
Received 24 June 2023; accepted 16 July 2023. Date of publication 4 August 2023; date of current version 25 August 2023.
The review of this paper was arranged by Associate Editor Amitava Chatterjee.

Digital Object Identifier 10.1109/OJIM.2023.3301861

Evaluation of a Combined Conductive Fabric-Based
Suspender System and Machine Learning Approach

for Human Activity Recognition
NEELAKANDAN MANI 1, PRATHAP HARIDOSS1, AND BOBY GEORGE 2 (Senior Member, IEEE)

1Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

CORRESPONDING AUTHOR: N. MANI (e-mail: pymani2010@gmail.com)

ABSTRACT Accelerometer-based human activity recognition (HAR) wearable systems are location-
centric and noisy, needing multiple sensors with complex signal processing and filtering mechanisms.
A recently reported alternative approach using a wearable suspender integrated with strain sensors and
machine learning presented a viable option for nonlocalized measurement with less noise and better recog-
nition capabilities. The washability and wearability of the strain sensor instrumented suspenders due to the
physical wires are limited, and the power consumption is higher, which needs to be minimized to extend
the battery life of the wearable device. This article proposes an improved body-worn suspender-based
HAR system built using a conductive knit jersey fabric material that overcomes the existing strain sensor-
based wearable device’s limitations and at the same time provides improved sensitivity. The proposed
suspender system recognizes 14 human activities using machine learning and deep learning algorithms
with the best accuracy of 98.11%. A performance comparison of machine learning models based on two
dimensionality reduction techniques using kernel and linear discriminatory analysis was conducted. The
kernel-based method outperformed the linear one in recognizing human activities across all classifiers.
The durability of the wearable is tested by washing the sensor, and the recognition capabilities were
consistent before and after the wash.

INDEX TERMS Conductive fabric sensor, deep learning, e-textile, human activity, human activity
recognition (HAR), machine learning, smart textile, wearable.

I. INTRODUCTION

ARELATIVELY active research field in recent years is
the area of human activity recognition (HAR) due to

the need for pervasive and ubiquitous sensing applications.
Automatically identifying and monitoring a person’s activity,
without interfering with the freedom of movement or pri-
vacy is of importance considering the aging population [1].
Computer vision [2] and wearable types [3], [4] form the
primary category of HAR classification, with camera-based
systems being expensive and prone to privacy and pervasive
issues. Human activity groups itself into simple and complex
types [5] based on simple single actions, such as standing,
sitting, and walking, and complex multiple steps performed
simultaneously, such as drinking, eating, and typing while
sitting, respectively.

Implementing HAR using smartphones’ built-in
accelerometers and gyroscope sensors [6], [7], [8] has
been an extensive research area with these ubiquitous
smartphones and accelerometer-based systems suffering
from position localization and drift issues [1], [9], [10].
A good example of this limitation is that an accelerom-
eter on the chest cannot provide sufficient information
when a person is working on the computer [4], which
is a complex activity. Increasing the number of sensors
and combining other sensors for sensor fusion [11] or
changing the location can be solutions to overcome this
limitation, but it will increase the obtrusiveness of the
wearable device and result in complex algorithms [12] and
data processing. Accelerometers are more prone to noise
requiring smoothening of data, increasing the complexity
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TABLE 1. Comparison of existing systems in the literature.

of data processing. Older people use their smartphones less
frequently and may only sometimes carry them.
Our earlier work [13] addressed these limitations from

accelerometer-based systems using a novel smart suspender
integrated with strain sensors that are part of daily clothing
resulting in low drift, nonlocalized, and less noisy measure-
ments. As the wearable was covering significant portions of
the body that resulted in overcoming the position localiza-
tion limitation with the accelerometer-based systems. This
approach had limitations as it was difficult to wash these
instrumented suspenders, which limits the device’s usage,
wearability, and durability. The system had wires running
along the suspender length that hinder the natural use of the
suspender and less washable. Also, the sensor system’s power
consumption must be optimized to increase the wearable’s
battery life.
This article aims to develop a wearable HAR device that

seamlessly blends with commonly worn garments, enabling it
to effectively monitor human activities. By establishing direct
contact with multiple body regions, just like regular clothing
does, the proposed device can capture comprehensive data
on the subject’s movement.
In contrast to the existing accelerometer-based schemes

that solely measure acceleration at their specific installation
point, the proposed fabric sensor-based device stands out
as a less noisy alternative, capable of reliably capturing the
human activities with low drift, less noise, and nonlocalized
measurements. When compared to the strain sensor-equipped
suspender [13] that had limitations in wearability, washa-
bility, and power requirements, the proposed fabric-based
wearable suspender system surpasses them by providing 1) a
reliable measurement of human activities, while maintaining
a lower level of noise with increased wearability, washability,
and 2) less power requirement. A comprehensive comparison
of the existing system with the proposed system is provided
in Table 1.

In line with this objective, we propose a new fabric-
based wearable suspender sensing system for HAR using
machine and deep learning that improves the wearabil-
ity, durability, and power consumption limitations for the
one presented in [13] that used strain sensors. It also
overcomes the limitation of the existing accelerometer-based

systems by having low drift, less noise, and nonlocalized
measurements.
The remainder of this article is as follows. Following a

review of related research in Section II, Section III deals
with the proposed wearable, its development, data gathering,
feature extraction, and classification. Sections IV and V deal
with results and discussion, followed by a conclusion.

II. BACKGROUND AND RELATED WORK
Most reported systems use accelerometers alone or in
combination with other sensors like gyroscopes, magne-
tometers, compasses, pressure sensors, body temperature
sensors, electromyography systems, oximetry sensors, and
electrocardiographs, employed as standalone devices or as
part of smart devices, such as smartwatches or smart-
phones [1], [3], [4], [6].
When assessing ambulation activities with a wrist-

worn smartwatch, inaccurate activity estimations can occur
because of unintentional arm movements [4]. When separat-
ing eating behaviors from noneating ones, Dong et al. [14]
showed an accuracy of 81% using a wrist-worn accelerom-
eter. A wearable system’s ability to recognize a complex
activity is significantly hindered during a complex activity
such as a person eating while seated.
Chen and Shen [15] tested the smartphone sensor

performance for HAR for five different activities in their
work. They concluded two significant problems: 1) the diver-
sity of the positions and orientations of the phones and 2) the
general accuracy of the sensors in the phones. In [10], it is
evident from the trials that when the user stops and sits on
a chair, the accelerometer cannot collect the data effectively.
A suspender is an item of everyday clothing, especially for

elders. Suspenders with strain sensor was presented in [13] as
an alternative to avoid positioning problems associated with
accelerometer-based systems. The prototype uses a wear-
able suspender integrated with three metallic strain sensors
as part of a commercial weighing scale on the three ends of
the suspender arms that measure the strain produced on the
instrumented worn suspenders from various human activities.
Strain levels corresponding to human activities are digitized,
processed, and the activities are classified. The main lim-
itations of this system are the durability and wearability
constraints, physical wires that limit reliability, and the sus-
pender usage and higher power requirements. In this article,
we propose an alternate extended and enhanced wearable
suspender using a conductive fabric-based sensor material
that is stitched on the suspender to overcome the limitations
of the recently reported suspender system in [13] and other
existing accelerometer-based systems [1], [4], [14], [15].
The output signal from the conductive fabric-based sus-

pender system corresponds to human activities performed but
the pattern observed from each activity type cannot be eas-
ily deciphered to recognize the activity. Combining machine
learning and deep learning methods with the conductive
fabric-based sensor, classifying the activities performed using
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FIGURE 1. Pictorial representation of the proposed suspender system. Sensor-R and Sensor-L are the conductive fabric sensors introduced on the right and left sides of the
suspender, and Sensor-B is located at the back. The inset shows the conductive fabric stitched in the suspender.

the output patterns observed from the suspender system
results in HAR.

A. DATA PROCESSING FOR HAR
The HAR’s preprocessing method uses sliding or transition
windows with predetermined periods as part of the time-
series segmentation. Standard HAR measurements produce
the vector of attributes from each window [16], [17], [18],
using the time and frequency domain features as part of
extracting the necessary features.
The selection of discriminatory analysis and the choice

of machine learning models for evaluation is based on the
models that were successful and widely used for HAR prob-
lems [1], [5], [8], [16], [19], [20], [21], [22], [23], [24], [25],
[26], [27]. The dimensionality reduction is performed using
discriminatory analysis methods—linear discriminatory anal-
ysis (LDA) [5], [19] and kernel discriminatory analysis
(KDA) [8]. Similar to [13], the most used machine learning
and deep learning approaches for classifying HAR activi-
ties [1], [16], [20], [21], [22], [23], [24], [25], [26], [27],
such as k-nearest neighbor (KNN), support vector machine
(SVM), support vector classifier (SVC), random forest (RF),
decision tree (DT), gradient boosted DT (GBDT), logistic
regression (LR), and long short-term memory (LSTM), are
used as classifiers to identify the best model for HAR using
the proposed suspender sensing system.

III. SYSTEM AND ITS COMPONENTS
A pictorial diagram representation of the proposed conduc-
tive fabric-based suspender system is illustrated in Fig. 1.
The proposed system consists of a suspender stitched with a
textile-based sensor that changes resistance in response to the

stretches and compressions the worn suspender experiences
due to diverse human activities.

A. SYSTEM DESIGN AND PROTOTYPE DEVELOPMENT
The textile sensor-based suspender system is realized using a
conducting knit jersey fabric from Adafruit [28]. This fabric
is a bidirectionally stretchable fabric with 63% cotton, 35%
silver yarn, and 2% spandex. It has a resistance variation of
1.5 �/cm across rows in a stretchier direction and 15 �/cm
across columns in a less stretchy direction. The material is
washable and has a good sensitivity for capturing variations
in human activities. This textile sensor is used as an electrode
in [29] and [30].
The sensor consists of the conducting fabric cut in the

form of a U shape as in Fig. 1, with a length of 52 cm on
the left and right arms of the suspender and each leg of the
U-shaped sensor on each arm measuring 1 cm width. In the
back arm of the suspender, which is shorter, the length of the
sensor material is 14 cm, with each leg of the sensor having
a 1 cm width. The sensor fabric is stitched on the arms of the
suspender using regular nonconducting thread with the help
of a standard sewing machine. The ends of each sensor act
as the leads for the sensor that are covered using a 10-mm
adhesive copper tape to secure the connection between the
sensor and microcontroller (μC). The inset in Fig. 1 shows
the conductive fabric stitched onto the suspender. Under the
two metal buckles of the suspender that are used for adjusting
the length, a layer of insulating material is fastened to ensure
no interference between the buckles and the fabric sensor.
The end leads from the sensor are connected to a voltage

divider with a 1-k� pull-up resistor to convert the resis-
tance changes from the body movements of the suspender
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FIGURE 2. Subjects wearing the prototype of the suspender sensor system. A
photograph of the prototype system developed is shown in (a). (b) Functional
diagram, i.e., conductive fabric sensors, µC, and wireless data transfer unit.

to corresponding voltage signals. The voltage divider is
powered by a 3.3-V power supply available as part of the
μC, where the output voltage Vout from the voltage divider
is expressed as

Vout = Rsensor/(Rsensor + 1k�) × 3.3 (1)

where Rsensor is the resistance of the conducting fabric sensor.
The Xiao nRF52840 μC from Seeeduino [31] is thumb-

sized (21 mm × 17.5 mm) with Bluetooth low energy (BLE)
capabilities which provides ultralow power consumption of
5 μA in deep sleep mode along with battery charge man-
agement that makes it a suitable choice for this lightweight,
miniaturized, low power wearable application. The analog
signals from the sensor are digitized using the 12-bit ADC
of the μC, which is then wirelessly sent in real time to
mobile and PC. It is logged for activity recognition and
identification. The sampling frequency is 20 Hz, which is
sufficient to capture all human movements [32]. The power
supply for the μC is from a 500-mAh lithium-polymer bat-
tery (702035 type), and the whole unit is powered from the
3.3-V supply of the μC.
The voltage divider and the μC, along with the connecting

leads from the sensor, are assembled in a tiny board of
dimension (4.8 cm × 3.5 cm × 9 cm) and secured on the
leather back portion of the suspender where all three arms
of the suspender are joined together as shown in Fig. 2.
The entire signal processing and transmission setup is very
light in weight, ∼45 g and also uses low power of 50 mW
resulting in 37 h of uninterrupted operation of the wearable
device before the next recharge.

B. DATA COLLECTION AND PROCESSING
Eight subjects wore the suspender system, four men and
four women, performing 14 activities provided in Table 2.
The subjects’ height varied from 153 to 177 cm, and their
weight varied from 58 to 93 kg, representing a diverse mix
of the broader population. Subjects spent 28 min on all 14
activities, and 268 273 data points were collected, with an
average of 33 534 data points per subject with a standard
deviation of 835. Handwashing activity could not be carried
out by subject #4 due to an injury on the left hand. Fig. 3
shows the data collected from each subject. Fig. 4 provides
output waveforms of a subject performing all 14 activities.

TABLE 2. Activities—categories.

FIGURE 3. Subject wise data collected on activities.

From the waveforms, it is clear that using the data from the
three sensors captures distinct patterns that represent each
activity.
The schematic of the stages involved in the classifica-

tion of human activities is provided in Fig. 5. The data
from the three sensors of the suspender is preprocessed
by normalizing and segmentizing the time-series data. The
extraction of features forms the next stage, where the time
and frequency domain-based features are extracted from
each time-segmented data window. Dimensionality reduction
of the features is performed using discriminatory methods
to reduce the complexity of the multiple dimensions while
retaining the feature information. Finally, we use eight differ-
ent classifiers utilizing machine learning and deep learning
techniques to recognize human activities and to identify
the best-performing classifiers for the proposed suspender
system.

C. PREPROCESSING
Due to the varying length of the suspender between the front
and the back arms, the resistance variation between the front
two sensors and the back varies significantly. Hence, the
normalization of the values Xn is done on every datapoint
Xi for a sensor using the maximum and minimum values
Xmax and Xmin, respectively, as given in

Xn = Xi − Xmin/(Xmax − Xmin). (2)

The normalized time-series data obtained is segmented using
a sliding window to determine the features. For the current
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FIGURE 4. Sensors’ output waveforms for a subject performing activities wearing the conductive fabric-based suspender. Waveforms in the top (a) are observed when the
user is performing activities while standing and the one in the below (b) shows the waveforms when the user is performing activities while sitting.

work, we chose 500 observations as the sliding window and
20 as the step size to balance the segmentation precision
and computational load. As reduced window size resulted in
reduced precision of identified activities, this window size
is selected for this work.

D. FEATURE EXTRACTION
Post segmentation, the feature extraction step from each time
segment was carried out using time and frequency domain
signal features. Fourteen feature groups corresponding to 47
features encompassing the time and frequency domains were
extracted resulting in a comprehensive feature set as shown
in Fig. 5.

Table 3 provides the list of feature extraction functions
used, description, and the number of features.

1) TIME-DOMAIN FEATURES

Statistical time-domain features, such as mean, stan-
dard deviation, mode, maximum, minimum, interquar-
tile range, signal magnitude area, first four autoregres-
sion coefficients, correlation coefficient, signal entropy,
skewness, and kurtosis, were extracted from each time
segment.

2) FREQUENCY-DOMAIN FEATURES

In order to obtain the frequency-domain feature, the fast
Fourier transformed values are used to obtain the signal
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FIGURE 5. Schematic of the machine learning processing for classification.

TABLE 3. List of feature extraction functions.

spectral energy levels for each sensor across various activ-
ities. The average of the spectral energy across these three
sensors is also utilized in feature extraction.
All features were extracted from each sensor of the sus-

pender except for signal area magnitude and average energy,
which are computed as an aggregate from all three sensors. A
total of 13 389 time segments were created with 47 features,
with each segment labeled with the corresponding activity,
and this forms the input feature space for machine learning
and deep learning algorithms.

E. DIMENSIONALITY REDUCTION
For reducing the dimensionality of the feature space, LDA
and KDA are used. LDA and KDA reduce dimensions by
finding a lower-dimensional representation that maximizes
class separation, achieved by minimizing within-class scat-
ter and maximizing between-class scatter [5], [8], [9]. LDA
uses the linear function, whereas KDA uses the radial basis

function (RBF) to achieve the reduced dimensionality. The
dimensionality of the input dataset is reduced from 47 to 13
using LDA and KDA. The adjustable parameters used are
threshold value for singular value and the number of compo-
nents which is set to 0.001 and 13, respectively. The feature
subspace is reduced to lower dimensions using the eigenvec-
tors obtained from scatter matrices where each eigenvector
corresponds to the combination of features from the origi-
nal feature space. As an example, the primary dimension in
the reduced dimension uses the top contributing features of
mean standard deviation, minimum, and energy of left and
back sensors, respectively. Similarly, other dimensions are
derived based on the combination of input features.

F. CLASSIFICATION
We have used eight machine-learning models to evaluate
the HAR classification performance using the custom-made
sensors deployed as part of the suspenders. KNN, SVM,
SVC, RF, DT, GBDT, LR, and LSTM were deployed on
the reduced feature space from LDA and KDA, respectively.
The objective of using multiple models and techniques is to
find the best-performing model and the suitable dimensional-
ity reduction methodology for addressing the HAR problem
for the proposed suspender system. All the models and
classifiers are implemented using Python using appropriate
machine learning and deep learning functions and packages.
Hyperparameters are tuned using gridsearchCV from sci-kit
learn, which implements a fit and score method for doing
an exhaustive search over the specified parameter values for
an estimator. Fivefold cross-validation is performed on all
the models.
KNN works by finding the nearest neighbors of a new

data point and predicting its value based on the values of
its neighbors, and the tuned hyperparameter value of 1 is
used for k in both LDA and KDA. The search space for the
hyperparameter k was the values between 1 and 5.
SVM and SVC find the optimal hyperplane to separate

data into different classes with a maximum margin between
them. SVM uses RBF kernel, and SVC uses linear one to
accomplish the model. The SVC model uses the tuned hyper-
parameter values of C at 0.5 and 0.25 for LDA and KDA,
and SVM uses C and gamma values of 1 and 1, 0.125 and
0.01 for LDA and KDA, respectively. The search space for
hyperparameter C for SVC used was 0.25, 5, 1, 2, 4, and 8.
For SVM, the search space used for C and gamma hyper-
parameters was 0.125, 0.25, 0.5, 1 and 0.01, 0.1, 1, and 2,
respectively.
A DT builds a tree and recursively partitions it based on

the most informative feature with max depth parameter tuned
at 9 and 8 for LDA and KDA. The maxdepth hyperparam-
eter search space used in this study was between 4 and 10.
GBDT is an ensemble algorithm that combines multiple DTs
by iteratively improving the accuracy using gradient descent.
The max depth and no of estimators were tuned at 6 and 130
and 5 and 120 for LDA and KDA. The number of estimators
hyperparameter search space used was between 120 and 150
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and for maxdepth hyperparameter, it was between 3 and 10.
RF builds multiple DTs and combines their predictions with
high accuracy and low overfitting. The max depth and no
of estimators were tuned to be 14 and 130 for LDA and 4
and 10 for KDA. The number of estimators hyperparameter
search space used was between 10 and 200 and for maxdepth
hyperparameter, it was between 4 and 15. LR uses the max-
imum likelihood to estimate the probability of membership
in a category, and the C value was 20 in both LDA and
KDA, respectively. The search space used for C values was
20, 25, 30, 35, and 40.
In the deep learning LSTM model, the input feature vector

forms the input layer, followed by two layers of 512 hid-
den memory nodes. A rectified linear unit (ReLu) activation
function is used between input and across hidden layers.
The output layer uses the Softmax function with categorical
cross entropy used as the loss function. A batch size of 16
with 25 epochs is used. In order to evaluate the classifiers,
the following metrics are calculated:

Accuracy = (TP+ TN)/(TP+ TN + FP+ FN) (3)

Precision(PR) = TP/(TP+ FP) (4)

Recall(RC) = TP/(TP+ FN) (5)

F1 score = 2 × (PR× RC) / (PR + RC). (6)

TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.
Accuracy measures the overall correctness of the model’s

predictions across all classes and is calculated as the fraction
of all predictions that are correct. As HAR is a multiclass
problem, precision quantifies how well the model predicts a
specific class compared to other classes, and recall measures
the ability of the model to correctly identify instances of a
specific class. The performance scores at an overall model
level are presented as an average of the individual class
scores for precision, recall, and F1 scores.
As in [33], it is worth noting that the accuracy, precision,

and other metrics are used in the context of evaluation of the
machine learning classifier performance and do not indicate
the measurement of the sensor directly.

IV. RESULTS
The input dataset is split into train and test datasets before
classification. After being trained on the train datasets, the
models are tested using the test datasets. Fig. 6 outlines the
different data collected from the subjects used for training the
machine learning model that enables the base model created
by learning the various activity patterns from every user
thereby resulting in a trained model. The trained model is
evaluated for its performance by testing the learned machine
learning model with a new set of test data from the user to
ensure that the models are evaluated aptly using unseen data
from the user simulating the real-life situation. Using the
input dataset of 13 389 inputs with 47 features, we employed
a split of 70:30, yielding 9372 rows for training and 4017

FIGURE 6. Schematic of the evaluation of machine learning models. Data (Test) is
not part of the training data.

TABLE 4. Mean test scores from cross-validation.

for testing. To guarantee that the model learns appropriately,
we have utilized a ratio of 80:20 for LSTM.
Fivefold cross-validation is used and test scores of cross-

validation across the models are provided in Table 4. The
average values of performance scores of all the eight classi-
fiers employed with LDA and KDA are listed in Table 5. Five
models—KNN, LSTM, SVM, RF, and GBDT—performed
well with KDA and LDA. LR and SVC performed well
with KDA. LR and SVC showed tremendous improvements
in accuracy from 49.39% to 96.04% and from 48.94% to
96.14% with LDA and KDA, respectively. Comparatively,
DT did not perform well with both LDA and KDA. With
KDA, the best accuracy of 97.16% was obtained using
LSTM, whereas the overall best accuracy of 98.11% is
obtained with LDA using KNN. Fig. 7(a) provides an
activity-wise comparison of average F1 scores for all the
classifiers, and Fig. 7(b) provides a similar one for the top
5 performing classifiers.
To evaluate the performance of the wearable device for

a new user, a leave out one subject cross-validation was
carried out by leaving one subject out of the eight sub-
jects for testing. Seven subjects’ data were used for training
and the left-out subject’s data was used for testing the
model. An accuracy score of 72.57% was achieved using
the leave one subject out method. The accuracy score
is expected to be lower compared to the cross-validation
scores [34] obtained using the fivefold method as it pro-
vides the evaluation of the wearable device for a new
user whose initial data is not trained with the wearable
system This score can be improved by training the wear-
able system with a larger and more diversified population of
users.
A comparison of the performance of the proposed con-

ductive fabric sensor-based suspender with strain sensor
integrated suspender in [13] is provided in Table 6. We have
considered a margin of around 3% for F1 scores between
the models for comparing them. The training and validation
loss for the LSTM across epochs for LDA is 0.18, and for
KDA, it is near zero.
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TABLE 5. Average values of performance scores across classifiers.

FIGURE 7. Activity-wise comparison of average F1 scores across all classifiers in (a) and (b) shows the classifier results for the top 5 classifiers (KNN, SVM, LSTM, RF, and
GBDT).

TABLE 6. Proposed fabric sensor-based suspender with the load cell-based
suspender [13].

V. DISCUSSION
A. COMPARISON OF CLASSIFIERS
Five classifiers—KNN, LSTM, SVM, SVC, and LR—
provided accuracy greater than 95% with RBF and GBDT
providing scores between 90% and 95% with KDA. With
LDA, four classifiers—KNN, LSTM, SVM, and RF—scored
above 95%, and GBDT scored above 90%. Of the 14 activ-
ities performed across all classifiers, two activities—ALS
and walking—scored high with an average F1 score above
95% with KDA. All other activities except texting scored an
average between 90% and 95%.
Three simple activities had an average F1 score of 94.52%,

and the 11 complex activities had an average F1 score of
92.84% across all models. Walking had the highest accuracy
score for both LDA and KDA with eating and texting scor-
ing the least, respectively. LR and SVC had more incorrect
classifications for typing, eating, and coughing activities. DT
had the least score with KDA, and incorrect classifications
happened for texting, standing, and arms upper stretch-
ing activity. In general, although it was comparable, KDA
outperformed LDA counterparts when all classifiers were
considered except for KNN, SVM, and RF. It is interesting
to note that even though KDA has performed better than
LDA from F1 and accuracy scores across all classifiers

in Fig. 7(a), the top five performing classifiers have eight
activities out of the 14 where LDA has outperformed the
KDA as shown in Fig. 7(b). LDA performs well with the
top five performing algorithms—KNN, SVM, LSTM, RF,
and GBDT, and KDA performs well with all the algorithms
except DT.
In comparing the proposed fabric sensor performance with

the strain sensor instrumented suspender [13] as in Table 4,
KNN, LSTM, and SVM perform at par with strain sensors
with LDA and KDA. In contrast, RF and GBDT performance
was at par with LDA and within 3%–4% with KDA. KDA
performance was comparable for LR and SVC, whereas LDA
was not. The performance of DT with LDA and KDA was
subpar to strain sensors.

B. PERFORMANCE OF WEARABLE SYSTEM
The results show that the proposed suspender wearable
system can perform HAR with accuracy values of 98.11%
and 95.72% for KNN with LDA and KDA, respectively.
This conclusion is consistent with [1], having KNN

and SVM as popular classifiers for HAR. In addition to
recognizing simple activities similar to accelerometer sen-
sors, the proposed wearable system can also identify all 11
complicated activities with an average F1 score of 92.84%
across all classifiers. In comparison to [14] and [15], the
system is able to identify even complex activities such as
eating with scores above 90%.

1) EFFECT OF WASH

The durability of the wearable and change in the resistance of
the conductive fabric suspender are evaluated by comparing
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TABLE 7. Accuracy scores before and after wash

the results before and after the wash. The base trained model
before the wash that was trained on all subjects was consid-
ered and the test was carried out after the wash with subject
#3. This emulates a real-life situation where the wearable
system is trained with initial data from the user, the system is
evaluated for accuracy of HAR after washing. Table 7 sum-
marizes the classification accuracy across all the classifiers
after washing for subject #3 in comparison with before wash
results. Table 7 results show that the performance remains
consistent.
The power usage of the proposed conductive fabric-based

suspender with BLE is 50 mW whereas the one in [13],
requires 260 mW. This low power requirement for the wear-
able helps in 37 h of uninterrupted operation. In order to
ensure correct results during extended usage, it is advisable
to conduct regular calibration and retraining of the proposed
system at periodic intervals.

C. LIMITATIONS
It is imperative to conduct rigorous long-term testing and
analysis with more diversified subjects to improve accu-
racy and reliability over an extended duration. To maximize
the device’s performance, it is necessary to implement the
classifier in the cloud. Addressing these limitations will
improve the functionality and usability of the wearable
device.

D. FUTURE SCOPE
The wearable prototype unit described in this study was
created to test the accuracy and practicality of the sug-
gested approach. The unit requires proper packaging and
miniaturization to make it a completely useful unit for
regular use. The future area of study may include further
developing the present wearable to provide real-time HAR
estimate and classification. The state-of-the-art machine
learning technique using transformers for processing sequen-
tial data may be carried out as a performance study in
comparing the classifiers. The design of this wearable can
be further studied by deploying the sensor for everyday
use.

VI. CONCLUSION
We describe a new wearable suspender with conductive fab-
ric for unobtrusive activity monitoring and identification.

Covering most activities, including the complex ones, with
fewer sensors and less noise, using a conductive fabric
built into the suspender improves the ability to classify
HAR effectively. The suggested wearable sensor consis-
tently records the periodicity of human activities compared
to accelerometers, which are location sensitive. The proposed
suspender system is durable and wearable as it shows
repeatable recognition capabilities before and after washing
and uses meagre power (50 mW), increasing the wearable
device’s usage.
Time-series data were gathered, and the prototype of the

suggested system was created. A variety of classifiers were
applied to compare and contrast the performance of this built
system with those dominated by accelerometers in the HAR
literature. The suspender system achieved the best recog-
nition accuracy of 98.11% when detecting and identifying
simple and complex human activities and assists in per-
forming HAR for a person, young or old, at home or in a
community daily.
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