
the measured and estimated value of vDS is calculated as

e = vDS − v̂DS = vDS − XTA. (3)

The Kalman gain K, covariance matrix P, and esti-
mated parameter matrix A are updated as described in
Algorithm 1 [23]. The forgetting factor λ is set to 1 (disabled)
since the RLS estimator is reset each time an estimation is
recorded. The RLS estimation method is implemented in the
simulation model with the parameters of Table 2. It is evident
from Fig. 6 that after only 0.04 s (two fundamental cycles)
of estimation, the estimated resistance is within ±0.5% of
the reference value. The total estimation error of the RLS
method with the conditions of Table 2 is 0.2%.

A similar estimation method has been proposed in [27]
and [28]; however, the accuracy of the proposed solutions
has not been compared with accurate references, and the
sensitivity of the solutions has not been investigated in
different operational conditions.

B. PROPOSED ESTIMATION METHOD
The ON-state voltage and current of a semiconductor
contain specific harmonic content. Through isolation and
extraction of selected harmonic contents, accurate estimation
of the ON-state resistance can be achieved. This selective
harmonic-based estimation (SHE) method is performed

Algorithm 1 RLS Estimation Algorithm for the Estimation
of rDS,ON

0. Define X = [iD 1]T and A = [r̂DS,ON v̂0]T , and initiate
matrices A and P:

A[1] = [0 0]T , and P[1] =
[

10 0
0 10

]
.

1. Sample vDS[n] and iD[n].

2. Calculate the estimation error:

e[n] = vDS[n] − v̂DS[n] = vDS[n] − X[n]TA[n− 1].

3. Update the Kalman gain K[n]:

K[n] = P[n−1]X[n]
(λ+XT [n]P[n−1]X[n])

.

4. Update the covariance matrix P[n]:

P[n] = 1
λ(P[n−1]−K[n]XT [n]P[n−1])

.

5. Update the estimated values of A[n]:

A[n] = A[n− 1] + K[n]e[n]

6. n = n+ 1, and repeat.

FIGURE 6. Estimated r̂ON,s1 using the RLS method and considering the parameters
of Table 2.

on a full-bridge converter using carrier-based modulation.
However, the method can be applied to other modulation
schemes as well. For simplicity, a triangular carrier with
natural sampling is considered. For a sinusoidal output
voltage of M cos(ω0t + θ0) p.u., the reference signal for
switches sw1 and sw2 is defined as

vref,sw1 = 0.5 − 0.5M cos(ω0t + θ0)

vref,sw2 = 0.5 + 0.5M cos(ω0t + θ0) (4)

where M is the modulation index, and θ0 is the phase angle
of the fundamental frequency component of the reference
voltage. Replacing θ0 with θ0 + π in (4) provides the
reference signals for vref,s3 and vref,s4 , respectively.

VOLUME 3, 2024 35001
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The modulated signal of each reference provides the
corresponding switching function. For sw1, s1 can be
described as

s1 = 0.5 + 0.5M cos(ω0t + θ0) + hs1 (5)

where hs1 represents all other harmonics of s1 aside from
the dc and fundamental frequency components [32]. The
output voltage of the full-bridge converter in Fig. 1 can be
described as

vout = vdc[s4 − s2]

= vdc[s1 − s3]

= Mvdc cos(ω0t + θ0) + vdc
[
hs1 − hs3

]
. (6)

Hence, for a linear load, the load current will contain a
fundamental harmonic component as well as the switching
harmonics that are not canceled in hs1 − hs3 . Therefore, the
load current can be described as

iL = im cos
(
ω0t + θiL

) + hiL . (7)

Substituting s1 and iL in (1) with (5) and (7) yields

is1 = [
0.5 + 0.5M cos(ω0t + θ0) + hs1

]
×[
im cos

(
ω0t + θiL

) + hiL
]

= 0.5im cos
(
ω0t + θiL

)
︸ ︷︷ ︸

I1

+ im cos
(
ω0t + θiL

)[
0.5M cos(ω0t + θ0) + hs1

]
︸ ︷︷ ︸

I2

+ hiL
[
0.5 + 0.5M cos(ω0t + θ0) + hs1

]
︸ ︷︷ ︸

I3

. (8)

The term I1 in (8) indicates that there is a significant
fundamental frequency component in is1 . Given the presence
of ON-state resistance in MOSFETs, the ON-state voltage
of sw1 can be simply modeled as

vs1 = is1rON,s1 . (9)

Consequently, vs1 must also contain a significant funda-
mental frequency component. Extracting the fundamental
frequency component of vs1 and is1 can therefore be used to
estimate the ON-state resistance rON,s1 . Under the condition
of choosing a carrier frequency that is not an integer multiple
of the fundamental frequency, only I1 in (8) contains a
fundamental frequency component [32], [33]. The proposed
method of extracting the fundamental frequency components
from vs1 and is1 is to first mirror these components onto a
direct-quadratic dq reference frame as

is1,d = is1 cos(ω0t)

is1,q = is1 sin(ω0t). (10)

Substituting is1 in (10) with (8) yields

is1,d = [I1 + I2 + I3] cos(ω0t)

is1,q = [I1 + I2 + I3] sin(ω0t). (11)

The terms I1 cos(ω0t) and I1 sin(ω0t) create a dc compo-
nent and a second-order harmonic. It is these dc terms that
are of interest for extracting rON,s1 . The terms I2 cos(ω0t) and
I2 sin(ω0t) create a fundamental harmonic, a second-order
harmonic, a third-order harmonic, and multiple components
of higher-order harmonics. I3 cos(ω0t) and I3 sin(ω0t) may
also contain harmonics of orders that are noninteger multi-
ples of the fundamental. In order to increase the magnitude
of the dc components compared to the other harmonics and
noise, each mirrored component in the dq-frame is integrated
over time by

Is1,d =
∫ tend

t0
is1,ddt

Is1,q =
∫ tend

t0
is1,qdt. (12)

Since the time integrals of non-dc harmonics remain
oscillatory, they become less significant as the integrated
dc terms in is1,d and is1,q grow. Since Is1,d and Is1,q
contain harmonics of fundamental order as well as its
integer multiples, it is advisable—but not necessary—to
define tend as an integer multiple of the fundamental period.
This selection of the time period results in zeroing of the
integrated harmonics that are an integer multiple of the
fundamental frequency. Hence, the estimation error is lowest
with such a selection of integration windows.
Similarly, vs1 can be mirrored onto the dq-frame, and

integrated over time. This results in

Vs1,d =
∫ tend

t0
vs1 cos(ω0t)dt

Vs1,q =
∫ tend

t0
vs1 sin(ω0t)dt. (13)

Using (13) and (12), the ON-state resistance rON,s1 can
be estimated as

r̂ON,s1 ≈
√
V2
s1,d

+ V2
s1,q√

I2s1,d + I2s1,q

= Vs1
Is1

. (14)

For the system parameters shown in Table 2, the proposed
solution is verified through simulation studies. Fig. 7 shows
the values of Vs1 , Is1 , and r̂ON,s1 over time. It is evident that
after three fundamental cycles, the estimation error becomes
less than 0.1%. Hence, for the noise levels of Table 2,
the SHE method provides a higher accuracy than the RLS
estimation technique.
The results depicted in Fig. 7 are obtained under constant

load conditions; however, the proposed solution can robustly
estimate theON-state resistance under variable load conditions
as well. This is illustrated in Fig. 8 where the load is changed
every 400 ms, while the estimated resistance and estimation
error remain within the ±1% of their expected value.
Thus far, the forward and reverse conduction paths of the

SUT are assumed to have the same ON-state resistance. In
order to separately identify the ON-state resistance in the
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FIGURE 7. Estimated r̂ON,s1 using the SHE method and considering the parameters
of Table 2. The integrated ON-state voltage Vs1 and integrated ON-state current Is1 of
sw1 are calculated according to (14).

forward and reverse conduction paths, (10) and (13) can be
modified to

ips1,d = is1
1 + sgn

[
is1

]
2

cos(ω0t)

ips1,q = is1
1 + sgn

[
is1

]
2

sin(ω0t)

ins1,d = is1
1 − sgn

[
is1

]
2

cos(ω0t)

ins1,q = is1
1 − sgn

[
is1

]
2

sin(ω0t) (15)

and

vps1,d = vs1
1 + sgn

[
is1

]
2

cos(ω0t)

vps1,q = vs1
1 + sgn

[
is1

]
2

sin(ω0t)

vns1,d = vs1
1 − sgn

[
is1

]
2

cos(ω0t)

vns1,q = vs1
1 − sgn

[
is1

]
2

sin(ω0t) (16)

where sgn(x) represents the sign function of parameter
x. In (15) and (16), the nonpositive (non-negative) SUT
current samples—and their corresponding ON-state voltage
samples—are zeroed when estimating the forward (reverse)
ON-state resistance. As seen in Fig. 5, despite zeroing
the nonpositive or non-negative SUT current samples, the
measured waveforms still contain a dominant fundamental

FIGURE 8. Estimated r̂ON,s1 using the SHE method and considering the parameters
of Table 2. The output power of the converter is changed every 400 ms of operation.

frequency component. Hence, the forward and reverse ON-
state resistance can be separately measured by extracting
their fundamental frequency components, similar to what
is described in (12) and (13). That is, rxON,s1 can be
calculated as

r̂xON,s1 ≈
√
V2
xs1,d

+ V2
xs1,q√

I2xs1,d + I2xs1,q

= Vxs1
Ixs1

(17)

where

Vxs1,d =
∫ tend

t0
vxs1,ddt

Vxs1,q =
∫ tend

t0
vxs1,qdt

Ixs1,d =
∫ tend

t0
ixs1,ddt

Ixs1,q =
∫ tend

t0
ixs1,qdt (18)

and x denotes p for forward current conduction, and n for
reverse current conduction.

IV. COMPARATIVE STUDIES
Both the RLS and SHE techniques provide accurate estima-
tions of ON-state resistance for normal operation and typical
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FIGURE 9. Effect of measurement noise on the RLS estimation method for
extracting the ON-state resistance. The parameters used for this study are
summarized in Table 2. The measurement noise for both the voltage and current
measurements are assumed to be Gaussian with standard deviations of σv and σi ,
respectively.

FIGURE 10. Effect of measurement noise on the SHE method for extracting the
ON-state resistance. The parameters used for this study are summarized in Table 2.
The measurement noise for both the voltage and current measurements are assumed
to be Gaussian with standard deviations of σv and σi , respectively.

measurement conditions. However, under very noisy condi-
tions, larger errors may be observed. The two estimation
methods are compared when the measurement noise of the
ON-state voltage and semiconductor current is artificially
increased. Both voltage and current noises are assumed to be
Gaussian, with standard deviations of σv and σi, respectively.
The estimation errors under different levels of noise in
voltage and current measurements are shown in Fig. 9 for
the RLS method and in Fig. 10 for the SHE method. In
both figures, the estimated values are recorded after 3 s of
estimation. The results show the efficacy of the SHE method
even under extreme levels of noise. This is because the SHE
extracts information of selected low-frequency harmonic
content. Hence, presence of any other harmonic content,
which is typically of higher orders of frequency, has a smaller
effect on the outcome of the SHE. A prominent feature of
the proposed estimation technique is that there is no need
to redesign the measurement circuit for different loads or
environments. The proposed estimation technique automat-
ically mitigates any uncertainties that may be caused by
noise.

FIGURE 11. Experimental setup for the system shown in Fig. 1 and with the
parameters of Table 2. (a) Load inductor, (b) dc-link capacitor, (c) semiconductors and
their heat sink, (d) isolated gate drivers, and (e) protection stage of the ON-state
voltage measurement circuit shown in Fig. 3.

V. EXPERIMENTAL VALIDATION
The proposed method of ON-state resistance extraction is
demonstrated on an experimental setup with the parameters
of Table 2. The efficacy of the proposed estimation technique
is experimentally verified under varying load conditions,
under three different switching frequencies, and under
various temperatures of the SUT.

A. EXPERIMENTAL SETUP
The experimental setup is shown in Fig. 11. Each semi-
conductor of the full bridge is equipped with a separate
isolated gate driver. The turn-ON voltage of the gate drivers
is controlled to 15V. For the control system, a Xilinx Zynq-
7000 SoC module is used. Fig. 12 shows the recorded load
current and ON-state voltage waveforms, as well as the direct
estimation of the ON-state resistance. In the ON-state voltage
waveform, the measurement data are digitally zeroed during
the breakdown of the protective Zener diodes. This is carried
out for better visibility, and to avoid erroneous estimations.
It can be seen in Fig. 12(c) that even for the small levels of
noise present in this hardware setup, high estimation errors
are expected when using direct estimation techniques. Even
though the estimation error reduces at higher currents, it
is not sufficiently low for the high estimation accuracies
required for condition monitoring purposes. This is more
clearly depicted in Fig. 13 where the measured range of
ON-state voltages for every current is illustrated. Fig. 13
shows that even at peak load current of 18 A, the ON-
state voltage varies between 0.22 and 0.33 V, resulting in
direct ON-state resistance estimations ranging from 12.2 to
18.3 m�. The recordings show the presence of Gaussian
noise with VDS,n ∼ N (0, 0.012) V for the ON-state voltage
measurements, and with IL,n ∼ N (0.08, 0.632) A for the
load current measurements. The probability density function
(PDF) of the measured noise as well as the Gaussian fit
to these measurements are shown in Fig. 14. Hence, for
the experimental setup of Fig. 11, under various operation
modes, the measurement noise in both voltage and current
measurements was naturally of Gaussian nature. No other
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FIGURE 12. Recorded waveforms of (a) load current and output voltage,
(b) ON-state voltage, and (c) direct estimation of the ON-state resistance of the
converter system in Fig. 11 when operated with the parameters of Table 2.

FIGURE 13. Measured ON-state voltage at different levels of the SUT’s current when
the converter is operated with the parameters of Table 2. The red line shows the linear
fit to the measured data.

type of noise has been observed in the measurements. This
noise includes the noise generated through hard-switching,
as well as conducted and radiated noise from external
circuits.

FIGURE 14. PDF of measurement noise (black •) and its Gaussian fit (blue) for
recorded load current and ON-state voltage of the converter system in Fig. 11 when
operated with the parameters of Table 2. The fitted Gaussian curves suggest a
distribution of VDS,n ∼ N (0, 0.012) V for the ON-state voltage measurements, and
IL,n ∼ N (0.08, 0.632) A for the load current measurements.

FIGURE 15. Estimated ON-state resistance of the IRFP4768 MOSFET in the
experimental setup, and using the RLS (red), and SHE (blue �) estimation methods.

B. EXPERIMENTAL RESULTS
For the parameters of Table 2, the ON-state resistance of
the IRFP4768 MOSFET is extracted from the experimental
setup using the proposed estimation method and the RLS
estimation method. The results are depicted in Fig. 15.
Compared to the curve-traced results of Fig. 4, both methods
show an estimation error of less than 0.5% after 0.1 s of
estimation. The gradual increase of resistance seen in the
experimental results is due to the internal heating of the
semiconductor under operation. For consistency, prior to
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FIGURE 16. Estimated ON-state resistance of the IRFP4768 MOSFET in the
experimental setup using RLS (red), and SHE (blue �) estimation methods when
Gaussian noise with standard deviations of σv = 0.3 V and σi = 3 A is artificially
added to the measurements.

the online estimation, the SUT is first brought back to the
same temperature at which the curve tracing was conducted.
The estimation technique is also conducted immediately
after starting the converter’s operation in order to minimize
the effect of internal heating on the estimated values. The
experiment is repeated by introducing additional noise to
the measurements. That is, the voltage and load current
measurements are distorted with a Gaussian noise of VDS,n ∼
N (0, 0.32) V and IL,n ∼ N (0.0, 3.52) A, respectively.
The estimation results under these conditions are shown in
Fig. 16, where the RLS method has over 6% error, while
the proposed SHE method remains accurate and provides
estimations with less than 1% error. In the following sections,
the robustness of the proposed SHE method is verified under
different foreseeable conditions of operation. That is, the
efficacy of the proposed solution is verified under dynamic
load conditions, different switching frequencies, and different
temperatures of the SUT.

1) EFFECT OF DIFFERENT SWITCHING FREQUENCIES

The estimation results are repeated for different switching
frequencies of 5.11 and 10.11 kHz and plotted in Figs. 17
and 18, respectively. In all cases, the SHE method is
accurate to an error of less than 1%. Hence, the proposed
estimation algorithm is not sensitive to the presented range
of switching frequencies. Although the suitability of DM-
MOSFET-based measurement circuits is verified for much
higher switching frequencies [16], the bandwidth of the
measurement circuit used in this study has been deliberately
limited. This is because the measurement circuit of this study

FIGURE 17. Estimated ON-state resistance of the IRFP4768 MOSFET at fsw = 5.11
kHz, and using the SHE method.

FIGURE 18. Estimated ON-state resistance of the IRFP4768 MOSFET at fsw = 10.11
kHz, and using the SHE method.

has been designed for modular multilevel converter cells
where switching frequencies much lower than 10 kHz are
needed. Hence, although the proposed estimation algorithms
are suitable for a wide range of switching frequencies, for
very high switching frequencies, bandwidth limitations of
the protection stage in Fig. 3 as well as the analog-to-digital
converter must be considered.

2) EFFECT OF VARIABLE LOAD

So far, the proposed estimation technique has been verified
for constant load conditions. However, this is not a require-
ment for accurate estimations. In Fig. 19, the estimation
technique has been applied to a semiconductor under variable
load conditions. Even though the load changes every 100 ms,
the SHE method is able to identify the ON-state resistance
accurately. Hence, the proposed method is also suitable for
converters under variable load conditions. In many converter
applications, the load is constantly changing. For example, in
STATCOMs used for flicker mitigation caused by industrial
loads such as electric arc furnaces, the load is constantly
varying [34]. Hence, even if fast updates of the condition
monitoring data are not needed, it is important to show that
the estimations are not negatively affected by the load. This
experiment also proves that the estimation method remains
accurate during low-load conditions when the signal-to-noise
ratio is relatively lower.

3) MEASUREMENT UNDER DIFFERENT TEMPERATURES

It is shown thus far that the estimation method presented in
this article can successfully identify the ON-state resistance
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FIGURE 19. Estimated ON-state resistance of the IRFP4768 MOSFET under variable
load conditions, and using the SHE method.

TABLE 3. Estimation errors at different temperatures of the SUT and when the
system is operated with the parameters of Table 2. The results are sampled after 0.5 s
of estimation.

under various operations of the converter. In online oper-
ation, the temperature of the semiconductors is expected
to vary. This, in turn, changes the value of the ON-state
resistance. Since the ON-state resistance is typically used for
temperature estimations and health indication of the device,
it is important to accurately track it at different temperatures.
The SUT is curve traced under seven different temperatures
using the Tektronix 371A. The curves are plotted in
Fig. 20, and the extracted ON-state resistance from these
offline measurements is summarized in Table 3. The heating
is conducted using a thermal plate, and the temperature
recordings are made using a T-type thermocouple placed
between the SUT and its heat sink. The thermocouple and
the SUT are galvanically isolated using a thin thermally
conductive electrical insulator. The temperature monitoring
and logging are carried out using the Picolog TC-08. The
accuracy of the thermocouple used for temperature logging
is ±0.5 ◦C.

FIGURE 20. Measured vDS–iD curve of the IRFP4768 MOSFET using the Tektronix
371A curve tracer at different temperatures of the SUT, and while vGS = 15 V. The
slopes of the linear fits, which indicate the ON-state resistance, are summarized in
Table 3.

FIGURE 21. Estimated ON-state resistance of the IRFP4768 MOSFET in the forward
conduction path, at T = 90 ◦C, and using the SHE method.

The online estimation of ON-state resistance is conducted
at different temperatures of the SUT. That is, the SUT is
heated, and the parameter estimation is conducted at the same
temperature levels as those used in the offline measurements
of Fig. 20. As an example, the output of the SHE method
for the forward conduction path, and for when the SUT is
at 90 ◦C is shown in Fig. 21. The estimation results for all
temperatures are summarized in Table 3. In this table, the
estimated values are taken after 0.5 s of estimation, which
corresponds to 25 fundamental periods. It is observed that
at all temperatures, the estimation error is still within the
1% range.
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VI. CONCLUSION
In this article, a novel method for accurate online identification
of semiconductor ON-state resistance is presented. The
proposed solution consists of a frequency-based estimation
technique. An analytical proof is provided showing that both
the conduction current and ON-state voltage of the semi-
conductor under test (SUT) contain a fundamental frequency
content. Hence, the proposed method can continuously and
repeatedly estimate the ON-state resistance using the extracted
frequency content of these voltage and current measurements.
The main advantage of the proposed solution is its ability
to provide accurate estimations even in extremely noisy
environments, under variable load conditions, and in different
temperatures of the SUT. These are all the foreseeable
conditions for a power electronics system in normal operation;
hence, the proposed solution is robust. A detailed comparison
of online estimations and offline measurements from a
commercial curve tracer has been provided, where the offline
measurements are used as reference values in this comparison.
It is shown that in the presence of small noise levels, both
the proposed SHE and the recursive least-square (RLS)
estimation methods provide accurate estimations. However,
under extreme noise levels, the RLS estimation method suffers
from low accuracy, while the SHE method provides reliable
estimations. The efficacy of the proposed SHE method is
verified through simulations, and on a hardware prototype.
Moreover, the advantage of the SHE method under noisy
conditions is explained analytically. In all experiments, the
SHE method consistently achieves an estimation error of less
than 1%. Hence, the proposed technique is suitable for online
condition monitoring of semiconductor devices.
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