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ABSTRACT This article presents a novel log abstraction framework based on neural open information
extraction (OpenIE) and dynamic word embedding principles. Though various log parsing frameworks
are proposed in the literature, the existing frameworks are modeled on predefined heuristics or auto-
regressive methodologies that work well in offline scenarios. However, these frameworks are less suitable
for dynamic self-adaptive systems, such as the Internet of Things (IoT), where the log outputs have
diverse contextual variations and disparate time irregularities. Therefore, it is essential to move away from
these traditional approaches and develop a systematic model that can effectively analyze log outputs in
real-time and increase the system up-time of IoT networks so that they are almost always available. To
address these needs, the proposed framework used OpenIE along with term frequency/inverse document
frequency (TF/IDF) vectorization for constructing a set of relational triples (aka triple-sets). Additionally,
a dynamic pretrained encoder–decoder architecture is utilized to imbibe the positional and contextualized
information in its resultant outputs. The adopted methodology has enabled the proposed framework to
extract richer word representations with dynamic contextualization of time-sensitive event logs to enhance
further downstream activities, such as failure prediction and prognostic analysis of IoT networks. The
proposed framework is evaluated on the system event log traces accumulated from a long range wide-area
network (LoRaWAN) IoT gateway to proactively determine the probable causes of its various failure
scenarios. Additionally, the study also provided a comparative analysis of its mathematical representations
with that of the current state-of-the-art (SOTA) approaches to project the advantages and benefits of the
proposed model, particularly from its data analytics standpoint.

INDEX TERMS BERT, context-aware, gateway, information extraction, Internet of Things (IoT), log
parsing, natural language, streaming, transformer, triples, word-embedding.

I. INTRODUCTION

THE INTERNET of Things (IoT) devices generate a large
amount of logs to record system operational activities

and the execution status of the running processes that act as
a set of critical information for maintaining any IoT network.
These log outputs of IoT devices are a set of free-flowing
semistructured textual data that are primarily designed to
be human interpretable and are predominantly written in

natural language texts. Typically, the output of these log
messages provides situational knowledge about the operat-
ing conditions of an IoT system or a device at any given
time. Hence, it is crucial to analyze these IoT logs in a
live-streaming manner by performing proactive systems man-
agement and increasing the stability of the network devices,
thereby improving the overall health of such complex IoT
networks [27].
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Automated log abstraction models can proactively analyze
large amounts of system-generated IoT logs quickly and effi-
ciently. These models can be used in conjunction with other
machine learning models to perform various downstream
tasks and knowledge generation activities, often required for
effective decision-making purposes [27].
There is a considerable amount of research that has been

conducted to analyze log data, especially in the areas of
intrusion detection, forensics, anomaly detection, and fault
diagnosis of IoT and networked information systems [6],
[10], [41]. However, most of these studies were primar-
ily based on predefined rule-based engines that utilized
complex handcrafted heuristics’ and pattern matching signa-
tures for developing workflows, templates, and baselines to
detect nonconformity from abnormal pattern deviations [31].
Moreover, these approaches resulted in system rigidity and
the consequent development of these models failed to scale
as they often required additional human expertise due to their
domain-specific structures [7]. On the contrary, there is less
research in the areas of event log parsing using information
extraction (IE) and natural language processing (NLP) mod-
els that has a significant potential to detect system faults and
intrusions proactively [31], [41].
Traditionally, a log parsing workflow starts with con-

verting a semistructured text data into structured, machine-
readable formats that facilitate querying, summarizing, and
aggregating logs for online monitoring and improved intelli-
gibility. This is followed by partitioning and grouping of
log messages through tokenisation, parts-of-speech (PoS)
tagging, and vectorization approaches for forming an event
matrix [41]. The final segment of a parsing model involves
log clustering to generate event patterns for performing
text-mining tasks using deep learning approaches.
Literature suggests that most log mining studies have

adopted offline batch processing approaches that are gen-
erally unsuitable in real-time anomaly detection and failure
prediction scenarios [4], [47]. Moreover, the traditional
machine learning models used in such studies are ineffi-
cient in handling frequently generated streaming log datasets
ranging in thousands of megabytes resulting in a large
memory footprint and consequent consumption of high com-
putational resources. Therefore, these existing log mining
models are unsuitable in predictive analytics scenarios for
IoT systems [27].
Thus, there is considerable scope for devising new situa-

tion and context-aware log mining models that can capture
streaming event log traces from these complex IoT networks
over a prolonged time, and perform deep mining analysis to
predict imminent failures proactively, rather than adopting a
reactive approach [3]. In such scenarios, the integration of
IE and NLP can enable an automated log parsing model
to extract valuable insights with high reliability, thereby
reducing human interventions to almost close to zero.
These IE systems work similarly to that of an anomaly

detection model wherein, in the former, query-based searches
are retrieved and presented based on their relative ranking

within the corpus. Furthermore, by utilizing named entity
recognition (NER) and NLP techniques, context-based
information extraction and common subject-verb-object
(SVO) relationships can be established that closely conform
with entity extraction, classification, and tagging techniques
of NLP-based log analytics [47]. Hence, adopting IE and
NLP techniques in log parsing approaches provides benefits
toward improving the overall accuracy of such models and
significantly minimizing the occurrences of false positives.
However, the current performance benchmark of such

parsing and predictive analytical models is quite limited [4].
This proposed approach intends to fill this gap by devel-
oping an agnostic model that can be beneficial in both
Instrumentation and Measurement (I&M) industries from the
performance perspectives of IoT networks and as well as in
the academic fields of AI-based log mining and analytics.
With its data-driven approach the proposed model can further
automate the I&M instruments to accurately identify, track,
detect, and perform critical analysis of system health with
almost no human intervention [63]. Moreover, log abstrac-
tion being an integral part of such analytical models can
bring a significant impact on its performance in terms of its
fault detection and prediction capabilities.
The main contributions of this study are summarized

herein.
1) The study proposed a streaming IoT log parsing frame-

work that can preprocess and parse semistructured IoT
gateway system logs into structured and context-aware
information.

2) A hybrid mathematical model to derive and present the
theoretical underpinning of open information extrac-
tion (OpenIE) in conjunction with encoder–decoder
architecture.

3) The proposed model is validated using live IoT
gateway log data.

4) A comparative analysis is performed to evaluate the
effectiveness of the proposed model in comparison
with the present state-of-the-art (SOTA) approaches
from an IoT analytics perspective.

The remainder of this article is organized as follows.
Section II discusses related work, followed by the proposed
OpenIE framework in Section III. Section IV details the
system model, the dataset collection and the experimental
designs developed for performing this research. This is fol-
lowed by Section V that details the experimental analysis
and the numerical validation of the experimental outcome.
Section VI provides a comparative study and discusses
the overall perspective of performing this research. Finally,
Section VII provides the concluding remarks and outlines
the possible future research directions.

II. RELATED WORK
There are various approaches of log preprocessing, parsing,
and summarizations that have been proposed in the literature
for system anomaly detection and failure prediction scenarios
of network and IoT gateways. Additionally, novel methods
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have also been devised using various machine learning and
deep learning approaches to enhance log interpretability for
further downstream troubleshooting tasks. However, there is
considerably less research on leveraging the structure of log
parsing approaches using OpenIE models.
This section provides a review of the existing literature and

highlights their respective challenges by grouping them under
multiple subtopics. In Section II-A, a thorough review of the
basic principles of heuristics-based approaches pertaining
to the OpenIE framework and their associated shortcom-
ings are projected. Section II-B further expanded the use
of heuristics in log analytics that were performed in the
existing literature and highlighted the challenges that these
models witnessed. Section II-C, discussed the benefits of
moving away from heuristics-based models toward more
of an autoregressive architecture using attention-based NLP
models. Section II-D, highlighted the challenges of tradi-
tional long short-term memory (LSTM)-based models, and
projected the benefits of adopting encoder–decoder architec-
tures using advanced attention mechanisms that can further
streamline such hybrid neural OpenIE models manifold.

A. HEURISTICS-BASED LEARNING USING OPENIE
Conventionally, OpenIE models are used to extract knowl-
edge from large text corpora to obtain semantically structured
information [12] in the form of prepositional triples or
n-ary representations. The generic OpenIE framework led
researchers to devise models that do not have a dependency
on predefined ontological schema, making them perfectly
suitable for downstream NLP tasks, such as knowledge base
development, comprehensive question answering models,
text summarizations, and so on [12].
Upadhyay and Fujii [45] proposed an approach to

leverage the knowledge extraction system to effectively
extract significant keywords and key sentences from large
sets of document databases. The model utilized resource
description framework (RDF) graph for deriving words
and line triple-stores that resembled the OpenIE frame-
work. Similarly, Glauber and Claro [20] adopted a system-
atic mapping methodology to extract relational tuples from
past literature texts using the OpenIE framework for deter-
mining the present SOTA and the recent developments
of OpenIE. The researchers used relative ranking of the
derived triple-sets based on their meaningfulness to identify
and extract the relevant implicit knowledge hidden within
the textual documents. Likewise, the study performed by
Choudhury et al. [11] proposed an innovative model of a
dynamic knowledge graph based on the OpenIE framework
for streaming data mining, knowledge extraction, discovery,
and visualization of hidden data patterns.
Each of these models needed significant human inter-

vention, and intelligence to extract relevant information,
which often creates a risk of arbitrary elimination of per-
tinent knowledge that might impact the model’s efficacy.
Moreover, such models are domain-specific and have a
significant limitation in adopting them in heterogeneous

datasets. Ali et al. [2] performed a systematic literature
review of the advent of the OpenIE paradigm to alleviate
these OpenIE issues and overcome the challenges that most
of these NLP models witness. The study projected that shal-
low data-based OpenIE models could be improvised using
handcrafted rule-based heuristics and dependency parsing
techniques. Through these techniques, rule-based relational
tuples can be parsed from textual documents for effective
knowledge mining and analysis [2].

B. HEURISTICS-BASED LOG PARSING
In recent years, parsing of unstructured texts and logs
remained a key focus both in industries and as well as within
the academic domains, which resulted in the development
of a considerable amount of log parsing models [23].
In line with these techniques, various log parsing

approaches are proposed earlier in the literature, and unsu-
pervised dependency log parsers have proved to be successful
in such instances since syntactic knowledge can be easily
embedded within the models for achieving better probabili-
ties [36].
He et al. [23] performed a critical analysis of the various

log parsing automation models and highlighted the chal-
lenges that are present in these traditional approaches that
utilize handcrafted grok patterns to extract key parameters
and standard templates. The study further emphasized that
voluminous log datasets can be better handled by moving
away from traditional heuristics and adopting a data-driven
parsing approach that can generate event log patterns auto-
matically. The study performed by Wang et al. [51] proposed
a similar log anomaly detection model based on a variant of
the Word2Vec algorithm known as “LogEvent2Vec” through
a sequence of steps—Log Parsing, Feature Extraction, Log
Clustering, and Anomaly Detection. In line with these
approaches, various models have been developed, such
as LogMine [22], Drain [24], POP [23], and Spell [14].
Such models drastically reduced the processing time and
error generation, making them superior to their predecessor
models [23], [52].
Another study by Meng et al. [32] proposed an auto-

mated online streaming log model known as LogSummary,
which is based on unsupervised algorithmic approaches
and can be considered an end-to-end log summarization
model that is far superior to that of the current heuristics’
approaches. The study claimed that an efficient log parsing
model should primarily consider three vital information—
1) “entities”; 2) “events”; and 3) their “relationships.” The
concept is stemmed from the idea of OpenIE to generate
summarized triple-sets of all the vital log messages in a
given log sequence [32]. The study avoided the ranking of
log summaries that are traditional in OpenIE models and
instead used “Log2Vec” to learn log semantics and train
the word embedding representations. This helped the model
easily learn domain-specific words, and the model could
handle out-of-vocabulary (OOV) words much faster, even
during runtime.
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C. LOG PARSING USING AUTOREGRESSIVE MODELS
Traditionally, the approaches that are based on NER methods
use advanced algorithmic techniques, such as Naïve Bayes,
Stochastic Optimization, Passive-Aggressive Classifiers [41]
Skip-Grams model, ShallowCNN, and so forth [48].
The study by Studiawan et al. [41] proposed an event

log parsing solution “NERLogparser” built upon deep learn-
ing approaches using NLP and NER techniques. The model
performed both character and word level embedding that is
concatenated using the forward and backward LSTM states
to improve its accuracy and predictability. Furthermore, the
adopted methodology is context-aware and can learn fea-
ture representations bi-directionally using these forward and
backward LSTM approaches. The model also moved away
from the traditional regular expressions or parsing rules
for extracting log patterns and adopted a deep learning
approach that can dynamically parse event flow using NLP
modeling [41].
In recent years, similar recurrent neural networks (RNNs)

and deep learning approaches have also shown immense
promise in sensor data analysis, by moving away from the
traditional machine learning approaches. This significantly
increased their capabilities of extrapolating high dimensional
nonlinear data structures more efficiently using complex
dimensionality reduction and feature selection techniques [5].
Moreover, with the usage of deep learning approaches, the
accuracy and prognosis of such models have also dramati-
cally increased [33]. However, this demanded considerable
changes in the way by which such time-sensitive, latent,
and noisy signal datasets are handled from the perspec-
tives of their data preprocessing, fusion, dependency parsing,
and summarization approaches [27]. Likewise, the study
performed by Zhang et al. [52] proposed a novel vari-
ant of LSTM titled the “attention-based-time-aware LSTM”
(ATTAIN) network, which proved to be successful in effec-
tive parsing of time-series IoT sensor data and was primarily
used for forecasting and prediction in a typical healthcare
scenario. The proposed model was also capable of handling
events generated from patient sensor networks at irregular
time intervals, especially during critical prefailure situations
when the events are likely recorded at a rapid frequency [52].
However, LSTM-based networks have their own short-

comings. Most of the studies on LSTM-based prediction
networks are single-layered, which restricts their capacity
to handle multiple input features. The study conducted by
Gao et al. [18] proposed a deep multilayered bidirectional
LSTM network that used both forward and backward states.
This helped in determining the accurate weights of both
closer and farther input features, consequently increasing
the precision and accuracy of such models.
Aussel et al. [4] proposed a novel log parsing and min-

ing technique using natural language understandings. The
study utilized the deep learning techniques of data prepro-
cessing, stopwords removal, tokenising, and stemming of
a large corpus to reduce the vocabulary size and extract
latent semantic information for data mining. It also adopted

vectorization approaches to convert words and sentences
into vector representations using continuous-bag-of-words
(CBOWs) and n-gram models that further reduced the word
ordering ambiguities and high memory usage. However, there
are advanced neural networking techniques that help reduce
a model’s memory footprints, which are superior to the hash-
tagging approach used in this study that often introduces hash
collisions and consequent reduction of model interpretability.
Meng et al. [31] proposed a novel log parsing frame-

work called “LogParse” that can provide intraservice and
cross-service learning and adaptiveness through dynamic
updating of the template rule-sets without the need for man-
ual intervention or through processes from large historical
log datasets. The model consists of offline and online compo-
nents. During the offline stage, the model extracts templates
from historical log datasets and categorizes the words into
a template and variable words using a binary word classi-
fier [31]. During the online stage, the model matches the
generated words with the word templates, and if new or
unknown words are found, it converts them into vector rep-
resentations for distinguishing them further into a template
and variable word and append the existing templates to gen-
erate new template sets. However, Wang et al. [49] have
not provided adequate inference on how they dealt with the
issues related to context and time sensitivities in situations
where time irregularities are a concern, especially where log
data is generated at high frequencies and at irregular time
intervals.

D. OPENIE FRAMEWORKS USING ENCODER AND
DECODER STRUCTURES
Literature suggests that attention-based models have bet-
ter capabilities in handling irregular time sensitivities and
can often outperform the traditional neural network-based
transduction models [46]. They primarily function using
the processes of sequential recurrences and convolutional
approaches.
In line with this context, the study on encoder–decoder-

based Transformer [46] architectures is comprehensive, since
it utilized an assembly of self-attention, encoding, and decod-
ing layers along with their positional embeddings that helped
the model to mimic sequence-to-sequence operations, yet
in a highly parallelable manner. The study performed by
Vaswani et al. [46] has been considered a revolutionary idea
that helped in alleviating most of the challenges that the tradi-
tional LSTM-based network witnessed. The model resolved
the issues of handling longer sequence lengths by reduc-
ing the number of back-propagations using the positional
information of the input sequence to enhance the process of
learning long-term dependencies [46].
On the other hand, the fundamental adoption of heuris-

tics’ in an OpenIE framework makes them face challenges
in syntactic parsing primarily due to the problems of error
propagation. To overcome this, the model developed by
Cui et al. [12] proposed a novel neural OpenIE approach
by integrating an encoder–decoder architecture. The adopted
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approach was capable of dynamically learning highly confi-
dent binary extractions and relational triple-sets that are boot-
strapped from a prefixed OpenIE system without the use of
predefined rule-sets and handcrafted patterns. Furthermore,
the study has experimentally shown that a neural OpenIE
system can outperform several traditional benchmarks with
higher efficiency, accuracy, and effectiveness [12].
The developments in the areas of encoder–decoder archi-

tectures gave rise to the pretrained deep bidirectional
transformer architectures known as bidirectional encoder rep-
resentations from transformers (also known as BERT) [13].
This architecture enabled higher levels of feature rep-
resentations from unstructured nonlabeled texts by effi-
ciently embedding contextual information in all layers of
its architecture. A novel framework has been proposed
by Wang et al. [49] that can significantly improve NLP
performance and downstream tasks using a traditional static
word embedding-based skip-gram model combined with
advanced neural language architecture such as BERT. The
proposed model leveraged the benefits of static word embed-
dings of being lightweight both in terms of its computational
resource utilization and as well as its size in compari-
son to other contextualized word embedding models. By
combining static word embedding and enhancing it with
advanced contextualized word representations, the study suc-
cessfully enhanced the feature representation capabilities of
static word vectors that eventually lowered the cost and high
usage of computational resources [49]. One of the limita-
tions of Wang et al.’s [49] study is that it has primarily
concentrated on contextualized word embedding but did not
focus on the positional embedding of words which provides
much richer information from a perspective of neural lan-
guage modeling. This information is primarily beneficial for
downstream tasks, such as log parsing and failure prediction
scenarios where sequential time series data are fed to the
model parallelly for achieving positional information besides
their contextual representations.

III. PROPOSED OPEN INFORMATION EXTRACTION
FRAMEWORK
This section provides a concise description of the proposed
OpenIE framework along with a detailed explanation of
the various components/subcomponents that are involved
as a part of its underlying architecture. To perform log
abstractions effectively, the following information extraction
framework is proposed where the central architecture is based
on neural OpenIE, and encoder–decoder approaches.
This proposed parsing framework is illustrated in Fig. 1.

The framework has two analytical stages—1) the offline
and 2) the online stages for log parsing. It is further bro-
ken down into two virtual layers/sections—1) the gateway
layer and 2) the event stream processing layer. The gate-
way layer is the physical hardware layer and works in
conjunction with the stream processing layer for log trace
generation and accumulation. Additionally, this layer is phys-
ically connected to a computer system for log accumulation

and storage using an MQTT bridge. The experimental setup
for raw log accumulation is further explained in detail in
Section IV. This accumulation process helps in the inges-
tion of the system logs during the offline stage for training,
validation, and testing. Additionally, these offline historical
logs are stored in a Syslog repository which is fed sequen-
tially to the subsequent sections of the model for further
log preprocessing. A series of steps are followed during this
prestaging process that includes tokenisation, lemmatization,
labeling, stopwords and lowercase removal, padding, trunca-
tion, and masking. Furthermore, the event stream processing
layer also performs feature extraction, pattern matching, and
feature representations from the input data stream source.
The formed vocabulary dataset is fed to various deep learn-
ing models for detecting faults/anomalies in the log snippets.
Moreover, this layer represents a unified information extrac-
tion framework for parsing and analysing gateway streaming
logs using OpenIE, NLP, and context-aware approaches
which is further explained through mathematical experiments
in Sections IV-C and IV-D.

The fundamental process of detecting anomalies is find-
ing the outliers in a traditional manner using statistic-based
Gaussian cloud point; therefore, these are not generated
using the same probabilistic distribution sets in a 2-D
plane [37]. The NLP models come in handy to deal with
multidimensional datasets, and furthermore, such models are
suitable in solving common log parsing problems, such as
class imbalance, NER issues, detection performances, and
so forth [41].
The proposed framework intends to represent the words in

the vocabulary set in a distributed manner through a domain
agnostic way by embedding its semantic as well as its con-
textual information. The vocabulary dataset contains tri-gram
word models which are inherited from the SVO relationship
of a typical OpenIE methodology [32].
Most of [45] and [58] have benchmarked three adja-

cent words as a threshold since exceeding more than three
dimensions often brings additional challenges due to large
log volumes, and computational models become more com-
plex to handle. However, such tri-gram word embedding
frameworks are suitable for static word embedding, but
we extend the proposed framework by incorporating com-
ponents of dynamically contextualized word embedding
models. This is designed to improve future downstream
tasks (such as predictive analytics) with better represen-
tation capabilities by incorporating syntactic and semantic
information using sequentially contextualized embedding
methodologies.
Past literature suggests highly parallelable frameworks of

neural language modeling, which have proved to be more
successful in comparison to their autoregressive sequential
predecessors [46], [49]. To that extent, the encoder–decoder
architectures are far more efficient due to their lightweight
structures. Such models can run relatively faster with rea-
sonably lower computational costs primarily due to their
pretrained architecture, that is highly customizable through
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FIGURE 1. Neural OpenIE-based log parsing framework.

FIGURE 2. Experimental setup for log data collection and analysis.

proper fine-tuning and the adjustments of their weight
parameters [13], [46].
Furthermore, this proposed model used a word-piece

tokeniser [13] that gives granular contextualized represen-
tations of each word token resulting in better handling of
domain-specific words, that are usually unseen. This further
enhanced the predictive possibilities of handling OOV word
structures by the proposed model. In addition to word-piece
tokenisation, the model also performs positional contextual-
ization and segment embeddings to better represent models
even with a base model size [46].

IV. SYSTEM MODEL, DATASET DETAILS, AND
EXPERIMENTAL DESIGNS
To conduct this research, accumulate raw logs, and under-
stand its applicability in sensor data analysis, a prototypical
experimental model is developed at the Centre for Intelligent
Systems, CQUniversity as detailed in Section IV-A.
Section IV-B provides the log dataset details which are
accumulated using the experimental model explained ear-
lier in Section IV-A. This is followed by two experimental
designs in sections (Sections IV-C and IV-D) for offline log
abstraction and OOV word handling during online stage,
respectively.
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TABLE 1. Raw system log extracts.

A. SYSTEM MODEL
The model prototype illustrated in Fig. 2 consists of a
RAK7249 long-range wide-area network (LoRaWAN) gate-
way [57] with several soil moisture, and weather sensors
connected to it. The gateway runs a customized version of
Linux Operating System, known as OPEN wireless router
(OpenWRT), which is specifically designed to run on embed-
ded devices. The gateway is also connected to the cloud
server via Things network middleware [56], where data is
stored in Influx Database (InfluxDB) [9]. In this IoT model,
sensors’ data are accumulated periodically to forecast mois-
ture levels for further visualization and analysis [9]. One of
the shortcomings of this design was the absence of a proper
log accumulation mechanism through which IoT gateway
system logs can be accumulated over a prolonged period to
determine imminent failures.
As the gateway stores the system health logs in its

volatile memory, the log data gets lost once the gateway is
reset/rebooted. This poses a hindrance to logging accumula-
tion, and often failure logs remain undetected. A networked
computer is connected to the gateway to collect the system
logs using MQTT protocol. The monitoring system runs
on a workstation-class system with Intel Core i5-8265U
CPU, 1.6 GHz, 4 Core, eight logical processors, and physical
memory of 16 GiB. Syslog Watcher 5.1.0 [55] is installed on
the workstation for log accumulation and visualization. The
Syslog Watcher is further integrated through ODBC con-
nectivity with MySQL services for historical log storage,
retrieval, and reporting.

B. DATASET DETAILS
The system logs from the IoT gateway which is collected
over a period of a month is considered here for a deep dive
analysis.
A sample of this log excerpt is shown in Table 1. These

log snippets are basically a set of unstructured log chunks
and contain a series of nonwrangled text information that is

unsuitable for data processing. Furthermore, each of these
log events can be broken down into a series of virtu-
ally tagged fields. These fields are—“Date,” “Timestamp,”
“Message Type,” “MessageID,” “Event details,” and “Value.”
However, for the ease of understanding, the message identi-
fiers and the message events are only projected from which
the parsed triples are derived using the proposed framework
as alluded to earlier in Section III. Additionally, two sample
message details generated from two separate message types
(user.notice, kern.info) are also shown in Table 2.
Moreover, the machine learning models cannot interpret

normal text documents, which need to be preprocessed
through careful segmentation of each of the log entry into
its appropriate fields for better representation and system
readability. Hence, the data first needed to be tokenised into
distinct chunks for segregating each log line into specific
readable tokens. Furthermore, it is also converted into desired
semistructured formats using suitable delimiters for easier
log understandability. Separators are used for white spaces
as a custom field delimiter. Additional custom parameters are
used for columns at this stage for separating the log chunks
into specifically named columns (as represented in Table 2)
due to the lack of header information in the log snippets.
This helps the model to segregate the log lines based on
their timestamp, process that initiated the log entry, process
id, severity of the log message, and the log events itself,
which contained the actual message. These segregated log
entries are generally those messages that contain valuable
insights about the current system state and play an essential
role in determining failure events in advance.
The next two sections (Sections IV-C and IV-D) pro-

vide the theoretical underpinning of the proposed framework
using mathematical derivations to subsequently represent
the offline and the online functionalities of the proposed
framework. These experimental designs are developed to
conceptually validate the performance, efficiency, and effec-
tiveness of the framework in IoT datasets, and consequently
evaluate its outcome.

C. OFFLINE WORD-EMBEDDING REPRESENTATIONS OF
LOG EVENTS
The flow-diagram pertaining to the offline segment of the
proposed model is illustrated in Fig. 3, which has four steps.
Each step in the flow-diagram are required to execute this

offline segment of the proposed framework that was detailed
earlier in Fig. 1. These steps are summarized as follows.
Step 1: Accumulate and input raw log text for training the
model.
Step 1.1. Preprocess the log text corpus for word tokeni-

sation and sequencing.
Step 2: Log text data tokenisation and sequencing subroutine.
Step 2.1. Tokenise the input raw log text.
Step 2.2. Retrieve the log vocabulary from the input log

data.
Step 2.3. Process and encode the tokenised word

sequences to a sequence of integer values.
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TABLE 2. Log fields.

FIGURE 3. Steps of the proposed offline parsing function.

Step 2.4. Use TF/IDF Vectoriser to form a tri-gram
model.

Step 3: Use tri-gram modeled output for embedding contex-
tual information.
Step 4: Prepare data for forward and reverse encoding using
pretrained neural language model.

Step 4.1. Use a pretrained encoder–decoder model (e.g.,
BERT/Transformer) for wordpiece tokenisation
and better word representation.

Step 4.2. Use positional encoding functions for positional
embedding and for sequencing the word vectors.

Step 4.3. Use decoder function to process reverse
sequencing of word vectors based on their
frequencies of generation.

The tri-gram output from the TF-IDF vectorizer constructs
a knowledge graph in relational triple-sets using the S-V-
O relationship. Considering ωi as the target word and the
S-V-O relation can be represented as (s, r, ωi) [31], [45]
where r is a variety of association relationships of ωi. A
vector representation of these association relationships is

established through (1). Considering these relationships as
real and meaningful from the perspective of log outputs, the
inference is drawn in (1), where “s + r” should be closer
to the target word in question [31]. A few examples of
such relationships are shown later under the online stage in
Fig. 6. The objective function of this relationship is further
derived through

LTriples =
|V|∑

k=1

log p
(
ωi|ωi+v

i−v
)

+ Ÿ
∑

r∈Rωi

log p(ωi|s+ r).

(1)

In addition, the pretrained neural language model com-
bines the semantic and syntactic relationship along with
the positional embedding to extract contextual information
for a better representation of the words. During the subse-
quent steps, the target words ωi is transformed into hidden
input vectors, by aggregated functions through the addition
of each of the word-piece token embeddings Tωi and their
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FIGURE 4. Encoder–Decoder architecture (source: adapted from AI Zone Kevin Hooke, 2020).

consecutive positional embeddings Pωi as derived in

hi = Tωi + Pωi . (2)

Furthermore, considering the relationship in (2), this
proposed approach explored the encoder–decoder archi-
tecture to address such contextualization issues in log
analytics from a mathematical perspective. Each encoder
block consists of two main layers and two sublayers
called the attention heads. These main layers are feed-
forward and multihead attention layers which also have
two sublayers of addition + normalization. Through the
attention heads, such encoder functions can efficiently han-
dle time irregularities and long-term dependencies using
their parallelable architectures. Additionally, such models
handle residual data using sublayers. Fig. 4 illustrates var-
ious layers that are associated within an encoder–decoder
architecture.
The scaled dot-product self-attention function with

normalization is derived using the query, key, value
pair in

Attn (Q,K,V) = SoftMax

(
Q · kT√
dk

)
.V. (3)

Equation (3) presents an attention matrix with the atten-
tion values of each tokenised word in relation to the context
words, which is further normalized using the SoftMax func-
tion. The weight matrix provides opportunities to further
fine-tune and adjust each of the parameters. To derive
the learned parameters, learned projection weight matrices
WK,WQ, and WV are derived in

KT = WK · K where
(
WK ∈ Rdm×dk

)
(4)

Q� = WQ · Q where
(
WQ ∈ Rdm×dq

)
(5)

and

V� = WV · V where
(
WV ∈ Rdm×dv

)
. (6)

This transposed weight matrix ensures dimensional-
ity reduction to the model through each of its “m”
multidimensional attention heads that has adjustable weight
parameters (W) for further fine-tuning of the model. Hence,
each token now has reduced dimensions of vectors expressed
through KT ,QT , and VT . The resulting output is a concate-
nation of all the individual outputs of the attention heads
that finally provide an aggregated output with dimensions
the same as that of its input vector representations [59]. The
complete lifecycle of these vectorized token embeddings can
be represented as a function of concatenation or summation
of all the embedded features: Concat [Head 1⊕ Head 2⊕
Head 3⊕ Head 4⊕ Head 5⊕ Head 6 ⊕ · · · Head 12].
To summarize, on the original input tokens, word-piece

embedding is applied to each token for multidimensional
vector representations, which consequently passes through
the multiattention heads where the learned projection layer
helps in adjustments of the weight matrix to further fine-
tune the model and reduce the dimensions of each token.
Finally, the next layer performs concatenation of each of
the multiattention head outputs to retain the original input
dimensions. This operation is repeated and performed on
the key matrix, the value matrix, and as well as on query
operations to derive the key-query compatibility. The pro-
cess, in turn, mimics the sequence-to-sequence output of a
typical autoregressive RNN model, yet through an advanced
parallelable manner.
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The next layer within the attention heads is the feed-
forward layer consisting of two projection sublayers which
handle the positional contextualization as derived in (7),
where W1, and W2 are the two sublayers of adjustable weight
matrices in which nonlinearity is introduced through the Max
function and along with bias b1 and b2

FFN(X) = Max(0, xW1 + b1)W2 + b2. (7)

This feedforward layer is applied for each positional
encoding identically yet separately to each of the input
tokens. However, as the subsequent challenge for the model
is in determining the order and positioning of the tokens
so that they are fed sequentially, positional information
through encoding needs to be established. Hence, the even
and odd dimensions are represented using sine and cosine
wave transformations and are expressed in the form of (8)
and (9), where, on every ith token position, the phase
would be different, which is represented by the function
([P ◦ s/10000(2i/d)]).

For, all even dimensions

PE(pos, 2i) = sin

(
Pos

10000
2i
d

)
. (8)

For, all odd dimensions

PE(pos, 2i+ 1) = cos

(
Pos

10000
2i
d

)
. (9)

The final implementation of the model is expressed in (10),
where word embeddings are summed up with the positional
embeddings, which provide the aggregated values with each
of their positional signals embedded onto it, and conse-
quently, this is fed to the self-attention and the feedforward
block of the attention heads

hi = Eωi + P · Eωi. (10)

The objective or the loss function is derived in (11),
where X being a subset of the input tokens along with a
[MASKed] token in it, to accurately predict the masked
token. Additionally, � = (ω1, ω2, ω3, . . . , ωk) denotes the
masked tokens in the sentence X (consisting of triple-sets
forming the new vocabulary dataset) while X� are the set of
tokens that are masked and X−� are the respective unmasked
tokens

LMLM = 1

K

|V|∑

k=1

log p
(
ω�k |X−�; θ

)
. (11)

The overall objective function is thus expressed as the
summed representation in

Lo = LTriples + LMLM. (12)

This methodology and model help in achieving a lower
dimensional word embedding to project a distributed rep-
resentation of the language model, from which effective
knowledge can be extracted with contextual information.

Additionally, with the combination of the positional embed-
dings, the quality of the output word vectors have sig-
nificantly improved, and a better word representation is
achieved.
Hence, this is one of the significant achievements of the

model as it can represent contextual words more efficiently
using lower dimensional embedding by capturing their dis-
tributional representations. This process allows valuable
information to be effectively extracted and shared amongst
the words to project their contextual similarities. This is
particularly suitable in predictive log analytics scenarios as
the model can handle both contextual and unknown domain-
specific words that randomly appear at different stages of
the log outputs.

D. OUT-OF-VOCABULARY WORD HANDLING DURING
ONLINE STAGE
The model produces the OOV word embeddings during
system runtime depending on the OOV’s word embedding.
Though the preprocessing and word-piece tokenisation han-
dles most of the UNKNOWN and OOV words through
lemmatization and decomposition, there are possibilities of
unknown domain-specific words to be present in the log
vocabulary.
The process, as illustrated in Fig. 5, starts with replacing

the OOV words using [MASKed] tokens, and the log entry
chunk is further tokenised and converted into the model’s
input identifiers. These masked tokens are maximized for
predicting the probabilistic distribution of all possible words
at each time step of the query input. Finally, the predicted
values are returned by replacing the masked words in the
log texts with that of the predicted words.
Fig. 5 represents the flow-diagram of the online OOV

word embedding and parsing stage. The steps in Fig. 5
are detailed in the following paragraphs, which are a
continuation from the steps in Fig. 4.

In this way, the OOV word processor is trained dynam-
ically during the model runtime, and a new embedding of
the UNKNOWN words is provided when domain-specific
words are generated as a part of the log output.
Step 5: Loading the pretrained model.

Step 5.1. The pretrained language model is loaded in the
neural language framework (e.g., BERT) and
OOV words are detected.

Step 5.2. The neural language tokeniser is loaded for text
preprocessing and lemmatization.

Step 6: Log sequence generation.

Step 6.1. The input log entry text is fed for further
modeling.

Step 6.2. Probability distribution of the tokenised words
are predicted.

Step 6.3. The predicted vocabulary is returned as an
output.

Step 7: Streaming logs are fed to the model.
Step 8: Embedding function for the OOV words.
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FIGURE 5. Steps of the proposed online OOV parsing stage.

Step 8.1. The streaming log entry chunks are checked for
OOV words.

Step 8.2. When any new OOV words/domain-specific
words are found, word embedding is performed,
and values are assigned to the words based on
their contexts.

Step 8.3. The embedded words are updated in the vocab-
ulary dataset by adding them to the pretrained
neural language model.

This is consequently updated in the vocabulary dataset
so that the word representations are retained based on their
semantic and contextual information. This very approach of
word embedding is adopted so that the OOV words have
a contextual and relative position in the vector space, even
though it is not embedded during the pretraining phases of
the model.

V. EXPERIMENTAL ANALYSIS, RESULTS AND
INTERPRETATION
This section provides the experimental outcome of the
proposed framework through detailed theoretical analysis in
Section V-A. This is followed by Section V-B, which pro-
vides a thorough interpretation of the results and outcome
obtained from the mathematical experiments.

A. EXPERIMENTAL ANALYSIS
The mathematical representation of this proposed framework
has enabled advanced log analytics through the extraction of
varied dimensions, and assisted in augmenting the traditional
log mining approaches. Furthermore, the adopted approach
helped in developing suitable algorithmic models.

TABLE 3. Extracted log events.

In this experiment, during the offline training stage, the
raw log text corpus is preprocessed for tokenisation and
further represented sequentially. After preprocessing, the log
chunks are extracted, as shown in Table 3 where unnecessary
field entries are removed so that the processed log chunks
now contain the high-level rows. The output is a raw log
vocabulary subset which is further used for determining the
common word sequences and in finding outliers.
The subsequent steps involved vectorization of the raw

log entry chunks for forming an event matrix from the
log vocabulary. The tri-gram structures (as explained in
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FIGURE 6. Tri-gram outputs transformed to Contextualized Tri-grams.

Section IV-C) are established using term frequency/inverse
document frequency (TF/IDF) vectorization approaches to
form the relational triple-sets for static word embedding
representations, as presented in Fig. 6.

These triple-sets form the SVO relationships, embedding
the local contextualized information within the model for
static word representations in the form of a knowledge graph,
as illustrated in Fig. 6. During this training phase, the model
learns the context words based on their co-occurrence rela-
tions. The objective function is derived from its negative
log-likelihood of the target word given a set of context
words. The weights between the input layers and that of
the hidden layers are finally considered the final vector rep-
resentation of the modeled output. The output is a matrix
representation that would help count the word sequences
and determine word frequencies. The relational triples are
established using this contextualized parsing method to
improve the output ranking and quality of the target word
vectors.
These output triples that are derived from the static word

embedding are fed as an input to the encoder–decoder archi-
tecture, where the scaled dot-product attention is calculated
using a SoftMax function as per (3). Here, the key and query
are considered the same as the model calculates the self-
attention to generate the key-query compatibility. In other
words, as a part of this attention process, the context vector
is calculated as a weighted summation of the values, wherein
the associated weights of these values are calculated using
the compatibility function of their corresponding key-query.
This generates a symmetrical attention matrix which embeds
the information of the attention weights for each word in
the triple-sets/sentences. The weights are calculated such that
the context words are given adequate weightage in relation
to each of the target words ωi which provides better word
vector representations. In turn, this provides the model with
the information as to which tokens are important in con-
text with the given target word token ωi. The SoftMax layer
further normalizes the outputs so that the resultant aggre-
gated output of each row of the matrix is 1. On the other
hand, the OOV words pose additional challenges and hence
the model is trained with word-piece tokenisation using the
log corpus as the data distribution is different than that
of the originally trained corpus. Examples of such OOV

TABLE 4. Term frequencies of generated triple-sets.

words are, “src/jitqueue.c:448:jit_print_queue(): INFO: [jit]
queue is empty.” Such raw log lines are decomposed
into multiple subwords within the triple-sets in the format
“j_it print Queue,” “Queue is empty” and so on.

Furthermore, for better word representation, the model
considers both the left and the right context of the tar-
get word ωi simultaneously unlike its predecessors, such
as bidirectional LSTM (Bi-LSTM), embeddings for lan-
guage models (ELMo), and so on, using masked language
modeling. Considering the log corpus, the only parameters
learned from scratch are the weights to minimize the loss
of wrongly predicting a random masked word in relation to
its output representations. This is handled by readjusting the
weights using the objective function represented in (11).
The final output of the contextualized dynamic word

embedding triple-sets is sorted and stored in reverse order
within the log vocabulary dataset based on their relative
ranking and frequency of generation. These outputs are
highly compressed, with adequate semantic and contex-
tual embeddings that would be immensely beneficial for
further downstream activities of NLP tasks, such as NER
and predictive analytics. Some of the summarized out-
puts extracted from the log excerpts and their generation
frequency are shown in Table 4.
Similarly, during runtime, the streaming logs are fed to

the model, which checks for new OOV words that are not a
part of the pretrained embedding vocabulary dataset. When
a completely new word is found, word piece tokenisation is
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FIGURE 7. Confusion matrix output.

performed to assign a new word embedding dynamically to
those unseen words in the online stage. These words are later
fed back and updated with the new distributed representations
within the log vocabulary dataset for future processing.

B. NUMERICAL ANALYSIS AND VALIDATION
To quantify the overall performance of the proposed model,
the following numerical methods are used as part of the
evaluation parameters—1) parsing accuracy; 2) runtime
efficiency; and 3) overall effectiveness.
To measure the parsing accuracy—precision, recall, and

f1-score are calculated [60] using the expressions in

precision = true positive

true positive + false positive
(13)

recall = true positive

true positive + false negative
(14)

f1-Score = 2 × precision × recall

precision + recall
. (15)

Here, the f1-score is basically the harmonic mean of the
precision and recall that helps in accurately estimating the
performance of the model in terms of its parsing accu-
racy. More precisely, the parsing accuracy is the metric that

TABLE 5. Parsing classification report.

determines the ratio of the correctly parsed log events over
the total population.
Moreover, it has been observed that the overall parsing

accuracy of the proposed model has been greater than or
equal to 0.83. This is represented using a confusion matrix
plot in Fig. 7. The model yields a score between 0.8 and 1 as
shown in Table 5. The SVO relations were initially extracted
from the raw logs manually to establish the ground truth
of the dataset for the purposes of evaluation. The parsing
accuracy is calculated against this manual classification data
with that of the parsed outputs generated by the proposed
framework. To perform the model evaluation, logs are ran-
domly selected to calculate the true-positive, true-negative,
false-positive, and false-negative iterations. For the “parsed
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accurately” or the positive class, the true positive is the suc-
cessfully parsed ones that were determined to be correctly
predicted after comparison with the manual ground truth
data. The false positive is the successfully parsed ones that
were determined to be incorrect after comparing it with the
manual ground-truth data. Similarly, for the “parsed inac-
curately” or the negative class, the true negative is the
unsuccessfully parsed ones that matched correctly with the
manually incorrect log tuples. The false-negative ones are
the ones that were correctly learned by the proposed model
but did not generate the same log triple outputs as that of
the manually parsed sampled data. The log excerpts used
for these experimental purposes have a chunk of 9750 log
lines. The classification report in Table 5 provides a snap-
shot summary of the various numerical outputs against this
support of 9750 events. The positive and the negative classes
are the respective logs that are parsed successfully and the
logs that could not be parsed accurately. The test sample that
belongs to the positive class is 9674, while the test sample
that belongs to the negative class is 76. Additionally, to han-
dle the class imbalance in the dataset, the macro average is
calculated by providing equal weightage to each sampled
class. This can be represented by the expression in

score macro-avg

= 0.5 · score class [parsed]

+ 0.5 · score class [parsing unsuccessful]. (16)

Hence, the macro average for the precision of the positive and
the negative class is computed to be 0.52. The one for recall
has been calculated to be 0.91, and for f1-score to be 0.49.
Similarly, to determine the impact of precision, recall, and
f1-score due to class imbalance against its average output,
the weighted average is calculated. The weighted average is
expressed by

scoreweighted-avg
= 0.998 · scoreclass [parsed]

+ 0.002 · score class [parsing unsuccessful]. (17)

The weighted average for precision has been computed to
be 0.99. The one for recall is 0.83 and for f1-score to
be 0.90. It can be inferred from the overall macro and the
weighted average that the model performed well in all classes
despite data imbalance. Moreover, the sampled data has high
true positives and fewer false negatives, which signifies that
the overall performance of the model is significantly higher
considering this sampled dataset. Though due to this class
imbalance, there is a possibility that the parsing accuracy
may not reflect the actual performance of the model as it
is only projecting the underlying class distribution. This can
be mitigated by using larger datasets and through proper
parameter tuning and effective optimization of the objective
or loss functions of the model. It was observed that with
the offline model-run, the parsing accuracy was 0.68. The
model by virtue of its OOV word handling framework using

dynamic word embeddings could significantly increase the
abstraction capabilities of the model.
Moreover, the proposed model carries a few advantages

over the traditional log mining techniques, in terms of its effi-
ciency as it is only concerned with the free-text string-based
log events that make preprocessing of the data faster, even-
tually increasing runtime. Additionally, the model adopted
parallelization techniques over standard clustering methods,
as log clustering does not scale well with larger datasets.
The transformer-based architecture further provided addi-
tional benefits as it did not require complex hyper-parameter
tuning and the tuning was performed on sample datasets with
the intent of adopting them on larger datasets for future
predictive modeling [61].
However, it is observed that the runtime efficiency of

standard machine learning models is comparatively faster
than the proposed model, but when compared with RNN-
based architectures, the model runs significantly faster. A
numerical evaluation of the execution time against chosen
standard models is presented under Section VI.
Additionally, the effectiveness of the model is evaluated

based on its parsing accuracy. It has been observed earlier
that the overall parsing accuracy is high (>0.83) compared
to the SOTA approaches. Moreover, the effectiveness is not
uniform and depends on the log size as well. Nevertheless,
the model exhibited high effectiveness on smaller log subsets.
This would be evaluated further on larger log datasets while
performing downstream failure prediction tasks as a part of
the future expansion of this research.

VI. COMPARATIVE STUDY AND DISCUSSION
There are several log parsing and analytics techniques that
are proposed in the literature. However, the majority of these
models have focused on predefined rule-based heuristics
and template pattern generations that cannot contextualize
to discover the latent meaning hidden in the log outputs.
Additionally, none of these models has approached log
parsing from a time sensitivities perspective where attention-
based sequence to sequence log abstraction is performed for
deriving triple-sets from raw log sequences. This is particu-
larly beneficial in IoT systems’ log data analytics where data
are generated inherently from low-powered signals that may
contain time irregularities. Table 6 presents a model compar-
ison between the proposed and traditional parsing approaches
for time sensitivity, used method/techniques and, parallela-
bility. The majority of the methods shown in Table 6 did
not consider the time irregularities except “DeepLog” which
used both log-key and time-sensitive information. These
studies were somewhat biased in knowing the information
beforehand to fulfil the future downstream activities, such as
log anomaly detection and failure prediction scenarios. By
using this word embedding and attention-based mechanism,
the proposed model achieved high levels of efficiency even
without the availability of prior heuristics-based information.
Additionally, the approach can be considered as the first
work that imbibed contextualization within the framework
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TABLE 6. Model comparisons.

TABLE 7. Numerical comparisons.

through the combination of neural OpenIE in conjunction
with encoder–decoder architectures, which not only process
data faster but are also significantly lightweight, resulting
in less consumption of computational resources during its
preprocessing and runtime. As a part of the research, a com-
parative numerical analysis of the overall parsing accuracy is
evaluated and compared with the related SOTA approaches.
The proposed model has an overall parsing accuracy of 0.83.
This is noted to be significantly higher than the other offline
and online parsing approaches as shown in Table 7. The
parsing accuracy for the other models, such as LogMine,
Drain, Spell, and so forth were comparatively lower than
the proposed model.
Though Random Forest is an offline model and is based

on standard machine learning approaches, but it exhibited
better accuracy on this log subset. However, such models
are not based upon neural language approaches and does
not consider contextualization and semantics of logs that are
essential for predictive modeling. As a part of the future
extension of this research, these models would be exhaus-
tively evaluated in larger IoT log datasets to more accurately
estimate their performances. Additionally, the execution time
and the overall effectiveness is also compared with the
present SOTA to demonstrate the capability of the proposed
log parsing framework. The evaluation results are presented
in Table 7.

The average runtime of the models are less than or equal to
1.5 s on raw log datasets without prefiltering. Traditionally,
the runtime increases with the increment of log sizes and the
processing becomes considerably slower, resulting in system
timeouts.
It is observed that the standard machine learning models

took on an average of < 0.35 s and was comparatively faster
than the other deep learning approaches. Such models are
inefficient and have limited use in future downstream tasks
as they are not contextually aware and sensitive to infre-
quent log event generations. On the other hand, Spell took
0.69 s and Drain executed in 0.26 s, while DeepLog and
LogMine took comparatively longer and ran for 5.99 and
1.48 s, respectively. This proposed model with its efficient
prefiltering and preprocessing architecture could effectively
parse the log subset within 0.20 s during offline run. Though
there are possibilities to further fine-tune by prefiltering a
considerable chunk of this log dataset prior to training and
cross validating each of the models to reduce any data out-
liers. This may further improve the runtime efficiency of
these existing models as well, but may not be a feasible
approach in case of future analysis of larger log datasets.
Furthermore, the numerical analysis in Table 7 shown that
the proposed model achieved the best performance as it uti-
lized dynamic word embedding and word-piece tokenisation
approach for appropriately tokenising unseen OOV words yet
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representing accurately the semantics of each of the log mes-
sages. It is observed that there may be a slight performance
hit of the proposed model, if the number of attention heads
and the feedforward network sizes are reduced. Though, from
the perspective of overall effectiveness, the proposed model
achieved higher precision (1.00) and recall (0.83) as that
of other advanced machine learning-based graph partition-
ing approaches [23], [62]. Additionally, the F1-score (0.90)
achieved by the proposed model using larger feedforward
neural layers, proved that the model has performed signif-
icantly better in terms of its overall effectiveness and has
the potential to enhance further downstream tasks, such as
dynamic learning of failure patterns and anomaly prediction
scenarios.
As elucidated in the previous sections, the primary intent

of this study is to move away from the traditional log
key and heuristics-based approaches toward that of a neu-
ral language modeling-based approach. The reason is that,
most large-scale systems generate a considerable number
of logs with high levels of agility. In turn, these tradi-
tional rule-based approaches become ineffective as various
micro/modular services of the parent systems generate logs
with varied dimensions. Additionally, the modern agile-based
practices lead systems to dynamically update them, resulting
in the generation of a proliferation of OOV words that are
difficult to handle using the traditional statistical and key-
rule-based approaches. These are some reasons for adopting
a word embedding method in this study so that the model
can handle such robustness with higher precision and accu-
racy. Moreover, with the integration of an attention-based
mechanism, the model can now handle dynamic word repre-
sentations, which further alleviated its capability of working
in typical IoT environments where time irregularities of log
generations are a concern.
Furthermore, as the premise of the log parsing framework

is oriented toward event stream processing of online logs,
this model may be adapted in other log datasets with minor
fine-tuning and modifications. Moreover, the current research
is evaluated only on IoT log datasets, captured from the IoT
gateways, and is based on the premise of IoT networks.

VII. CONCLUSION
The study investigated the method of integrating neural
OpenIE with pretrained encoder–decoder architecture for
better word representations in scenarios of IoT log ana-
lytics. The mathematical model further proved that time
sensitivities could be effectively handled using an attention-
based mechanism compared to rule-based frameworks that
are prevalent in current SOTA approaches. Furthermore, the
static word embedding and contextual information represen-
tations using the relationship of the derived triple-sets from
the TF-IDF architecture enhanced the model’s performance
by significantly reducing the computational time and its
allocated resources.
Future extension of this work will focus on optimizing the

proposed model so that it can be validated using multiple

NLP-based failure prediction scenarios and further enhance
its adaptive capabilities in IoT-based log abstraction and
service management activities.
In terms of its limitations, the disparity in accuracy that

is noticed for various approaches is the way in which the
manual labeling of the ground-truth data is organized. Since
this is specific to the IoT log instances and the way such
data was handled, it may have imposed further limitations
in accurately estimating the overall performance of these
SOTA approaches. This would be investigated further on
larger datasets and with additional attributes pertaining to
various failure prediction case studies. The expansion of
this research would consider the performance of these SOTA
approaches, not just on its parsing capabilities but also from
the perspectives of its accurate determination and reporting
of failures/anomalies in the log snippets. Furthermore, there
is a also a possibility that the proposed model can suffer from
false positives and false negatives during future downstream
task implementations while extracting information in terms
of segregating anomalies from informational logs. This can
be potentially mitigated by proper parameter tuning during
the training phases of the model while developing such future
predictive and prescriptive log analytics tasks.
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