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ABSTRACT In this article, we propose a procedure to solve the controlled design for a class of under-
actuated mechanical systems. Our proposed method can be viewed as a sub-method of the IDA-PBC or
Controlled Lagrangian approaches, with a particular focus on shaping the potential energy. By emphasizing
potential energy shaping, we can effectively tackle the bottleneck presented by the matching equation in
these approaches. Moreover, our method leverages a suitable coordinate transformation that is inspired by the
physics of the system, further enhancing its efficacy. Therefore, our design procedure is based on a coordinate
transformation plus potential energy shaping in the new coordinates, and its existence and possibility of
potential energy shaping can be verified via some algebraic calculations, making it constructive. To illustrate
the results, we consider the cart-pole system and a recently introduced under-actuated mechanical system
named swash mass pendulum (SMP) (Salamat and Tonello, 2021). The SMP consists of a pendulum made
of a rigid shaft connected to a pair of cross-shafts where two swash masses can move under the action of
servo-mechanisms.

INDEX TERMS Controller design, euler-lagrange dynamics, potential matching equation, under-actuated
mechanical systems.

I. INTRODUCTION
A Great deal of attention has been given to under-actuated
mechanical systems to develop stabilizing techniques in many
different application fields. In fully actuated mechanical sys-
tems, the number of control inputs is equal to the dimension of
their configuration manifold. Therefore, they are exact feed-
back linearizable, which means that they can be transformed
into a linear system using feedback control. As a result, their
behavior can be fully controlled by the input signals, and con-
sequently, stabilizing to any desired equilibrium is possible.
However, this is not achievable for under-actuated mechanical
systems due to the lack of control inputs concerning their
configuration manifold. In addition, it is desirable for the
closed loop system to retain the mechanical structure of the

underlying system. While enforcing this structure in the con-
troller design process may impose some restrictions, it also
enables a constructive and physically interpretable approach.
For instance, achieving closed-loop stabilization corresponds
to shaping the energy of the system. Significant progress in
shaping the total energy of under-actuated mechanical sys-
tems has been rendered possible by the milestone work of
Bloch and Ortega [2], [3] that provided a methodological
approach—Lagrangian for the first method and Hamiltonian
for the latter—to stabilize the class of systems through a
given feedback. Bloch’s Lagrangian method and Ortega’s
mathematical framework named interconnection and damp-
ing assignment passivity-based control (IDA-PBC), suggest
solving so-called matching equations to obtain a feedback law.
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These matching equations consist of a set of nonlinear partial
differential equations (PDEs). These PDEs can be solved (if
the solution exists) and the dynamical system model and the
target system are said to match. A lot of research effort has
been devoted to the solution of the matching equations and
using the solution for controller design see, e.g., [4], [5], [6],
[7], [8], [9].

The matching equations PDEs that describe the kinetic and
potential energy are achievable via feedback, guaranteeing
that the closed-loop dynamics is also a mechanical system.
Solving these PDEs, in general, is not an easy task. Dif-
ferent methods are undertaken in literature to overcome this
difficulty. These methods assume some assumptions on the
problem and impose some constraints on the existence of
solutions, see e.g., [4], [10], [11], and [12].

Another challenge lies in the time-variant nature of the
control input matrix, denoted as G(q). Notably, in the works
of [4], [10], and [12], the authors adopted the simplifying as-
sumption that the input matrix takes the form G = [Im 0s×m].
This assumption on the input matrix G can be applied only
to simple robot structures. In [12], an outer partial feedback
linearization (PFL) control is used to obtain the desired form,
which compromises the robustness of the closed loop. The
IDA-PBC controller for the pendulum-on-cart presented in [4]
uses PFL. Then, the design is augmented to a position feed-
back control by using an observer. One notable drawback of
this approach is its dependency on velocity data.

In this article, firstly, we relax the assumption that the input
matrix takes the form G = [Im 0s×m] on the input matrix and
we focus on potential energy shaping instead of total energy
shaping, and leave kinetic energy shaping. The natural ques-
tion that arises is about the reason of leaving this degree of
freedom in the controller design. Actually, considering both
of potential and kinetic energy shaping simultaneously, leads
to two coupled matching PDEs, which is the source of com-
plexity of the problem. Instead, focusing on potential energy
shaping, makes the problem more tractable. The possibility
of appropriately shaping potential energy can be determined
by verifying an algebraic condition on the open-loop potential
energy; a nice feature of this proposed result. Roughly speak-
ing, if the open loop potential energy has an unconditional
minimum in the coordinates unaffected by inputs, then it is
feasible to shape the closed-loop potential energy to control
the system as desired. Even more, it is possible to obtain a
family of functions -including quadratic forms- as the solu-
tions of potential matching equation whenever the solution
exist. In other words, the procedure of existence proving,
proposes some solutions for matching equation, the fact which
makes the proposed method constructive. However, in some
applications, it is not possible to shape the potential energy in
original coordinates, while it becomes possible after a suitable
coordinate transformation. In this work, the transformation
is motivated by its practical applications in the real world.
Hence, the proposed method’s applicability and the validity
of its imposed constraints are assured. The existence of the

transformation can be verified by making certain algebraic
assumptions.

Original contributions: The first contribution of this article,
is proposing the algebraic conditions, under which it is pos-
sible to asymptotically control an under-actuated mechanical
systems via potential energy shaping. The second contribution
is proposing a family of functions which can serve as the
desired closed loop potential energy, which in turn, obviates
solving nonlinear matching PDEs. By circumventing the need
to solve PDEs, our approach simplifies the computational
requirements for potential energy-shaping control. Lastly, it
is feasible to shape the potential energy in a more complex
manner to fulfill more advanced requirements.

This article is organized as follows. Section II is dedi-
cated to preliminary materials and problem formulation. Main
results of the article are reported in Section III. The cart-
pole system and the swash mass pendulum are analyzed in
Section IV. Experimental results of this design are reported in
Section V. This article ends with a conclusion in Section VI.

II. PROBLEM FORMULATION
Consider an under-actuated mechanical system with dynamics
described by the well-known Euler-Lagrange (EL) equations
of motion

M(q)q̈ + C(q, q̇)q̇ + ∇V (q) = G(q)u, (1)

where q ∈ R
n are the configuration variables, u ∈ R

m are the
control signals, M(q) > 0 is the generalized inertia matrix,
C(q, q̇) represent the Coriolis and centrifugal forces, V (q) is
the systems potential energy and G(q) is the input matrix. (1)
is under-actuated whenever m < n. A coordinate transforma-
tion is a diffeomorphism on configuration space. A function
like � : Rn → R

n is called diffeomorphism if it is invertible
and both, the function and its inverse, are differentiable. If
�(q) is a diffeomorphism, then ∇q�(q) is an invertible matrix
at each q in its domain of definition.

Lemma 1: Consider a diffeomorphism � : Rn → R
n de-

fine T (q) � (∇q�(q))−1 and the generalised coordinate trans-
formation as follows

q � �(q). (2)

Then, the EL dynamics (1) can be written as follows

M(q)q̈ + C(q, q̇)q̇ + ∇V(q) = G(q)u, (3)

where

q̇ := T −1(q)q̇ (4)

M(q) := T �(q)M(q)T (q)
∣∣∣
q=�−1(q)

(5)

V(q) := V (q)
∣∣∣
q=�−1(q)

(6)

G := T �(q)G(q)
∣∣∣
q=�−1(q)

(7)

VOLUME 2, 2023 357



SALAMAT ET AL.: INNOVATIVE CONTROL DESIGN PROCEDURE FOR UNDER-ACTUATED MECHANICAL SYSTEMS

and C(q, q̇)q̇ is the Coriolis times the centrifugal forces asso-
ciated to the mass matrix M(q), which can be computed as
follows

C(q, q̇)q̇ =
[
∇q[M(q)q̇] − 1

2
∇�

q [M(q)q̇]

]
q̇. (8)

The Lagrangian in the new generalised coordinates is

L(q, q̇) = 1

2
q̇�M(q)q̇ −V(q). (9)

Proof: The proof follows from straightforward calculation
computing the derivative of the coordinate transformation and
using the original dynamics. �

Remark 1: Notice that the matrix T (.) can be used to shape
the form of the mass matrix M(.) in the new generalised
coordinates. However, we restrict our attention to all invertible
matrices T (.) that satisfy the integrability condition. That is,
∂Ti
∂q is a symmetric matrix for i = 1, . . ., n, where Ti is the ith
row of T . Equivalently, given an invertible matrix T (.), we
assume that there exists an invertible and sufficiently smooth
mapping � : Rn → R

n that satisfies

�̇(q) = T −1(q)q̇. (10)

Hereafter, without loss of generality, it is assumed that, con-
figuration coordinate q, possibly after a suitable permutation,
can be partitioned as q = col(qu, qa) such that the input matrix
correspondingly can be written as

G(q) =
[

Gu(q)

Ga(q)

]
, (11)

where Ga(q) is an invertible m × m matrix. In this regard,
Gu(q) and Ga(q) are the under-actuated and actuated compo-
nents of G(q), respectively. The EL dynamics (1) is coupled
when Gu(q) �≡ 0. Also, to simplify the notation, we partition
the generalized velocity as q̇ = col(q̇u, q̇a) with qa, q̇a ∈ R

m

and qu, q̇u ∈ R
s, and partition the inertia and Coriolis matrices

as

M(q) =
[

muu(q) m�
au(q)

mau(q) maa(q)

]
,

C(q, q̇) =
[

cuu(q) cua(q)
cau(q) caa(q)

]
,

where maa : Rn → R
m×m, mau : Rn → R

s×m, muu : Rn →
R

s×s, caa : Rn × R
n → R

m×m, cau : Rn × R
n → R

s×m, cua :
R

n × R
n → R

m×s, cuu : Rn → R
s×s, s := n − m. Through-

out this article, we will impose some assumptions to show
particular forms of the EL dynamics (1) under generalised
coordinate transformations. The set of assumptions is as fol-
lows

Assumption 1: There exists a function �u : Rm → R
s,

such that

�̇u(qu) = m−1
aa m�

auq̇u. (12)

Assumption 2: The inertia matrix depends only on the ac-
tuated variables qa, i.e., M(q) = M(qu), and the sub-block
matrix maa of the inertia matrix is constant.

Assumption 3: The potential energy can be written as

V (q) = Va(qa) + Vu(qu). (13)

Proposition 1: The dynamics of the system (1), under As-
sumption 1, and using the coordinates transformation[

q1

q2

]
=
[

qu

qa +�u(qu)

]
(14)

can be written as follows

ms
uuq̈1 +

[
∇q1 (ms

uuq̇1) − 1

2
∇�

q1
(ms

uuq̇1)

]
q̇1

+
[
∇q2 (ms

uuq̇2) − 1

2
∇�

q1
(maaq̇2)

]
q̇2

+ ∇q1V(q) = [
Gu(q) − mau(qu)m−1

aa

]
u (15)

maaq̈2 +
[
∇q1 (maaq̇2) − 1

2
∇�

q2
(ms

uuq̇1)

]
q̇1

+
[
∇q2 (maaq̇2) − 1

2
∇�

q2
(maaq̇2)

]
q̇2

+ ∇q2V(q) = Ga(q)u, (16)

where

ms
uu(q) = muu(q) − m�

au(q)m−1
aa (q)mau(q)

∣∣∣
q=�−1(q)

, (17)

maa(q) = maa(q)
∣∣∣
q=�−1(q)

, (18)

mau(q) = mau(q)
∣∣∣
q=�−1(q)

. (19)

Proof: First notice that, under Assumption 2, the coordi-
nate transformation (14) satisfies Assumption 1 with

T (q) =
[

Is 0s×m

−m−1
aa mau Im

]
. (20)

Then, from Lemma 1 we obtain that the dynamics can be
written in the form (3) with[

q̇1

q̇2

]
=
[

Is 0m×s

m−1
aa mau Im

] [
q̇u

q̇a

]
(21)

and Lagrangian

L(q, q̇) = 1

2

[
q̇�

1 q̇�
2

] [ ms
uu 0s×m

0m×s maa

] [
q̇1

q̇2

]
−V(q).

(22)
The dynamics (15)-(16) follows, after some simple calcula-
tions, from the EL formula using the Lagrangian (22). �

Note that the presence of the transformation necessitates
mau �= 0. For the singularity issue, we can conclude that if
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|mau| > 0, the singularity-free condition of m−1
aa mau is satis-

fied.
Corollary 1: The system (1) satisfying Assumption 1–3

can be written as in the EL form as follows

ms
uu(qu)q̈u +

[
∇qu [ms

uu(qu)q̇u] − 1

2
∇�

qu
[ms

uu(qu)q̇u]

]
q̇u

+ ∇quV(qu,q2) = [
Gu(q) − mau(qu)m−1

aa

]
u,

maaq̈2 + ∇q2V(qu,q2) = Ga(q)u, (23)

with ms
uu(qu) = muu(qu) − m�

au(qu)m−1
aa mau(qu). In addition,

if Assumption 3 also holds, then the EL dynamics can be
written as follows

ms
uuq̈u +

[
∇qu [ms

uuq̇u] − 1

2
∇�

qu
[ms

uuq̇u]

]
q̇u

+∇quVu = − m�
aum−1

aa v,

maaq̈2 = v, (24)

with v = u − ∇qaVa

∣∣∣
qa=q2−�u(qu )

.

Proof: The proof follows from Proposition 1 and Assump-
tion 1–3 by setting in (15)-(16) the following conditions:
q1 = qu, q2 = qa +�u(qu), maa is a constant matrix, and
ms

uu(q) = ms
uu(q1). The second part follows from the fact

that, under Assumption 3, the potential function is V(q) =
V (qu). �

Remark 2: The system in the partial linear form given by
(24) has been used to design a PID passivity-based controller
in [1], [12]. In that work, an outer partial feedback lineariza-
tion (PFL) control is used to obtain the desired form, which
may compromise the robustness of the closed loop. However,
this PFL control can be avoided by using a generalized change
of coordinates as shown in Corollary 1.

III. MAIN RESULT
In this section, the dynamics of under-actuated system, possi-
bly after a suitable transformation, is considered in the form
of (3). The main question here is “Under which condition it is
possible to stabilize (3) at desired configuration q� with only
potential energy shaping?”

It is known that, if (3) be fully actuated, i.e., G(q) ∈ R
n×n

and G(q) is full rank for every q, then it is straight forward
to shape potential, and even kinetic energy in an arbitrary
way by input u, such that the closed loop is stable at de-
sired q�. However, for under-actuated systems of (3), i.e.,
G(q) ∈ R

n×m and m < n, the controller design with energy
shaping is challenging [13]. Most results in the context of
energy shaping state that, if there exists an energy function
can server as closed-loop energy if it satisfies the match-
ing equation. Solving matching equations, which are coupled
nonlinear PDEs, can result the controller [2], [13], [14], [15].
However, there are rare results on the possibility of controller
design via energy shaping. Here, we states the conditions,
under which, it is possible to shape the potential energy in

order to stabilize the closed loop system. These conditions are
algebraic and easy to check.

In order to answer the main question, first, we consider the
class of functionsVcl : Rn → R, which possibly can serve as
the closed loop potential energy.

Proposition 2: Consider (3), where q ∈ R
n, u ∈ R

m, G ∈
R

n×m and m < n. It is assumed that G(q) is full column rank
for all q ∈ R

n. Suppose that G⊥(q) ∈ R
(n−m)×n is a full-rank

left annihilator of G at each q, i.e., G⊥G = 0. ForVcl : Rn →
R, if the following holds:

G⊥(q)∇V(q) = G⊥(q)∇Vcl (q), ∀q ∈ R
n (25)

then can be the closed loop potential energy function and the
controller

u = (GT (q)G(q)
)−1 GT (q)

[∇V(q) − ∇Vcl (q)
]

(26)

makes the closed-loop system as:

M(q)q̈ + C(q, q̇)q̇ + ∇Vcl (q) = 0, (27)

Proof: See Appendix A. �
This proposition characterizes all assignable closed-loop

potential function. However, in order to achieve stability at de-
sired point q�, the closed-loop potential function must satisfy
some more conditions. In this regard, the following theorem
answers the question about the possibility of stabilization of
an Euler-Lagrange system with only potential energy shaping.

Theorem 1: Consider (3), where q ∈ R
n, u ∈ R

m, G(q) ∈
R

n×m and m < n. It is assumed that G(q) is full column rank
for all q ∈ R

n. Suppose thatG⊥ ∈ R
(n−m)×n is a constant full-

rank left annihilator of G at each q, i.e., G⊥G(q) = 0. If open
loop potential functionV(q) satisfies the following conditions
at desired equilibrium point q�

G⊥∇V(q)|q� = 0

G⊥∇2V(q)|q�GT
⊥ 
 0

(28)

then it is possible to assign closed loop potential function as
Vcl (q) via input u such that:

∇Vcl (q)|q� = 0, (29)

∇2Vcl (q)|q� 
 0, (30)

which guarantees the stability of closed loop system at q�.
Proof: It is known from linear algebra (see e.g., [16]) that

one can orthogonally extend the rows of G⊥ to build a basis
for R

n. Name the transpose of this extension as Ḡ. There-

fore, G⊥Ḡ = 0 and
[
Ḡ GT

⊥
]

is an invertible matrix. Define

Vcl (q) = V(q) + ψ (ḠT q) where ψ : Rm → R can be any
arbitrary smooth function of its arguments. Vcl satisfies the
matching (25), consider:

∇Vcl (q) = ∇V(q) + Ḡ∇ψ (ḠT q) (31)

Left-multiplying both side of above equation by G⊥ results in
the matching equation due to G⊥Ḡ = 0.
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Among all possible ψ (.), those have the following condi-
tions, make theVcl to satisfy (29) and (30):

∇ψ (Ḡ�q)|q� = −
(
ḠT Ḡ

)−1 ḠT ∇V(q)|q�

∇2ψ (Ḡq)|q� = K 
 αI

(32)

where K is a m × m positive definite matrix and α is suffi-
ciently large positive constant. In this regard, consider (31)
evaluated at q�:

∇Vcl (q)|q� = ∇V(q)|q� + Ḡ∇ψ (ḠT q)|q� . (33)

Due to the construction of Ḡ the matrix
[
Ḡ GT

⊥
]T

is invert-

ible, therefore (33) is equal to zero if and only if the following
is equal to zero:[
ḠT

G⊥

]
∇Vcl (q)|q�=

[
ḠT

G⊥

]
∇V(q)|q�+

[
ḠT

G⊥

]
Ḡ∇ψ (ḠT q)|q�

=
[
ḠTV(q)|q� + ḠT Ḡ∇ψ (ḠT q)|q�
G⊥V(q)|q� + G⊥Ḡ∇ψ (ḠT q)|q�

]

=
[

0m×1

0(n−m)×1

]

First and second line of above equation are resulted due to
(28), (32) and matching equation, respectively. Finally, in
order to show that Vcl satisfy (30), consider gradient of (31)
evaluated at q� as:

∇2Vcl (q)|q� = ∇2V(q)|q� + Ḡ∇2ψ (ḠT q)|q�ḠT (34)

It is known that multiplying any relation such as M1 
 M2,
where M1 and M2 are square matrix, from left and right to
T and T T , respectively, where T is an arbitrary invertible
matrix, results in T M1T T 
 T M2T T ; see e.g, [16]. Therefore,
(34) is positive definite if and only if the following is positive
definite:[
ḠT

G⊥

]
∇2Vcl (q)|q�

[
Ḡ GT

⊥
]

=
[
ḠT

G⊥

]
∇2V(q)|q�

[
Ḡ GT

⊥
]

+
[
ḠT

G⊥

]
Ḡ∇2ψ (ḠT q)|q�ḠT

[
Ḡ GT

⊥
]

=
[
ḠT ∇2V(q)|q�Ḡ ḠT ∇2V(q)|q�GT

⊥
G⊥∇2V(q)|q�Ḡ G⊥∇2V(q)|q�GT

⊥

]

+
[
ḠT ḠKḠT Ḡ 0

0 0

]

=
[
ḠT ∇2V(q)|q�Ḡ+ ḠT ḠKḠT Ḡ ḠT ∇2V(q)|q�GT

⊥
G⊥∇2V(q)|q�Ḡ G⊥∇2V(q)|q�GT

⊥

]

It is known that block matrix[
A B

BT C

]

is positive definite if and only if C 
 0 and A − BC−1BT 

0, see e.g. [16]. Therefore, due to positive definiteness of
G⊥∇2V(q)|q�GT

⊥, the above matrix is positive definite if and
only if the following matrix is positive definite:

ḠT ∇2V(q)|q�Ḡ+ ḠT ḠKḠT Ḡ
− ḠT ∇2V(q)|q�GT

⊥
{G⊥∇2V(q)|q�GT

⊥
}−1 G⊥∇2V(q)|q�Ḡ


 0

Sufficiently large K makes the above expression positive def-
inite. It is known that minimum points of energy function are
stable and this function can serve as Lyapunov function to
show the stability. Condition (30) with positive definiteness of
M(q) show the positive definiteness of energy function about
the point col(q�, 0) and simple calculation shows derivative of
energy function along the trajectories of the close-loop system
is negative semi definite; therefore, the closed loop system is
stable at col(q�, 0). �

Remark 3: A quadratic form for ψ , e.g.,

ψ (z) = aT (z − b) + 1

2
(z − b)TK(z − b), a, b ∈ R

m,

K ∈ R
m×m

where b = ḠT q�, a is equal to right hand side of first equation
of (32) andK is sufficiently large positive definite matrix, can
meet the requirement of (32). Albeit, other forms of ψ can
meet the conditions and are usable. However, this fact shows
that conditions (28) guarantee the existence of solution and in
meantime propose at least one solution. Consequently, focus-
ing on potential energy shaping, make the design constructive
and obviate the essential of solving matching PDEs.

Remark 4: Assumption on the G⊥ to be constant, even for
q-modulated G(q), is not restrictive. It is possible to propose
constant G⊥ for non-constant G(q). For example consider:

G(q) =

⎡
⎢⎣ 0 0

cos(q1) sin(q1)

− sin(q1) cos(q1)

⎤
⎥⎦ , G⊥ =

[
1 0 0

]
, Ḡ

=

⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦

Please note that G⊥ and Ḡ are not unique. In general, for
G(q) = ḠQ(q), where Q(q) is full rank square matrix, it is
possible to propose constant G⊥. Even more, the following
result show that, when G⊥(q) is not constant, it is possible to
use the results of Theorem 1.

Corollary 2: In Theorem 1, suppose that there exist an open
subset of R

n containing q� named D, G⊥ : D → R
(n−m)×n
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FIGURE 1. (a) Schematic of the cart-pole system [9]. (b) The swash mass
pendulum [1].

and constant Ḡ ∈ R
n×m such that:

G⊥(q)G(q) = 0, ∀q ∈ D, G⊥(q�)Ḡ = 0,

and
[
Ḡ G⊥(q)

]
is full rank for all q ∈ D, then the results of

Theorem 1 holds on D.
Proof: Similarly, defineVcl (q) = V(q) + ψ (ḠT q) where

ψ : Rm → R can be any arbitrary smooth function of its argu-
ments and Ḡ as in defined in this corollary, then (31) holds for
all q ∈ D. Consequently, the rest of proof of Theorem 1 holds
here for all q ∈ D. �

Remark 5: Consider G : R3 → R
2×3 as:

G(q) =

⎡
⎢⎣− sin(q3) 0

cos(q3) 0

0 1

⎤
⎥⎦

It is not possible to find a constant G⊥ such that G⊥G(q) = 0
holds for all q ∈ R

3. However, consider

G⊥(q) =
[
cos(q3) sin(q3) 0

]
, Ḡ =

⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦∀q ∈ D

where D = R
3 − {q ∈ R

3 | q3 = π/2}, satisfy conditions of
Corollary 2 on D.

Remark 6: Based on Theorem (1) using the energy of
closed loop system, i.e., 1

2 q̇M(q)q̇ +Vcl (q) as Lyapunov
function, stability of closed loop system is guaranteed. How-
ever, for asymptotic stability, suitable damping must be
injected in the system. In this regard, the input u can be
divided in to two parts u = ues + udi, where ues is used for
energy shaping such as in (26), and udi is for damping in-
jection part. In many cases, udi = −GT q̇ satisfy the LaSalle
conditions and results in asymptotic stability.

IV. EXAMPLES
To evaluate the efficacy of the proposed methodology, we
evaluate its performance for the cart-pole system and the
swash mass pendulum (SMP).

FIGURE 2. Proposed controller performance of the cart-pole system.

A. CART-POLE SYSTEM
For this classical example shown on the left side of Fig. 1, we
have n = 2,

M(q) =
[

1 b cos(qu)

b cos(qu) m3

]
,V (qu) = a cos(qu),

m3 = M + m

m�2
, a = g

�
, b = 1

�
,G = e2,

where qa is the position of the cart and qu denotes the angle of
the pendulum with respect to the up-right vertical position, M
is the mass of the car, m is the mass of the pendulum and � its
length. We apply the generalized coordinate transformation to
obtain the partial form of the cart-pole system. The nonlinear
dynamics of the cart-pole system be written

M(q) =
[

m3 − b2 cos2(q1) 0

0 m3

]
,

V(q) = a cos(q1),G(q) =
[
−b cos(q1)

1

]
. (35)

Therefore, the conditions of Theorem 1 are satisfied. To
show the performance of the proposed control law based on
the potential energy shaping of the system, we performed
a simulation with the objective of stabilizing the system.
We consider the system parameters M + m = 1, � = 0.2 and
g = 9.804 ms−2. Fig. 2 shows the results for an initial con-
ditions qu = π

3 , q̇u = 0, qa = −0.5, q̇a = 0. Notice that even
when the pendulum’s initial angular position deviates from
the top position, the closed-loop response remains remarkably
effective.

B. SWASH MASS PENDULUM
The proposed SMP deploys a system of two mass particles [1].
The main particle with mass M is fixed to one end of a mass-
less, rigid shaft of length L, the other end of the shaft is hinged
to a pivot point (PP) that enables a rotational movement for the
main shaft. (see on the right-hand side of Fig. 1). To rotate
and control the SMP, one additional particle of mass m is
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positioned on cross shafts laying on an orthogonal plane w.r.t.
to the main shaft. The SMP is tilted by steering the swash mass
since it generates a moment vector w.r.t. the pivot. qa and L
denote the distance from the GC of the swash mass (actuated
variable), and the length of the vertical shaft of the SMP. The
intersection of the main shaft and the swash masses plane is
referred to as the geometrical center (GC).

The positions of mass particles are (q1 � qu and q2 � qa):

PM = (L sin(q1),−L cos(q1)), (36)

Pm = PM + (q2 cos(q1), q2 sin(q1)) (37)

= (q2 cos(q1) + L sin(q1), q2 sin(q1) − L cos(q1)).
(38)

The EL equations can be obtained by standard Euler-Lagrange
methods or applying Newton’s second law. For the considered
system we have n = 2, G = e2, and the generalized coordi-
nates q = [q1 q2]�,

M(q) =
[

L2(M + m) + mq2
2 Lm

Lm m

]
,

C(q, q̇) =
[

mq2q̇2 −mq2q̇1

mq2q̇1 0

]
,

V (q)=MgL(1 − cos(q1))+mg(L−(q2 sin(q1) − L cos(q1))).

Note that M(q) is symmetric and positive definite. With our
definition ∇V (q) is as:

∇V (q) =
[

LMg sin(q1) − gm(L sin(q1) + q2 cos(q1))

−gm sin(q1)

]
.

(39)
We apply the generalized coordinate transformation to obtain
the partial form of the SMP. Consider the transformation ob-
tained under Assumption 1:[

q1

q2

]
�
[

q1

q2 + Lq1

]

and consequently:

M(q) =
[

ML2 + m(q2 − Lq1)2 0

0 m

]
,

V(q) = MgL(1 − cos(q1))

+ mg(L − ((q2 − Lq1) sin(q1) − L cos(q1)))

C(q, q̇) =
[

m(q2 − Lq1)q̇2 −m(q2 − Lq1)q̇1

m(q2 − Lq1)q̇1 0

]
,

∇V(q) =
[

LMg sin(q1) − gm((q2 − Lq1) cos(q1))

−gm sin(q1)

]
,

G =
[
−L

1

]
.

A noticeable property of the partial form of the SMP is that
the parameters of the model are such that the matrix

Ṁ(q) − 2C(q, q̇) =
[

0 −2q̇2mq1

2q̇2mq1 0

]
(40)

is skew-symmetric and can be used to establish the passiv-
ity of the SMP (see Appendix A). The control objective
is to bring the initial states (q1(0), q̇1(0),q2(0), q̇2(0)) to
the origin (q1, q̇1,q2, q̇2) = (0, 0, 0, 0), i.e, change the stable
equilibrium point into an asymptotically stable equilibrium
point around some neighborhood of the origin. In our case
we chooseVcl to be a quadratic function which leads to

Vcl = 1

2
kp1 (q2 − q∗

a )2 + 1

2
kp2 (q1 − q∗

u )2, (41)

where (q∗
a, q∗

u, 0, 0) denotes the equilibrium configuration and
kp1 and kp2 are used as tuning parameters. Therefore, the
explicit control law from (26) defined by

ups = 1

1 + L2

[
L (k2q1 + gm(L sin(q1) + q2 cos(q1))

− LMg sin(q1)) − k1q2 + gm sin(q1)k1q2

+ gm sin(q1)
]
. (42)

The controller design is completed with the damping injection
term, which yields

udi = −kd1 q̇2 − kd2 q̇1, (43)

where kd1 and kd2 inject damping along a specified direction of
velocities. As stated in Proposition 2 the proposed controller,
added to the partial form, ensures the stability of the desired
equilibrium.

Remark 7: It is important to underscore that, in spite of
its apparent complexity, the controller is well defined, and
its highest degree is linear. This is an important property of
the control, since saturation should be avoided in all practical
applications.

C. COMPARISON WITH THE PASSIVITY-BASED CONTROL
Before closing this section, it is relevant to compare with
the passivity-based control methodology [17]. The present
approach takes advantage of the passivity of the SMP model.

To do so, we propose the following Lyapunov function
candidate

E = k�

(
1

2
q̇�M(q)q̇ +V(q)

)
+ 1

2
kpq2

2, (44)

where k� and kp are strictly positive constants. The Lyapunov
function candidate (44) is positive definite if we restrict (q1 ∈
[0, π )). Differentiating V , we get

Ė = k�(uq̇2) + kpq2q̇2 = q̇2(k�u + kpq2). (45)

Therefore, the explicit control law defined by

u = − 1

k�

[
kpq2 + kd q̇2

]
, (46)
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FIGURE 3. Experimental prototype of the SMP available at the flight mechanics laboratory. (a)-(e) CAD design of the prototype. (f)-(h) Details of the
experimental setup.

for kd > 0, which leads to V̇ = −kd q̇2
2. Therefore, the closed-

loop system is stable. It is interesting to note that the controller
(46) derived with passivity-based approach is completely dif-
ferent from (42).

V. EXPERIMENTAL RESULTS
In this section, we carry out some experiments to evaluate the
performance of the controller in the real setup shown in Fig 3.
The realized SMP comprises three main components: The
static-base unit, the T-shaped swing arm and the cylindrical
swash mass assembly. The static base holds the SMP and con-
nects to the moving part of the SMP by a central ball bearing,
that indeed is the pivot point (PP). The T-shaped swing arm is
a metal base plate on which all other components are mounted.
To accommodate the cylindrical swash mass main shaft, two
lateral ball bearings are positioned at the lower end. The shaft
has a integrated tooth rack on its complete length. To this rack,
a polymer gear interfaces to generate linear movement by a
servo motor installed on the backside of the base plate. To
increase the effect of the swash mass shaft, each end of the
shaft has an additional steel mass attached. These also limit
the travel of the shaft to provide a constraint on the linear
movement and therefore prevent the shaft from slipping out of
the bearings when the commanded control signal exceeds the
allowed travel range. An inertial measurement unit (BNO055)
is used and located in the geometric center of the SMP to
measure the roll angle. A Kalman filter is implemented to
estimate the roll angle in the BNO055 [1]. The control law
algorithm is written in C++, and runs on the microcontroller
(16 b, 14 MHz).

A. CASE STUDY
In the experiment, we set the desired equilibrium (the roll
angle to zero) to be reached starting from an initial state.
Under this scenario, we run the experiment using two con-
trollers: the controller proposed in Section IV, referred to as
the potential energy shaping, and the passivity-based control
proposed in [17], referred to as PBC. The parameters of the
potential energy shaping controller are kp1 = 0.9, kp2 = 0.1,

FIGURE 4. Stabilizing performance of the SMP with the PBC approach and
the proposed controller. The initial condition is q1(0) = θ(0) = 30◦, and the
desired equilibrium is q∗

u = θ∗ = 0.

kd1 = 0.1 and kd2 = 0.01; and the parameters of the PBC con-
troller used in the experiments are k� = 1, kp = 8, kd = 0.5.
Fig. 4 shows the time evolution of the angle of the SMP when
it starts from the initial conditions qu(0) = θ (0) = 30◦. As
can be seen, both controllers satisfactory stabilize the SMP
at the desired equilibrium. Upon comparing our simulation
results with those presented in Fig 7 of [1], we have arrived
at the conclusion that the settling time has been reduced by
25%, from 4 seconds to 3 seconds. The experimental results
demonstrate the efficacy of the proposed controller, in contrast
to the PBC approach. Specifically, the proposed controller
successfully achieves the desired rest equilibrium of the SMP
while also halting the swash mass at the geometric center of
the integrated tooth rack.

VI. CONCLUSION
A constructive methodology to reduce the complexity of solv-
ing kinetic matching equations was proposed in this article.
The controller is developed by shaping the potential energy
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in the coordinate that can be affected by inputs. In this re-
gard, modifications on potential energy can be simply done by
adding quadratic terms. The particulars of the technique are
expounded upon in Section III, wherein both the stabilizing
characteristics of the controller and the associated asymptotic
stability are elaborated upon. We have also addressed a re-
cently introduced under-actuated mechanical system named
the swash mass pendulum (SMP). Experiments on the physi-
cal system model were presented to evaluate the performance
of the proposed controller.

APPENDIX
PROOF OF PROPOSITION 2
Proposition 2 follows the main theorems of IDA-PBC or Con-
trolled Lagrangian. However, for the sake of completeness, we
prove it here. The columns of G(q) and GT

⊥(q) are linearly in-
dependent due to definition of G⊥(q). Therefore, GT (q)G(q)
and G⊥(q)GT

⊥(q) are invertible. Define

T (q) �
[
G(q) GT

⊥(q)
]

T (q) is a n × n invertible matrix at each q and its inverse can
be calculated as:

T −1(q) =
[

[GT (q)G(q)]−1GT (q)

[G⊥(q)GT
⊥(q)]−1G⊥(q)

]

Simple calculations show that:

T −1(q)T (q) =
[

Im 0

0 In−m

]
= T (q)T −1(q)

= G(q)
[GT (q)G(q)

]−1 GT (q)

+ GT
⊥(q)

[G⊥(q)GT
⊥(q)

]−1 G⊥(q)

and

G(q)u = T (q)

[
u

0(n−m)×1

]
(47)

From (25), it results that G⊥(∇V− ∇Vcl ) = 0(n−m)×1, and
consequently, (G⊥GT

⊥)−1G⊥(∇V− ∇Vcl ) = 0(n−m)×1. Re-
place it in (47), therefore:

G(q)u = T (q)

[
u

(G⊥GT
⊥)−1G⊥[∇V− ∇Vcl ]

]
(48)

Considering (3) with controller (26) and noting (48) results in
the followings:

M(.)q̈ + C(., .)q̇ + ∇V(q) = G(q)u

= T (q)

[
u

(G⊥GT
⊥)−1G⊥(∇V− ∇Vcl )

]

= T (q)

[ (GTG)−1 GT [∇V− ∇Vcl ]

(G⊥GT
⊥)−1G⊥[∇V− ∇Vcl ]

]

= T (q)T −1(q)[∇V− ∇Vcl ] = ∇V− ∇Vcl

which yields:

M(.)q̈ + C(., .)q̇ + ∇Vcl (q) = 0

The last equation shows an Euler-Lagrange system of equa-
tions with Vcl (q) as potential energy function and completes
the proof.

PASSIVITY OF THE SMP
The total energy of the SMP, i.e. the sum of the kinetic energy
and the potential energy is given by

E = 1

2
q̇�M(q)q̇ +V(q)

= 1

2
q̇�M(q)q̇ + MgL(1 − cos(q1))

+ mg(L − (q2 sin(q1) − L cos(q1))) (49)

Calculating the derivative of the energy E , we get

Ė = q̇�M(q)q̈ + 1

2
q̇�Ṁ(q)q̇ + q̇�∇V(q)

=
(

1

2
Ṁ(q)q̇ − C(q, q̇)q̇ − ∇V(q) + u

)
+ q̇�∇V(q)

= q̇�
[
−L

1

]
u = q̇�

[
−Lu

u

]
, (50)

where u is the control input that acts on the swash mass.
Integrating the last element from zero to t , we get∫ t

0

(
q̇�
[
−L

1

]
u

)
dt = E (t ) − E (0) ≥ −E (0), (51)

which proves the passivity of the SMP having u as input and
q̇ as output.
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