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ABSTRACT With an increase in the number of breast cancer cases worldwide, there is an urgent need
to develop techniques for early abnormality detection. Thermography is known for its potential to detect
breast abnormalities at an early stage. A novel threshold-based non-machine learning asymmetry analysis
using textural features is proposed for breast abnormality detection. Breast abnormalities are indicated
by regions of elevated temperatures (hot regions), usually, indicated by red color in thermograms. In
this work, the breast thermograms are segmented to extract breast tissue profiles and then the red-plane
of an RGB thermogram is utilized to analyze the natural contralateral symmetry between the left and
right breast of an individual. A novel textural feature based on histogram similarity along with known
textural features, such as fractal dimension, hurst exponent, spectral norm, and Frobenius norm, are used
as features for asymmetry analysis. Bilateral ratios (BRs) of these features indicate contralateral symmetry
between the left and right breast. A BR value closer to 1 indicates such symmetry. Hard voting is done
among all the BRs of the textural features to estimate asymmetry between the left and right breast
and detect an individual with breast abnormality. The proposed methodology is evaluated on publicly
available datasets. It outperforms the state-of-the-art and achieves an accuracy of 96.08%, sensitivity of
100%, and specificity of 93.57%. A comparative analysis of statistical and textural features has also been
demonstrated. A novel singular value decomposition (SVD)-based abnormal breast detection technique
has been proposed with evaluations on a limited dataset.

INDEX TERMS Bilateral symmetry, breast cancer, red-plane, statistical analysis, textural analysis,
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thermograms.

I. INTRODUCTION

CCORDING to the World Health Organization (WHO),

globally, breast cancer forms 12% of all annual can-
cer cases, making it the most frequently diagnosed cancer
worldwide [1]. Breast cancer has a mortality rate of 19.47%,
however, when detected early has a 5-year survival rate of
99% [2]. Mammography, a radiation-based breast imaging
modality, is the gold standard for breast cancer detection.
However, mammography has shown reduction in sensi-
tivity of tumor detection from 98% in fatty breast to
less than 48% in dense breast in younger women [3].
Ionizing radiation involved in mammography makes it

unsuitable for the detection of breast abnormalities during
pregnancy.

Thermography, a contact-less, painless, and nonionizing
breast imaging modality, can detect abnormalities at precan-
cerous and cancerous stage in both fatty and dense breast. It
is an FDA (U.S. Food and Drug Administration) approved
adjunctive screening tool that may be particularly useful in
resource-lacking remote area hospitals or clinics. A tumor
in breast increases the rate of formation of new blood ves-
sels from the preexisting ones (known as Angiogenesis) to
meet the need of continuous supply of oxygen and nutri-
tion required for its growth. This process of new blood
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TABLE 1. Recent state-of-the-art asymmetry-based breast abnormality detection.

vessels formation increases the skin surface temperature [4].
Thermography is a functional imaging modality that helps
in the identification of abnormal regions based on the mag-
nitude of skin temperature gradients [5]. The regions of
elevated temperature (or abnormal regions) appear as bright
spots or hot spots in breast thermal images. Thermography
can detect an abnormal increase in temperature of the breast
tissue about 8-10 years before mammography can even
detect a mass [6].

A healthy individual has contralateral symmetrical breasts,
that is, the temperature distribution of both breasts is almost
the same. Synchronous bilateral breast cancer (SBBC) or
both breast cancerous is a clinical rarity and occurs only in
2.3% of the diagnosed cases [17]. Thus, asymmetrical tem-
perature distribution between the breasts of an individual may
indicate the presence of an abnormality. The majority of the
work present in the literature exploits this concept of asym-
metry by calculating the difference of statistical and textural
features between both the breasts in a given breast thermo-
gram for breast abnormality detection. The state-of-the-art
asymmetry based-breast abnormality detection methods uti-
lize these discriminative handcrafted statistical and textural
features for traditional machine-learning models, such as
support vector machine (SVM), K-means, and artificial neu-
ral network (ANN) [18]. Deep learning techniques, such
as convolutional neural networks (CNNs), have also been
implemented for abnormality detection. A summary of the
most recent asymmetry-based state-of-the-art papers is given
in Table 1. These machine-learning and deep-learning-based
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Ref | Type of features used Classifier Image domain Dataset Performance
Curvelet transform based GLCM textural Acc: 90.91%
[71 and statistical features of ROI SVM Gray Private: 22 Sen: 81.82%
within breast thermograms Spec: 100%
L . Acc: 83.30%
GLCM textural and statistical features .
[8] . SVM Gray Private: 36 Sen: 83.30%
of ROI within breast thermograms
Spec: 83.30%
L . . " Acc:88.17%
GLCM textural and statistical features Hybrid classifier .
[9] NA Private: 146 Sen: 83.30%
of breast thermograms ensemble
Spec: 89.44%
GLCM textural and statistical features
[10] L SVM Gray DMR: 63 Acc: 88.41%
of ROI within breast thermograms
- Acc: 90%
GLCM textural and statistical features
[11] i . R SVM Gray DMR: 80 Sen: 87.50%
of breasts segmented using bifurcation line 5
Spec: 92.50%
Difference of GLCM matrices and Acc: 93.75%
[12] | Markov random field (MRF)-based Hidden Markov model | Gray Private: 65 Sen: 95%
textural features Spec: 92%
Statistical features of ROI Acc: 90%
[13] within breast thermograms extracted ANN LAB colour space | DMR: 100 Sen: 95%
using block variance Spec: 85%
Wavelet transform based and curvelet transform based Acc: 88%
[14] | textural features of ROI within Multiple classifiers Gray Private: 81 Sen: 81%
breast thermograms Spec: 82%
. Acc: 95%
Statistical features of breasts segmented
[15] L i SVM Gray DMR: 60 Sen: 97.05%
using infra-mammary line
Spec: 92.3%
) . Acc: 94%
Local instant and center-symmetric . )
[16] R . Broad learning Gray Private: 120 | Sen: 92.7%
neighbor-based histogram features
Spec: 95.5%

methods are data hungry and require a large amount of
data to produce reliable results. However, due to the lack
of large benchmark datasets, it is observed in Table 1, the
sample size of training and testing data used in the existing
works is small, leading to overclaimed and unreliable accu-
racy results [19]. Therefore, there is a pressing need either
to develop a large benchmark breast thermogram dataset
for proper training and testing or to develop better non-
machine-learning techniques. In this work, a threshold-based
non-machine learning method that uses textural features
for asymmetry analysis is proposed. This work is a novel
pilot study conducted to evaluate the feasibility of the
proposed non-learning-based technique for breast abnormal-
ity detection using thermograms. To the best of the author’s
knowledge, no work existing in the literature has explored
non-learning-based breast abnormality detection techniques.

The discriminative handcrafted features that have been
used for breast abnormality detection can either be statisti-
cal or textural. Gogoi et al. [20] used the mean difference
of discriminative statistical (7 features) and gray-level co-
variance matrix (GLCM) textural features (17 features) of
the left and right breast to detect abnormal breast thermo-
grams using traditional machine-learning (ML) models. The
nonuniformity in thermograms causes a large variation in sta-
tistical and textural values from one thermogram to the other,
therefore, the mean differences of these features may not be
the best measure for asymmetry analysis. Realizing this, in
this work, bilateral ratios (BRs) of textural and statistical
features for asymmetry analysis have been used. The BRs
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will always be close to 1 if the breasts are symmetrical irre-
spective of feature values thus considering the nonuniformity
of the thermograms.

Abnormalities in a breast, both benign and malig-
nant, have a definite geometry or patterns. Thus, fractal-
based textural features can be used to identify these
patterns as opposed to conventional GLCM textural features.
Hakim and Awale [21] used fractal textural features, such as
fractal dimension (FD), Hurst exponent (HE), and lacunar-
ity for asymmetry analysis and achieved better classification
results than with the conventional textural and statisti-
cal features. However, these classification results in [21]
may be unreliable as they were obtained using traditional
machine-learning algorithms with textural features obtained
from a small dataset with limited number of samples.
Following [21], this work has also utilized fractal-based tex-
tural features, such as FD and HE along with other matrix
similarity identifying textural features, such as spectral norm
and Frobenius norm. A new textural feature for asymmetry
analysis called histogram similarity has also been introduced.
The correlation between the histograms of symmetrical left
and right breast of a healthy individual is high. This corre-
lation is, therefore, used as a measure of asymmetry in this
work.

As observed from Table 1, the majority of the state-of-the-
art works use grayscale breast thermograms for abnormality
detection. A comprehensive review of the existing works
in [19] also shows that out of 38 works presented therein,
28 of them process grayscale images while the rest uses
RGB thermograms. Thermograms are diffused RGB images
where temperature distributions are shown using user-chosen
thermal color palettes. Thus, color pixel intensities in ther-
mograms contain abnormality information and converting
them into grayscale cause a considerable loss of information.
Based on the thermal palettes, the color plane containing
abnormality information differs. The Database for Mastology
Research (DMR) dataset and Ann Arbor thermography
dataset follows the rainbow thermal palette of FLIR [22]
where warm colors represent the hottest part of the image
while cool colors represent the coldest parts. Both datasets
have abnormality information in the red color plane. Thus,
in this work, the red-plane of the thermograms is extracted
for asymmetry analysis using textural features. Notably, no
work existing in the literature utilizes red-plane (hot regions)
thermograms for breast abnormality identification.

This article is an extension of our previous work [23]
where red-plane asymmetry analysis using statistical fea-
tures was introduced. In this work, a novel threshold-based
non-machine learning methodology for breast abnormality
detection that uses textural features for asymmetry analysis
of hot regions is proposed. This methodology begins with
the extraction of the hot regions (red-plane) of breast ther-
mograms, followed by preprocessing (breast segmentation,
noise removal, and contrast enhancement) of the extracted
the red-plane of the breast thermogram. The preprocessed
thermogram is then divided into left and right breast and
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the statistical and textural features are extracted from either
side. BRs of all features are calculated for either side of the
breast and a hard voting is done among them to determine
contralateral symmetry. A complete analysis of the effects
of the threshold values (determining the contralateral sym-
metry) on the performance of the proposed methodology is
presented. The proposed methodology performs light com-
putations with better accuracy and significantly greater speed
than standard ML and deep-learning methods.

The following are the contributions of this article.

1) Introduction of hot-region extraction (red-plane extrac-
tion) for asymmetry analysis of breast thermograms
using textural features.

2) Proposal of a novel threshold-based non-machine
learning method for breast abnormality detection using
textural features.

3) Introduction of histogram similarity as a potential
textural feature for asymmetry analysis.

4) Detailed comparative analysis of statistical and textural
features for grayscale and red-plane images.

5) Proposal of novel singular value decomposition
(SVD)-based method for identification of the abnor-
mal breast of a subject, once the subject is considered
as having an abnormal breast.

This article is arranged in the following manner. Section II
provides the details of the proposed methodology. Section III
describes the dataset, the experimental approach, and the
results. Section IV introduces the method of identification
of abnormal breast for a subject identified as having an
abnormality in one of their breasts. Section V presents a
detailed comparison of the proposed methodology with the
current state-of-the-art. Section VI concludes this article.

Il. PROPOSED METHODOLOGY

A flowchart of the various steps of the proposed threshold-
based non-machine learning methodology to analyze the
classification performance using statistical and textural fea-
tures is shown in Fig. 1. Subsequent sections describe each
step in detail.

A. PREPROCESSING

1) HOT-REGION EXTRACTION

An increase in metabolic activity is observed in a developing
breast tumor that elevates the temperature of the surrounding
tissue and the skin surface. This localized elevated tempera-
ture of the breast tissue is detected with the help of infrared
cameras during thermal imaging and appears as bright spots
or hot spots in a breast thermogram. A healthy subject
exhibits thermal symmetry between a particular region of
body under study and its contralateral regions. According to
the American Academy of Thermology (AAT), the temper-
ature difference between the contralateral breast should not
exceed 1.5 °C while the temperature difference between the
contralateral nipple should not exceed 1 °C [24]. Typically,
breast thermograms are pseudo-colored images employing a
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FIGURE 1. Proposed methodology.

color gradient palette that displays a temperature range of
8—10 degrees and is capable of detecting up to 0.05 °C
thermal difference. The regions of higher temperature or
hotspots can be identified based on color gradients in the
pseudo-colored breast thermogram. The thermograms in the
datasets used in this work have employed a rainbow color
palette [22] which represents hot regions by bright colors
(such as red) and cold regions by dark colors (such as blue).
These thermograms have a range of 8 degrees (27 °C to
35 °C) and a color map of 16 colors. The red regions
or hotspots have an elevated temperature between 34 °C
and 35 °C which may indicate the presence of an abnor-
mality. Therefore, to facilitate the identification of subjects
with abnormal breasts, in this work, the red-plane of the
RGB breast thermogram is extracted for further processing.
This extracted red-plane highlights the thermal asymmetry
in subjects with abnormal breasts as shown in Fig. 2. An
input thermogram RGB (three channels) Iy, € RP*0%3) can
be split into three single-channel images, that is, red-plane
image Ieq € RP*P1, green plane image Igreen € R(PxD2,
and blue plane image lpe € R®*D3 Here, P and Q
denote the width and height of the input RGB thermogram,
respectively.

2) BREAST SEGMENTATION

A two-step breast segmentation algorithm [25] that extracts
the breast tissue profile from the background as well as
from the pectoral muscles is adopted in this work. This
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FIGURE 2. Breast thermograms of (upper row) (a) normal subject, (b) extracted
red-plane of the subject with normal breast, (c) segmented breast tissue profile,
(d) filtered breast tissue profile (lower row), (e) abnormal subject, (f) extracted
red-plane of the subject with abnormal breast, (g) segmented breast tissue profile,
and (h) filtered breast tissue profile.

algorithm is based on Otsu’s thresholding [26] and seeded
region growing [27] technique.

Otsu’s thresholding is an iterative variance-based tech-
nique for choosing an optimal threshold ¢ (which is within
the range of 0-255) to distinguish the foreground from the
background by minimizing the weighted intraclass variance
between the foreground and the background. This intraclass
variance is given as

o= wbgabzg + ngcrﬁzg @))]

where wy, and abz represent the pixel probabilities and vari-
ance of background pixel class, respectively (both above the
threshold 1), wy, and aﬁzg represent the pixel probabilities and
variance of foreground pixel class, respectively (both below
threshold 7), and o2 represents the within-class variance.
The pixel probabilities are calculated for each pixel value in
both background and foreground separated by given ¢ and
are expressed as

T T
W = Y PO =Y
i=1 i=1

I I
, n;
Whg (1) = P(i) = — 2
) i=tZ+1 =1 !
where n; is the number of pixels of intensity value i, and n
is the total number of pixels of the input image.

Seeded region growing technique is a region-growing seg-
mentation method where regions are grown from a set of
seed points/pixels based on similarity criterion such as sim-
ilar pixel intensity. It is an iterative process that continues
till all the adjacent pixels of the seed pixels are classified
into respective regions.

The two-step breast tissue profile extraction is done as
follows.

1) Step 1: The breast profile (considered as foreground) is
separated from the background using threshold values
obtained from Otsu’s method (two classes) followed
by seeded region growing with 4-connected similar
intensity neighborhood pixel growth from seed pixels.
The centroid pixels of the foreground and background
are considered as the seed pixels.

2) Step 2: The breast profile obtained from step 1 has
breast tissue profile and pectoral muscles. In this step,
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the breast tissue profile (considered as foreground)
is extracted from the pectoral muscles (considered as
background) using Otsu’s threshold values followed by
seeded region growing with 4-connected similar inten-
sity pixels for region growth from the seed pixels [27].
The corners pixels of the foreground and background
are considered as seed pixels in this step.
The single-channel red-plane image I.q4 is segmented to
obtain the red-plane breast profile I’ which is used for further
processing.

3) NOISE REMOVAL FOLLOWED BY CONTRAST
ENHANCEMENT

The extracted breast tissue profile is filtered using anisotropic
diffusion (AD) filtering to remove unwanted noise. AD is an
iterative, nonlinear partial differential equation-based tech-
nique that smoothens only on either side of the detected
edge. This filtering process preserves the edges and the small
objects within an image that are significant for tumor detec-
tion in a thermogram [28]. For an unfiltered red-plane breast
profile I’ € RP*D1 | the AD filtering is given as

Iy, = div(g(IVI')VI') 3)

where ss is the scale-space parameter, V denotes the gradi-
ent, div(...) is the divergence operator, and g(|VI'|) is the
edge stopping function dependent on the magnitude of the
gradient. Equation (3) can be written in discrete form as

' / A ' '
L =100 s S e (VR )V @
ben,

where ss now denotes the number of times the filter is applied
(also called as scale-space parameter as mentioned above),
L is the discrete red-plane image at the ssth step, and a is
a pixel position in a discrete, 2-D grid. The constant A is a
scalar that determines the rate of diffusion, n, represents the
set of adjacent pixels of a, and |n,| denotes the cardinality
of the set n,. Vla(’sbs) represents the magnitude of the image
directional gradient from pi;(el a to b at the ssth filtlgation.
The directional gradient Vla(jf) is approximated by I —

II;(SS). In this work, AD filtering is implemented with eight
nearest neighbor pixels (and five discrete time steps (scale-
space parameter) that resulted in the final filtered red-plane
image Iy.

This filtered red-plane breast profile Ir € RP*O1 g
contrast-enhanced using contrast limited adaptive histogram
equalization (CLAHE) [29]. It enhances the local contrast of
an image making the tumor edges more prominent. CLAHE
is a variant of adaptive histogram equalization that computes
histograms of different sections (or regions) within an image
and redistributes the intensity values within the section (or
region) at a predefined clipping-limit 8 [29]. In this work, the
clipping limit is set to 0.01 and the clipped histograms are
redistributed as a uniform distribution to produce a contrast-
enhanced red-plane breast profile ... This single-channel
red-plane preprocessed breast thermogram /., is henceforth
written as / in all the following sections.
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TABLE 2. First-order statistical parameters.

FEATURE FORMULA
n .
p= Dim T 5)
n
where x; is the pixel intensity and n is the number of pixels of Ir or Iy,
MEAN at a time.
=2
2 T (=) ©
n—1
where o2 is the pixel variance, z; is the intensity value of each pixel, Z is
the mean value of all pixels and n is the number of pixels of Ir or Iy, at
VARIANCE a time.
RV > > = Ry D P
n—2 L —n 2 3
iy (T — )
where p is the mean of all pixel intensities, x; is the intensity value of
SKEWNESS each pixel and n is the number of pixels of I or Iy, at a time.
-1 L (g — )t
e ToETl L D
noAm (2 5n @i-w?)
where g is the mean of all pixel intensities, x; is the intensity value of
KURTOSIS each pixel and n is the number of pixels of I or Iy, at a time.
H = —sum(p. *logy(p)) ©)
ENTROPY where p is the normalized histogram counts of Ir or I, at a time.

B. FEATURE EXTRACTION FOR ASYMMETRY ANALYSIS
The temperature distribution is almost symmetrical in both
breasts in a healthy individual. The angiogenesis in a budding
abnormal growth alters the symmetrical temperature distri-
bution between the breasts. These asymmetrical temperature
distributions in an abnormal subject change the intensity
values of each breast thereby changing the statistical and
textural features of a breast thermogram.

The preprocessed red-plane breast thermogram [ €
R®P*1 is divided vertically along the center point of the
thermogram into two halves (or sides) Ige € RE*[Q/2D1
that is, one half is left breast I; € R®*I2/2D1 and the other
half is right breast Iz € RPXI2/2D1  for feature extraction. In
this work, statistical and textural features that highlight the
asymmetry between the left and right breast are extracted.

1) STATISTICAL FEATURES

The first-order statistical parameters, namely, mean, variance,
skewness, kurtosis, and entropy (as described in Table 2) are
calculated for each breast. These parameters serve as feature
values for classification.

However, lack of spatial information makes these features
fail to achieve accurate results in special cases such as the
breasts of a lactating mother where asymmetry in breast
temperatures is due to milk production and not due to an
abnormality.

2) TEXTURAL FEATURES

Textural features carry spatial information. The distinct
pixel intensity patch formed by the abnormal growth has
a wide variation of discrete red tone leading to a distinct
texture. This texture can be ascertained by several conven-
tional textural features such gray-level co-occurrence matrix
(GLCM) and gray-level run length matrix (GLRLM) fea-
tures. However, these conventional textural features are com-
putationally expensive and they quantize the image before
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calculating the features that can potentially remove relevant
details for abnormality detection [30]. Nonconventional tex-
tural features such fractal texture features have shown distinct
difference between a normal breast and an abnormal breast
of a subject [13]. In this article, various textural features,
such as FD, HE, spectral norm, and Frobenius norm for
both breasts in a thermogram, are calculated individually.
This work also introduces the concept of similarity of his-
tograms between left and right breast as a textural feature
for asymmetry analysis.

1) Fractal Dimension: FD of an image highlights self-similar
patterns within an image. It provides a statistical index of
complexity by comparing the changes in the pattern with that
of the scale at which it is measured [31]. An abnormality in
a breast changes the pattern of the thermogram as well as
the FD of the image. This work calculates FD by the well-
known box-counting method or reticular cell counting (RCC)
method for each breast. The FD of an image is calculated as

log(N)

()

where N is the total number of box count each of length L
which is calculated using the RCC method, and (1/r) is the
reduction factor according to the box length.

In the RCC method [32], a red-plane one side breast
thermogram of size (P x [Q/2]) is reduced to various boxes
of size L x L with corresponding gray levels. FD of the given
thermogram is proportional to the size of the box used. The
reduction factor is also dependent on the box size and is
given as

FD =

(10)

1
=2 (11)
p

Each box n € REXLXL' containing at least one gray level of
the image is considered a nonempty box. The gray level of
each box of size L is given by

v=|xg|
= X —
P

where G is the total number of gray levels (or 256). Thus,
the total box counts for the calculation of FD are given as

N = "ndi).
ij

For an image having size P x (P/2), a box length cannot
be more than the half of the image length L < (P/2). The
above procedure can be repeated using a window that moves
from left to right covering the entire image [33]. The window
size used in this work is 50 obtained through trial and error,
for the best classification result.

2) Hurst Exponent: HE also known as roughness expo-
nent represents the image pixel density fluctuations [34].
Abnormal breasts have higher image density fluctuations
or surface roughness than normal breast which in turn
favors asymmetry analysis. Abnormal breasts also disrupt

(12)

13)
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the self-similar (or self-affine) patterns within a thermogram.
For self-affine processes, HE is directly related to FD as
=(m+1)—-FD (14)
where FD is the fractal dimension of the one breast
thermogram with n-dimension (n = 2 in our case) [35].
3) Spectral Norm: Norms can be used for “measuring” the
similarity of two matrices and helps to quantify the differ-
ences between two matrices. The asymmetry between an
abnormal and normal breast can be identified based on this
norm value [36]. The norm of a matrix A is analogous to
vector norm and is denoted by |[|A||,. A matrix norm satisfies
the following conditions.

1) [lAl, =0 if A =0 otherwise |A] > 0.
2) |IkAllp = |k|[IA]lp-

3) A+ Bl = llAllp + IBllp-

4) [AB| < lAlp Bl

In this work, the spectral or 2-norm (p=2) of each breast
of the preprocessed breast thermogram is computed. The
spectral norm of either side of breast thermogram Igge is
defined as the largest singular value of Ige or the square root
of the largest eigenvalue of ar sidelside), Where & side denotes
the transpose of Igge. It can be written as

172 (15)

[ sigell2 = (largest eigenvalue of (IsTideIside))
4) Frobenius Norm or Hilbert—Schmidt Norm: Frobenius
norm or Hilbert—Schmidt norm can also be used to estimate
the similarity between two matrices [36]. The norm values
will change in case of any asymmetry between both breasts.
In this work, Frobenius norm of each breast Isjge € RF*12/2]
in the preprocessed thermogram [/ is calculated as

P Q)2
lsigellr = | D> il =y Tr(lsigellye)  (16)
i=1 j=1

where x;; is the pixel intensity of Igge € RPXQ/2D1 and Tr
is the matrix trace of (151d‘3151de) which returns the sum of
diagonal entries of the singular value matrix obtained from
each breast thermogram Ige.

5) Histogram Similarity: The histogram of an image is the
frequency distribution of the number of pixels at different
intensity levels which provides an estimate of the tonal distri-
bution within an image. Histograms also provide the texture
information within an image [37]. An abnormality in a ther-
mogram appears as a patch of pixels with different intensity
values and with a different texture. Therefore, comparing
the histogram of an abnormal and a normal breast highlights
the asymmetry between them thereby facilitating abnormality
detection. This work introduces histogram similarity as a tex-
tural feature and measures the degree of similarity between
the histogram of the left and right breast of the preprocessed
breast thermogram by estimating the correlation between the
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two. It is given as
> p(HL(B) — HL)(HR(B) — Hp)

Vs (HLB) — Hr) Xy (Hr(B) — i)’
(17)

C(Hy, Hg) =

where Hj is the histogram of the left breast I, and Hp is the
histogram of the right breast /g with B number of histogram
bins each, H; and Hg are the mean of histograms of left
and right breast, respectively. It is given as

1
= EZHk(B) Y  k=LR.
B

If the value of C(Hy, Hg) is almost 1 (above 0.9900), the
left and right breast histograms are considered similar and
both the breasts are considered symmetrical.

C. BILATERAL RATIOS FOR ASYMMETRY ANALYSIS
The statistical and textural features extracted in the previous
section differentiate an abnormal breast from a normal breast.
The idea of breast abnormality detection based on asymmetry
is well-known. However, this asymmetry has always been
characterized by the absolute mean difference of features
between the left and right breast of a grayscale thermogram.
Lack of normalization is the primary disadvantage of using
such difference-based asymmetry analysis [38]. This work
utilizes BRs of the extracted statistical and textural features
of the red-plane left and right breast thermogram for asym-
metry analysis. The BR is defined as the absolute ratio of
the feature value of the given breast and the feature value
of the other breast. BR can be computed either as BRy g or
BRgrL and given as

Feature value of left breast

BRiRr = . (18)
Feature value of right breast
Feature value of right breast 1

BRRrL = = . (19)
Feature value of left breast BRir

A value of BR close to one indicates symmetry while a
value of BR away from one indicates asymmetry. For each
feature, if the value of either BRig or BRgr is close to
one, it will indicate symmetry. A subject with majority of
features with symmetrical BR values is considered normal
while a subject with majority of features with asymmetrical
BR values is considered abnormal.

D. CLASSIFICATION: ABNORMAL AND NORMAL

The classification algorithm used in this work is a hard
voting ensemble-based classification algorithm as shown in
Fig. 3. For a thermogram, the decision of classification into
abnormal or normal is done by the BR (BR{r or BRry) of
each feature individually. The decisions made by each feature
individually are combined using hard voting (or majority
voting) to predict the final classification. This implies that
if the majority of BRs indicate asymmetry between the left
and right breast, the subject is classified as abnormal while
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FIGURE 3. Hard voting ensemble-based classification algorithm.
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TABLE 3. Details of the type and number of subjects.

Type of subjects Ann Arbor | DMR dataset
Normal non-lactating female 3 26

Abnormal non-lactating female | 11 43

Normal lactating female 1 0

Abnormal Male 1

Total no. of subjects (85) 16 69

if the majority of BRs indicate symmetry between the left
and right breast, the subject is classified as normal.

In an ideal scenario, the BRs of features from symmet-
rical breasts of a subject should be 1. However, in real
time, sweating or any other unavoidable bodily functions
may cause slight elevation of temperature in certain areas of
breast. This can be identified as an abnormality thereby pro-
ducing high false positives. Thus, a margin of error (MOE)
or threshold is introduced to bound the BR values (either
BRir or BRgp) close to 1 for asymmetry analysis. For
example, when 10% MOE is considered, BR values of all
thermograms (either BRi g or BRpy) should be less than a
threshold of 1.10 to be considered symmetrical, else will
be considered asymmetrical. In this work, the thresholds are
varied from 1 to 1.15 (0% MOE to 15% MOE) and classi-
fication accuracy is calculated at each threshold value. An
optimum threshold (or MOE) is obtained when the classifica-
tion accuracy is maximum. A detailed analysis of the effect
of threshold variation on classification accuracy is shown in
Section III.

lll. EXPERIMENTATION

A. DATASET USED

A total of 85 breast thermograms taken from Ann Arbor
thermography [39] and DMR, Visual Lab [40] has been
used for experimentation in this work. These thermograms
are standardized front view thermal images (containing both
breasts) of size 640 x 480 pixels. Diagnosis is available in
all cases. The dataset-wise and subject-wise details of the
85 thermograms used are given in Table 3.

The DMR database was recorded with a FLIR SC-620
thermal camera that has a sensitivity of less than 0.04 °C and
range of capture of —40 °C to 500 °C, however, the details
of the infrared camera used in Ann Arbor thermography

4500214



DEY et al.: BILATERAL SYMMETRY-BASED ABNORMALITY DETECTION IN BREAST THERMOGRAMS

Average training accuracy variation with threshold (20 trials)

100 T

95 |-

90 —

I

% -+
80 [ e i
.
p g
/ /
T // /'/
/

—¥—
H—*—’—
]

N
AN

Accuracy (in %)

655~

e

-

F— Red plane images- Textural features :]
3— Gray images- Textural features
Red plane images- Statistical features

—F— Gray images- Statistical features

1 1.05

FIGURE 4. Average training accuracy variation with threshold over 20 trials.

are not available. Both the databases were collected fol-

lowing the preexamination preparation protocols outlined
by AAT [24].

B. RESULTS

Repeated hold-out cross-validation technique is used to test
the performance of the proposed methodology. In this cross-
validation technique, an 80%-20% random split of the
dataset into training and testing is done and the split is
repeated for several trials. To provide an exhaustive analy-
sis of the proposed methodology, classification performance
using statistical and textural features is evaluated. A com-
parison of grayscale images and red-plane images has also
been done to highlight the superiority of using red-plane for
abnormality detection. All experiments were performed on
MATLAB 2021b.

1) THRESHOLD VARIATION

The training dataset is used to estimate optimum threshold
value. The threshold is varied from 1 to 1.15 and at each
threshold value, training accuracy is calculated. The thresh-
old value at which the training accuracy is maximum is
considered as optimum threshold. This optimum threshold
is used to test the performance of the proposed method-
ology on the testing dataset. The dataset random split is
repeated and the performance of the proposed methodol-
ogy is evaluated over 20 trials. The performance metrics,
namely, accuracy, sensitivity, specificity, and Fl-score, is
obtained at each threshold value. Fig. 4 shows the average
training accuracy with standard deviation of the proposed
methodology at each threshold value over 20 trials using
red-plane and grayscale images with statistical and tex-
tural features. Similarly, Figs. 5-7 show average training
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sensitivity, average training specificity, and average training
F1-score, respectively.

It is observed in Fig. 4 that, for all cases, the average
training accuracy increases with increase in threshold val-
ues and reaches a maximum at optimum threshold. Further
increment of threshold value decreases the average training
accuracy. The optimum threshold value obtained at each trial
is used to evaluate the performance of the proposed method-
ology with the testing dataset. Fig. 5 shows that the average
training sensitivity increases with the increase in threshold
values and then saturates after a particular threshold value
while Fig. 6 depicts the decrease of average training speci-
ficity with the threshold values. The threshold variation from
1 to 1.15 helps to achieve a balance between sensitivity and
specificity. Average training Fl-score as seen in Fig. 7 has a
similar trend as that of average training accuracy. From the
above figures, it is seen that the red-plane thermograms with
textural features have the best training performance metrics.

2) PERFORMANCE METRICS

The optimum threshold obtained in each trial with train-
ing data is used to test the performance of the proposed
methodology with the testing dataset. Table 4 shows the
average performance metrics of the proposed methodol-
ogy with standard deviation for abnormality detection over
20 trials.

It is observed that red-plane images with textural fea-
tures have the highest accuracy, sensitivity, specificity,
and Fl-score with least standard deviation. Grayscale
images with textural features perform slightly better
than red-plane images with statistical features but with
a larger standard deviation. It can be observed that
the red-plane images have significantly higher average
performance metrics with lower standard deviation when
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TABLE 4. Performance metrics of abnormality d

ion using

ical and textural features on testing data at optimum thresholds.

Features —

Statistical

Textural

Metrics |

Gray images

Red-plane images

Gray images

Red-plane images

Accuracy (in %)

85.59 = 7.01

89.41 £ 5.60

91.47 £+ 5.87

96.08 + 3.87

Sensitivity (in %)

87.01 &+ 5.54

90.48 + 4.43

94.74 £ 5.21

100 £ 0

Specificity (in %)

86.77 + 15.64

89.95 + 11.12

88.26 + 12.21

93.57 £ 7.29

F1-score (in %)

89.00 £ 5.87

92.00 + 5.18

93.20 £+ 4.90

96.62 + 3.23

100

Average training
T

(20 trials)
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FIGURE 6. Average training specificity variation with threshold over 20 trials.

compared to grayscale images. Textural features improve
the classification performance significantly when com-
pared to statistical features irrespective of grayscale or
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red-plane breast thermograms. The proposed methodology
achieved the best average performance in terms of accu-
racy, sensitivity, specificity, F1-score, and the lowest standard
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FIGURE 8. Identification of right abnormal breast.

deviation with proposed textural features for red-plane breast
thermograms.

IV. IDENTIFICATION OF THE ABNORMAL BREAST OF
ABNORMAL SUBJECT
In this work, a novel singular value-based method is intro-
duced to identify the abnormal breast of the detected
abnormal subject. SVD of the left and right breast of
the abnormal subject is performed. SVD is a form of
factorization such that

Liide = UsidezsidevT

side (20)
where Usjge and Viige are orthonormal matrices, and Xgjge 1S a
diagonal matrix. The real, non-negative diagonal entries of X
are square roots of the eigenvalues of I;ridelside and are called
singular values. The singular values o; are usually sorted in
decreasing order so that ¥ = diag(oy, 02, ..., opg/2)) with
o1 =02 > -+ > 079/2] = 0. Lige 1s said to have a rank ride
if the SVD of Isge has » number of nonzero components.
The large singular values contain more image information
as compared to small (near 0) singular values. An image
with no edges has less information or a smaller number of
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large singular values whereas an image with edges or sudden
changes in pixel intensities has more information or greater
number of large singular values [41]. The decay of singular
values in an image with edges is slower as compared to the
decay of singular values in an image with no edges. Thus,
a breast with abnormality (tumor edges present) will have a
slower decay of singular values as compared to a breast with-
out abnormality. In this work, this idea for abnormal breast
identification of an abnormal subject is exploited. After the
proposed methodology detects an abnormal subject, SVD
is done for both the breasts. The decay D is estimated by
calculating the difference of the first and second singular
values normalized by the first singular value for each breast

01 — 02

D= 1)

o1

The breast with the lower decay value D is classified as
the abnormal breast.

if D of left breast < D of right breast then
Abnormal breast: Left
else if D of right breast < D of left breast then
Abnormal breast: Right
end if
For the thermogram of the subject along with their
detected right abnormal breast based on the proposed
methodology shown in Fig. 8, the first two singular val-
ues and the decay of the values D of each breast, are
presented in Table 5. The D of the right abnormal breast
is lower than that of the left normal breast. Similarly, the
thermogram of another subject with their detected left abnor-
mal breast based on the proposed methodology is shown in
Fig. 9 and its corresponding first two singular values and the
decay of the value is shown in Table 6. The D value of the
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TABLE 5. SVD values for a subject with right abnormal breast in Fig. 8.

Red-plane Image | o3 o2 D
Left Breast 209.7732 | 38.9855 | 0.8142
Right Breast 110.2271 | 47.9264 | 0.5652

Original thermogram Abnormal breast (Left)

“x s £

Temperature (in°C)

FIGURE 9. Identification of left abnormal breast.

TABLE 6. SVD values for a subject with left abnormal breast in Fig. 9.

Red-plane Image | o3 o2 D
Left Breast 93.0563 40.3399 | 0.5665
Right Breast 125.2968 | 41.4004 | 0.6696

left abnormal breast is lower than that of the right normal
breast.

However, these figures only show preliminary results for
abnormal breast identification because of the lack of ground
truth for identification of abnormal breast in the DMR
dataset. The observations are validated based on the ground
truth available for the Ann Arbor thermography dataset. The
observations were validated on all the 16 subjects available in
the Ann Arbor thermography dataset, reaching an accuracy
of 98%.

V. COMPARISON WITH RECENT STATE-OF-THE-ART

Out of all the state-of-the-art works shown in Table 1, [15]
achieves the highest accuracy of breast abnormality detection
of 95%. In this work, an extensive comparison with [15],
the best performing state-of-the-art is presented.

In [15], a novel asymmetry-based methodology using seg-
mented region of interest (ROI) to identify subjects with
abnormal breasts is proposed. In this state-of-the-art, the
breasts were extracted together using vertical and horizontal
projections. (Readers are directed to [15] for more details.)
Following this, the extracted breasts were segmented using a
bifurcation point between the breasts obtained by interpolat-
ing and fitting infra-mammary curves (or Catenary curves)
on both breasts. The obtained bifurcation point was used as
the point of division of the left and right breast for asymme-
try analysis. After bifurcation, the so-obtained breasts were
considered as ROI. The absolute difference of statistical
parameters of the extracted ROI, such as mean, variance,
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skewness, kurtosis, and entropy, were used as features. An
SVM classifier was used for the classification of normal and
abnormal breasts.

In order to evaluate the state-of-the-art, the same dataset
used in this article was considered. An 80%—-20% split of
the data was done to form the training and the testing
sets. Five different trials were conducted by doing random
80%—-20% splits of the data to form five different training
and testing sets. The following experiments were performed
to extensively compare with [15].

1) Model-1: Reimplementation of the algorithm in [15]
with the dataset used in this work.

2) Model-2: Breast segmentation using the curve seg-
mentation technique in [15] followed by the proposed
methodology of this article.

3) Model-3: Breast segmentation given in Section II-A2
with the classification algorithm using an absolute
difference of features as proposed in [15].

An advantage of the proposed work is the utilization
of global features as compared to the majority of work
in [7], [11], and [15], that uses local features from the ROI
for classification. The estimation of correct ROI for fea-
ture extraction is extremely controversial without appropriate
ground truths. It can be speculated that using bifurcation
points for the division of the left and right breast may be
advantageous, however, the comparison results (Model-2 and
Model-3) suggest that such calculations unnecessarily aug-
ment the complexity of the methodology. The computational
complexity of the proposed classification algorithm is O(1)
while the computational complexity of the state-of-the-art
SVM classifier is O(n?) (where n is the number of training
samples). The following observations can be made from the
detailed comparison shown in Table 7.

1) The performance of the algorithm in [15] when
reimplemented is found significantly inferior to the
performance of the proposed methodology in this work.

2) The performance of the ML model [with a computa-
tional complexity of On?)] in [15] is similar to the
performance of the proposed non-machine learning
threshold-based methodology [with a computational
complexity of O(1)] using the statistical features
of gray images. This indicates that the proposed
non-ML methodology which has significantly less
computational complexity can perform at par with the
state-of-the-art ML technique.

3) The performance of the proposed methodology with
the curve segmentation technique used in [15]
(Model-2) is found slightly inferior to the performance
of the proposed methodology without curve segmen-
tation. This may be due to the presence of unique
subjects in the dataset used such as a subject with mas-
tectomy done or a male subject for which the catenary
curves fail to segment breasts (due to the absence of
curvature).
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TABLE 7. Comparison of performance with [15] (all metrics in %).

Features — Statistical Textural
Models | Gray images Red-plane images Gray images Red-plane images
Accuracy= 84.70 & 5.26
Sensitivity= 84.62 £+ 5.31 . . .
Model-1 . Not applicable Not applicable Not applicable
Specificity= 76.67 £ 11.13
Fl-score= 84.62 £+ 5.31
Accuracy= 84.71 + 6.89 Accuracy= 88.75 + 7.18 Accuracy= 87.50 + 5.69 Accuracy= 89.75 + 5.80
Model-2 Sensitivity= 89.4 £ 6.66 Sensitivity= 88.02 + 6.01 Sensitivity= 86.47 + 5.53 Sensitivity= 94.55 + 4.98
Specificity= 78.33 £ 12.94 | Specificity= 90.33 £ 10.91 | Specificity= 90.00 £ 9.36 Specificity= 90.00 £ 8.94
Fl-score= 88.04 £+ 5.07 Fl-score= 91.60 £+ 6.37 Fl-score= 91.80 + 7.44 Fl-score= 91.39 + 5.62
Accuracy= 78.75 £+ 5.59 Accuracy= 83.75 & 6.48 Accuracy= 86.25 + 6.15 Accuracy= 87.50 & 5.84
Model-3 Sensitivity= 77.36 + 5.66 Sensitivity= 82.18 + 6.52 Sensitivity= 85.05 £ 7.81 Sensitivity= 89.67 £ 6.91
Specificity= 90.33 & 14.91 | Specificity= 90.02 + 13.58 | Specificity= 90.00 £ 11.18 | Specificity= 89.33 £ 10.27
Fl-score= 86.45 + 6.39 Fl-score= 89.40 £+ 5.91 Fl-score= 90.92 + 5.38 Fl-score= 91.06 + 4.69

4) The performance of the proposed methodology with
the absolute difference of the statistical and textural
features (Model-3) is significantly inferior to the
performance of the proposed methodology with the
BRs of the features. This confirms the superiority of
BRs of the features over the absolute difference of the
ratios for classification purposes.

From the above observations, it can be concluded that the
proposed methodology in this work outperforms the state-
of-the-art in terms of performance with less computational
complexity. It can be applied in data-limited and resource-
limited real-life scenarios.

VI. CONCLUSION

This pilot study proposes a novel, computationally inex-
pensive, threshold-based non-learning methodology using
red-plane asymmetry analysis of breast thermograms for
breast abnormality detection. The BRs of several known tex-
tural features, such as FD, HE, spectral and Frobenius norm
along with a novel histogram similarity-based textural fea-
ture, have been proposed for asymmetry analysis of breast
thermograms. An extensive comparative analysis between
the textural features and statistical features of red-plane and
grayscale thermograms has been presented. Textural features
of the red-plane of RGB breast thermogram have been used
for abnormality detection and are shown to be better than
statistical features. Abnormality detection results obtained
using red-plane thermograms was considerably higher than
those obtained using grayscale thermograms. An exhaustive
comparison with the current state-of-the-art has also been
provided to show the superiority of the proposed method-
ology. The proposed methodology was evaluated on two
publicly available datasets, namely, DMR dataset and Ann
Arbor thermography dataset and it outperformed the current
state-of-the-art, achieving an accuracy of 96.08%, sensitivity
of 100%, specificity of 93.57%, and F1-score of 96.62%. A
novel SVD-based technique to detect the abnormal breast of
an abnormal subject has also been proposed. This technique
has been validated on limited dataset with available ground
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truth achieving an accuracy of 98%. Further validation
with more datasets with adequate ground truths will be
investigated as part of future work. Modifications of the
proposed methodology for SBBC identification along with
a detailed noise analysis, different color domain analysis,
fuzzy-rule-based threshold selection, and feature importance,
will be conducted as future work along with the order of
importance of the features.
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