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ABSTRACT We consider the problem of mixed feedforward and feedback based disturbance rejection,
where the feedforward measurement only provides a partial reconstruction of the disturbance. In doing
so, we pose a new biologically relevant disturbance rejection problem which puts the role of feedforward
measurements at the forefront. Based on the architecture of the human brain, we propose a design that utilizes
an adaptive internal model operating on a fast timescale that, in turn, trains the correct feedforward gains on
a slow timescale. As such, the training of reflexes in biological systems can be explained by leveraging the
theory of adaptive feedforward control. It is proven that our design provides an arbitrary level of disturbance
attenuation, and the benefits of using reflexes are illustrated via a multitude of simulations.

INDEX TERMS Adaptive control, averaging analysis, disturbance rejection, feedforward control, systems
neuroscience.

I. INTRODUCTION
The problem of adaptive feedforward disturbance rejection or
adaptive feedforward cancellation has been widely studied in
the control literature, both with known disturbance frequen-
cies [1], [2], [3], [4] and unknown frequencies [5], [6]. These
methods aim to reconstruct the full disturbance so that it can
be cancelled using feedforward control. Closely related are
methods based on the internal model principle [1], [2], [7], [8].
Applications include active vibration control in buildings [9];
robotics [10]; motor control in neuroscience [11]; active noise
control [12], [13], [14], [15]; vibration control [16], [17]; disk
drives [18]; marine systems [19]; wind turbines [20]; and
many others.

A problem that has not been studied, to our knowledge, is
one where the system is equipped with sensors that provide
direct measurements of only a subset of components of the full
disturbance. The presence of unmeasured disturbance compo-
nents implies that one must incorporate additional disturbance
rejection modules. A naive design would be to simply ignore
sensory measurements, allowing an adaptive internal model
to take over all work of disturbance rejection. The downsides
of the naive approach are several: higher computational cost,
slower response, and perhaps most egregious, reduced effi-
cacy to cancel brief (not persistent) disturbances. We seek a

design in which sensory measurements of disturbances work
in tandem with adaptive internal models for enhanced distur-
bance rejection capabilities. In particular, we study the case
when partial disturbance measurements with the correct phase
and frequencies are available, but the amplitude of their con-
tribution to the disturbance is unknown.

At the heart of the mixed adaptive internal model / feed-
forward control problem lies one of the central challenges of
adaptive control: the management of persistent excitation to
achieve parameter convergence. The key issue is that feed-
forward control inputs usurp excitation from other adaptive
processes such as adaptive internal models. They present
themselves in the form of redundant regressors, competing
for available excitation. If the overall system is not properly
architected, parameter convergence will not, in general, be
guaranteed. In turn, if feedforward control amplitudes are not
properly adapted, the utility of feedforward control is under-
mined.

Our motivation for studying feedforward control in distur-
bance rejection problems stems from systems neuroscience:
the brain utilizes thousands of adaptive feedforward reflex
inputs to achieve near instantaneous disturbance rejection of
measurable components of disturbances, a feat impossible
to achieve using more complex algorithms such as adaptive
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internal models. How the brain coordinates and calibrates all
these reflex signals has been the subject of intensive investi-
gation in neuroscience for the last 60 years [11].

Related Work: The study of adaptive feedforward control
for the purpose of disturbance cancellation appears to origi-
nate in [21] and has subsequently proliferated in the control
literature, with only a small subset highlighted here. The
variants of the problem may be classified according to the
information available: the amplitude, phase, or frequencies of
the disturbance may be known or unknown; and the plant may
be known or uncertain. A clear trend of recent literature is to
strip away as many assumptions on a priori information [22],
[23]. However, almost all previous literature considers only
one disturbance rejection module in operation. For example,
if a direct measurement of the disturbance is available, then
an internal model would not be used. The more realistic case
of partial disturbance measurements working in tandem with
other disturbance rejection modules has largely been over-
looked, despite the prevalence of this case in robotics [24]
and neuroscience [11]. An exception is [7] which presents
both a feedback and feedforward controller to achieve perfect
regulation. A caveat of their design is that the feedforward
term is only useful for disturbance rejection when the initial
condition of the exosystem is exactly known, contrasting with
our problem. Also, robustness to brief disturbances is not
considered.

Recent literature on over-modelled internal models [8], [25]
contends with issues related to our work, namely managing
lack of persistent excitation due to the possibility of redun-
dant regressors. The paper [25] shows that a reduced set of
parameters of the adaptive internal model associated with a
reduced exosystem always converges to their correct values,
despite a lack of excitation. The paper [8] deals with redun-
dant regressors by directly monitoring the level of excitation
in regressors. These methods adapt all parameters simul-
taneously such that the redundancy in regressors impedes
parameter convergence. Instead, we show this problem can be
mitigated by pushing downstream the excitation from one dis-
turbance rejection module to another through a separation of
timescales. This architectural intervention helps disambiguate
the parameters that must be recovered.

The goal of the present work may also be contrasted
with [1], in which a known linear time-invariant (LTI) plant is
perturbed by sinusoidal disturbances for which a certain num-
ber of frequencies are known, but the amplitudes and phases
are unknown. The authors show that higher-order harmon-
ics can be partially attenuated using an adaptive feedforward
control scheme designed to cancel known frequency com-
ponents. The method was extended to the nonlinear setting
in [26], where averaging analysis and semi-global stabiliza-
tion techniques were applied to formalize the findings; see
also [2]. In this article we consider disturbances with arbitrary
(sinusoidal) measured and unmeasured components, not only
higher-order harmonics; and we seek full attenuation of the
overall disturbance on a fast timescale. Further, we emphasize
the relationship between the feedforward controller and the

internal model: the feedforward control should reduce the
work of the internal model to the extent possible.

The present investigation is an outgrowth of our work on
modeling the cerebellum using adaptive internal models [27],
[28]. There we considered adaptive processes housed in the
cerebellum for the purpose of short-term disturbance rejec-
tion. Particularly, we assumed that all reflex gains (known to
be adapted slowly) are constants. The present work removes
the restriction of constant reflex gains, thereby bringing the
true two timescale behavior into view.

Contributions: In Section II we present a new biologically
motivated disturbance rejection problem that puts feedforward
measurements at the forefront of the disturbance rejection pro-
cess. In Sections III-A and III-B we present a two timescale
update law for the adaptation of feedforward gains inspired
by the Miles-Lisberger hypothesis [29]. In Section III-C we
begin by presenting an explicit converse Lyapunov function
for linear time-varying systems appearing in adaptive control
to reduce averaging analysis to standard Lyapunov argu-
ments. Then we detail an iterative Lyapunov stability analysis,
comprising Lemma 3 and Theorems 1–2, that culminates in
showing that the proposed design achieves an arbitrary level
of disturbance attenuation of O(ε) for all ε > 0 sufficiently
small. Moreover, we have asymptotic disturbance rejection if
there is no unmeasurable component of the disturbance. We
also show that our proposed design disambiguates adapted pa-
rameters by de-correlating the unmeasured disturbance from
the feedforward measurement.

Section IV demonstrates the usefulness of our design
through two examples. We first present a third-order peda-
gogical example to demonstrate that standard adaptive control
methods fail to meet the specifications of our disturbance
rejection problem, while the proposed design gives reasonable
performance. The second example from systems neuroscience
regards long-term adaptation of the vestibuloocular (VOR)
gain. A brief qualitative description of the Miles-Lisberger
hypothesis allows the reader to apprehend how it informed
our design. We consider three standard behaviors associated
with VOR adaptation, demonstrating that our design is biolog-
ically plausible to capture cerebellar-brainstem interactions
predicted by the Miles-Lisberger hypothesis.

II. PROBLEM STATEMENT
For the sake of exposition, we study a single-input LTI system
in matched disturbance form

ẋ = Ax + Bu − Bd (1a)

ζ̇ = Sζ (1b)

d = �ζ . (1c)

where x(t ) ∈ Rn is the state, u(t ) ∈ R is the input, ζ (t ) ∈ Rq

is the exosystem state, and d (t ) ∈ R is a bounded disturbance.
Suppose we have a sensory measurement y(t ) ∈ Rp of distur-
bances (y is not a state measurement). To remain consistent
with the LTI systems framework studied in the article, we
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assume y is generated by LTI exosystems

ζ̇i = Siζi (2a)

yi = �iζi , (2b)

where ζi(t ) ∈ Rq for 1 ≤ i ≤ p, and yi is the i-th component
of y. The assumption that S and Si have the same dimension is
wlog; see Remark 1. Signals d and y are related by

d = d0 − αᵀy ,

where αᵀy corresponds to a dedicated source of disturbances,
measurable up to the unknown scale factor α; and α ∈ Rp cap-
tures a physical parameter, such as the gain of an unmodeled
pathway from sensor to plant. For example, in robots with
joint torque sensors, αᵀy is the torque measurement, and α
is the unknown torque sensor gains [10], [24]. Finally, d0 rep-
resents a residual, fully unmeasurable disturbance component.

We consider a regulator of the form:

u = us + ur + uim (3a)

ur = −α̂ᵀy , (3b)

where us is for closed-loop stability; ur = −α̂ᵀy is the feed-
forward control input with α̂(t ) ∈ Rp an estimate of α; and
uim is a component to reject unmeasurable disturbances. To
formulate a meaningful regulator problem that includes the
use of feedforward control, the following requirements should
be considered:

R1) Regulation: the unforced closed-loop system, obtained
by setting ζ = ζi = 0, is stable and x → 0.

R2) Optimality: feedforward control ur should be priori-
tized over uim for disturbance rejection.

R3) Robustness: brief disturbances measurable through y
must be rejected instantaneously.

The requirement (R1) captures the classical requirements
of closed-loop stability and steady-state regulation, whereas
(R2) and (R3) are additional requirements that aim to exploit
the main advantages of feedforward control in disturbance
rejection: low complexity, fast reaction time, and the ability
to reject brief disturbances. Requirement (R2) captures the
idea that because feedforward controls are of low complexity,
they should be prioritized over more costly algorithms such
as adaptive internal models, especially over long time hori-
zons. Thus, a design in which (R2) is violated over a short
timescale may be acceptable, as it does not induce significant
degradation in the long-term cost of operation. (R3) imposes
that brief disturbances measurable through y should be nearly
undetectable in the system state. This requirement cannot be
achieved by an adaptive internal model, which is intended to
deal with persistent, not brief disturbances. The revelance of
(R3) can be understood from a neuroscience example: sub-
jects with an impaired vestibuloocular reflex (VOR) complain
they cannot read signs while walking due to the impulsive
disturbance on eye position from their own footfalls [30]. (R3)
highlights that the common mantra in control theory that brief

disturbances can be compensated through exponential stabil-
ity or classical robust control methods is not adequate for high
performing control systems such as neuroscience systems.

The considered disturbance rejection problem is challeng-
ing due to the difficulty of achieving (R1)–(R3) simultane-
ously. A design that meets (R1) by exploiting y in the most
expedient way will typically fail (R3); achieving (R3) may
violate (R2); and so forth. To appreciate such tradeoffs, we
consider an example. Suppose A is Hurwitz (possibly after
state feedback), y = sin(ωt ), α ∈ R, and the nominal distur-
bance is:

d (t ) = d0(t ) − αy(t ) = a0 cos(ωt ) − α sin(ωt ) .

Let uim = ψ̂ᵀŵ be the output of an adaptive internal model
with a regressor ŵ(t ) ∈ R2 that has no direct access to y, and
let ur = −α̂y be the feedforward input. Even if disturbance
rejection is achieved asymptotically; namely u = ur + uim →
d , we cannot expect α̂ → α because the components of the
regressor (ŵ, y) may have redundant frequency content, mak-
ing the regressor non-persistently exciting. Now suppose y
includes a perturbation δ(t ) (e.g., see Section IV-A) such
that y(t ) = sin(ωt ) + δ(t ). Then in steady-state u − d0(t ) +
αy(t ) � (α − α̂)δ(t ) �= 0. That is, (R3) is violated despite
(R1) being satisfied. Consider instead a case when y provides
a full measurement of disturbances and uim = 0. Let the nom-
inal disturbances be d0 = sin(ωt ), y = sin(ωt ), and α = 1.
In this case two disturbance sources cancel each other out,
resulting in a total disturbance d = 0. This scenario naturally
causes ambiguities for adaptation of α̂. If the objective is
to achieve (R1) and (R2), then we expect α̂ → 0. Then if
y(t ) = sin(ωt ) + δ(t ), in steady-state we find u − d � δ(t ) so
(R3) is not satisfied. Suppose instead (R3) is the dominant
requirement. Then we require α̂ → 1, whereas standard algo-
rithms would generate α̂ → 0. In sum, the central technical
problem in achieving (R1)–(R3) simultaneously is the possi-
ble redundancy in frequency content between measured and
unmeasured components of the disturbance.

III. TWO TIMESCALE REGULATOR
We aim to solve a disturbance rejection problem for system
(1) with partial disturbance measurement y generated by (2),
with α ∈ Rp a physical parameter, subject to the requirements
(R1)–(R3). The design was conceived after a study of the
cerebellum and its relationship to the brainstem (housing ocu-
lomotor reflexes); see Section IV-B. It consists of two parts: (i)
an adaptive internal model with a stabilizer; and (ii) a reflex
adaptation law. First we require some standard definitions and
assumptions.

Definition 1: The signal w(t ) is persistently exciting (PE)
if there exists β0, β1, T > 0 such that

β0I � 1

T

∫ t+T

t
w(τ )wᵀ(τ ) dτ � β1I , ∀ t ≥ 0 .

Definition 2: The signal r(t ) ∈ Rm is sufficiently rich of
order s if s is the smallest integer such that there exists
Q ∈ Rm×s and S ∈ Rs×s, with S having simple eigenvalues
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on the jω-axis, such that

ζ̇ = Sζ

r = Qζ .

If r(t ) = 0, then it is sufficiently rich of order 0.
Assumption 1: The open-loop system (1) and the measure-

ment (2) satisfy:
A1) the pair (A,B) is known and controllable;
A2) the matrices S and Si for 1 ≤ i ≤ p only have simple

eigenvalues on the jω-axis;
A3) wlog the pairs (�, S) and (�i, Si ) for 1 ≤ i ≤ p are

observable;
A4) the dimension q is interpreted as a known upper bound

on the sufficient richness of d and y;
A5) the measurements are x and y.
Remark 1: To explain why the dimensions of S and Si being

q is wlog, we note that by (A4) there always exists S and
Si whose dimensions are at most q (see Definition 2). Now
if any of these matrices were of dimension less than q, then
it could be augmented to the desired dimension. This would
increase the dimensionality of the associated exosystem state,
and so any additional components are initialized with zero
initial condition to recover the desired signals (d or yi). �

Remark 2: At first glance, it may appear that (A2) and (A4)
are in conflict. For example, if d contains a constant bias and
q is even, then S cannot be real-valued while only having
simple eigenvalues on the jω-axis. This can be addressed by
(i) always assuming q is odd, (ii) letting the unexcited modes
of S be any stable mode, or (iii) letting S be complex-valued.
Regardless, the upcoming developments are unchanged. The
same remark applies to the Si. �

A. ADAPTIVE INTERNAL MODEL
While in principle any internal model and stabilizer can be
used, we consider a specific design borrowing from the known
literature [31] to keep our developments concrete. Our unique
contribution is instead the reflex adaptation law for the feed-
forward gain α̂, presented in the next subsection.

Define α̃ := α̂ − α and apply the feedforward control ur to
(1). The resulting system is

ẋ = Ax + B(us + uim) − B(d0 + α̃ᵀy) (4a)

= Ax + B(us + uim) − Bd − Bα̂ᵀy . (4b)

We can see from (4a) that the goal of uim will be to reject the
residual disturbance d0 + α̃ᵀy. Based on the equivalence in
(4b), our approach will be to build a disturbance observer for
d and another one for y., Using (A2) and (A3), we can apply
the exosystem parameterization in [31], which says that for
any controllable pair (F,G) selected by the designer such that
F is Hurwitz, there exists a parameter ψ0 ∈ Rq such that

ẇ0 = Fw0 + Gd

d = ψ
ᵀ
0 w0 .

Notice that ψ0 captures all relevant unknown information
about the exosystem. We use the minimal order observer
from [31] to build the disturbance observer

η̇ = Fη + (FN − NA)x − NBu (5a)

ŵ0 = η + Nx , (5b)

where N ∈ Rq×n is selected so that NB = −G. Next we build
the internal model for y. Again applying the exosystem pa-
rameterization of [31], one obtains

ẇi = Fwi + Gyi

yi = ψ
ᵀ
i wi

for some ψi ∈ Rq. We then construct the disturbance ob-
servers

˙̂wi = F ŵi + Gyi . (6)

Remark 3: The filters (6) can be constructed each with their
own pair (Fi,Gi ) provided the pair is controllable and Fi is
Hurwitz. We selected (F,G) = (Fi,Gi ) for all i to keep the
design as simple as possible. �

Overall, the disturbance uim must reject is

d0 + α̃ᵀy = d + α̂ᵀy = ψᵀ(α̂)w

:=
[
ψ

ᵀ
0 α̂ᵀ

]
⎡
⎢⎢⎢⎢⎣

I 0 0 0

0 ψ
ᵀ
1 0 0

0 0
. . . 0

0 0 0 ψ
ᵀ
p

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w0

w1
...

wp

⎤
⎥⎥⎥⎥⎦ ,

where w(t ) := (w0, . . . ,wp)(t ) ∈ Rq(p+1). Defining the esti-
mation error w̃ := ŵ − w where ŵ := (ŵ0, . . . , ŵp) is con-
structed using the observers (5)–(6), the closed-loop system
becomes

ẋ = Ax + B(us + uim) − Bψᵀ(α̂)w

˙̃w = diag(F )w̃ .

As the above system is in a standard form, the regulator design
to achieve (R1) is straightforward. Let K ∈ Rn be such that
Acl := A + BKᵀ is Hurwitz and let P 
 0 solve the Lyapunov
equation Aᵀ

cl P + PAcl = −I . Using the observers (5)–(6), the
controller is

us = Kᵀx (7a)

uim = ψ̂ᵀŵ (7b)

˙̂ψ = −γ (BᵀPx)ŵ , (7c)

where γ > 0 and ψ̂ (t ) ∈ Rq(p+1) is an estimate of the time-
varying ψ (α̂(t )).

Remark 4: As mentioned after (4), a design decision was
taken to construct separate disturbance observers for d and
for y. A consequence of this choice is that the disturbance
observer (5) for d requires the measurement y as an input
through ur . We call this variant a centralized design because
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(possibly remote) sensory measurements y must be communi-
cated to a centralized adaptive internal model. The centralized
design creates an overparameterization of the disturbance
by using multiple observers, reminiscent of Kreisselmeier
filters [32]. The benefit is a simpler reconstruction of the
disturbance and subsequent simpler stability analysis, because
the level of excitation in regressors of the internal model does
not vanish. �

Remark 5: Our proposed regulator design is built up from
standard assumptions developed over 50 years of study in out-
put regulation. This collective wisdom may nevertheless leave
some readers unsure if practical designs are always achieved.
Here we address two key points. First, we consider a matched
disturbance form of the plant (1), a starting point for many
papers on output regulation. It arises after applying a coordi-
nate transformation based on the Francis regulator equations,
which guarantee that a matched form always exists [8], [23].
The physical model need not be in matched form initially. We
have started our design with the matched form simply to skip
those extra details.

Second, a key assumption in almost all output regulation
papers for linear systems is that the disturbance can be mod-
eled by a linear exosystem, despite the fact that, in practice,
disturbances contain noise, brief impulsive disturbances, and
other disturbance components. The utility of the assumption
is to allow a control design to proceed for a nominal distur-
bance which the designer has determined either to contain the
dominant frequency components, or in the adaptive case, to be
of sufficiently high order to capture the number of frequency
components affecting the plant. Assuming that the closed-
loop system is exponentially stable, robustness to unmodeled
disturbances is achieved [33]. Noisy measurements, present
in all practical systems, are handled by the same robustness
arguments. A key theme of our article is that a significant
improvement in robustness to unmodeled disturbances can be
obtained by adaptive feedforward control.

In sum, any violation of regulator theory assumptions
is dealt with by the robustness of the closed-loop sys-
tem, yielding a bounded steady-state error due to noise in
measurements, noise in the plant dynamics, or unmatched
disturbances. The resulting steady-state error is small if the
above effects are small. �

B. REFLEX ADAPTATION LAW
The key idea underlying the reflex adaptation law is the fol-
lowing. If α̂ is adapted very slowly or is constant, then the
internal model principle will be satisfied if uim → d0 + α̃ᵀy
in steady-state, by (4a). This observation justifies an interpre-
tation of uim as a metric of the quality of the feedforward
control: the less well adapted the gains α̂ are, the more
work must be performed by the internal model to suppress
disturbances. We want to reduce this work by prioritizing
feedforward control vis-à-vis (R2). Accordingly, we define a
cost function

Jim := 1

2
u2

im ,

FIGURE 1. Block diagram of the two timescale regulator design.

where uim = d0 + α̃ᵀy in steady-state. The resulting gradient
law for reflex adaptation is

˙̂α = −ε(∂α̂Jim)ᵀ = −εuimy , (8)

where ε > 0 will be selected sufficiently small to induce a sep-
aration of timescales. A block diagram of the overall regulator
is given in Fig. 1.

Remark 6: Several design decisions have been incorpo-
rated to address (R2)–(R3). First, we can see that the cost Jim

on the output of the internal model is intended to capture the
idea that the work of the internal model must be reduced by the
feedforward control. The resulting gradient adaptation law for
α̂ then offloads that work, thus prioritizing the action of the
feedforward control as per (R2). To achieve (R3) several is-
sues come to play. First, there is the requirement that α̂ should
converge to the constant value α. To this end, the adaptation
law (8) is run slowly to allow uim to achieve steady-state so
that it is useful as an error signal for a reflex adaptation law
that should drive α̃ → 0. Slowness of the design has the added
benefit of averaging out noise in y, which is always present in
sensory measurements.

Second, the measurement y is not permitted to appear di-
rectly in uim, and y is filtered using (6). Ideally, from the point
of view of the internal model, brief disturbances are immedi-
ately vanquished by ur ; the internal model only processes the
persistent aspect of disturbances (sinusoidal content, etc). The
reason is that only ur has the correct reflex gains to properly
cancel this class of disturbances. Allowing the internal model
to contribute to the cancellation of brief impulsive distur-
bances would upset the careful balance of response achieved
by the feedforward controller. �

C. STABILITY ANALYSIS
The stability analysis involves identification of nominal fast
and slow subsystems, to which averaging will be applied.
The averaging analysis is carried out using Lemma 1 which
provides an appealing Lyapunov characterization, placing the
analysis in familiar terms. The results unfold in three steps,
with increasing tightness on the bounds for regulation.
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Define the parameter estimation error ψ̃ := ψ̂ − ψ (α̂) and
recall α̃ := α̂ − α. We observe that

uim = ψ (α̂)ᵀw + ψ̃ᵀw + (ψ (α̂) + ψ̃ )ᵀw̃

= d0 + α̃ᵀy + ψ̃ᵀw + (ψ (α̂) + ψ̃ )ᵀw̃

and ψ̇ (α̂) = � ˙̂α, where� := (0, diag(ψi )) ∈ Rq(p+1)×p. The
resulting closed-loop system is

ẋ = Acl x + Bψ̃ᵀw(t ) + B(ψ (α̂) + ψ̃ )ᵀw̃ (9a)

˙̃ψ = − γ (BᵀPx)w(t ) + ε�y(t )(wᵀ(t )ψ̃ + yᵀ(t )α̃) (9b)

+ ε�y(t )d0(t ) + ε�y(t )(ψ (α̂) + ψ̃ )ᵀw̃ − γ (BᵀPx)w̃

˙̃α = − εy(t )yᵀ(t )α̃ − εy(t )wᵀ(t )ψ̃ − εy(t )d0(t ) (9c)

− εy(t )(ψ (α̂) + ψ̃ )ᵀw̃

˙̃w = diag(F )w̃ . (9d)

The time dependence t is used to emphasize that some signals
are exogenous. We now proceed to analyze stability. For the
sake of exposition, we introduce the following simplifying
assumptions; these can be removed at the cost of additional
technical developments such as perturbed stability analyses
and PE decompositions [34].

Assumption 2: The system (9) satisfies:
A6) w̃ = 0;
A7) w(t ) and y(t ) are each PE.
The PE assumption in (A7) is ubiquitous in adaptive con-

trol to be able to prove convergence of parameters [35]. In
practice, regressors will generally not be PE, and a number
of modifications of parameter adaptation laws are available
to resolve the problem [36]; we recently developed a method
based on biologically plausible principles in [34]. Notice that
(A7) does not imply that the composite regressor (w, y)(t ) is
PE.

Using (A6), the system (9) simplifies to[
ẋ
˙̃ψ

]
=

[
Acl Bwᵀ(t )

−γw(t )BᵀP 0

] [
x

ψ̃

]
(10a)

+ εG f (t )

[
ψ̃

α̃

]
+ ε

[
0

�y(t )d0(t )

]

˙̃α = − εy(t )yᵀ(t )α̃ + εGs(t )ψ̃ − εy(t )d0(t ) (10b)

where

G f (t )

[
ψ̃

α̃

]
=

[
0

�y(t )

] [
wᵀ(t ) yᵀ(t )

] [
ψ̃

α̃

]
,

and Gs(t ) = −y(t )wᵀ(t ) are bounded functions. The next re-
sult provides a Lyapunov function useful for two timescale
averaging.

Lemma 1: Let y(t ) ∈ Rp be a bounded PE regressor and
suppose that its autocovariance matrix

Ry(0) = lim
T →∞

1

T

∫ t+T

t
y(τ )yᵀ(τ ) dτ

exists with convergence uniform in t ≥ 0. Consider the system

˙̃α = −εy(t )yᵀ(t )α̃ =: ε fs(t, α̃) .

There exists a converse Lyapunov function Vs(t, α̃; ε) and an
ε� > 0 such that for all ε ∈ (0, ε�), Vs(·) satisfies

b1‖α̃‖2 ≤ Vs(t, α̃; ε) ≤ b2‖α̃‖2 (11a)

∂tVs(t, α̃; ε) + ∂α̃Vs(t, α̃; ε)ε fs(t, α̃) ≤ −εb3‖α̃‖2 (11b)

‖∂α̃Vs(t, α̃; ε)‖ ≤ b4‖α̃‖ (11c)

for some constants bi > 0 independent of ε.
Proof: Following the averaging procedure from [37]

or [35], define the near-identity transformation

U (t, ε) := I − ε

∫ t

t0

(y(τ )yᵀ(τ ) − Ry(0))e−ε(t−τ ) dτ ,

where t0 ≥ 0 denotes the initial time and U (t, ε) ∈ Rq×q.
Defining a new state α̃◦ ∈ Rp as α̃ = U (t, ε)α̃◦ and following
the proof of [35, Lemma 4.2.3], one can show that there exists
ε1 > 0 such that for all ε ∈ (0, ε1) the resulting dynamics are

˙̃α◦ = −εRy(0)α̃◦ + εF (t, α̃◦, ε) ,

with ‖F (t, α̃◦, ε)‖ ≤ δ1(ε)‖α̃◦‖ for some δ1(·) ∈ K (a class-
K function). Since y(t ) is PE and its autocovariance matrix
exists, by [35, Proposition 2.7.1] Ry(0) 
 0. Consequently we
may define the Lyapunov function

Vav (α̃◦) := 1

2
α̃ᵀ◦ Ry(0)−1α̃◦ ,

for which there exists ε2 > 0 no larger than ε1 such that for
all ε ∈ (0, ε2) we have

a1‖α̃◦‖2 ≤ Vav (α̃◦) ≤ a2‖α̃◦‖2

‖∂α̃◦Vav (α̃◦)‖ ≤ a4‖α̃◦‖
∂α̃◦Vav (α̃◦) ˙̃α◦ ≤ − ε (1 − a4δ1(ε)) ‖α̃◦‖2 ≤ −εa3‖α̃◦‖2 ,

where the constants ai > 0 are independent of ε. Also, fol-
lowing the proof of [35, Lemma 4.2.2], there exists δ2(·) ∈ K
such that

‖ε
∫ t

t0

(y(τ )yᵀ(τ ) − Ry(0))e−ε(t−t0 ) dτ‖ ≤ δ2(ε) .

Using the triangle inequality and reverse triangle inequality
on α̃ = U (t, ε)α̃◦, one may obtain the inequality

(1 − δ2(ε))‖α̃◦‖ ≤ ‖α̃‖ ≤ (1 + δ2(ε))‖α̃◦‖ .
Since U (t, ε) is a square matrix, to establish it is invertible
it suffices to show that α̃ = 0 if and only if α̃◦ = 0. By the
inequality above, if we pick ε� > 0 no larger than ε2 such that
for all ε ∈ (0, ε�) we have 0 < a5 ≤ 1 − δ2(ε) ≤ 1 + δ2(ε) ≤
a6 for some constants a5, a6 > 0 that are independent of ε,
then clearly α̃ = 0 if and only if α̃◦ = 0. At last, define the
Lyapunov function

Vs(t, α̃; ε) := Vav (U (t, ε)−1α̃) = Vav (α̃◦) .
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Leveraging our inequalities above, the quadratic bounds can
be derived as

Vs(t, α̃; ε) = Vav (α̃◦) ≥ a1‖α̃◦‖2 ≥ a1(1 + δ2(ε))−2‖α̃‖2

≥ a1a−2
6 ‖α̃‖2 =: b1‖α̃‖2

Vs(t, α̃; ε) = Vav (α̃◦) ≤ a2‖α̃◦‖2 ≤ a2(1 − δ2(ε))−2‖α̃‖2

≤ a2a−2
5 ‖α̃‖2 =: b2‖α̃‖2

whereas the Lie derivative bound is computed as

∂tVs(t, α̃; ε) + ∂α̃Vs(t, α̃; ε) ˙̃α = ∂α̃◦Vav (α̃◦) ˙̃α◦

≤ −εa3‖α̃◦‖2 ≤ −εa3(1 + δ2(ε))−2‖α̃‖2

≤ −εa3a−2
6 ‖α̃‖2 =: −εb3‖α̃‖2 .

For the partial derivative bound, note that we have

‖U (t, ε)−1‖ := sup
α̃ �=0

{‖U (t, ε)−1α̃‖
‖α̃‖

}
= sup

α̃ �=0

{‖α̃◦‖
‖α̃‖

}

≤ (1 − δ2(ε))−1

so that

‖∂α̃Vs(t, α̃; ε)‖ = ‖∂α̃◦Vav (α̃◦)∂α̃α̃◦‖
≤ a4‖α̃◦‖‖U (t, ε)−1‖
≤ a4(1 − δ2(ε))−2‖α̃‖
≤ a4a−2

5 ‖α̃‖ =: b4‖α̃‖ .
Noting that these bounds hold for all ε ∈ (0, ε�) and that
the constants bi > 0 are independent of ε, this concludes the
proof. �

Next we require a technical result on ultimate boundedness
for a particular scalar ODE. This result is needed to character-
ize steady-state errors in Lemma 3 and Theorems 1–2.

Lemma 2: Consider the scalar system ż = −az + r(t )
where a > 0. Then lim supt→∞ |z(t )| ≤ a−1 lim supt→∞
|r(t )|.

Proof: Let r� := lim supt→∞ r(t ). It is wlog to assume
r� < ∞, because otherwise the result is trivial. By defini-
tion, for every ε > 0 there exists a time t� ≥ t0 such that
|r(t )| ≤ r� + ε for all t ≥ t�. By linear time-invariance, the
time solution is

z(t ) = e−a(t−t� )z(t�) +
∫ t

t�
e−a(t−τ )r(τ ) dτ .

Consequently, we have

lim sup
t→∞

|z(t )| ≤ lim sup
t→∞

∫ t

t�
e−a(t−τ )(r� + ε) dτ

= a−1(r� + ε) .

Since the above inequality holds for all ε > 0, it must hold for
ε = 0, thus concluding the proof. �

We now proceed to establishing steady-state error bounds
iteratively. That is, we first establish a constant bound on the

steady-state error for all states in Lemma 3. This bound is
refined for the fast states (x, ψ̂ ) only in Theorem 1. Then, we
obtain a similar tighter bound for the slow states in Theorem 2,
under an additional assumption. We will use big-O notation to
describe these bounds.

Definition 3: For functions f (·) and δ◦(·), we say f (ε) =
O(δ◦(ε)) for all ε > 0 sufficiently small if there exists
ε�, c◦ > 0 such that ‖ f (ε)‖ ≤ c◦δ◦(ε) for all ε ∈ (0, ε�).

The next result establishes a uniform bound on all states for
all ε > 0 sufficiently small.

Lemma 3: Consider the system (1) and measurement (2)
satisfying Assumption 1 with the regulator (3), (5)–(8). Let
(10) be the closed-loop system resulting from Assumption 2.
Then for all ε > 0 sufficiently small

lim sup
t→∞

‖(x, ψ̃, α̃)(t )‖ = O(1) .

Moreover, the closed-loop system is input-to-state stable (ISS)
with respect to input y(t )d0(t ).

Proof: By (A2) and (A7), [35, Th. 2.6.5] tells us that the
equilibrium (x, ψ̃ ) = (0, 0) of[

ẋ
˙̃ψ

]
=

[
Acl Bwᵀ(t )

−γw(t )BᵀP 0

] [
x

ψ̃

]
=: f f (t, x, ψ̃ )

is globally exponentially stable (GES). Then [33, Th. 4.14]
states that there exists a converse Lyapunov function Vf (·)
satisfying

a1‖(x, ψ̃ )‖2 ≤ Vf (t, x, ψ̃ ) ≤ a2‖(x, ψ̃ )‖2 (12a)

(∂tVf + ∂(x,ψ̃ )Vf f f )(t, x, ψ̃ ) ≤ −a3‖(x, ψ̃ )‖2 (12b)

‖∂(x,ψ̃ )Vf (t, x, ψ̃ )‖ ≤ a4‖(x, ψ̃ )‖ (12c)

Additionally, since y(t ) is the output of an LTI exosystem,
its autocovariance matrix Ry(0) exists with convergence uni-
form in t ≥ 0 by [37, Appendix, Th. 6]. In conjunction with
(A7), we have that the converse Lyapunov function Vs(·) from
Lemma 1 exists for ε > 0 sufficiently small. With the ap-
propriate converse Lyapunov functions now constructed, we
move on to establishing the steady-state error bound.

To keep our developments concise, we will skip most of
the algebra involved in the upcoming Lyapunov arguments.
To aid the reader, the following facts from Young’s Inequality
are used:

ε‖(x, ψ̃ )‖‖α̃‖ ≤ 1

2
ε2/3‖(x, ψ̃ )‖2 + 1

2
ε4/3‖α̃‖2

‖α̃‖‖y(t )d0(t )‖L∞ ≤ 1

2
c‖α̃‖2 + 1

2
c−1‖y(t )d0(t )‖2

L∞

‖(x, ψ̃ )‖‖�‖‖y(t )d0(t )‖L∞

≤ 1

2
‖(x, ψ̃ )‖2 + 1

2
‖�‖2‖y(t )d0(t )‖2

L∞ ,

where c > 0 is an arbitrary constant, and we define the
supremum norm as ‖ · ‖L∞ := supt≥t0≥0 ‖ · ‖. Now con-
sider the Lyapunov function V (t, x, ψ̃, α̃; ε) := Vf (t, x, ψ̃ ) +
Vs(t, α̃; ε), computing its Lie derivative with respect to (10)
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and applying the facts above, one obtains

V̇ (t, x, ψ̃, α̃; ε)

≤ −
(

a3 − ε2/3γ0 − εa4‖G f (t )‖L∞ − 1

2
εa4

)
‖(x, ψ̃ )‖2

− ε

(
b3 − 1

2
b4c − ε1/3γ0

)
‖α̃‖2

+ 1

2
ε
(
a4‖�‖2 + b4c−1) ‖y(t )d0(t )‖2

L∞ ,

where γ0 := 1
2 (a4‖G f (t )‖L∞ + b4‖Gs(t )‖L∞ ). Since c > 0 is

arbitrary, we may select it independently of ε so that b3 −
1
2 b4c > 0. Then it is clear that for all ε > 0 sufficiently small,
we have (omitting details)

V̇ (·) ≤ −γ1‖(x, ψ̃ )‖2 − εγ2‖α̃‖2 + εγ3‖y(t )d0(t )‖2
L∞

for some γ1, γ2, γ3 > 0 independent of ε. Since we are re-
stricting our attention to ε > 0 sufficiently small, and because
Vf (·) and Vs(·) are upper bounded by quadratics in their states,
it is wlog to state that there exists γ� > 0 independent of ε
such that

V̇ (·) ≤ −εγ�V (·) + εγ3‖y(t )d0(t )‖2
L∞ . (13)

As such, one immediately concludes ISS with respect to
y(t )d0(t ) [33, Th. 4.19]. Using the Comparison Lemma and
Lemma 2, one deduces

lim sup
t→∞

V (t, x(t ), ψ̃ (t ), α̃(t ); ε) ≤ γ3γ
−1
� ‖y(t )d0(t )‖2

L∞ ,

where γ3γ
−1
� ‖y(t )d0(t )‖2

L∞ = O(1). Given that V (·) is lower

bounded by a quadratic in (x, ψ̃, α̃), the above expression
proves the result. �

The first stability result addresses regulation of (x, ψ̂ ).
Theorem 1: Consider the system (1) and measurement (2)

satisfying Assumption 1 with the regulator (3), (5)–(8). Let
(10) be the closed-loop system resulting from Assumption 2.
Then for all ε > 0 sufficiently small

lim sup
t→∞

‖(x, ψ̃ )(t )‖ = O(ε) .

Proof: Taking the Lie derivative of Vf (·) from (12) with
respect to (10a), we have

V̇f (t, x, ψ̃ ) ≤ − a3‖(x, ψ̃ )‖2 + a4‖(x, ψ̃ )‖εr(t )

≤ −
(

a3 − 1

2
a4c

)
a−1

1 Vf (t, x, ψ̃ )

+ 1

2
ε2a4c−1r2(t ) ,

where r(t ) := ‖G f (t )‖L∞‖(ψ̃, α̃)(t )‖ + ‖�‖‖y(t )d0(t )‖L∞
and c > 0 independent of ε is selected so that a3 − 1

2 a4c >
0. Note that the second inequality is obtained through an
appropriate application of Young’s Inequality. Using the Com-
parison Lemma and Lemma 2, we obtain

lim sup
t→∞

Vf (t, x(t ), ψ̃ (t )) ≤ ε2γ�

(
lim sup

t→∞
r2(t )

)

for some γ� > 0 sufficiently large and independent of ε. By
Lemma 3 we have that for all ε > 0 sufficiently small

lim sup
t→∞

r(t ) = ‖G f (t )‖L∞

(
lim sup

t→∞
‖(ψ̃, α̃)(t )‖

)

+ ‖�‖‖y(t )d0(t )‖L∞ = O(1) .

Using the fact r(t ) ≥ 0, we have lim supt→∞ r2(t )
= (lim supt→∞ r(t ))2 and so we conclude

lim sup
t→∞

Vf (t, x(t ), ψ̃ (t )) = O(ε2)

for all ε > 0 sufficiently small. Lastly, the lower bound
a1‖(x, ψ̃ )‖2 ≤ Vf (t, x, ψ̃ ) proves the result. �

Theorem 1 shows that regulation of (x, ψ̃ ) can be achieved
up to order ε. Since (R1) is generally the overriding control
objective, this result confirms that our two timescale design
provides a practical solution to the disturbance rejection prob-
lem, while also achieving (R2). However, the previous result
draws no conclusions about the convergence of the slow state
α̂, implying that we do not know if the design can also achieve
(R3). The next stability result gives a sufficient condition for
regulation of α̂.

Theorem 2: Consider the system (1) and measurement (2)
satisfying Assumption 1 with the regulator (3), (5)–(8). Let
(10) be the closed-loop system resulting from Assumption 2.
Additionally, suppose that y(t )d0(t ) has zero average. Then
for all ε > 0 sufficiently small

lim sup
t→∞

‖α̃(t )‖ = O(ε) .

Proof: By linearity we may split (10b) as

˙̃α1 = −εy(t )yᵀ(t )α̃1 + εGs(t )ψ̃ (t )

˙̃α2 = −εy(t )yᵀ(t )α̃2 − εy(t )d0(t ) ,

where α̃ = α̃1 + α̃2, with α̃1(t ), α̃2(t ) ∈ Rp, and α̃2(t0) = 0.
By the same reasoning presented in the proof of Lemma 3, we
have that Vs(·) from Lemma 1 exists for all ε > 0 sufficiently
small. Taking the Lie derivative of Vs(·) along the α̃1 dynamics
we obtain

V̇s(t, α̃1; ε) ≤ − εb3‖α̃1‖2 + εb4‖α̃1‖‖Gs(t )‖L∞‖ψ̃ (t )‖

≤ − ε

(
b3 − 1

2
b4c

)
b−1

1 Vs(t, α̃1; ε)

+ 1

2
εb4c−1‖Gs(t )‖2

L∞‖ψ̃ (t )‖2 ,

where c > 0 independent of ε is selected so that b3 − 1
2 b4c >

0. By the Comparison Lemma and Lemma 2, followed by
Theorem 1 which states lim supt→∞ ‖ψ̃ (t )‖ = O(ε), we have
that there exists γ� > 0 independent of ε such that

lim sup
t→∞

Vs(t, α̃1(t ); ε) ≤ γ�

(
lim sup

t→∞
‖ψ̃ (t )‖2

)

= γ�

(
lim sup

t→∞
‖ψ̃ (t )‖

)2

= O(ε2) .
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Using the lower bound Vs(t, α̃1; ε) ≥ b1‖α̃1‖2, we conclude

lim sup
t→∞

‖α̃1(t )‖ = O(ε) .

Next, since y(t )d0(t ) is assumed to have zero average, the
average dynamics of α̃2 are

˙̃αav = −εRy(0)α̃av ,

where α̃av (t ) ∈ Rp and α̃av (t0) = α̃2(t0) = 0. Note that, us-
ing [37, Appendix, Th. 6], Ry(0) exists with convergence
uniform in t ≥ 0 because y(t ) is the output of an LTI exosys-
tem. Given that y(t ) is PE by (A7), we have that Ry(0) 
 0
by [35, Proposition 2.7.1]. Thus −εRy(0) is Hurwitz and
so the equilibrium α̃av = 0 is GES. By the Hovering Theo-
rem [38, Th. 5.5.1], there exists δav (·) ∈ K yielding the bound

‖α̃2(t )‖L∞ = ‖α̃2(t ) − α̃av (t )‖L∞ = O(δav (ε))

for all ε > 0 sufficiently small, where we note α̃av (t ) = 0
because α̃av (t0) = 0. In fact, we may take O(δav (ε)) = O(ε)
by [38, Lemma 4.6.5] since y(t ) is a finite sum of sinusoids
given that it is the output of an LTI exosystem. At last, the
triangle inequality gives us that

lim sup
t→∞

‖α̃(t )‖ ≤ lim sup
t→∞

‖α̃1(t )‖ + ‖α̃2(t )‖L∞

= O(ε) + O(ε) = O(ε) ,

as desired. �
Remark 7: While not reiterated in Theorems 1–2, the ISS

property in Lemma 3 still holds, highlighting the robustness
of the proposed design. A special case of the foregoing results
is that if d0 = 0, meaning y provides a full measurement of
the disturbance up to a scale factor, and Assumption 2 holds,
then the equilibrium (x, ψ̃, α̃) = (0, 0, 0) is GES, implying
again robustness. Surprisingly, even in this special case, our
proposed two timescale design is needed to meet (R3). This
will be shown in Section IV-B. More generally, if d0 �= 0 one
cannot guarantee regulation of α̂ to the physical parameter α,
indicative of interference between the internal model and the
feedforward control. Theorem 2 tells us that this interference
vanishes if the unmeasured component of the disturbance d0

is, in an average sense, uncorrelated with the measured com-
ponent y. This requirement is reasonable in many engineering
applications where d0 and y represent two different sources of
environmental disturbances. �

An alternative interpretation of Theorem 2 is that α̂ will
converge near a value of α that de-correlates the unmeasured
disturbance d0 from the measurement y. This value of α al-
ways exists and can be computed as follows.

Proposition 1: Suppose y(t ) ∈ Rp is PE, its autocovariance
matrix Ry(0) exists, and the average of y(t )d (t ) exists. Define
d0 := d + αᵀy. Then there exists a unique α ∈ Rp such that
y(t )d0(t ) has zero average.

Proof: We want to find α solving the linear equation

0 = lim
T →∞

1

T

∫ t+T

t
y(τ )d0(τ ) dτ

= lim
T →∞

1

T

∫ t+T

t
y(τ )d (τ ) dτ + Ry(0)α .

Since y(t ) is PE, Ry(0) is invertible [35, Proposition 2.7.1] and
one can directly solve for α. �

IV. EXAMPLES
This section presents two examples. The first pedagogical
example compares our design to standard adaptive control
designs, thus motivating why the proposed design is required
to satisfy (R1)–(R3). The second example regards the VOR,
where we demonstrate the biological plausibility of our model
by considering standard experiments with long-term adapta-
tion of the VOR gain.

A. THIRD-ORDER EXAMPLE
In the first example we compare our proposed regulator design
with two standard regulators. Consider a third order system of
the form (1) with parameters

A =

⎡
⎢⎣0 1 0

0 0 1

0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣0

0

1

⎤
⎥⎦ , x(t0) =

⎡
⎢⎣10

0

0

⎤
⎥⎦ .

Unspecified initial conditions are zero. The nominal dis-
turbance is d (t ) = 20 cos(2πt ) − 20 sin(2πt ). We assume a
partial disturbance measurement y(t ) = sin(2πt ), so that d =
d0 − αᵀy with α = 20 and d0(t ) = 20 cos(2πt ). The con-
troller has the form

u = us + uim + ur ,

us = Kᵀx , uim = ψ̂ᵀŵ , ur = −α̂ᵀy ,

where Kᵀ =
[
−6 −11 −6

]
for closed-loop stability. Let

P 
 0 solve the Lyapunov equation Aᵀ
cl P + PAcl = −I , where

Acl := A + BKᵀ, and select

F =
[

0 1

−1 −1

]
, G =

[
0

1

]
, N = −GBᵀ , γ = 100 .

We model brief impulsive disturbances as short square
pulses of the form δ(t; t∗,�t ) = H (t − t∗) − H (t − (t∗ +
�t )), where H (·) is the Heaviside step function and �t > 0
is selected small. The perturbed measurement and disturbance
are assumed to be

y(t ) = sin(2πt )

+ 20 (δ(t; t1,�t ) − δ(t; t2,�t ) + δ(t; t3,�t ))

d (t ) = 20 cos(2πt ) − 20y(t ) ,

with t1 = 20.5, t2 = 40.5, t3 = 60.5, and �t = 0.1. The con-
vention in our Figures is that each state is plotted as a gradient
of the same colour, where the darkest plot corresponds to the
first component and the lightest plot corresponds to the last
component.

Standard Design I: As a first baseline controller, we
consider a standard regulator design that does not use the
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FIGURE 2. Standard regulator with no reflex.

measurement y. It consists of the disturbance observer (5)
(where ŵ = ŵ0) with

˙̂ψ = −γ (BᵀPx)ŵ

ur = 0 .

In Fig. 2 we observe that the state x is initially regulated to
zero (as desired), followed by three episodes of disturbance
rejection that coincide with the brief impulsive disturbances
occurring at times ti. One sees that in each episode of dis-
turbance rejection there are two phases: an initial response
at time ti followed by a more prolonged period of regulation
in which x → 0. Comparing with the settling time of the
parameter ψ̂ in Fig. 2(c), we deduce that the more prolonged
phase of each episode is due to the correction of the internal
model parameter and not the immediate effect of the brief
impulsive disturbance. This is further supported by the con-
sistency of this phase of the response with other regulators
presented later. Fig. 2(b) also shows a plot of ẋ, which we
include as a measure of the quality of disturbance rejection
of brief impulsive disturbances (for the oculomotor system,
small retinal slip velocity is a requirement for proper vision).
Overall for this design, one observes a large deviation in x
and very large spikes in ẋ on the order of 1000 in magnitude.
Clearly the robustness requirement (R3) is not met using this
design.

Standard Design II: A second regulator design includes
measurement y in the most expedient way, namely ur =
−α̂ᵀy. The regressor is augmented to be (ŵ,−y) suggesting
the joint adaptation of (ψ̂, α̂) using adaptation laws

˙̂ψ = −γ (BᵀPx)ŵ

˙̂α = −γ (BᵀPx)(−y) .

Fig. 3 shows that the brief impulsive disturbance in the first
episode is well compensated, resulting in a peak velocity
around 200 (about an order of magnitude less than the first

FIGURE 3. Standard regulator with reflex. The vertical axes for ẋ has been
reduced from ±1500 in Fig. 2 to ±500.

FIGURE 4. Nominal phase for the two timescale regulator with reflex. The
time axes range in [0, 2 × 104] to showcase slow adaptation.

regulator design). This may be attributed to the fact that α̂ is
near its true value of α = 20 as seen in Fig. 3(d). For sub-
sequent episodes, the peak velocity jumps up to around 500,
a significant degradation in robustness. Due to the inherent
lack of PE of the composite regressor (ŵ,−y), there is no
mechanism to drive α̂ → α. This design shows that simply
adding a feedforward controller without further thought on its
effectiveness is not an acceptable design methodology.

Proposed Two Timescale Design: Finally, we consider the
design of Section III, whose goal is to drive α̂ → α such
that the feedforward control minimizes the work of the in-
ternal model. We set ε = 0.001. The simulation is preceded
by a nominal disturbance rejection phase over a window
t ∈ [0, 2 × 104] with d (t ) = 20 cos(2πt ) − 20 sin(2πt ) and
y(t ) = sin(2πt ) to train the reflex. Fig. 4 shows that the in-
ternal model output uim reduces in magnitude to d0 while
the reflex gain α̂ increases, indicating that (R2) is met. Since
y(t )d0(t ) = 20 sin(2πt ) cos(2πt ) has zero average, then as
per Theorem 2, Fig. 4(b) shows that α̂ is adapted to approxi-
mately α = 20.

To investigate (R3), we extend the previous simulation, but
now include three brief impulsive disturbances. In Fig. 5 we
see the peak velocity is maintained at around 100, and that
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FIGURE 5. Two timescale regulator with reflex.

the reflex gain α̂ remains near its true value of α = 20. Con-
sistently superior robustness to brief impulsive disturbances is
demonstrated. We conclude that (R1)–(R3) have been satisfied
within reasonable tolerances. Since ε is selected small, the
O(ε) error expected from Theorems 1–2 is hardly noticeable.

B. VESTIBULOOCULAR REFLEX
The VOR is a reflex that counteracts head movement to ensure
a stable retinal image for clear vision [30]. The goal of this
section is to demonstrate that our two timescale regulator
design recovers the standard experiments regarding long-term
adaptation of the VOR gain.

Long-term adaptation of the VOR gain was described quali-
tatively in the Miles-Lisberger hypothesis [29], which inspired
our model. Consider an experiment in which a subject wears
2× magnifying lenses. Horizontal head movement under
abrupt magnification creates retinal slip of the visual field.
Retinal slip is interpreted by the cerebellum as a sensory error
signal to be driven asymptotically to zero: increased retinal
slip causes increased modulation of the cerebellar output. This
activity induces the VOR gain, a scale factor on the vestibular
measurement of head velocity, to increase. An increase of
VOR gain makes the VOR more effective to eliminate retinal
slip during head movement, resulting in a gradual reduction
in the output of the cerebellum. This adaptation of the VOR
gain, which takes place over hours, results in a transfer of
learning from the cerebellum to the brainstem (the site of the
direct VOR pathway from ears to eyes) in a process called
consolidation [39].

To model this process we start with a simplified model of
the oculomotor plant

θ̇ = u

where θ (t ) ∈ R is the horizontal eye angle in a (moving) head-
fixed frame, and u(t ) ∈ R is associated with the net horizontal
torque on the eyeball. This model is a simplification of the

second-order oculomotor plant model which includes an extra
fast stable pole [40]. The first-order oculomotor plant model
includes a linear drift term Aθ which renders the oculomotor
plant to be open-loop stable. As discussed in [27], this drift
term is almost perfectly cancelled by a signal of the form αθ θ̂

from the brainstem neural integrator, an adaptive observer
that provides the estimate θ̂ of the horizontal eye angle. The
adaptation processes associated with the brainstem neural in-
tegrator are independent of the adaptive processes modeled
in this article; therefore, it has been omitted for the sake of
simplicity and exposition. See the comments in Section IV-C.

The retinal error is the displacement of a target image on
the retina from the fovea, given by

e := αm(r − θh) − θ

where r(t ) ∈ R is the horizontal angular position of the target,
θh(t ) ∈ R is the horizontal head angle, both in a world-fixed
frame, and αm(t ) ∈ R is a magnification factor. The goal of
the oculomotor system is to drive e to zero. The VOR takes
the form of an adaptive feedforward control

ur = −α̂hθ̇h

where α̂h(t ) ∈ R is called the VOR gain and the head velocity
y := θ̇h is a measurement provided by the ear’s semicircular
canals. It is known experimentally that α̂h is adapted over
hours and days, while e → 0 in under a few seconds.

A number of experiments can elicit slow adaptation of
the VOR gain. Wearing magnifying lenses causes an abrupt
change in αm to which α̂h must adapt. An equivalent exper-
iment is to make the target position a scalar multiple of the
head angle; namely, r = αrθh [41]. The retinal error becomes

e = r − θh − θ = (αr − 1)θh − θ ,

which corresponds to a fictitious magnification of αm = 1 −
αr with a reference at r = 0 (the brain has no direct measure-
ment of r, so it cannot distinguish the two scenarios). Defining

αh := 1 − αr ,

the disturbance to be rejected is d = −αhy. The error dynam-
ics then become

ė = Ae + Bu − Bd , (14)

where A = 0 and B = −1, matching the form of (1). Through-
out we set y(t ) = θ̇h(t ) = 12 cos(0.2 × 2πt ), e(t0) = 10,
θh(t0) = 0, t0 = 0, and we let unspecified initial conditions be
zero. We select parameters K = 5, γ = 10, ε = 1.5 × 10−4,
and

F =
[

0 1

−1 −1

]
, G =

[
0

1

]
, N = G ,

whose values are inspired from [27], [40].
A first standard VOR experiment involves tracking a world-

fixed target. This task can be emulated by setting αr = 0,
implying that αh = 1 − αr = 1. Fig. 6 presents the results
using our design. In Fig. 6(b) we observe that e → 0 on a
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FIGURE 6. Fast [6(a)–6(b)] and slow [6(c)–6(d)] timescale dynamics for
VOR adaptation.

FIGURE 7. Fast [7(a)–7(b)] and slow [7(c)] timescale dynamics for VOR
cancellation.

fast timescale, causing the eyes to move opposite to the head
with appropriate amplification. On a slow timescale, Fig. 6(c)
shows that the VOR gain adapts to the steady-state value of
αh = 1 over a few minutes, which is the condition to meet
(R3). Moreover, as the VOR gain adapts we see uim → 0 in
Fig. 6(d), clearly illustrating how a correct reflex reduces the
work of the cerebellum as per (R2). Note that ε could be
reduced to extend the time of long-term adaptation to hours
or days rather than minutes.

A second standard experiment is called VOR cancellation
in which a subject tracks a head-fixed target. In this case
αr = 1 so αh = 0. It has been demonstrated experimentally
that if VOR cancellation is sustained over a long duration,
then one can attenuate the VOR gain α̂h → 0. Fig. 7 shows
our regulator recovers this behaviour.

FIGURE 8. Rejection of brief impulsive disturbances by the proposed two
timescale regulator.

Finally, we investigate the extent to which our design
achieves (R3) by considering a common scenario for the
oculomotor system as follows. Under normal conditions, the
VOR gain is adapted to its correct value near 1 over a long
time horizon. Suppose the subject then puts on magnify-
ing lenses, resulting in an instantaneous change in αm. This
change will be counteracted by the cerebellum on a short
timescale (of hundreds of milliseconds) for the purpose of
tracking and disturbance rejection; however, for proper ocu-
lomotor function, the brainstem VOR must still be able to
cancel brief disturbances based on the physically meaning-
ful value of αh = 1. To capture this scenario, we initialize
the VOR gain to its nominal value of α̂h(t0) = αh = 1, and
introduce a brief impulsive disturbance 90(δ(t; 15.5, 0.1) −
δ(t; 15.6, 0.1)) modelling the impact of footfalls. During t ∈
[0, 10) we take αr = 0, corresponding to the standard VOR
experiment described previously. Then to emulate a sudden
change in αm, we set αr = −1 during t ∈ [10, 20), corre-
sponding to a doubling of αh = 1 − αr = 2. Additionally, we
consider a scenario where the measurements of e and y are
corrupted by additive Gaussian noise having 0 mean and 0.12

variance. A simulation of this experiment is found in Fig. 8. It
is shown that the retinal error is quickly regulated near zero,
as expected. We also see that despite the short term doubling
of αh, the effect of the brief impulsive disturbance remains
minimal.

To further emphasize why the proposed two timescale regu-
lator is required to reproduce biologically plausible behaviour,
consider the standard adaptive regulator design

˙̂αh = −γ (BᵀPx)(−y)

uim = 0 .

This simpler design (with no internal model) is a valid op-
tion as d0 = 0 in our VOR examples. We simulate again the
scenario of Fig. 8 using this standard design. Results are
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FIGURE 9. Rejection of brief impulsive disturbances by the standard
adaptive regulator.

shown in Fig. 9, where we observe poor robustness to the
brief impulsive disturbance. Considering Fig. 9(d), it is clear
that fast adaptation of α̂h from α̂h = 1 to α̂h = 2 is the cause
of the poor performance. From a biological standpoint, the
observed behaviour is unacceptable as the large retinal slip
would induce temporary blindness while walking, undermin-
ing the effectiveness of one of our key senses.

Remark 8: In practice, one may choose ε as large as 0.01
to recover qualitatively similar simulations as above. What is
more important, however, is to select ε in terms of the desired
precision of regulation. For example, if one desires ten times
more precision in disturbance rejection, one selects ε ten times
smaller, vis-à-vis our O(ε) error bounds. The need for pre-
cision is strongly supported by neuroscience systems which
employ timescales ranging from hundreds of milliseconds to
hours, if not weeks. �

C. BIOLOGICAL PLAUSIBILITY
The measurement structure of our model adheres to the known
neural circuit associated with the slow eye movement system
and the cerebellum [27], [30]. The plausibility of adaptive
internal models in the cerebellum has been discussed in [27],
[28]. The particular form of (5) is debatable from a neuro-
science standpoint. Considering the oculomotor system, the
main question is precisely what is the form of the mossy fiber
inputs to the flocculus, the module of the cerebellum respon-
sible for regulation of slow eye movements. For instance, a
functionally equivalent disturbance observer to (5) resembling
Kreisselmeier filters is:

η̇1 = Fη1 + FNx

η̇2 = Fη2 − NAx

η̇3 = Fη3 − NBu

ŵ0 = η1 + η2 + η3 + Nx .

Here the mossy fiber inputs are individually filtered in the
granule layer of the cerebellum using synchronized filters
(with the same values of (F,N )). It is conceivable that
estimates x̂, Âx̂, and B̂u of the signals x, Ax, and Bu
could be provided by an adaptive observer (e.g., the brain-
stem neural integrator supporting the oculomotor system). A
Kreisselmeier-type adaptive internal model design was used to
model the optokinetic system in [42]. Another variant of the
adaptive internal model is [43] whose relevance in modeling
the flocculus was explored in [27], [28].

Regarding the plausibility of the reflex adaptation law (8),
it corresponds to the schematic model of VOR adaptation
in Fig. 2 of [44]. Note, however, [44] does not include the
computations of the cerebellum; hence the need for further
model development, as done here.

V. CONCLUSION
We have developed a framework for long-term adaptation
of reflexes using internal models, inspired by the Miles-
Lisberger hypothesis and providing a layer of robustness
to brief impulsive disturbances not available with standard
adaptive regulator designs. A key idea is that the cost of
disturbance rejection by the internal model forms an error
signal driving the slow adaptation of reflex gains. A num-
ber of movement disorders are associated with failure of the
cerebellum to appropriately adapt reflexes [45]; we hope our
new model can facilitate the study of such disorders. A second
application is development of next generation adaptive robots.
Currently reflexes using joint torque sensors are trained with
a human in the loop [46]. A next step in the research is
to develop a two timescale disturbance rejection framework
for Euler-Lagrange models in order to model reflexes of the
limbs.

REFERENCES
[1] M. Bodson, A. Sacks, and P. Khosla, “Harmonic generation in adap-

tive feedforward cancellation schemes,” IEEE Trans. Autom. Control,
vol. 39, no. 9, pp. 1939–1944, Sep. 1994.

[2] W. Messner and M. Bodson, “Design of adaptive feedforward al-
gorithms using internal model equivalence,” Int. J. Adaptive Control
Signal Process., vol. 9, pp. 199–212, 1995.

[3] S. Pigg and M. Bodson, “Adaptive algorithms for the rejection of si-
nusoidal disturbances acting on unknown plants,” IEEE Trans. Control
Syst. Technol., vol. 18, no. 4, pp. 822–836, Jul. 2010.

[4] Y. Wang, G. Pin, A. Serrani, and T. Parisini, “Removing SPR-like
conditions in adaptive feedforward control of uncertain systems,” IEEE
Trans. Autom. Control, vol. 65, no. 6, pp. 2309–2324, Jun. 2020.

[5] M. Bodson, “Rejection of periodic disturbances of unknown and time-
varying frequency,” Int. J. Adaptive Control Signal Process., vol. 19,
no. 2/3, pp. 67–88, 2005.

[6] M. Bodson and S. Douglas, “Adaptive algorithms for the rejection of
sinusoidal disturbances with unknown frequency,” Automatica, vol. 33,
no. 12, pp. 2213–2221, 1997.

[7] L. Marconi and A. Isidori, “Mixed internal model-based and feedfor-
ward control for robust tracking in nonlinear systems,” Automatica,
vol. 36, no. 7, pp. 993–1000, 2000.

[8] R. Marino and P. Tomei, “Disturbance cancellation for linear systems by
adaptive internal models,” Automatica, vol. 49, no. 5, pp. 1494–1500,
2013.

[9] K. Yamamoto, T. Yamamoto, H. Ohmori, and A. Sano, “Adaptive
feedforward control algorithms for active vibration control of tall struc-
tures,” in Proc. IEEE Int. Conf. Control Appl., 1997, pp. 736–742.

408 VOLUME 2, 2023



[10] F. Aghili and M. Namvar, “Adaptive control of manipulators using
uncalibrated joint-torque sensing,” IEEE Trans. Robot., vol. 22, no. 4,
pp. 854–860, Aug. 2006.

[11] W. MacKay and J. Murphy, “Cerebellar modulation of reflex gain,”
Prog. Neurobiol., vol. 13, no. 4, pp. 361–417, 1979.

[12] T.-B. Airimitoaie, I. Landau, R. Melendez, and L. Dugard, “Algorithms
for adaptive feedforward noise attenuation–A unified approach and
experimental evaluation,” IEEE Trans. Control Syst. Technol., vol. 29,
no. 5, pp. 1850–1862, Sep. 2021.

[13] K. B. Ariyur and M. Krstic, “Feedback attenuation and adaptive cancel-
lation of blade vortex interaction on a helicopter blade element,” IEEE
Trans. Control Syst. Technol., vol. 7, no. 5, pp. 596–605, Sep. 1999.

[14] M. Bodson, J. S. Jensen, and S. C. Douglas, “Active noise control for
periodic disturbances,” IEEE Trans. Control Syst. Technol., vol. 9, no. 1,
pp. 200–205, Jan. 2001.

[15] S. M. Kuo and D. R. Morgan, “Active noise control: A tutorial review,”
Proc. IEEE, vol. 87, no. 6, pp. 943–973, Jun. 1999.

[16] G. Hillerstrom, “Adaptive suppression of vibrations — A repetitive
control approach,” IEEE Trans. Control Syst. Technol., vol. 4, no. 1,
pp. 72–78, Jan. 1996.

[17] I. Landau, T. Airimitoaie, A. Castellanos-Silva, and A. Constanti-
nescu, Adaptive and Robust Active Vibration Control. Berlin, Germany:
Springer, 2017.

[18] K. K. Chew and M. Tomizuka, “Digital control of repetitive errors in
disk drive systems,” IEEE Control Syst. Mag., vol. 10, no. 1, pp. 16–19,
Jan. 1990.

[19] H. Basturk and M. Krstic, “Adaptive wave cancellation by acceleration
feedback for ramp-connected air cushion-actuated surface effect ships,”
Automatica, vol. 49, no. 9, pp. 2591–2602, 2013.

[20] I. Houtzager, J. -W. van Wingerden, and M. Verhaegen, “Rejection of
periodic wind disturbances on a smart rotor test section using lifted
repetitive control,” IEEE Trans. Control Syst. Technol., vol. 21, no. 2,
pp. 347–359, Mar. 2013.

[21] J. Glover, “Adaptive noise cancelling applied to sinusoidal interfer-
ences,” IEEE Trans. Acoust. Speech Signal Process., vol. 25, no. 6,
pp. 484–491, Dec. 1977.

[22] G. Fedele and A. Ferrise, “On the uncertainty on the phase of a stable
linear system in the periodic disturbance cancellation problem,” IEEE
Trans. Autom. Control, vol. 61, no. 9, pp. 2720–2726, Sep. 2016.

[23] R. Marino and P. Tomei, “Adaptive output regulation for minimum-
phase systems with unknown relative degree,” Automatica, vol. 130,
2021, Art. no. 109670.

[24] J. Imura, Y. Yokokonji, T. Yoshikawa, and T. Sugie, “Robust control
of robot manipulators based on joint torque sensor information,” Int. J.
Robot. Res., vol. 13, no. 5, pp. 434–442, 1994.

[25] A. Serrani, “Rejection of harmonic disturbances at the controller in-
put via hybrid adaptive external models,” Automatica, vol. 42, no. 11,
pp. 1977–1985, 2006.

[26] S. Messineo and A. Serrani, “Adaptive feedforward disturbance rejec-
tion in nonlinear systems,” Syst. Control Lett., vol. 58, pp. 576–583,
2009.

[27] M. E. Broucke, “Adaptive internal model theory of the oculomotor sys-
tem and the cerebellum,” IEEE Trans. Autom. Control, vol. 66, no. 11,
pp. 5444–5450, Nov. 2021.

[28] M. E. Broucke, “Adaptive internal models in neuroscience,” Found.
Trends Syst. Control, vol. 9, no. 4, pp. 365–550, 2022.

[29] F. Miles and S. Lisberger, “Plasticity in the vestibulo-ocular reflex: A
new hypothesis,” Annu. Rev. Neurosci., vol. 4, pp. 273–299, 1981.

[30] R. Leigh and D. Zee, The Neurology of Eye Movements, 5th ed. London,
U.K.: Oxford Univ. Press, 2015.

[31] V. Nikiforov and D. Gerasimov, Adaptive Regulation, vol. 491. Berlin,
Germany: Springer, 2022.

[32] G. Kreisselmeier, “Adaptive observers with exponential rate of conver-
gence,” IEEE Trans. Autom. Control, vol. 22, no. 1, pp. 2–8, Feb. 1977.

[33] H. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[34] E. Mejia Uzeda and M. E. Broucke, “Robust parameter adaptation and
theμ-modification,” Syst. Control Lett., vol. 171, 2023, Art. no. 105416.

[35] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and
Robustness. Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

[36] P. Ioannou and J. Sun, Robust Adaptive Control. New York, NY, USA:
Dover, 2012.

[37] J. K. Hale, Ordinary Differential Equations, 2nd ed. Malabar, FL, USA:
Kreiger Publishing Company, 1980.

[38] J. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlin-
ear Dynamical Systems, 2nd ed. Berlin, Germany: Springer, 2007.

[39] C. Kassardjian, Y. Tan, J. Chung, R. Heskin, M. Peterson, and D.
Broussard, “The site of a motor memory shifts with consolidation,” J.
Neurosci., vol. 25, no. 35, pp. 7979–7985, 2005.

[40] D. Robinson, “The use of control systems analysis in the neuro-
physiology of eye movements,” Annu. Rev. Neurosci., vol. 4, no. 1,
pp. 463–503, 1981.

[41] F. Miles and J. Fuller, “Adaptive plasticity in the vestibulo-oculur re-
sponses of the rhesus monkey,” Brain Res., vol. 80, pp. 512–516, 1974.

[42] E. Battle and M. E. Broucke, “Adaptive internal models in the op-
tokinetic system,” in Proc. IEEE 60th Conf. Decis. Control, 2021,
pp. 641–648.

[43] A. Serrani, A. Isidori, and L. Marconi, “Semi-global nonlinear output
regulation with adaptive internal model,” IEEE Trans. Autom. Control,
vol. 46, no. 8, pp. 1178–1194, Aug. 2001.

[44] S. Lisberger and T. Sejnowski, “Motor learning in a recurrent net-
work model based on the vestibulo-ocular reflex,” Nature, vol. 360,
pp. 159–161, 1992.

[45] T. Popa et al., “Abnormal cerebellar processing of the neck proprio-
ceptive information drives dysfunctions in cervical dystonia,” Sci. Rep.,
vol. 8, 2018, Art. no. 2263.

[46] J. Tieck, S. Weber, T. Stewart, J. Kaiser, A. Roennau, and R. Dillmann,
“A spiking network classifies human sEMG signals and triggers fin-
ger reflexes on a robotic hand,” Robot. Auton. Syst., vol. 131, 2020,
Art. no. 103566.

ERICK MEJIA UZEDA (Graduate Student Mem-
ber, IEEE) received the B.A.Sc. degree in elec-
trical engineering from the University of Toronto,
Toronto, ON, Canada, in 2021. He is currently
working toward the M.A.Sc. degree in systems
control with the University of Toronto. From 2019
to 2020, he was a Software Engineer with Inter-
aptix Augmented Reality, Toronto. His research
interests include adaptive control, regulator theory,
and applications of control theory to systems neu-
roscience.

MIREILLE E. BROUCKE (Member, IEEE) re-
ceived the B.S. degree in electrical engineering
from the University of Texas at Austin, Austin, TX,
USA, in 1984, and the M.S. and Ph.D. degrees
from the University of California, Berkeley, CA,
USA, in 1987 and 2000. She has six years industry
experience at Integrated Systems, Inc. and several
aerospace companies. From 1993 to 1996, she was
a Program Manager and Researcher with Partners
for Advanced Transportation and Highways, Uni-
versity of California. She is currently a Professor

of electrical and computer engineering with the University of Toronto. Her
research interest focuses on the application of control theory to systems
neuroscience.

VOLUME 2, 2023 409



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


