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ABSTRACT This study proposes a multiclass classification technique based on multifractal spectra for
different types of cardiac arrhythmias which are associated with irregularity and/or complex dynamics of
the heart. Indeed, the degree of complexity of such dynamics is diverse for different states of cardiac
condition. Certainly, such physiological responses of the heart dynamics can be discriminated by analyzing
electrocardiogram (ECG) signals through different channels. Earlier, ECG-based works for discriminating
cardiac arrhythmias consider the heart as a black box system and the analysis is mostly surrounded with
time domain statistical averages or spectral analysis. The works ignore one of the key parameters, i.e., the
presence of time-localized irregularities which are strongly associated with different kinds of arrhythmias
and contribute to subtle variations in the amplitude and shape of the signal dynamical system while
analyzing the signal. Therefore, in this work, we proposed a new method based on multifractal analysis
to classify different kinds of cardiac conditions. Here, we followed the dynamical systems approach
and computed the multifractal spectrum of the embedded phase space structure of the ECG signal. We
performed the classification task by an echo state network to reduce the computational burden. For
validation, three well-known datasets (Shaoxing Peoples’ Hospital dataset, PTB diagnostic ECG database
v1.0.0, and 2017 PhysioNet/CinC Challenge dataset) have been considered. The results and analysis show
that the proposed method can achieve a maximum accuracy of up to 96%, which is significantly high.
Further, an optimum number of channels/leads has also been evaluated in multichannel ECG analysis.
The result and analysis reveal that the effectiveness of the model in classifying various categories of
cardiac disorders from ECG.

INDEX TERMS Arrhythmia classification, echo state network (ESN), multifractal analysis, multivariate
multifractal singularity spectrum, nonlinear dynamics.

I. INTRODUCTION

RECENTLY, new nonlinear dynamical methods are
being employed to analyze complex biological systems,

in particular human heart and brain [1], [2], [3], [4], [5], [6],
[7], [8]. Such methods can be employed in detecting any
dysfunction of the whole system or its specific parts as they
prominently display the changes in associated physiological
signals. For the heart, any cardiac dysfunction causes a
reduction in complexities of heart dynamics which can be
traced through electrocardiogram (ECG) [2], [3], [4], [6], [7].
In general, the dynamics of the heart in healthy conditions
are highly complex. However, for any damage to heart tissue,

blockage of heart vessels, electrolyte imbalance, or any other
causes, the normal electrical activity of the heart is disrupted.
Besides, contribution of some of electromechanical events
to the overall dynamics may be ceased or weakened,
which results in reduction of overall complexity in cardiac
dynamics. The degree of complexity alteration is contingent
upon the nature and severity of the underlying cardiac
abnormality. Such variations in complexity levels could
be useful for comprehending cardiac conditions, like dis-
tinguishing normal/abnormal cardiac rhythms [4], [7], [8].
Eventually, the cardiac cycle is controlled by the bioelectrical
signals that travel through the heart which is made up
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of many interconnected elements (e.g., ionic channels,
transporters, etc.). These elements often display a nonlinear
dependence on one or more variables, such as transmembrane
potential or ion concentration gradients across the cell
membrane [2]. Therefore, building an optimum classifier
considering the such nonlinear characteristics of cardiac
dynamics for discriminating various types of arrhythmias
could be a promising tool.
The ECG signal provides an overall response of the heart,

which originates due to different electrical and mechanical
events at different parts of the heart [7], [8]. The overall
dysfunction of the heart or its parts can be identified by
analyzing the change in beat-to-beat interval or heart rate
variation (HRV) signal [7], [8], [11]. Any subtle variation
in the amplitude, shape, and timing of ECG beats can be
explained in terms of variations in the underlying dynamics of
the heart. It is nonlinear in nature, and cannot be detected by
employing conventional linear analysis, like power spectral
analysis, short-time Fourier transforms (STFTs), wavelet
transform, etc. [7], [8], [11]. For instance, the STFT fails to
detect its time irregularities due to low frequency resolution
for fixed window size [11]; although, wavelet provides better
flexibility in this regard, but, it treats the irregularities as
random noise [11]. Therefore, the involvement of nonlinear
dynamic methods, particularly, the multifractal analysis might
be appropriate for discriminating of different abnormalities of
the heart. Multifractal analysis of ECG signal could provide a
details description of singularities associated with the signal
by quantifying the variations of its regularity in amplitude,
shape, or beat period of the signal.
In literature, most of the works have been in line with

de-trended fluctuation analysis (DFA) [9], [10], [11] which
attempts to find multifractal signature associated with ECG.
In DFA, mainly the variability in the scaling of the fluc-
tuations is considered as quantifying parameters. There are
very limited attempts to adopt a dynamical systems approach
along with multifractal analysis, which could be appropriate
in distinguishing nonlinear dynamic cardiac conditions from
healthy/unhealthy subjects. In this regard, Shekatkar et al. [7]
and Harikrishnan et al. [8] have considered the multifractal
properties of the dynamical attractors from the ECG. They
did the binary classification by using best-fit parameters
which are evaluated from multifractal spectrum. However,
the works focused on only binary classifications considering
a few numbers of subjects. Besides, they have used a very
limited number of parameters from the spectrum which were
for a fixed number of channels. Indeed, consideration of
the whole spectrum rather than a few limited parameters
might be more appropriate as it is integrated with more
inherent properties in detail. Further, multichannel analysis
is necessary as all the rhythmic variations may not be
associated with a certain number of fixed channels. In
addition, for verifying the generality of an idea, diverse data
with a large number of subjects should be considered.
Now, the choice of classifier could play a crucial role,

which can be designed in traditional machine learning

(e.g., k-nearest neighbors, support vector machine, etc.) or
deep learning (DL) (e.g., convolution neural network (CNN),
recurrent neural network (RNN), long-short term memory
(LSTM), etc.) framework. The efficiency of the traditional
machine learning-based classifiers are highly dependent on
the handcrafted feature engineering, while notable classifi-
cation performance has been achieved by DL [31], [32],
[33], [34] which bypasses the manual feature engineering.
Therefore, DL-based approach has been aimed to be involved
in this study as the whole multifractal spectrum has been
considered for feature extraction. However, the DL-based
framework has a huge computational bottleneck in terms
of resources and computational time. In this context, the
reservoir computing (RC) framework which falls in the
family of RNN provides a strong simplification to the
learning process and reduces the computational bottlenecks
to a great extent [21], [22], [23], [24], [25], [26], [27],
[28]. One of the key benefits of the RC algorithm is that
its training is performed only at the readout stage and the
reservoir configuration remains fixed once initialized. One
of the variants of the RC is the echo state network (ESN),
which possesses a big reservoir of coupled neurons. The
ESN principle relies on the idea that a big random expansion
of the input vector often makes it easy for a linear model
to fit the data for classification or other tasks. The ESN-
based paradigm is already widely used for modeling complex
temporal sequences and showed notable performance [21],
[22], [23], [24], [25], [26], [27], [28]. Therefore, in this work,
the ESN-based formwork has been adopted for efficient
classification tasks.
In this view, we propose a new method based on

multifractal properties of the dynamical attractors of the
ECG signal considering the dynamical systems framework
of the heart. The multifractal singularity spectrum has been
used for discrimination among different kinds of cardiac
conditions. A multiclass classification model has been
incorporated into the principles of ESN to make the model
computationally efficient. The experimental validation has
been performed by using three well-known datasets. Several
analyses, including multiclass classification, accuracy, the
impact of different channels, comparative evaluations with
state-of-the-art methods, etc., have been performed. The
major contribution of the work has been summarized as
follows.
1) Multifractal analysis of ECG considering the

dynamical system framework of the heart for discrim-
ination of different heart conditions; in contrast to
earlier works where the heart has been assumed as a
black box.

2) Consideration of the whole multifractal singularity
spectrum to consider all possible parameters, in oppo-
sition to the existing works where certain user-defined
parameters have been selected.

3) Use of a simplified bidirectional ESN-based model,
a resource-friendly RC framework, for classification
tasks.
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FIGURE 1. System overview of the proposed method.

4) Performing multiclass classification by considering
multichannel ECG, in opposition to the existing works
where certain fixed channels are taken into account.

5) For validating the generality of the proposed idea, three
benchmark datasets are taken into account.

6) The proposed idea has been compared with the state-
of-the-art methods.

II. SYSTEM OVERVIEW
In this work, a novel method for classification of different
kinds of cardiac abnormalities and normal conditions based
on ECG signals has been proposed by exploring the
dynamical system framework of the heart. A systematic
overview of the proposed method has been illustrated in
Fig. 1. It starts with the preprocessing of the raw ECG signal
followed by embedded phase space reconstruction. Next, the
multifractal analysis of the phase space attractor is con-
structed to compute the associated multifractal spectra These
spectra are fed as input into an ESN-based classifier for
discrimination among different types of cardiac conditions
(normal/abnormal). Finally, the performance of the proposed
model is evaluated in terms of overall accuracy and F1-score.
Further, the effectiveness of the idea has been compared with
state-of-the-art methods.

III. PROPOSED METHOD
A. PREPROCESSING
The raw ECG signals are always contaminated with different
noises and artifacts, which need to be removed for accurate
analysis. The presence of any sort of nonlinear trend in ECG
may influence the analysis results, especially while statistical
methods are involved, which need to be de-trended. It has
been accomplished by fitting the data points corresponding
to each channel with a polynomial of degree p. Certainly,
the optimum value of p is very important as a small value
of p may not be able to remove higher-order trends. It has
been achieved by computing deviation (δ), the mean square

error between the original signal and its fitted version. The
deviation δ for any p is expressed in

δ(p) = 1

N

N∑

i=1

[
x0(i)− xp(i)

]2 (1)

where, δ(p) is corresponding deviation for a particular p; N
is the number of data points in the signal of interest, and
(x0) and xp refer to original data and fitted signal with a
degree p. The noise interference of ECG signals is removed
by a Butterworth band-pass filter with a passband of 0.01–
250 Hz [11]. Next, the de-trended and filtered signals, c(t),
are normalized to 0 and 1 by using min-max scaling, s(t) as

s(t) = C(t)− Cmin

Cmax − Cmin
(2)

where, cmin and cmax are the minimum and maximum values
of c(t), respectively.

B. MULTIFRACTAL ANALYSIS
Multifractal analysis has been performed by reconstructing
the dynamical attractors of the ECG signal, s(t) in the
dynamical systems framework and the multifractal properties
have been used to discriminate different types of ECG
waveforms. For this purpose, the embedded phase space
attractor (EPSA) of the ECG signal has been constructed
by computing the optimum delay (τ ), which maximizes the
predictive power of the input. This follows the computation
of the optimum embedding dimension (M) for s(t). The value
of τ is calculated by the autocorrelation function of s(t) [19].
The optimum values ofM are estimated by following Taken’s
embedding theorem [20]. Thus, s(t) is embedded into m-
dimensional space to reconstruct the EPSA using the delay
embedding technique with delays hτ , where h = 0, 1, 2, . . . ,
(m − 1). The correlation dimension (D2) of the reconstructed
EPSA is calculated for different values of m (m = 0, 1, 2, . . .)
until it is saturated and the optimum value of M is chosen
from the saturated values of m [7], [8]. The detailed process
of computing D2 is analogous to the computation of the
generalized correlation dimension (Dq) for q = 2.

The computation of Dq starts with embedding s(t) to
an M-dimensional space using Taken’s delay embedding
theorem [20] and recreating the phase space structure or
embedded attractor of the underlying dynamics using the
embedded vector x̂i

x̂i = [s(ti), s(ti + τ), . . . , s(ti + (M − 1)τ )]. (3)

As per Taken’s embedding theorem, the phase space
structure is the delayed version of the original signal which
maintains the same topological properties as that of the
original system [20]. For visual intuition, a 2-D projection
of the embedded attractor obtained using singular value
decomposition (SVD) of s(t) for four different categories
of cardiac rhythms has been displayed in Fig. 2. Certain
changes in the projection for different types of cardiac
rhythms can easily be observed.
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FIGURE 2. 2-D projection of the embedded attractor obtained using SVD
transformation of ECG for four different types of cardiac rhythms: SB, SRs, AF, and
supraventricular tachycardia (GSVT). The ECG signal, E2 is delayed version of E1 by τ .

The multifractal analysis of EPSA involves calculating
the probability of point distribution across the entire EPSA
at different scales r. This process begins by calculating the
generalized correlation sum Cq(r) as a function of r. The
correlation sum Cq(r) quantifies the relative count of data
points (−→xk ) within a radius r from specific reference points
(−→xj ) chosen as centers within the EPSA. The outcome of
this calculation is then raised to the power of (q − 1) and
averaged across Nc randomly selected centers. This yields
the value of the generalized correlation sum

Cq(r) =
⎡

⎢⎣
1

Nc

Nc∑

k=1

⎡

⎣ 1

Nv

Nv∑

j=1, j �=k
H

(
r − |−→xk −−→xj |

)
⎤

⎦
(q−1)

⎤

⎥⎦

1
(q−1)

(4)

where, H is the Heaviside step function, Nv is the number
of data points and q is the generalization parameter. Then
the spectrum of generalized correlation can be expressed as

Dq = 1

q− 1

logCq(r)

log r
. (5)

In general, Dq is estimated by computing the gradient
of logCq(r) versus log r over a region of r for which the
gradient remains almost constant. The choice of a range of
r to be used for computation is essential as it may yield
erroneous Dq values. For the optimum computation of Dq, r
should always be confined to the region of the attractor, and
it should not extend out of this region. This work utilizes an
algorithm as proposed in [8] for evaluation of the optimum
value of r and further computation of Dq.

The generalized correlation dimension, Dq, for various
values of q quantifies the multifractal nature of the ECG sig-
nal. The complexity associated with heart dynamics results
in nonuniform distribution of points in the EPSA, which
can be measured by calculating the associated singularity
spectrum f (α) by Legendre transformation of Dq.

FIGURE 3. Typical f (α) spectrum. The term (αmax − αmin) gives the width of the f (α)
spectrum which is the range of multifractal scaling indices.

The f (α) can be expressed as

α = d

dq

[
(q− 1)Dq

]
(6)

f (α) = qα − (q− 1)Dq. (7)

The spectrum of f (α) provides the multifractal signature
in terms of interwoven sets with singularity strength α

and the corresponding fractal dimension f (α) [8]. However,
calculating f (α) directly using (6) and (7) is typically
evaded due to the errors that arise during the computation
of Dq. These errors render the transformation numerically
unfeasible, given that it entails reversing slopes. Hence, we
have followed the scheme provided by Harikrishnan et al. [8]
to reduce the source of errors. It evaluates an analytical
function capable of expressing the typical convex profile of
the f (α) spectrum with the help of a set of best-fit parameters
(A, αmin, αmax, γ1, and γ2) as expressed

f (α) = A(α − αmin)
γ1(αmax − α)γ2 . (8)

A typical shape of f (α) spectrum evaluated by (8) has been
displayed in Fig. 3. The difference term (αmax–αmin), i.e., the
width of the f (α) spectrum gives the range of multifractal
scaling indices, is a measure of the complexities associated
with the signal under study. The width increases with the
increase in the complexities in the associated signal, γ1 and
γ2 specify the shape of the f (α) spectrum.

C. MODELING F(α) AS SEQUENCE OF FRACTAL
DIMENSION
In our work, the multiclass classification model has been
structured considering the whole f (α) spectrum. However,
in earlier works, various parameters of the f (α) spectrum
including spectrum width, area, or value of α corresponding
to the max–min point have been considered for differentiat-
ing complexities among various cardiac conditions [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27]. Initially,
we explored the feasibility of utilizing the width parameter
as a discriminating factor among different groups of cardiac
conditions; however, the investigation revealed that the width
parameter exhibited overlaps among these groups [35].
Therefore, we considered the entire spectrum, which cover
all possible features, including those we already know and
those we have not fully explored yet. Now, the challenge is to
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design a classifier that can learn the complete f (α) spectrum
by understanding the sequence of singularity strength α.
In this purpose, LSTM can be employed, but it demands
huge computational resources [21], [22], [23], [24], [25],
[26], [27], [28]. In contrast, RC framework which performs
sequence learning. It employs fixed and randomly initialized
internal reservoir dynamics, which reduces training com-
plexity, thereby, making it more efficient in dealing with
sequential data. More specifically, the ESN-based paradigm,
a subtype of RC, is recognized for its proficient handling of
complex temporal sequences [21], [22], [23], [24], [25], [26],
[27], [28]. However, its effectiveness in learning short-length
singularity spectra has not been explored yet. Therefore, we
have adopted this RC framework in this work. For efficient
use of RC, certain information regarding the representation
of the f (α) spectrum is required. The primary requirements
are—first, all the f (α) spectrum should be of equal length,
corresponding to all the channels, and second all the values
of the f (α) spectrum corresponding to each channel for each
subject should be sampled at the same sampling interval
(�α). It is mentioned in [8] that only four (αmin, αmax,
γ1, and γ2) out of five parameters involved in (8) are
independent and can uniquely characterize the corresponding
f (α) spectrum. We have found the deviation of the parameter
A is very high, so (8) can be modified by replacing A with
a constant C, given by

f1(α) = C(α − αmin)
γ1(αmax − α)γ2 . (9)

Now, f1(α) in (9) can be sampled with some �α for
some range of α, such that both αmin and αmax are included
in the range. In this process, we obtain a sequence of N
samples of f1(α) corresponding to each channel. As we are
interested only in the convex profile of the shape of f1(α),
we modify the f1(α) sequence by applying the condition
f1(α) = 0 for α < αmin or α > αmax. Since, in the proposed
approach, the ECG records of each subject comprise k sets
of ECG recordings corresponding to k channels, the f1(α)’s
corresponding to each channel can be merged columnwise
to obtain the multivariate singularity spectra (MSS), fk(α)
with shape [N × k].

D. ESN FOR LEARNING F(α) SPECTRA
A typical ESN comprises of three layers: 1) an input
layer; 2) a reservoir layer containing a large number of
sparsely connected neurons with recurrent connections; and
3) an output layer (also called the readout layer). Once
the ESN is initialized with input, it converts the input into
the states of the neurons which guides to prediction of the
output. Actually, an ESN learns to couple the output to
the neurons. Here, the weights between the input to the
reservoir connections and the recurrent connections within
the reservoir neurons are carefully chosen and remained fixed
throughout the experiment. Only the connection weights
between the readout layer and the reservoir are trainable. In
this study, we designed an ESN model capable of learning
the MSS fk(α). This model is shown in Fig. 4, where all

FIGURE 4. Blockwise representation of the proposed ESN framework.

individual blocks are specifically mentioned. The input MSS
undergo bidirectional feeding into the input layer, and after
modulation through an input scaling matrix (Win), they
connect to the reservoir network. The values (weights) of
Win are chosen randomly and remain constant throughout
the experiment. The recurrent connections among reservoir
neurons are determined by the values in Wres, which are
also randomly chosen and remain unchanged throughout
the experiment. With each input instance, the reservoir
state is updated, incorporating information from previous
instances to uphold the long-state memory characteristic of
the network. Ultimately, the final reservoir state, x(N) is
obtained for all subjects. As a final unit of our model,
a readout unit based on ridge regression is employed to
establish a multiclass classification model.
We consider the classification of k-dimensional MSS with

N instants of α, whose observation at instant n is denoted
as u(n) ∈ R

1×k. The MSS can be represented in compact
form as N × k matrix U = [u(1), u(2), . . . , u(N)]. The state
of the reservoir at instant n of α is x(n) ∈ R

R×1, where R
is the total number of processing neurons in the recurrent
unit (reservoir). Win ∈ R

R×k is the weight of the connections
between the input layer and reservoir neurons. Wres ∈ R

R×R
represents the recurrent connection weights amongst the
neurons in the reservoir. We have used the hyperbolic tangent
function as nonlinearity in the reservoir units, then the
reservoir state equation for modeling sequential data can be
given by

x(n) =
[
tanh

(
Win[u(n)]T +Wres[x(n− 1) ]T

)]T
. (10)

The encoder parameters Win and Wres are randomly
generated and remain fixed throughout the experiment. The
generalization competencies of the reservoir mainly depend
on five hyper-parameters as detailed in [21]. The reservoir
state over different instants of α can be given by X = [x(1),
x(2), . . . , x(N)]. All information are required to reconstruct
the original input which is embedded into the last state of
the reservoir, i.e., x(N), so we took ru= x(N) as the high-
dimensional representation of the input U. Our readout unit is
a linear model which is implemented using ridge regression

y = g(ru) = K0ru + k0 (11)
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where, {K0, k0} = ∅rd is the decoder parameters, which are
adapted by minimizing the ridge regression loss function as
given below

∅rd = 1

2
‖ruK0 + k0 − y‖2 + λ‖K0‖2 (12)

where, y is a vector containing all the desired output, and
the hyperparameter λ controls the weighting of the penalty
to the loss function.
In this work, the whole MSS are exposed to the reservoir at

once, which facilitates the incorporation of bi-directional data
feeding to the same reservoir, both during training and testing
to create an improved high-dimensional representation of
MSS [28]. The bidirectional architecture of reservoirs has
proven to be much more efficient in extracting features from
the input sequences [21]. We have realized bi-directionality
by exposing the reservoir with the input MSS both from
forward and backward directions

−→x (n) =
[
tanh

(
Win[u(n)]T +Wres

[−→x (n− 1)
]T)]T

←−x (n) =
[
tanh

(
Win[u(N − n)]T +Wres

[←−x (n− 1)
]T)]T

.

(13)

The two-state vectors in (13) are concatenated to obtain
the full state of the reservoir. Now, with the availability of
both recent and past information, dependencies on longer
instances can be captured and its last state representation
reduces to

x(N) = Mb
x

[−→x (N);←−x (1)
]+ mbx . (14)

Now, [vec(Mb
x );mbx] ∈ R

2R(2R+1) become a representation
of ru. Each MSS is first processed under the same reservoir
state to obtain the last state representation of ru. A detailed
description of the implementation of bi-directionality in the
reservoir can be found in Bianchi et al. [21].

IV. EXPERIMENTAL METHODOLOGY
A. DATASETS
Shaoxing Peoples’ Hospital (SPH) Dataset [18]: The

dataset contains 12-lead ECG signals of 10 646 patients
categorized under 11 types of heart rhythms, including
normal sinus rhythms (SRs) and the rhythms corresponding
to different arrhythmias. Each dataset consists of 12 ECGs
(one each from 12 leads) of 10-s duration with a sampling
frequency of 500 Hz. In this study, we concentrate on four
groups: 1) sinus bradycardia (SB); 2) atrial fibrillation (AF);
3) SR; and 4) a combined group containing all records related
to various tachycardia cases (GSVT). This consolidation of
11 categories follows the data merging approach outlined
in [18] to mitigate category-specific data imbalances in the
dataset. Further, 1500 subjects from each of the four groups
are randomly chosen as listed in Table 1. Merging the ECG
signals to itself five times makes a train and test signal
of 50 s.
PTB Diagnostic ECG Database v1.0.0 (PTB): The ECG

dataset consists of signals of 78 subjects, which is accessible

TABLE 1. Groupings of various rhythm categories for classification.

through the PhysioNet Resource [30]. Out of 78 subjects,
25, 14, and 14 suffer from myocardial infarction, bundle
branch block, and cardiomyopathy, respectively; while the
rest 25 are from healthy subjects. Each data is collected from
15 channels, but we have considered the conventional 12
leads for analysis. For each data, we have extracted records
corresponding to 80 s with a sampling frequency of 1000 Hz.
2017 PhysioNet/CinC Challenge Dataset (PNC-

2017) [36], [37]: The dataset consists of 8528 publicly
accessible single-lead ECG recordings lasting 30–60 s,
sampled at 300 Hz. Among them, 5076 are categorized
as normal SR (NSR), 758 fall under AF, 2415 as other
rhythms (ORs), and the remaining 279 are classified as
noisy data (ND). Train and test data have been divided into
20:80. During the experiment, the training set’s imbalance
is addressed by replicating records multiple times to
approximate the count of the largest group, while the test
set remains unchanged.

B. EXPERIMENT
First, in preprocessing, band-pass filtering, de-trending, and
max–min scaling have been performed. Eventually, the ECG
signal provides an average response of the heart, which
arises due to a series of nonlinear processes associated with
the underlying dynamics. For the sake of completeness,
the statistically rigorous surrogate analysis is conducted to
establish the underlying nonlinear and deterministic nature
of dynamics encrypted in the ECG signal. For this purpose,
surrogates of the ECG have been generated by employing
the amplitude adjusted Fourier transform (AAFT) [29]. Next,
the correlation dimension (D2) as a function of embedding
dimension (m) has been devised for the original signal
and their surrogates as displayed in Fig. 5, in which the
horizontal and vertical axes indicate m and D2, respectively.
As seen, the D2 values of the surrogates deviate significantly
from their corresponding values for the original signal, which
indicates the encoding of underlying nonlinearity in the
signal.
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FIGURE 5. Plot for correlation dimension (D2) as function embedding dimension (m)
for the original signal (green) and its AAFT surrogates (red).

FIGURE 6. Distribution of correlation dimension (D2) computed with embedding
dimension m = 4.

Next, for optimum embedding dimension (M), the D2 is
computed for m = 1, 2, . . . , 10 with the delay parameter,
τ . Fig. 6 displays the distribution of D2 corresponding to
Channel 1 for m = 4 across four distinct cardiac rhythms.
In this figure, the horizontal axis represents D2, while the
vertical axis represents p(D2). As seen, all the D2 values
across all the groups fall below 4, which suggests choosing
m = 4; hence, M = 4. Further, an additional statistic, the
channelwise average value of D2 as a function of m is plotted
for all the subjects in Fig. 7, which summarizes that the
average D2 value almost saturates at M = 4.
Now, the phase space structure is reconstructed with M
= 4 following Taken’s embedding theorem and Dq has been
computed using (4) and (5); where, q values are in the range
of [−20, +20], with a step width of �q = 0.01. From
the Dq spectrum, the f (α) (8) is obtained. The groupwise
mean values for all 12 channels are listed in Table 2. Now,
the width of the spectrum (αmax–αmin) is derived which
represents a quantitative measure of the complexities of the
signal. Certainly, the average value of (αmax–αmin) from
Table 2 shows that the complexity of the heart with SB

TABLE 2. Groupwise mean value for 12 channels.

is maximum, which contradicts the existing study. As per
the literature, cardiac abnormalities reduce the complexities
associated with heart dynamics [19], [28], [29].
For further analysis, the groupwise distribution of (αmax–

αmin) of the f (α) spectrum for all the subjects has been
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FIGURE 7. Channelwise average value of D2 as a function of m.

FIGURE 8. Groupwise distribution of this width parameter (αmax − αmin) of f (α)
spectrum for all the subjects.

plotted as shown in Fig. 8. As seen, the distributions of
four groups overlap each other which shows its insufficiency
in discriminating among the groups and for building a
multiclass classification model. Another parameter, α0 that
corresponds to maximum values of f (α) (see Fig. 3) is
also found to be insufficient as a suitable parameter for
multiclass classification. A few scatter plots in Fig. 9 have
been displayed corresponding to parameter planes (αmax–
αmin) versus α0, αmin versus γ1, αmax versus γ2, and (αmax
versus αmin) to observe whether any combination could
provide a suitable discriminative feature. As seen, there is
no such significant groupwise clustering of data points for
the different parameter planes.
Now, an ESN-based classification model that is trained and

tested with complete f (α) values corresponding to singularity
strength α has been considered. To satisfy the requirements
of the ESN, f1(α) in (9) is sampled for α = [0: 0.01: 6], with
�α = 0.01, to obtain 600 samples of f1(α) corresponding to
each channel for each subject. Following αmax to be 4.35 (8),
the upper bound of α is kept as 6 for “safe” computation.
With this, the shape of MSS corresponding to each subject
and for k number of channels becomes [600 × k]. To
visualize the f (α) spectrum, mean parameters from Table 2
for specific channels are used and corresponding spectra is
illustrated in Fig. 10. As seen, each of the groups can be
clearly distinguished.
Next, the performance of the ESN is evaluated for different

shapes of MSS for different combinations of channels.
For instance, for the SPH dataset, we examine MSS with
dimensions of [600 × k] (where, k refers to number of
channels). With k = 12, the f (α) spectrum of all 12 channels,

FIGURE 9. Scattered plots for observing discriminative feature in different
parametric plans for different channels. (a) (αmax–αmin) versus α0 for Channel 1; (b) αmin

versus γ1 for Channel 6; (c) αmax versus γ2 for Channel 7; and (d) αmax versus αmin for
Channel 12.

TABLE 3. ESN configuration in terms of hyperparameters.

the MSS shape becomes [600 × 12]. This assessment is
repeated multiple times for different values of k (spanning
from 12 down to 1). During each experiment, the train and
test dataset has been kept at 80:20. The hyperparameters
for the proposed ESN with bidirectional capability are
tabulated in Table 3. Further, similar experiments have been
conducted for all the dataset individually. The classification
performance of the model has been evaluated by measuring
accuracy and F1 scores.

V. RESULTS AND DISCUSSIONS
The classification performance of the proposed ESN has been
evaluated by measuring accuracy for different shapes of the
input MSS, i.e., considering different numbers of channels
and the results have been displayed in Fig. 11. As seen,
there is a significant gain in the performance in terms of
accuracy with an increase in the number of channels till 6
(Ch 6, 7, 8, 9, 10, and 11) for the SPH dataset. However,
for the PTB dataset, all six chest leads are found optimum.
Therefore, the observation infers that the optimum number
of channels/leads can be six while considering the MSS.
Our proposed model achieved peak performance, boasting
a maximum accuracy of 96.4% with an F1 score of 0.964
when using the SPH dataset. The corresponding confusion
matrix is depicted in Fig. 12.
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FIGURE 10. f (α) spectrum computed using a groupwise mean of all the parameters.
We can clearly distinguish between the spectrums corresponding to the four groups.

FIGURE 11. Average performance of the ESN in terms of accuracy including
different numbers of channels in the input MSS.

FIGURE 12. Performance of the ESN in terms of accuracy including different
numbers of channels in the input MSS.

Further, a comparative study has been performed with
the state-of-the-art DL-based techniques and the results
have been summarized in Table 4. The analysis reveals
that our proposed method outperforms the existing methods
in terms of sensitivity and computation time, boasting an
exceptional level of accuracy closely aligned with other
DL methodologies, including CNN, MLP, and LSTM, as
well as their combinations [31], [32], [33], [34]. In a
single CPU baseline implementation, executed in an envi-
ronment with an Intel Core i7-4700MQ processor clocked

TABLE 4. Performance comparison with few other works.

TABLE 5. Performance comparison with CinC-2017 challenge top performers.

at 2.4 GHz. The average computation time per beat has
been 16.19 ms for our proposed method while the existing
method required 21.2 ms [31] (implemented in the same
computational environment). It is worth noting that the
studies in [32], [33], and [34] employ GPU-based imple-
mentations, rendering direct computation time comparisons
unfeasible due to disparities in computational environments.
Indeed, based on the fundamental principle of DL and
reservoir computer framework, our methods required less
computational resources as its readout stage works on
simple regression problems without involving any back-
propagation and gradient decent-based weight correction
process. Thus, the proposed idea has been very efficient in
terms of showing the best performance but utilizing limited
sources.
Furthermore, the study includes a comparison with single-

lead, short-length ECG recordings, which offer significant
potential for cost-effective and remote diagnostic monitoring
solutions. In this purpose, we selected two top-performing
approaches from the 2017 PhysioNet/CinC Challenge dataset
(PNC-2017) [38], [39] and analyzed their performance and
computation time in relation to our proposed model. We
evaluated performance using a validation dataset from
the PNC-2017 archive, employing the same computational
environment with an Intel Core i5-10400 CPU @ 2.90GHz
and 16 GB RAM. The results are presented in Table 5.
It is clearly seen that our proposed model exhibited
impressive efficacy, achieving an overall F1 score of 0.964,
which is higher, while utilizing less computational time.
Hence, our model demonstrates its superiority by delivering
high classification performance with minimal computational
demands.

VI. CONCLUSION
In this work, we have verified that the multifractal sin-
gularity spectrum derived from the embedded attractor of
the ECG signal provides a quantitative measure of the
complexities associated with cardiac dynamics. A nonlinear

VOLUME 2, 2023 2500811



PURKAYASTHA AND BARMA: DISCRIMINATION OF CARDIAC ABNORMALITIES

dynamical study is an efficient tool for extracting multifractal
signatures from the ECG signal. We have demonstrated
a classification technique capable of learning multivariate
multifractal singularity spectra. The idea is derived from
the ESN-based model, a variant of the RC technique
used for studying time series problems. We have found
that our model is very efficient in classifying various
categories of cardiac disorders when trained with the
multifractal singularity spectra associated with the embed-
ded attractor reconstructed out of the ECG signal. We
have used two datasets to validate the proposed idea.
The results show that the proposed method achieved a
classification accuracy of up to 96%. In a comparative
study, the proposed technique demonstrates its superior-
ity in terms of low computational complexity but high
accuracy.
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