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ABSTRACT Traditional approaches for multi-agent navigation consider the environment as a fixed con-
straint, despite the obvious influence of spatial constraints on agents’ performance. Yet hand-designing
conducive environments is inefficient and potentially expensive. The goal of this article is to consider the
obstacle layout of the environment as a decision variable in a system-level optimization problem. In other
words, we aim to find an automated solution that optimizes the obstacle layout to improve the performance of
multi-agent navigation, under a variety of realistic constraints. Towards this end, we propose novel problems
of unprioritized and prioritized environment optimization, where the former considers agents unbiasedly
and the latter incorporates agent priorities into optimization. We show, through formal proofs, under which
conditions the environment can change to guarantee completeness (i.e., all agents reach goals), and analyze
the role of agent priorities in the environment optimization. We proceed to impose constraints on the
environment optimization that correspond to real-world restrictions on obstacle changes, and formulate it
mathematically as a constrained stochastic optimization problem. Since the relationship between agents,
environment and performance is challenging to model, we leverage reinforcement learning to develop a
model-free solution and a primal-dual mechanism to handle constraints. Distinct information processing
architectures are integrated for various implementation scenarios, including online/offline optimization and
discrete/continuous environment. Numerical results corroborate the theory and demonstrate the validity and
adaptability of our approach.

INDEX TERMS Constrained optimization, environment optimization, multi-agent systems, navigation.

I. INTRODUCTION
Multi-agent systems present an attractive solution to spatially
distributed tasks, wherein motion planning among moving
agents and obstacles is one of the central problems. To date,
the primal focus in multi-agent motion planning has been
on developing effective, safe, and near-optimal navigation
algorithms [2], [3], [4], [5], [6], [7]. These algorithms con-
sider the agents’ environment as a fixed constraint, where
structures and obstacles must be circumnavigated. In this
process, mobile agents engage in negotiations with one an-
other for right-of-way, driven by local incentives to minimize
individual delays. However, spatial constraints of the environ-
ment may result in dead-locks, live-locks and prioritization

conflicts, even for state-of-the-art algorithms [8]. These in-
sights highlight the impact of the environment on multi-agent
navigation.

Not all environments elicit the same kinds of agent behav-
iors and individual navigation algorithms are susceptible to
environmental artefacts; undesirable environments can lead
to irresolution in path planning [9]. To deal with such bot-
tlenecks, spatial structures (e.g., intersections, roundabouts)
and markings (e.g., lanes) are developed to facilitate path
de-confliction [10] but these concepts are based on legacy
mobility paradigms, which ignore inter-agent communica-
tion, cooperation, and systems-level optimization. While it
is possible to deal with the circumvention of dead-locks
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and live-locks through hand-designed environment templates,
such hand-designing process is inefficient [11].

Reconfigurable and automated environments are emerg-
ing as a new trend in next generation buildings [1], [12],
[13], [14], which incorporate mechatronic devices to establish
interactive relations with agents. This makes it feasible to re-
configure the obstacle layout of the environment in a way that
improves some objective measure of the multi-agent system,
especially in structured settings where agents are expected to
solve repetitive tasks (like warehouses, factories, restaurants,
etc.). In tandem with that enabling technology, the goal of this
article is to consider the obstacle layout of the environment
as a decision variable in pursuit of the agents’ incentives. We
assume agents have a fixed navigation algorithm, and propose
the problem of systematically optimizing the obstacle layout
of the environment to improve the navigation performance
of the given multi-agent system. Applications of environment
optimization include warehouse logistics (e.g., finding the op-
timal positions of the shelves for cargo transportation [15]),
search and rescue (e.g., clearing the best passages for trapped
victims [16]), city planning (e.g., generating the optimal con-
figuration of one-way routes [17]), and digital entertainment
(e.g., building the best gaming scene for video games [18]).
Environment optimization is independent of traditional ap-
proaches that focus on designing the agents’ trajectory planner
to interact with the environment, and can be applied as an
add-on module to any trajectory planner in the same manner.
Moreover, this allows us to facilitate multi-agent navigation
even if the agents’ actions cannot be directly controlled, e.g.,
when agents are human with inherent preferences and un-
known decision-making processes, or physical robots with
hardware and computation limitations. More in detail, our
contributions are as follows:

i) We define novel problems of unprioritized and pri-
oritized environment optimization, where the former
considers agents unbiasedly and the latter accounts for
agent priorities. We develop two solution variants, i.e.,
offline and online environment optimization, that adapt
to different implementation scenarios.

ii) We conduct the completeness analysis for multi-agent
navigation with environment optimization, which iden-
tifies the conditions under which all agents are guaran-
teed to reach their goals. We also analyze the effects
of agent priorities on environment optimization, and
show how environment “resources” can be negotitated
to improve performance in an ordered scheme.

iii) We impose practical constraints on the environment
optimization, and formulate it as a constrained stochas-
tic optimization problem. We leverage reinforcement
learning and a primal-dual mechanism to develop a
model-free method, which allows us to integrate differ-
ent information processing architectures (e.g., CNNs,
GNNs) as a function of the problem setting.

iv) We evaluate the proposed framework in both discrete
and continuous environment settings. The results cor-
roborate theoretical findings and show the proposed

approach can generalize beyond training instances,
adapts to various optimization objectives and con-
straints, and allows for decentralized implementation.

Related work: The problem of environment optimization is
reminiscent of robot co-design [19], [20], [21], wherein sens-
ing, computation, and control are jointly optimized. While this
domain of robotics is robot-centric (i.e., does not consider the
environment as an optimization criteria), there are a few works
that, similarly to our approach, use reinforcement learning to
co-optimize objectives [22], [23], [24]. A more closely related
idea is exploited in [9], wherein the environment is adversar-
ially optimized to fail the navigation tasks of state-of-the-art
solutions. It conducts a worst-case analysis to shed light on
directions in which more robust systems can be developed.
On the contrary, we optimize the environment to facilitate
multi-agent navigation tasks.

The role of the environment on motion planning has been
previously explored. Specifically, [25], [26] emphasize the
existence of congestion and deadlocks in undesirable environ-
ments and develop trajectory planning methods to escape from
potential deadlocks. The work in [27] defines the concept of
“well-formed” environments, in which the navigation tasks of
all agents can be carried out successfully without collisions.
In [28], Wu et al. show that the shape of the environment
leads to distinct path prospects for different agents, and that
this information can be shared among the agents to optimize
and coordinate their mobility. Gur et al. in [29] generate ad-
versarial environments and account for the latter information
to develop resilient navigation algorithms. However, none of
these works consider optimizing the environment to improve
system-wide navigation performance.

Our problem is also related to the problem of environment
design. The work in [30] design environments to influence
a agent’s decision and [31], [32] focus on boosting the in-
terpretability of a robot’s behavior for human, while both
are formulated for a single-agent scenario. The works of
Hauser [33], [34] consider removing obstacles from the en-
vironment to improve navigation performance of one agent.
Bellusci et al. [35] extends a similar idea to the multi-agent
setting, which searches for solutions by considering all pos-
sible environment configurations. However, this is limited
in discrete environments and it may not be practical to re-
move obstacles in real-world applications. The problem of
multi-agent pick-up and delivery also considers re-configuring
the environment [36], [37], [38], [39]. However, these en-
vironment changes are pre-defined tasks for agents and the
goal is to develop algorithms to complete these tasks, which
are different problem settings. Moreover, these works con-
sider discrete environment configurations that mismatch many
practical scenarios.

II. PROBLEM FORMULATION
Let E be a 2-D environment described by a starting region
S , a destination region D and an obstacle region � with-
out overlap, i.e., S

⋂
D = S

⋂
� = D

⋂
� = ∅. Consider

a multi-agent system with n agents A = {Ai}n
i=1 distributed
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FIGURE 1. Example environment with 4 starting positions {si}4
i=1 and 4

destinations {di}4
i=1. There are CS = 3 self-connected starting components

S1,S2,S3 in the starting region S = ⋃3
l=1 Sl (blue), CD = 2

self-connected destination components D1,D2 in the destination region
D = ⋃2

k=1 Dk (green), and the obstacle region � (grey). Agent A1 is
initialized at s1 in the starting component SA1 = S2 and moves towards its
goal d1 in the destination component DA1 = D1. Analogous notation
applies for the other agents A2, A3 and A4. (a) Initial environment before
optimization. It demonstrates notations used in this work for theoretical
analysis. (b) Environment after prioritized optimization. It optimizes the
obstacle region from � to �∗, which guarantees the existence of a valid
solution and improves the solution performance based on agent priorities.

in E . The agent bodies are contained within circles of radii
{ri}n

i=1. Agents are initialized at positions S = [s1, . . . , sn] in
S and deploy a given trajectory planner πa to move towards
destinations D = [d1, . . . ,dn] in D. Let ρ = [ρ1, . . . , ρn]�
be a set of priorities that represent the importance of agents
w.r.t. the navigation tasks, i.e., the larger the priority, the more
important the agent; in other words, for ρ1 ≥ · · · ≥ ρn, agent
A1 has the highest priority.

Denote by ∂S , ∂D, ∂� the boundaries of the regions S ,
D, � and B(s, r) a closed disk centered at position s with
a radius r. This allows us to represent each agent Ai as
B(si, ri ) where si is the agent position and ri is the agent
radius. Define d (si, s j ) as the closest distance between agents
Ai, A j , i.e., d (si, s j ) = min ‖zi − z j‖2 for any zi ∈ B(si, ri )
and z j ∈ B(s j, r j ), and d (si, ∂S ) the closest distance between
agent Ai and the starting region boundary ∂S , i.e., d (si, ∂S ) =
min ‖zi − zS‖2 for any zi ∈ B(si, ri ) and zS ∈ ∂S . Analogous
definitions apply for ∂D and ∂�. Let p(t ) : [0,∞) → R2 be
the trajectory representing the central position movement of
an agent. The trajectory pi of agent Ai is collision-free w.r.t.
the obstacle region � if d (pi(t ), ∂�) ≥ 0 for all t ≥ 0. The
trajectories pi, p j of two agents Ai, A j are collision-free with
each other if d (pi(t ),p j (t )) ≥ 0 for all t ≥ 0 – see Fig. 1 for
demonstration. A valid solution for the trajectory planner πa

is defined as follows.
Definition 1: A valid solution of the trajectory planner πa

is a set of trajectories {pi(t )}n
i=1 that satisfy

pi(0) = si, pi(T ) = di for i = 1, . . . , n, (1)

and

d
(
pi(t ),p j (t )

) ≥ 0, d (pi(t ), ∂�) ≥ 0 (2)

for any i, j = 1, . . . , n and t ∈ [0,T ], where T is the maximal
operation time for agents.

Definition 1 satisfies the navigation convergence with con-
dition (1) and the collision avoidance with condition (2).

The performance of multi-agent navigation solutions de-
pends not only on the agents’ trajectory planner but also on
their surrounding environment. A “well-formed” environment
with an appropriate obstacle region yields good performance
for a simple planner, while a “poorly-formed” environment
may result in poor performance for an advanced planner. This
insight implies an important role played by the environment
in multi-agent navigation, and motivates the definition of the
problem of environment optimization. The overarching goal
is to optimize the obstacle region � in the environment to
improve the performance of multi-agent navigation. The prin-
ciple of environment optimization is that the obstacle region
� can be controlled (i.e., changed) while its area |�| remains
the same, i.e., |�| = |�̂| where �̂ is the changed obstacle
region. That is, we do not remove or add any obstacle from
our environment. We consider two variants: (1) unprioritized
environment optimization and (2) prioritized environment op-
timization.

Problem 1 (Unprioritized Environment Optimization):
Given an environment with an initial obstacle region � and
a multi-agent system of n agents {Ai}n

i=1 that are initialized
at positions S and targeted towards destinations D with the
trajectory planner πa, optimize the obstacle region from � to
�∗ such that in the optimized environment, (i) there exists a
valid solution {pi(t )}n

i=1 for πa [Def. 1] and (ii) the solution
performance is maximized.

Problem 2 (Prioritized Environment Optimization): Given
an environment with an initial obstacle regions �, a multi-
agent system of n agents {Ai}n

i=1 that are initialized at posi-
tions S and targeted towards destinations D with the trajectory
planner πa, agent priorities ρ that are ordered by the index
ρ1 ≥ ρ2 ≥ · · · ≥ ρn, and a metric of interest M(·) : p(t ) → R
that measures the navigation performance of agent trajecto-
ries,1 optimize the obstacle region from � to �∗ such that
in the optimized environment, (i) there exists a valid solution
{pi(t )}n

i=1 for πa [Def. 1] and (ii) the solution performance
is improved according to agent priorities ρ, i.e., the metric
values of agents’ trajectories are ordered by agent priorities ρ

as

M(p1) ≤ M(p2) ≤ · · · ≤ M(pn). (3)

Problem 1 considers agents with equal priority and optimizes
the environment to improve their performance unbiasedly.
Problem 2 accounts for agent priorities, which not only guar-
antees the existence of a valid solution in the optimized
environment but also orders the solution performance based
on agent priorities ρ [cf. (3)]. It reduces to Problem 1 when
agent priorities are equal to each other, i.e., ρ1 = · · · = ρn.
Problems 1 and 2 focus on optimizing the obstacle region of
the environment to provide solution guarantees and to improve

1Without loss of generality, we assume the lower the value of M(·), the bet-
ter the performance, e.g., corresponding to traveled distance and navigation
time.
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the solution performance. An underlying trajectory planner is
assumed to exist, yet we do not prescribe how the trajectories
should be computed – see Assumption 2 in Section III.

In Section III, we analyze the completeness for Problem 1
to show the effectiveness of environment optimization, i.e., all
agents are able to carry out navigation tasks without collision
with environment optimization. In Section IV, we conduct
the completeness analysis for Problem 2 and characterize the
effects of agent priorities on environment optimization. In
Section V, we impose external constraints on the environment
optimization corresponding to real-world restrictions on ob-
stacle changes and formulate the problem mathematically as
a constrained stochastic optimization problem. We transform
the latter into the dual domain to tackle constraints and com-
bine reinforcement learning with a primal-dual mechanism for
solutions. Lastly, we evaluate the proposed approach numeri-
cally and corroborate theoretical findings in Section VI.

Remark 1: Problem 2 optimizes the obstacle region of the
environment to guarantee that there exists a valid solution and
the solution performance is ordered based on agent priorities
[cf. (3)]. We remark that it is possible that an agent A j finds
a different trajectory p̂ j �= p j , which does not collide with
the other trajectories {pi}i �= j and satisfies M (̂p j ) < M(p j ).
However, the latter does not compromise the prioritized en-
vironment optimization proposed in Problem 2.

III. COMPLETENESS OF UNPRIORITIZED SYSTEM
In this section, we provide the completeness analysis of multi-
agent navigation for unprioritized environment optimization
[Problem 1]. Specifically, the multi-agent system may fail
to find collision-free trajectories in an environment with
an unsatisfactory obstacle region. Environment optimization
overcomes this issue by modifying the obstacle region to guar-
antee the navigation success for all agents. In the following,
we consider both offline environment optimization and online
environment optimization.

A. OFFLINE ENVIRONMENT OPTIMIZATION
Offline environment optimization optimizes the obstacle re-
gion � based on the starting region S and the destination
region D, and completes the optimization before the agents
start moving towards destinations. The optimized environ-
ment remains static during agent movement. The goal is
to find an optimal obstacle region �∗ that maximizes the
navigation performance of the multi-agent system. Before
proceeding, we need the following assumptions for complete-
ness analysis.

Assumption 1: The initial positions {si}n
i=1 in S and the

destinations {di}n
i=1 in D are distributed in a way such

that the distance between either two agents or the agent
and the region boundary is larger than the maximal agent
size, i.e., d (si, s j ) ≥ 2r̂, d (si, ∂S ) ≥ 2r̂ and d (di,d j ) ≥ 2r̂,
d (di, ∂D) ≥ 2r̂ for i, j =1, . . ., n with r̂ =maxi=1,...,n ri.

Assumption 2: Using the trajectory planner πa, each agent
can compute its own optimal trajectory, leading it from start

to goal, in the presence of the obstacle region �, and can pass
that trajectory information on to other agents.

Assumption 1 indicates that the starting positions {si}n
i=1 (or

goal positions {di}n
i=1) are not too close to each other, which is

commonly satisfied in real-world navigation tasks. Assump-
tion 2 allows each agent to find its own trajectory, if the
latter exists, and disseminate the trajectory information among
agents. For decentralized systems that require completeness,
this is a necessary assumption (e.g., see [11], [27]). Informa-
tion passing can be achieved through a variety of mechanisms,
e.g., token-based [27], or communication protocol based [11].
With these preliminaries, we show the completeness of the
offline environment optimization.

Theorem 1: Consider the multi-agent system in the envi-
ronment E with starting, destination and obstacle regions S , D
and � satisfying Assumptions 1 and 2. Let dmax be the max-
imal distance between S and D, i.e., dmax = maxzS ,zD ‖zS −
zD‖2 for any zS ∈ S, zD ∈ D. Then, if E satisfies

|E \ (� ∪ S ∪ D)| ≥ 2ndmaxr̂ (4)

where r̂ = maxi=1,...,n ri is the maximal radius of n agents
and | · | represents the region area, the offline environment
optimization guarantees that the navigation tasks of all agents
can be carried out successfully without collision.

Proof: See Appendix A. �
Theorem 1 states that the offline environment optimization

can guarantee the success of all navigation tasks, if the area
of the environment except the starting, destination and obsta-
cle regions is larger than 2ndmaxr̂. This is a mild condition
because it does not require any initial “well-formed” environ-
ment but only an obstacle-free area of minimal size [cf. (4)],
which is common in real-world scenarios. The offline envi-
ronment optimization depends on the starting region S and
the destination region D, and completes optimizing the ob-
stacle region � before the agents start to move. This requires
a computational overhead before each new navigation task.
Moreover, we are interested in generalizing the problem s.t. S
and D are allowed to be time-varying during deployments.

B. ONLINE ENVIRONMENT OPTIMIZATION
Online environment optimization changes the obstacle region
� based on instantaneous states of the agents, e.g., positions,
velocities and accelerations, after the agents start moving to-
wards destinations. In other words, the environment is being
optimized concurrently with agent movement. The goal is to
find the optimal obstacle policy πo that changes the obstacle
region to maximize the navigation performance of the multi-
agent system.

Specifically, define the starting region as the union of the
starting positions S = ⋃

i=1,...,n B(si, ri ) and the destination
region as that of the destinations D = ⋃

i=1,...,n B(di, ri ) s.t.
S
⋂

D = ∅. Since the obstacle region � now changes con-
tinuously, we define the capacity of the online environment
optimization as the maximal changing rate of the obstacle
area �̇, i.e., the maximal obstacle area that can be changed
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per time step. To proceed, we require an assumption for the
environment with an empty obstacle region � = ∅.

Assumption 3: For an environment E with no obstacle
region � = ∅, all navigation tasks can be carried out success-
fully without collision and the corresponding agent trajecto-
ries {pi}n

i=1 are non-overlap.
Assumption 3 is mild because an environment with no

obstacle region is the best scenario for the multi-agent naviga-
tion. For an environment with a non-empty obstacle region�,
the following theorem shows the completeness of the online
environment optimization.

Theorem 2: Consider the multi-agent system of n agents
{Ai}n

i=1 satisfying Assumption 3 with n collision-free trajec-
tories {pi(t )}n

i=1 for the environment with an empty obstacle
region. Let {vi(t )}n

i=1 be the velocities along {pi(t )}n
i=1, re-

spectively. For the environment E with a non-empty obstacle
region � ⊂ E \ (S ∪ D) and E \ (� ∪ S ∪ D) �= ∅, if the ca-
pacity of the online environment optimization satisfies

�̇ ≥ 2nr̂‖v̂‖2 (5)

where ‖v̂‖2 = maxt∈[0,T ] maxi=1,...,n ‖vi(t )‖2 is the maximal
norm of the velocities and r̂ = maxi=1,...,n ri is the maximal
agent radius, the navigation tasks of all agents can be carried
out successfully without collision.

Proof: See Appendix B. �
Theorem 2 states that the online environment optimization

can guarantee the success of all navigation tasks as well as
its offline counterpart, if the changing rate of the obstacle
region is larger than 2nr̂‖v̂‖2. The result is established under
a mild condition on the obstacle changing rate [cf. (5)] rather
than the initial obstacle-free area [cf. (4)]. This is due to
the fact that the online environment optimization changes the
obstacle region concurrently with agent movement. Hence, it
improves navigation performance only if timely actions can be
taken based on instantaneous system states. The completeness
analysis in Theorems 1 and 2 demonstrates theoretically the
effectiveness of the proposed environment optimization, in
improving the performance of the multi-agent navigation.

IV. COMPLETENESS OF PRIORITIZED SYSTEM
Unprioritized environment optimization guarantees the suc-
cess of navigation tasks in scenarios with sufficient “re-
sources”, i.e., a sufficiently large obstacle-free area [Thm. 1]
and a sufficiently large obstacle changing rate [Thm. 2]. How-
ever, this may not be the case for scenarios with reduced
resources. In the latter circumstances, the environment needs
to be optimized with respect to the conflicts of interest among
different agents, and allocates resources according to priori-
ties in order to negotiate these conflicts.

With the formulation of prioritized environment optimiza-
tion [Problem 2], we overcome this issue by incorporating
agent priorities into environment optimization. That is, we put
more emphasis on agents with higher priorities to guide the
negotiation. In the sequel, we show that prioritized environ-
ment optimization is capable of guaranteeing the success of
all navigation tasks with reduced resources by sacrificing the

navigation performance of agents with lower priorities. Anal-
ogous to Section III, we analyze the completeness of offline
and online prioritized environment optimization, respectively,
which characterizes the explicit effects of agent priorities on
the navigation performance.

A. OFFLINE PRIORITIZED ENVIRONMENT OPTIMIZATION
Offline environment optimization optimizes the obstacle re-
gion � before navigation and guarantees the success of all
navigation tasks if |E \ (� ∪ S ∪ D)| ≥ 2ndmaxr̂ [Thm. 1].
We consider the reduced-resource scenario, where the initial
obstacle-free area is smaller than 2ndmaxr̂, i.e., |E \ (� ∪ S ∪
D)| < 2ndmaxr̂. In this circumstance, offline prioritized envi-
ronment optimization is able to maintain the success of all
navigation tasks, at the cost of lower-priority agent perfor-
mance.

We introduce additional notation as follows. Define the
starting region S as disconnected if there exist two points
in S that cannot be connected by a path inside S , and self-
connected otherwise. For a disconnected S , let {Sl}CS

l=1 be
the least number of self-connected components in S s.t. their
union covers S , i.e.,

⋃CS
l=1 Sl = S .2 Assume that agent Ai

is initialized in one of these component SAi ∈ {Sl}CS
l=1 for

i = 1, . . . , n. Analogous definitions apply for the destination
region D. Let dmax(Sl1 ,Sl2 ) be the maximal distance be-
tween the components Sl1 and Sl2 for l1 �= l2 ∈ {1, . . . ,CS},
i.e., dmax(Sl1,Sl2 ) = max ‖zSl1

− zSl2
‖2 for any zSl1

∈ Sl1

and zSl2
∈ Sl2 . Denote by DS ∈ RCS×CS the matrix that col-

lects the distances between the components {Sl}CS
l=1 with the

(l1, l2)th entry [DS ]l1l2 = dmax(Sl1 ,Sl2 ) for l1, l2 = 1, . . . ,CS
and [DS ]ll = 0 for l = 1, . . . ,CS , DD ∈ RCD×CD the matrix
that collects the distances between the components {Dk}CD

k=1,
and DS,D ∈ RCS×CD the matrix that collects the distances
between {Sl}CS

l=1 and {Dk}CD
k=1 – see Fig. 1 for demonstration.

For completeness analysis, we assume the following.
Assumption 4: The distance between the starting compo-

nents {Sl}CS
l=1 (or destination components {Dk}CD

k=1) is sig-
nificantly smaller than the distance between the starting
components {Sl}CS

l=1 and the destination components {Dk}CD
k=1,

i.e., for any entry dS of DS , entry dD of DD and entry dS,D of
DS,D, it holds that dS + dD ≤ dS,D.

Assumption 4 is reasonable because the starting positions
are typically close to each other but far away from the des-
tinations in real-world applications. With these in place, we
characterize the completeness with the offline prioritized en-
vironment optimization in the following theorem.

Theorem 3: Consider the multi-agent system of n agents
{Ai}n

i=1 in the environment E with the same settings as The-
orem 1 and satisfying Assumption 4. Let ρ be the agent
priorities ordered by the index ρ1 ≥ ρ2 ≥ · · · ≥ ρn, agent Ai

be in the starting component SAi ∈ {Sl}CS
l=1 and assigned to the

destination component DAi ∈ {Dk}CD
k=1 for i=1, . . ., n. Then,

2For a self-connected S, we have CS = 1 and S1 = S.
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if E satisfies

|E\(�∪S∪D)|≥2dA1 r̂+
n∑

i=2

2(dAi,S+dAi,D )r̂ (6)

where dA1 is the distance between SA1 and DA1 , i.e., dA1 =
[DS,D]A1A1 , dAi,S the minimal distance between SAi and
{SA j }i−1

j=1, i.e., dAi,S = min{[DS ]AiA1 , . . . , [DS ]AiAi−1}, dAi,D
the minimal distance between DAi and {DA j }i−1

j=1, i.e., dAi,D =
min{[DD]AiA1 , . . . , [DD]AiAi−1}, the offline prioritized envi-
ronment optimization guarantees that the navigation tasks of
all agents can be carried out successfully without collision.
Moreover, the traveled distance of agent Ai outside S and D
is bounded by

dA1 +
i∑

j=2

(
dA j ,S + dA j ,D

)
= Mi (7)

for i = 1, . . ., n, which increases with the decreasing of prior-
ity, i.e., M1 ≤· · ·≤Mn with the priorities ρ1 ≥· · ·≥ρn.

Proof: See Appendix C. �
Theorem 3 states that the offline prioritized environment

optimization can guarantee the success of all navigation tasks
and requires less obstacle-free area compared to its unpriori-
tized counterpart, i.e., the lower bound in (6) is smaller than
that in (4) [Asm. 4]. However, this improvement is obtained
by sacrificing the navigation performance of the agents with
lower priorities. That is, these agents are no longer moving
along the shortest path and the traveled distance increases
with the decreasing of agent priority [cf. (7)]. It corresponds
to Problem 2 of prioritized environment optimization, where
the metric M(·) is the traveled distance. The latter shows a
trade-off between the navigation completeness of all agents
and the individual performance of lower-priority agents.

Next, we consider scenarios with further reduced resources,
i.e., we show the partial completeness when the obstacle-free
area is smaller than that required in (6).

Corollary 1: Consider the same setting as in Theorem 3. If
the environment E satisfies

2dA1 r̂ +
b∑

i=2

2
(
dAi,S + dAi,D

)
r̂

≤ |E \ (� ∪ S ∪ D)| < 2dA1 r̂ +
b+1∑
i=2

2
(
dAi,S + dAi,D

)
r̂

(8)

where b is an integer with 1 ≤ b < n, the offline prioritized
environment optimization guarantees that the navigation tasks
of the agents with highest b priorities {Ai}b

i=1 can be carried
out successfully without collision.

For the rest of the agents {A j}n
j=b+1, if the starting position

and the destination of agent A j is within the same connected
components in S and D as one of the agents {Ai}b

i=1, i.e., s j ∈
SAi and d j ∈ DAi for any i ∈ {1, . . . , b}, the navigation task of

agent A j can be carried out successfully without collision as
well.

Proof: See Appendix D. �
Corollary 1 demonstrates that the success of all navigation

tasks may not be guaranteed if the obstacle-free area is further
smaller than the lower bound in (6). In this case, the prioritized
environment optimization guarantees preferentially the navi-
gation tasks of the agents with higher priorities {Ai}b

i=1, but
overlooks the ones with lower priorities {A j}n

j=b+1. Moreover,
the navigation tasks of lower-priority agents {A j}n

j=b+1 can
be guaranteed only if their starting and goal positions are
within the same connected components as one of the higher-
priority agents {Ai}b

i=1. This implies that lower-priority agents
can benefit from higher-priority agents if they have “similar”
navigation tasks.

B. ONLINE PRIORITIZED ENVIRONMENT OPTIMIZATION
Online environment optimization changes the obstacle region
� during navigation and guarantees the success of all naviga-
tion tasks if �̇ ≥ 2nr̂‖v̂‖2 [Thm. 2]. We similarly consider the
reduced-resource scenario, where the capacity of the obstacle
region is smaller than 2nr̂‖v̂‖2, i.e., �̇ < 2nr̂‖v̂‖2. In this cir-
cumstance, online prioritized environment optimization can
guarantee the success of all navigation tasks, with a perfor-
mance loss of lower-priority agents.

Theorem 4: Consider the multi-agent system of n agents
{Ai}n

i=1 in an environment E with the same settings as The-
orem 2. Let ρ be the agent priorities ordered by the index
ρ1 ≥ ρ2 ≥ · · · ≥ ρn and the reduced capacity of environment
optimization be

2br̂‖v̂‖2 ≤ �̇ < 2(b + 1)r̂‖v̂‖2 (9)

where b is an integer with 1 ≤ b < n. Then, online prioritized
environment optimization guarantees that the navigation tasks
of all agents can be carried out successfully without collision.
Moreover, the navigation time of agent Ai can be bounded by

CT

ρi
, for i = 1, . . . , n (10)

that is proportional to the inverse of its priority, where CT is a
time constant determined by b.

Proof: See Appendix E. �
Theorem 4 states that the online prioritized environment

optimization can guarantee the success of all navigation tasks
and requires a smaller obstacle changing rate compared to
its unprioritized counterpart, i.e., the lower bound in (9) is
less than that in (5). This improvement comes with the per-
formance loss of lower-priority agents, i.e., the agents with
higher priorities reach the destinations faster than the ones
with lower priorities [cf. (10)]. We attribute this behavior to
the fact that the online prioritized environment optimization
changes the obstacle region concurrently to agent movement
and is capable of continuously tuning the changing strategy
based on the agent priorities during navigation. This corre-
sponds to Problem 2 of prioritized environment optimization,
where the metric M(·) is the navigation time.
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We follow to consider scenarios where all agents are re-
quired to reach their destinations within a required time, and
analyze the partial completeness of the online prioritized en-
vironment optimization in this setting.

Corollary 2: Consider the same setting as in Theorem 4. If
all agents are required to reach their destinations within time
Tmax, i.e., Ti ≤ Tmax for i = 1, . . . , n, the online prioritized
environment optimization guarantees the success of np ≤ n
agents {Ai}np

i=1 with highest priorities {ρi}np
i=1, where np is

determined by the changing rate of the obstacle region, i.e.,
b in (9), and the required time Tmax [cf. (54)].

Proof: See Appendix F. �
Corollary 2 demonstrates that the success of all navigation

tasks may not be guaranteed if agents are required to reach
destinations within a finite time Tmax. Online prioritized en-
vironment optimization allows preferentially a set of agents
{Ai}np

i=1 with higher priorities to reach destinations, while the
rest of agents {Ai}n

i=np+1 may fail navigation tasks. The num-
ber of successful agents np depends on the changing capacity
of the obstacle region and the required time Tmax, i.e., the
higher the changing rate and the required time, the larger the
number of successful agents. Corollary 2 recovers Theorem 4
when the required time is larger than the maximal time in (10),
i.e., Tmax ≥ CT /ρn.

Theorems 3 and 4 show the role played by agent pri-
orities in the offline and online environment optimization
with less resources, i.e., the obstacle-free area and the obsta-
cle changing rate, than that required by Theorems 1 and 2.
The prioritized environment optimization guides the resource
allocation by emphasizing higher-priority agents. By doing
so, it guarantees the success of all navigation tasks with
reduced resources while sacrificing the navigation perfor-
mance of lower-priority agents. Moreover, Corollaries 1 and
2 demonstrate the partial completeness of multi-agent naviga-
tion for scenarios with further reduced resources and added
requirements (e.g., maximal time allowed). The prioritized
environment optimization guarantees the success of higher-
priority agents, but lower-priority agents may fail in these
circumstances.

Remark 2: Theoretical analysis of offline and online envi-
ronment optimization assumes that the obstacle region � can
be controlled and re-shaped continuously as long as its area
remains the same. The goal is to demonstrate the effectiveness
of environment optimization in improving the performance of
multi-agent navigation. However, it is worth mentioning that
there may exist practical restrictions either on the obstacle
region or on the way it can be controlled, in real-world ap-
plications. We account for the latter by imposing constraints
when mathematically formulating the environment optimiza-
tion problem in the next section.

V. METHODOLOGY
In this section, we formulate the prioritized environment op-
timization problem mathematically as a constrained stochas-
tic optimization problem, where the imposed constraints

correspond to resource limitations and physical restrictions on
the environment optimization in real-world applications, and
solve the latter by leveraging reinforcement learning with the
primal-dual mechanism.

Specifically, consider the obstacle region � comprising
m obstacles O = {O1, . . . ,Om}, which can be of any shape
and located at positions O = [o1, . . . , om]. The obstacles
can change positions to improve the navigation perfor-
mance of the agents. Denote by Xo = [xo1, . . . , xom] the
obstacle states, Uo = [uo1, . . . ,uom] the obstacle actions,
Xa = [xa1, . . . , xan] the agent states and Ua = [ua1, . . . ,uam]
the agent actions. For example, the states can be posi-
tions or velocities and the actions can be accelerations. Let
πo(Uo|Xo,Xa) be an optimization policy that controls the
obstacles, a distribution over Uo conditioned on Xo and Xa.
The objective function f (S,D, πa, ρ,O, πo) measures the
performance of the multi-agent navigation task (S,D), given
the trajectory planner πa, the agent priorities ρ, the obstacle
positions O and the optimization policy πo, while the cost
functions {g j (S,D, πa, ρ,O, πo)}m

j=1 indicate the penalties of
obstacle position changes, e.g., collision penalties of obstacle
movements w.r.t. the other obstacles and agents. Moreover,
a set of Q constraints are imposed on the obstacles corre-
sponding to resource limitations and physical restrictions in
real-world applications, which are represented by the con-
straint functions {hq(Xo,Uo)}Q

q=1. For example, the deviation
distances of the obstacles from their initial positions or the
moving velocities of the obstacles are bounded by some max-
imal constant. Since the multi-agent system is with random
initialization, the objective, cost, constraint functions are ran-
dom functions and an expected performance would be a more
meaningful metric for performance evaluation.

The goal is, thus, to find an optimal obstacle policy πo that
maximizes the expected performance E[ f (S,D, πa, ρ,O,
πo)] regularized by the obstacle costs {E[g j (S,D, πa, ρ,

O, πo)]}m
j=1, while satisfying the imposed constraints. By in-

troducing Uo as the action space of the obstacles, we formulate
the prioritized environment optimization problem as a con-
strained stochastic optimization problem

argmax
πo

E
[

f (S,D,πa,ρ,O,πo)
]− m∑

j=1

β jE
[
g j (S,D,πa,ρ,O,πo)

]
s.t. hq(Xo,Uo) ≤ 0, for all q=1, . . . ,Q,

πo(Uo|Xo,Xa) ∈ Uo, (11)

where {β j}m
j=1 are regularization parameters. The objective

function f (S,D, πa, ρ,O, πo), the cost functions {g j (S,D,
πa, ρ,O, πo)}m

j=1, the constraint functions {hq(Xo,Uo)}Q
q=1

and the action space Uo are not necessarily convex/non-convex
depending on specific application scenarios. The problem is
challenging due to four main reasons:

i) The closed-form expression of the objective function
f (S,D, πa, ρ,O, πo) is difficult to derive because the
explicit relationship between agents, obstacles and nav-
igation performance is difficult to model, precluding
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the application of conventional model-based methods
and leading to poor performance of heuristic methods.

ii) The imposed constraints {hq(Xo,Uo)}Q
q=1 restrict the

space of feasible solutions and are difficult to address,
leading to the failure of conventional unconstrained
optimization algorithms.

iii) The policy πo(Uo|Xo,Xa) is an arbitrary mapping from
the state space to the action space, which can take any
function form and is infinitely dimensional.

iv) The obstacle actions can be discrete or continuous and
the action space Uo can be non-convex, resulting in
further constraints on the feasible solution.

Due to the aforementioned challenges, we propose to solve
problem (11) by leveraging reinforcement learning (RL) and
the primal-dual mechanism. The former parameterizes the
optimization policy with information processing architectures
and allows us to train the architecture parameters in a model-
free manner. The latter penalizes the constraints with dual
variables, and updates the primal and dual variables alterna-
tively while searching for feasible solutions.

A. REINFORCEMENT LEARNING
We reformulate problem (11) in the RL domain and start by
defining a Markov decision process. At each step t , the obsta-
cles O and the agents A observe the states X(t )

o , X(t )
a and take

the actions U(t )
o , U(t )

a with the obstacle policy πo and the trajec-
tory planner πa, respectively. The actions U(t )

o , U(t )
a amend the

states X(t )
o , X(t )

a based on the transition probability function
P(X(t+1)

o ,X(t+1)
a |X(t )

o ,X(t )
a ,U(t )

o ,U(t )
a ), which is a distribution

over the states conditioned on the previous states and the
actions. Let rai(X

(t )
o ,X(t )

a ,U(t )
o ,U(t )

a ) be the reward function
of agent Ai, which represents its navigation performance at
step t . The reward function of obstacle O j comprises two
components: (i) the global system reward and (ii) the local
obstacle reward, i.e.,

roj = 1

n

n∑
i=1

ρirai + β j r j,local , for all j = 1, . . .,m (12)

where ρi is the priority of agent Ai, β j is the regularization
parameter of obstacle O j , and rai, r j,local are concise notations

of rai(X
(t )
o ,X(t )

a ,U(t )
o ,U(t )

a ), r j,local (X
(t )
o ,X(t )

a ,U(t )
o ,U(t )

a ). The
first term is the team reward that represents the multi-agent
system performance, which is shared over all obstacles. The
second term is the individual reward that corresponds to the
position change penalty of obstacle O j , which may be differ-
ent among obstacles, e.g., the collision penalty. This reward
definition is novel that differs from common RL scenarios,
which is a combination of a global reward with a local re-
ward. The former is the main goal of all obstacles, while the
latter is the individual cost of an obstacle. The priorities ρ

weigh the agents’ performance to put more emphasis on the
agents with higher priorities, while the regularization param-
eters {β j}m

j=1 ∈ [0, 1]m weigh the environment optimization
penalty on the navigation performance. The total reward of

the obstacles is defined as

ro =
m∑

j=1

roj = m

n

n∑
i=1

ρirai +
m∑

j=1

β j r j,local . (13)

Let γ ∈ [0, 1] be the discount factor accounting for the
future rewards and the expected discounted reward can be
represented as

R(S,D, πa, ρ,O, πo) = E

[ ∞∑
t=0

γ t r(t )
o

]

= E

⎡⎣ ∞∑
t=0

γ t
m∑

j=1

n∑
i=1

ρir
(t )
ai

n

⎤⎦+
m∑

j=1

β jE

[ ∞∑
t=0

γ t r(t )
j,local

]
(14)

where O, S and D are the initial positions and destinations
that determine the initial states X(0)

o and X(0)
a , and E[·] is

w.r.t. the action policy and the state transition probability. The
obstacles are imposed with Q constraints at each step t , which
are functions of the obstacle states X(t )

o and actions U(t )
o as

hq(X(t )
o ,U(t )

o ) ≤ 0 for q = 1, . . . ,Q. By parameterizing the
obstacle policy πo with an information processing architecture
�(Xo,Xa, θ) of parameters θ, we formulate the constrained
reinforcement learning problem as

argmaxθ R(S,D, πa, ρ,O, θ)

s.t. hq
(
X(t )

o ,U(t )
o

) ≤ 0, for q=1, . . .,Q, t =0, 1, . . .,∞,

�
(
X(t )

o ,X(t )
a , θ

) ∈ Uo, for t = 0, 1, . . . ,∞. (15)

By comparing problem (11) with problem (15), we see equiv-
alent representations of the objective, cost and constraint
functions in the RL domain. The goal is to find the optimal
parameters θ∗ that maximize the reward while satisfying the
constraints at each step t .

B. PRIMAL-DUAL POLICY GRADIENT
Since there is no straightforward way to optimize θ w.r.t. per-
step hard constraints in problem (15), we define the reward of
the constraint hq(X(t )

o ,U(t )
o ) ≤ 0 with an indicator function as

r(t )
q = 1

[
hq
(
X(t )

o ,U(t )
o

) ≤ 0
]
, for q = 1, . . . ,Q (16)

where 1[hq(X(t )
o ,U(t )

o ) ≤ 0] is 1 if hq(X(t )
o ,U(t )

o ) ≤ 0 and 0
otherwise. It quantifies the constraint by rewarding success
and penalizing failure at each step t . The cumulative reward
of the constraint hq(X(t )

o ,U(t )
o ) ≤ 0 is

Rq(O, θ) = E

[ ∞∑
t=0

γ t r(t )
q

]
, for q = 1, . . . ,Q (17)

where γ is the discount factor. The preceding expression
allows us to measure how well the constraints are satis-
fied in expectation and takes the same form as the expected
discounted reward of the obstacles [cf. (14)]. We can then
transform the constraints as

Rq(O, θ) ≥ Cq, for q = 1, . . . ,Q (18)
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where {Cq}Q
q=1 are constants that lower-bound the constraint

rewards and control the constraint guarantees – see details in
Section V-C. This yields an alternative of problem (15) as

P := argmax
θ

R(S,D, πa, ρ,O, θ)

s.t. Rq(O, θ) ≥ Cq, for q = 1, . . . ,Q,

�
(
X(t )

o ,X(t )
a , θ

) ∈ Uo, for t = 0, 1, . . . ,∞. (19)

By introducing the dual variables λ = [λ1, . . . , λQ]� ∈ RQ
+

that correspond to Q constraints, we formulate the Lagrangian
of problem (19) as

L(θ,λ) = R(S,D,πa,ρ,O,θ)+
Q∑

q=1

λq
(
Rq(O, θ)−Cq

)
(20)

which penalizes the objective with the constraint violation
weighted by the dual variables λ. The dual function is defined
as the maximum of the Lagrangian D(λ) := maxθ L(θ,λ).
Since D(λ) ≥ P for any dual variables λ, we define the dual
problem as

D := min
λ≥0

D(λ) = min
λ≥0

max
θ

L(θ,λ) (21)

which computes the optimal dual variables that minimizes
the dual function D(λ). The dual solution D in (21) can be
considered as the best approximation of the primal solution P
in (19). This translates a constrained maximization problem
to an unconstrained min-max problem, which searches for a
saddle point solution (θ∗,λ∗) that is maximal w.r.t. the primal
variables θ and minimal w.r.t. the dual variables λ.

We propose to solve the dual problem (21) with the primal-
dual policy gradient method, which updates θ with policy
gradient ascent and λ with gradient descent in an alternative
manner. Specifically, it trains the model iteratively and each
iteration consists of primal and dual steps.

Primal step: At iteration k, let θ(k) be the primal variables,
λ(k) the dual variables, X(k)

o the obstacle states, and X(k)
a the

agent states. Given these system states, the obstacle policy
�(X(k)

o ,X(k)
a , θ(k) ) generates the obstacle actions U(k)

o and
the given trajectory planner πa generates the agent actions
U(k)

a . These actions U(k)
o , U(k)

a change the states from X(k)
o ,

X(k)
a to X(k)

o,1, X(k)
a,1 based on the transition probability function

P(X(k)
o,1,X(k)

a,1|X(k)
o ,X(k)

a ,U(k)
o ,U(k)

a ), which feeds back the cor-

responding obstacle reward r(k)
o [cf. (13)] and the constraint

rewards {r(k)
q }Q

q=1 [cf. (16)].
We follow the actor-critic method to define a value function

V (Xo,Xa,ω) of parameters ω that estimates the Lagrangian
(20) initialized at the states Xo,Xa. Let ω(k) be the parameters
of the value function at iteration k, and V (X(k)

o ,X(k)
a ,ω(k) ),

V (X(k)
o,1,X(k)

a,1,ω
(k) ) be the estimated values at X(k)

o ,X(k)
a and

X(k)
o,1,X(k)

a,1. This allows us to compute the estimation error as

δ
(k)
1 =r(k)

o +
Q∑

q=1

λ(k)
q

(
r(k)

q − (1 − γ )Cq

)

Algorithm 1: Primal-Dual Policy Gradient Method.

1: Input: initial primal variables θ(0), initial dual
variables λ(0), initial value function parameters ω(0),
trajectory planner πa and transition probability
function P

2: for k = 0, 1, . . . do
3: Compute value functions V (X(k)

o ,X(k)
a ,ω(k) ) and

V (X(k+1)
o ,X(k+1)

a ,ω(k) ) to estimate the
Lagrangian values of (20)

4: Compute the estimation error as in (22)
5: Update the primal variables θ(k) with policy

gradient ascent as in (23) ψ times and set
θ(k+1) := θ

(k)
ψ

as the updated primal variables
6: Compute the expected constraint rewards as in

(25)
7: Update the dual variables λ(k) with gradient

descent as in (24)
8: end for

+ γV
(

X(k)
o,1,X(k)

a,1,ω
(k)
)
−V

(
X(k)

o ,X(k)
a ,ω(k)

)
(22)

which is used to update the parameters ω(k) of the value
function. Then, we can update the primal variables θ(k) with
policy gradient ascent as

θ
(k)
1 = θ(k) + α∇θ logπo

(
U(k)

o |X(k)
a ,X(k)

o

)
δ

(k)
1 (23)

where α is the step-size and πo(U(k)
o |X(k)

a ,X(k)
o ) is the policy

distribution of the obstacle action specified by the param-
eters θ(k). The primal update is model-free because (23)
requires only the error value δ(k)

1 and the gradient of the
policy distribution, but not the objective, cost and constraint
function models. By performing the above procedure recur-
sivelyψ ∈ Z+ times, we obtain a sequence of primal variables
{θ(k)

1 , θ
(k)
2 , . . . , θ

(k)
ψ

}. Define θ(k+1) := θ
(k)
ψ

as the new primal
variables and step into the dual step.

Dual step: With the updated primal variables θ(k+1), we
update the dual variables λ(k) with gradient descent as

λ(k+1)
q =

[
λ(k)

q −β
(
Rq

(
O, θ(k+1)

)
−Cq

)]
+

for q=1, . . .,Q

(24)

where β is the step-size and [·]+ is the non-negative
operator corresponding to the positivity of dual variables.
Since the constraint function values {hq(X(k)

o ,U(k)
o )}Q

q=1 are

given, the cumulative constraint rewards {Rq(O, θ(k) )}Q
q=1 can

be estimated by sampling T trajectories {X(t ),1
o ,U(t ),1

o }t

, . . . , {X(t ),T
o ,U(t ),T

o }t , computing the respective cumulative
constraint rewards, and taking the average, i.e.,

Rq

(
O, θ(k+1)

)
≈ 1

T

T∑
τ=1

Tτ∑
t=0

γ t 1
[
hq
(
X(t ),τ

o ,U(t ),τ
o

)≤0
]

(25)
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FIGURE 2. Framework of primal-dual reinforcement learning.

where Tτ is the operation time of the τ th trajectory. The dual
update is model-free because (24) and (25) require only the
constraint values {hq(X(t )

o ,U(t )
o )}t instead of the constraint

function models. Algorithm 1 summarizes the approach and
Fig. 2 demonstrates the methodology framework.

C. CONSTRAINT GUARANTEES
While the cumulative constraint rewards in the alternative
problem (19) is a relaxation of the per-step hard constraints
in the original problem (15), we provide constraint guarantees
for the alternative problem (19) in the sequel. Specifically, the
expectation of the indicator function in (17) is equivalent to
the probability of satisfying the constraint, i.e.,

E
[
1
[
hq
(
X(t )

o ,U(t )
o

) ≤ 0
]] = P

[
hq
(
X(t )

o ,U(t )
o

) ≤ 0
]

(26)

where P [·] is the probability measure. This allows to rewrite
the cumulative constraint reward as

Rq(O, θ) =
∞∑

t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

) ≤ 0
] ≥ Cq (27)

for q = 1, . . . ,Q [cf. (18)], which is the discounted sum of
the constraint satisfaction probability over all steps t .

However, (27) are not sufficient conditions to satisfy the
constraints at each step t , as required by problem (15). We
then establish the relation between (27) and the per-step con-
straints in problem (15). Before proceeding, we define the
(1 − δ)-constrained solution as follows.

Definition 2 ((1 − δ)-constrained solution): A solution of
problem (19) is (1 − δ)-constrained w.r.t. the constraints
{hq}Q

q=1 if for each step t ≥ 0, it holds that

P
[∩0≤τ≤t

{
hq
(
X(τ )

o ,U
(τ )
o

)≤0
}]≥1−δ for q=1, . . .,Q. (28)

The (1 − δ)-constrained solution satisfies the constraints
at each step t with a probability 1 − δ ∈ (0, 1], which is a
feasible solution of problem (15) if δ = 0. With these prelimi-
naries, we analyze the constraint guarantees of the alternative
problem (19) in the following theorem.

Theorem 5: Consider problem (19) with the constraint con-
stant taking the form of Cq = (1 − δ + ε)/(1 − γ ) for q =
1, . . . ,Q [cf. (18)], where δ and ε are constraint parameters

with 0 ≤ ε ≤ δ. For any δ, there exists ε such that the solution
of problem (19) is (1 − δ)-constrained.

Proof: See Appendix G. �
Theorem 5 states that the feasible solution of the alternative

problem (19) is a (1 − δ)-constrained solution of problem
(15). The result provides the per-step guarantees for the en-
vironment constraints in probability, which demonstrates the
applicability of the alternative problem (19). In essence, we
have not lost the constraint guarantees by relaxing the hard
constraints to the cumulative constraint rewards.

D. INFORMATION PROCESSING ARCHITECTURE
The proposed approach is a general framework that covers
various environment optimization scenarios and different in-
formation processing architectures can be integrated to solve
different variants. We illustrate this fact by analyzing two
representative scenarios: (i) offline optimization in discrete
environments and (ii) online optimization in continuous en-
vironments, for which we use convolutional neural networks
(CNNs) and graph neural networks (GNNs), respectively.

CNNs for offline discrete settings: In this setting, we first
optimize the obstacles’ positions and then navigate the agents.
Since computations are performed offline, we collect the
states of all obstacles Xo and agents Xa apriori, which allows
for centralized information processing solutions (e.g., CNNs).
CNNs leverage convolutional filters to extract features from
image signals and have found wide applications in computer
vision [40], [41], [42]. In the discrete environment, the system
states can be represented by matrices and the latter are equiv-
alent to image signals. This motivates to consider CNNs for
policy parameterization.

GNNs for online continuous settings: In this setting, obsta-
cle positions change while agents move, i.e., the obstacles take
actions instantaneously. In large-scale systems with real-time
communication and computation constraints, obstacles may
not be able to collect the states of all other obstacles/agents
and centralized solutions may not be applicable. This requires
a decentralized architecture that can be implemented with
local neighborhood information. GNNs are inherently decen-
tralizable and are, thus, a suitable candidate.

GNNs are layered architectures that leverage a message
passing mechanism to extract features from graph sig-
nals [43], [44], [45]. At each layer �, let X�−1 be the input
signal. The output signal is generated with the message ag-
gregation function F�m and the feature update function F�u
as

[X�]i =F�u

⎛⎝[X�−1]i,
∑
j∈Ni

F�m
(
[X�−1]i, [X�−1] j, [E]i j

)⎞⎠
where [X�]i is the signal value at node i, Ni are the neighbor-
ing nodes within the communication radius, E is the adjacency
matrix, and F�m, F�u have learnable parameters θ�m, θ�u. The
output signal is computed with local neighborhood informa-
tion only, and each node can make decisions based on its own

346 VOLUME 2, 2023



output value; hence, allowing for decentralized implementa-
tion [46], [47], [48], [49].

VI. EXPERIMENTS
We evaluate the proposed approach in this section. First,
we consider unprioritized environment optimization without
constraints [Problem 1]. Then, we consider prioritized envi-
ronment optimization with constraints [Problem 2]. For both
cases, we consider two navigation scenarios, one in which we
perform offline optimization with discrete obstacle motion,
and another in which we consider online optimization with
continuous obstacle motion. The obstacles have rectangular
bodies and the agents have circular bodies. The given agent
trajectory planner πa is the Reciprocal Velocity Obstacles
(RVO) method [3], which can be applied in continuous space
and allows for an efficient computation with decentralized
implementation.3 Two metrics are used: Success weighted
by Path Length (SPL) [50] and the percentage of the max-
imal speed (PCTSpeed). The former is a stringent measure
combining the success rate and the path length, which has
been widely used as a primary quantifier in comparing the
navigation performance [50], [51], [52]. The latter is the
ratio of the average speed to the maximal one, which pro-
vides complementary information regarding the moving speed
along trajectories. Moreover, SPL and PCTSpeed normalize
metric values to [0, 1] with a higher value representing a
better performance, which provides a unified exposition for
performance metrics. Results are averaged over 20 trials with
random initial configurations.

A. UNPRIORITIZED ENVIRONMENT OPTIMIZATION
We start with unprioritized environment optimization.

Offline discrete setting: We consider a grid environment
of size 8 m × 8 m with 10 obstacles and 4 agents, which are
distributed randomly without overlap. The maximal agent /
obstacle velocity is 0.05 m per time step �t and the maximal
time step is 500.

Setup: The environment is modeled as an occupancy grid
map. An agent’s location is modeled by a one-hot in a matrix
of the same dimension. At each step, the policy considers one
of the obstacles and moves it to one of the adjacent grid cells.
This repeats for m obstacles, referred to as a round, and an
episode ends if the maximal round has been reached.

Training: The objective is to make agents reach destinations
quickly while avoiding collision. The team reward is the sum
of the PCTSpeed and the ratio of the shortest distance to
the traveled distance, while the local reward is the collision
penalty of individual obstacle [cf. (12)]. We parameterize the
policy with a CNN of 4 layers, each containing 25 features
with kernel size 2 × 2, and conduct training with PPO [53].

Baseline: Since exhaustive search methods are intractable
for our problem, we develop a strong heuristic method to act

3The proposed environment optimization approach can be applied in the
same manner, irrespective of the chosen agent navigation algorithm.

as a baseline: At each step, one of the obstacles computes the
shortest paths of all agents, checks whether it blocks any of
these paths, and moves away randomly if so. This repeats for
m obstacles, referred to as a round, and the method ends if the
maximal round is reached.

Performance: We train our model on 10 obstacles and test
on 10 to 18 obstacles, which varies obstacle density from
10% to 30%. Fig. 3(a) and (b) show the results. The proposed
approach consistently outperforms baselines with the highest
SPL/PCTSpeed and the lowest variance. The heuristic method
takes the second place and the original scenario (without any
environment modification) performs worst. As we generalize
to higher obstacle densities, all methods degrade as expected.
However, our approach maintains a satisfactory performance
due to the CNN’s cabability for generalization. Fig. 3(c)
and (d) show an example of how the proposed approach cir-
cumvents the dead-locks by optimizing the obstacle layout.
Moreover, it improves the path efficiency such that all agents
find collision-free trajectories close to their shortest paths.

Online continuous setting: We proceed to a continuous
environment. The agents are initialized randomly in an arbi-
trarily defined starting region and towards destinations in an
arbitrarily defined goal region.

Setup: The agents and obstacles are modeled by positions
{pa,i}n

i=1, {po, j}m
j=1 and velocities {va,i}n

i=1, {vo, j}m
j=1. At each

step, each obstacle has a local policy that generates the desired
velocity with neighborhood information and we integrate an
acceleration-constrained mechanism for position changes. An
episode ends if all agents reach destinations or the episode
times out. The maximal acceleration is 0.05 m/�t2, the com-
munication radius is 2 m and the episode time is 500 time
steps.

Training: The team reward in (12) guides the agents to their
destinations as quickly as possible and is defined as

r(t )
a,i =

(
p(t )

i − di

‖p(t )
i − di‖2

· v(t )
i

‖v(t )
i ‖2

)
‖v(t )

i ‖2 (29)

at time step t , which rewards fast movements towards the
destination and penalizes moving away from it. The local re-
ward is the collision penalty. We parameterize the policy with
a single-layer GNN. The message aggregation function and
feature update function are multi-layer perceptrons (MLPs),
and we train the model using PPO.

Performance: The results are shown in Fig. 4(a) and (b).
The proposed approach exhibits the best performance for both
metrics and maintains a good performance for large scenarios.
We attribute the latter to the fact that GNNs exploit topo-
logical information for feature extraction and are scalable
to larger graphs. The heuristic method performs worse but
comparably for small number of obstacles, while degrading
with the increasing of obstacles. It is note-worthy that the
heuristic method is centralized because it requires computing
shortest paths of all agents, and hence is not applicable for
online optimization and considered here as a benchmark value
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FIGURE 3. (a) And (b) performance of offline environment optimization compared to the baselines. Results are averaged over 20 trials and the shaded
area shows the std. dev. The RL system is trained on 10 obstacles and tested on 10 to 18 obstacles. (a) SPL (1 is best). (b) PCTSpeed. (c) And (d) example
of offline environment optimization. Red circles are initial positions, yellow squares are destinations, and obstacles are numbered for exposition. Color
lines from red to yellow are agent trajectories and the color bar represents the time scale. Obstacle layout and agent trajectories (c) before environment
optimization and (d) after environment optimization.

FIGURE 4. (a) And (b) performance of online environment optimization compared to the baselines. Results are averaged over 20 trails and the shaded
area shows the std. dev. The RL system is trained on 10 obstacles and tested on 10 to 18 obstacles. (a) SPL (1 is best). (b) PCTSpeed. (c) Example of online
environment optimization. Red circles are initial positions and yellow squares are destinations. Grey and brown rectangles are the obstacles before and
after environment optimization, and are numbered for exposition. Red-to-yellow lines are trajectories of agents and 5 example obstacles, and the color
bar represents the time scale, showing that no agent-agent nor agent-obstacle collision occurs.

only for reference. Fig. 4(c) shows the moving trajectories of
agents and example obstacles. We see that obstacles make way
for agents to facilitate navigation s.t. agents find trajectories
close to their shortest paths.

B. PRIORITIZED ENVIRONMENT OPTIMIZATION
We proceed to prioritized environment optimization with real-
world constraints, where the agent priorities are set as ρ =
[2, 1, 0.5, 0.1]�. The environment settings and implementa-
tion details are the same as the unprioritized environment
optimization in Section VI-A.

Offline discrete setting: We consider the constraint as the
maximal round that can be performed by the policy πo, i.e.,
the maximal number of grids each obstacle can move, which
restricts the capacity of offline environment optimization. This
constraint can be satisfied by setting the maximal length of an
episode in reinforcement learning and thus, the primal-dual
mechanism is not needed in this setting. We consider the
maximal round as 8 and measure the performance with the
PCTSpeed and the distance ratio, where the latter is the ratio
of the shortest distance to the agent’s traveled distance.

Performance: We evaluate the proposed approach on 14
obstacles and the results are shown in Fig. 5(a). We see that

agent A1 with the highest priority exhibits the best perfor-
mance with the highest PCTSpeed and distance ratio. The
performance degrades as the agent priority decreases (from
A1 to A4), which corresponds to theoretical findings in The-
orem 3. Fig. 5(c) and (d) display an example of how offline
prioritized environment optimization optimizes the obstacle
layout. It guarantees the success of all navigation tasks and
improves agents’ path efficiencies based on their priorities,
i.e., it emphasizes the higher-priority agents (A1 and A2) over
the lower-priority agents (A3 and A4).

Partial completeness: We test the trained model on 24
obstacles, where the obstacle region is dense and the obstacle-
free area is limited. The success rates of all agents are zero
without environment optimization. Fig. 5(b) shows the results
with offline prioritized environment optimization. Agent A1

with the highest priority achieves the best success rate and
the success rate decreases with the agent priority, which cor-
roborates the partial completeness in Corollary 1. We note
that the success rate of A1 is not one (100%) because (i) we
train our model on 14 obstacles but test it on 24 obstacles and
(ii) the proposed approach obtains a local not global solution,
leading to inevitable performance degradation compared with
theoretical analysis.

Online continuous setting: We consider the constraint
as the total deviation distance of the obstacles away from
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FIGURE 5. (a) And (b) performance of offline prioritized environment optimization with agent priorities ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4. (a) PCTSpeeds and distance
ratios of different agents on 14 obstacles (1 is best). (b) Success rates of different agents on 24 obstacles. (c) And (d) example of offline prioritized
environment optimization. Red circles are initial positions, yellow squares are destinations, and obstacles are numbered for exposition. Color lines from
red to yellow are agent trajectories and the color bar represents the time scale. Agent priorities {ρi}4

i=1 reduce from A1 to A4, i.e., ρ1 ≥ · · · ≥ ρ4. (c)
Navigation failures in original environment. (d) Completeness with offline prioritized environment optimization. PCTSpeeds of agents are
0.98, 0.94, 0.88, 0.86 and distance ratios are 0.99, 0.98, 0.95, 0.93, i.e., agent performance increases with the priority.

FIGURE 6. Performance of online prioritized environment optimization
with agent priorities ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4. (a) PCTSpeeds and distance ratios
of different agents on 14 obstacles (1 is best). (b) Success rates of
different agents within 150 time steps.

their initial positions, i.e.,
∑m

j=1 ‖o(t )
j − o(0)

j ‖2 ≤ Cd for all

t , where o(t )
j is the position of obstacle j at time step t and

o(0)
j is the initial position. It corresponds to practical scenarios

where the obstacles are not allowed moving too far from their
original positions.

Performance: We set Cd = 10 and show the results in
Fig. 6(a). Agent A1 with the highest priority performs best,
and the performance degrades from A1 to A4 with the decreas-
ing of agent priority, corroborating our analysis in Theorem 4.
Fig. 8(b) shows the constraint value as a function of time
steps. The total deviation distance of the obstacles is smaller
than the deviation bound throughout the navigation procedure,
which validates the proposed primal-dual method. Fig. 7(b)
shows the moving trajectories of agents and example ob-
stacles in online prioritized environment optimization. The
obstacles change positions to improve agents’ performance
and the higher-priority agents (e.g., A1) are emphasized over
the lower-priority agents (e.g., A4). For example, given the
deviation distance constraint, the obstacles create an (almost)
shortest path for A1 but not for A4.

Partial completeness: We corroborate the partial complete-
ness in Corollary 2 by requiring that all agents arrive at
destinations within Tmax = 150 time steps. Fig. 6(b) shows
that the success rate decreases from higher-priority agents to
lower-priority ones. The success rate of A1 is not one (100%)

because (i) the obtained solution is local not global and (ii)
we impose the constraint of deviation distance on the environ-
ment optimization.

Constraint bound: We test different constraint bounds Cd =
14, 10 and 4, the decreasing of which corresponds to the
increasing of environment restrictions. Fig. 8(b) shows that
all variants satisfy the constraints, and Fig. 7 displays three
examples of agent and obstacle trajectories. We see that all
variants guarantee the success of navigation tasks. The variant
with the largest bound performs best with agent trajectories
close to the shortest paths, where agent priorities do not play
an important role given sufficient resources. The variant with
the lowest bound suffers from performance degradation be-
cause of the strongest constraint. It puts more emphasis on
the higher-priority agents (A1 and A2) while overlooking the
lower-priority agents (A3 and A4), which corroborates theoret-
ical analysis in Section IV.

Velocity constraint: We show that the proposed approach
can handle various constraints. Here, we test a constraint on
the total speed of the obstacles, i.e.,

∑m
j=1 ‖v(t )

j ‖2 ≤ Cv for
all t . We set Cv = 3.5 and Fig. 8(c) shows that the speed con-
straint is satisfied throughout the navigation procedure. The
obstacle speed first increases to make way for the agents and
then slows down to satisfy the constraint. Fig. 8(a) compares
the performance of environment optimization with different
constraints to the unconstrained counterpart. The constrained
variants achieve comparable performance (slightly worse), but
saves the traveled distance and the velocity energy of the
obstacles.

VII. CONCLUSION
We proposed novel problems of unprioritized and priori-
tized environment optimization for multi-agent navigation,
each of which contains offline and online variants. By con-
ducting the completeness analysis, we provided conditions
under which all navigation tasks are guaranteed success and
identified the role played by agent priorities in environment
optimization. We imposed constraints on the environment
optimization corresponding to real-world restrictions, and
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FIGURE 7. Examples of online prioritized environment optimization. Red circles are initial positions and yellow squares are destinations. Grey and brown
rectangles are obstacles before and after environment optimization, and are numbered for exposition. Color lines from red to yellow are agent
trajectories and the color bar represents the time scale. Agent priorities {ρi}4

i=1 reduce from A1 to A4, i.e., ρ1 ≥ · · · ≥ ρ4. (a) Completeness with deviation
distance constraint of Cd = 14. PCTSpeeds of agents are 0.98, 0.97, 0.94, 0.91 and distance ratios are 0.99, 0.99, 0.98, 0.97. (b) Completeness with
deviation distance constraint of Cd = 10. PCTSpeeds of agents are 0.97, 0.95, 0.88, 0.84 and distance ratios are 0.98, 0.98, 0.96, 0.94. (c) Completeness
with deviation distance constraint of Cd = 4. PCTSpeeds of agents are 0.86, 0.82, 0.76, 0.63 and distance ratios are 0.93, 0.92, 0.85, 0.82. Agent
performance increases with the priority.

FIGURE 8. (a) Performance of online prioritized environment optimization with different constraints. (b) Deviation distance constraint of obstacles
throughout the navigation procedure. (c) Speed constraint of obstacles throughout the navigation procedure.

formulated the latter as a constrained stochastic optimization
problem. We leveraged model-free reinforcement learning to-
gether with a primal-dual mechanism to solve the problem.
The former overcomes the challenge of explicitly model-
ing the relation between agents, environment and navigation
performance, while the latter handles the constraints. By in-
tegrating different information processing architectures (e.g.,
CNNs and GNNs) for policy parameterization, the proposed
approach can adapt to different implementation requirements.
Numerical results corroborate theoretical findings, and show
adaptability to various objectives and constraints.

Future work will consider the following aspects. First, we
can consider agents and obstacles as a heterogeneous system
and re-formulate the proposed problem from this perspec-
tive. The latter allows us to develop methods that explore
the role of heterogeneity in environment optimization. Sec-
ond, we only consider 2-dimensional environments. Future
works will focus on higher-dimensional environments, e.g.,
multi-drone navigation in 3-dimensional environments or ma-
nipulator motion planning in high-dimensional configuration
spaces. Third, we plan to evaluate our method in real-world
experiments.

APPENDIX A
PROOF OF THEOREM 1
We prove the theorem as follows. First, we optimize � such
that the environment is “well-formed”, i.e., any initial position
in S and destination in D can be connected by a collision-free
path. Then, we show the optimized environment guarantees
the success of all navigation tasks.

Obstacle region optimization: We first optimize� based on
S and D to make the environment “well-formed”. To do so,
we handle S , D and the other space E \ (S

⋃
D) separately.

i) From Assumption 1, the initial positions {si}n
i=1 in S

are distributed such that d (si, s j ) ≥ 2r̂ and d (si, ∂S ) ≥
2r̂. Thus, for any si, there exists a boundary point ∂si ∈
∂S and a path p∂s

si
connecting si and ∂si that is collision-

free with respect to the other initial positions.
ii) Similar result applies to the destinations {di}n

i=1 in D,
i.e., for any di, there exists a boundary point ∂di ∈ ∂D
and a path pdi

∂di
connecting ∂di and di that is collision-

free with respect to the other destinations.
iii) Consider ∂si and ∂di for agent Ai. The shortest path

p∂di
∂si

that connects them is the straight path, the area of
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which is bounded as∣∣∣p∂di
∂si

∣∣∣ ≤ 2dmaxr̂ (30)

because dmax is the maximal distance between S and
D. From |E \ (� ∪ S ∪ D)| ≥ 2ndmaxr̂ in (4), the area
of the obstacle-free space in E \ (S

⋃
D) is larger than

2ndmaxr̂. Thus, we can always optimize � to �∗ such
that the path p∂di

∂si
is obstacle-free. If p∂di

∂si
dose not over-

lap with S and D, we can connect ∂si and ∂di with p∂di
∂si

directly. If p∂di
∂si

passes through S for K times, let s(k)
i,e

and s(k)
i,l be the entering and leaving positions of p∂di

∂si
on

S at kth pass for k = 1, . . .,K with s(0)
i,l = ∂si the initial

leaving position. First, we can connect s(k−1)
i,l and s(k)

i,e

by p∂di
∂si

because p∂di
∂si

is obstacle-free. Then, there exists

a collision-free path p(k)
i inside S that connects s(k)

i,e and

s(k)
i,l as described in (i). Same result applies to that p∂di

∂si
passes through D. Therefore, we can connect ∂si and
∂di with p∂di

∂si
and {p(k)

i }K
k=1.

By concatenating p∂si
si , p∂di

∂si
, {p(k)

i }K
k=1 and pdi

∂di
, we can

establish the path pdi
si connecting si to di that is collision-free

w.r.t. the other initial positions, destinations and the optimized
obstacle region �∗ for i = 1, . . ., n, i.e., the optimized envi-
ronment is “well-formed”.

Completeness: From Assumption 2 and the fact that the
optimized environment is “well-formed”, Theorem 4 in [27]
shows that all navigation tasks will be carried out successfully
without collision. Therefore, there exists an offline environ-
ment optimization scheme that guarantees the success of all
navigation tasks completing the proof.

APPENDIX B
PROOF OF THEOREM 2
We prove the theorem as follows. First, we separate the nav-
igation procedure into H time slices. Then, we optimize the
obstacle region based on the agent positions at each time slice
and show the completeness of individual time-sliced multi-
agent navigation. Lastly, we show the completeness of the
entire multi-agent navigation by concatenating individual time
slices and complete the proof by limiting the number of time
slices to the infinity, i.e., H → ∞.

Navigation procedure separation: Let T be the max-
imal operation time of trajectories {pi}n

i=1 and {[(h −
1)T/H, hT/H]}H

h=1 the separated time slices. This yields
intermediate positions {pi(hT/H )}H

h=0 with pi(0) = si and
pi(T ) = di for i = 1, . . ., n. We can re-formulate the nav-
igation task into H sub-navigation tasks, where the hth
sub-navigation task of agent Ai is from pi((h − 1)T/H ) to
pi(hT/H ) and the operation time of the sub-navigation task
is δt = T/H . At each time slice, we first change the obstacle
region based on the corresponding sub-navigation task and
then navigate the agents until the next time slice.

Obstacle region optimization: We consider each sub-
navigation task separately and start from the 1st one. Assume
the obstacle region � satisfies

|E \ (� ∪ S ∪ D)| > 2nr̂‖v̂‖2δt . (31)

For the 1st sub-navigation task, the starting region is
S (1) = ⋃

i=1,...,n B(pi(0), ri ) = S and the destination region
is D(1) = ⋃

i=1,...,n B(pi(T/H ), ri ). We optimize � based
on S (1), D(1) and show the completeness of the 1st sub-
navigation task, which consists of two steps. First, we change
� to �̃ such that |�| = |�̃| and �̃ ⊂ E \ (S (1) ∪ D(1)). This
can be completed as follows. From the condition � ⊂ E \
(S ∪ D) and S (1) = S , there is no overlap between � and
S (1). For any overlap region �

⋂
D(1), we can change it to

the obstacle-free region in D because � ⊂ E \ (S ∪ D) and
|D(1)| = |D|, and keep the other region in � unchanged. The
resulting �̃ satisfies |�̃| = |�| and �̃ ⊂ E \ (S (1) ∪ D(1)).
The changed area from � to �̃ is bounded by |D(1)| ≤ nπ r̂2.
Second, we change �̃ to �(1) such that the environment is
“well-formed” w.r.t. the 1st sub-navigation task. The initial
position pi(0) and the destination pi(H/T ) can be connected
by a path p(1)

i that follows the trajectory pi. Since ‖v̂‖2 is the

maximal speed and δt is the operation time, the area of p(1)
i is

bounded by 2r̂‖v̂‖2δt . Since this holds for all i = 1, . . ., n,
we have

∑n
i=1 |p(1)

i | ≤ 2nr̂‖v̂‖2δt . From (31), |S (1)| = |S|,
|D(1)| = |D| and |�̃| = |�|, we have

|E \ (�̃ ∪ S (1) ∪ D(1)) | > 2nr̂‖v̂‖2δt . (32)

This implies that the obstacle-free area in E is larger than the
area of n paths {p(1)

i }n
i=1. Following the proof of Theorem 1,

we can optimize �̃ to �(1) to guarantee the success of the
1st sub-navigation task. The changed area from �̃ to �(1)

is bounded by 2nr̂‖v̂‖2δt − nπ r̂2 because the initial posi-
tions {pi(0)}n

i=1 and destinations {pi(T/H )}n
i=1 in {p(1)

i }n
i=1 are

collision-free from the first step, which dose not require any
further change of the obstacle region. The total changed area
from � to �(1) can be bounded as∣∣ (�⋃

�(1)
) \ (�⋂

�(1)
) ∣∣

2
≤ 2nr̂‖v̂‖2δt . (33)

From (32), |�(1)| = |�̃| and �(1) ⊂ E \ (S (1) ∪ D(1)),
the optimized �(1) satisfies |E \ (�(1) ∪ S (1) ∪ D(1))| ≥
2nr̂‖v̂‖2δt , which recovers the assumption in (31). Therefore,
we can repeat the above process and guarantee the success of
H sub-navigation tasks. The entire navigation task is guaran-
teed success by concatenating these sub-tasks.

Completeness: When H → ∞, we have δt → 0. Since the
environment optimization time is same as the agent operation
time at each sub-navigation task, the obstacle region and the
agents can be considered taking actions simultaneously when
δt → 0. The initial environment condition in (31) becomes

lim
δt→0

|E \ (� ∪ S ∪ D)| > 2nr̂‖v̂‖2δt → 0. (34)
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which is satisfied from the condition W \ (� ∪ S ∪ D) �= ∅.
The changed area of the obstacle region in (33) becomes

lim
δt→0

∣∣ (�(h)⋃�(h+1)
)\(�(h)⋂�(h+1)

) ∣∣
2δt

≤2nr̂‖v̂‖2. (35)

That is, if the capacity of the online environment optimization
is stronger than 2nr̂‖v̂‖2, i.e., �̇ ≥ 2nr̂‖v̂‖2, the navigation
task can be carried out successfully without collision. There-
fore, there exists an online environment optimization scheme
that guarantees the success of all navigation tasks.

APPENDIX C
PROOF OF THEOREM 3
We start by considering agent A1 with the highest priority.
From the condition (6), we have

|E\(�∪S∪D)|≥2dA1 r̂. (36)

Following the proof of Theorem 1, we can optimize the ob-
stacle region � to �(1) such that for the initial position s1 and
destination d1 of agent A1, there exists a collision-free path
p1 that connects s1 and d1. The area of p1 outside S and D is
bounded as

|p1| ≤ 2dA1 r̂, (37)

i.e., the traveled distance of agent A1 is bounded by dA1 .
We then consider the second agent A2. From Assumption 1,

the initial positions {si}n
i=1 in S are distributed such that

d (si, s j ) ≥ 2r̂, d (si, ∂S ) ≥ 2r̂ and s1, s2 are distributed in the
starting components SA1 , SA2 . If SA1 = SA2 , there exists a path
ps1

s2 in SA1 without changing the obstacle region. If SA1 �= SA2 ,
there exist boundary points ∂s1 ∈ ∂SA1 , ∂s2 ∈ ∂SA2 and paths
p∂s1

s1 , p∂s2
s2 that connect s1, ∂s1 and s2, ∂s2, respectively, and

are collision-free with respect to the other initial positions.
For the boundary points ∂s2 and ∂s1, the shortest path p∂s1

∂s2
that connects them is the straight path, the area of which is
bounded as ∣∣∣p∂s1

∂s2

∣∣∣ ≤ 2dmax(SA2 ,SA1 )r̂ (38)

where dmax(SA2 ,SA1 ) is the distance between SA1 , SA2 and
dA2,S = dmax(SA2 ,SA1 ) by definition. Similar result applies to
the destinations d1, d2 in DA1 , DA2 . That is, if DA1 = DA2 ,
there exists a path pd2

d1
in DA1 without changing the obsta-

cle region. If DA1 �= DA2 , there exist boundary points ∂d1 ∈
∂DA1 , ∂d2 ∈ ∂DA2 and paths pd1

∂d1
, pd2

∂d2
that connect ∂d1, d1

and ∂d2, d2, respectively, and are collision-free with respect
to the other destinations. The area of the shortest path p∂d2

∂d1
that connects the boundary points ∂d1 and ∂d2 is bounded as∣∣∣p∂d2

∂d1

∣∣∣ ≤ 2dmax(DA2 ,DA1 )r̂ (39)

where dmax(DA2 ,DA1 ) is the distance between DA1 , DA2 and
dA2,D = dmax(DA2 ,DA1 ) by definition. From the condition
(6), we have

|E\(�∪S∪D) |≥2dA1 r̂ + 2
(
dA2,S+dA2,D

)
r̂. (40)

Thus, we can optimize �(1) to �(2) such that the paths p∂s1
∂s2

and p∂d2
∂d1

are obstacle-free. Following the proof of Theorem 1,

we can establish the paths ps1
s2 and pd2

d1
that connect s2, s1 and

d1, d2, respectively, and are collision-free w.r.t. the other ini-
tial positions, destinations and the optimized obstacle region
�(2). By concatenating ps1

s2 , p1 and pd2
d1

, we can establish the
collision-free path p2 for agent A2. The area of p2 outside S
and D is bounded as

|p2| ≤ 2dA1 r̂ + 2
(
dA2,S+dA2,D

)
r̂, (41)

i.e., the traveled distance of agent A2 is bounded by dA1 +
dA2,S + dA2,D.

Lastly, we follow the above procedure to optimize the ob-
stacle region �(2) to �(n) for agents A3, . . . ,An, recursively,
and establish the paths {pi}n

i=1 that are collision-free w.r.t. the
other initial positions, destinations and the optimized obstacle
region. The area of pi outside S and D is bounded as4

|pi| ≤ 2dA1 r̂ +
i∑

j=2

2
(

dA j ,S + dA j ,D
)

r̂, (42)

i.e., the traveled distance of agent Ai is bounded by dA1 +∑i
j=2(dA j ,S + dA j ,D ) for i = 1, . . . , n. This shows the opti-

mized environment is “well-formed” for all agents {Ai}n
i=1 and

completes the proof by using Assumption 2 and Theorem 4
in [27], i.e., the navigation tasks of all agents can be carried
out successfully without collision and the traveled distance
of agent Ai is bounded by dA1 +∑i

j=2(dA j ,S + dA j ,D ) for
i = 1, . . . , n.

APPENDIX D
PROOF OF COROLLARY 1
Consider a sub-system of b agents {Ai}b

i=1 with highest pri-
orities. Following the proof of Theorem 3, we can optimize
the obstacle region� to�∗ such that for the initial position si

and destination di of agent Ai, there exists a collision-free path
pi that connects si and di for i = 1, . . . , b. Therefore, �∗ is
“well-formed” w.r.t. the considered sub-system and the navi-
gation tasks of b agents {Ai}b

i=1 can be carried out successfully
without collision.

For the rest of the agents A j for j = b + 1, . . . , n, assume
that the initial position s j of agent A j is within the same
starting component as si of agent Ai with i ∈ {1, . . . , b}, i.e.,
SA j = SAi . Denote by ∂si the boundary point where the path
pi intersects with the boundary of the starting component
SAi . Since the initial positions {si}n

i=1 in S are distributed
in a way such that d (si1, si2 ) ≥ 2r̂ and d (si, ∂S ) ≥ 2r̂ from
Assumption 1 and s j is in the same starting component as
si, there exists a path p∂si

s j in SAi that connects s j , ∂si and
is collision-free w.r.t. the other initial positions. Similar re-
sult applies to the destinations d j and di. That is, if d j is
within the same destination component as di, i.e., DA j = DAi ,

4Without loss of generality, we assume
∑b

a = 0 if b < a.
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there exists a path p∂di
d j

in DAi that connects d j , ∂di and is
collision-free w.r.t. the other destinations. Since the boundary
points ∂si and ∂di can be connected by the collision-free path
pi, we can establish the collision-free path p j that connects
s j and d j by concatenating p∂si

s j , pi and p∂di
d j

. Therefore, the

optimized obstacle region �∗ is “well-formed” w.r.t. agent
A j as well, the navigation task of which can be carried out
successfully without collision. The same result holds for all
agents A j ∈ {Ab+1, . . . ,An} satisfying the above conditions,
completing the proof.

APPENDIX E
PROOF OF THEOREM 4
We prove the theorem following Theorem 2. First, we re-
formulate the navigation task as H sub-navigation tasks for
each agent. Then, we optimize the obstacle region to guar-
antee the completeness of sub-navigation tasks successively.
Lastly, we show the completeness of the entire navigation
by concatenating these sub-navigation tasks and complete the
proof by limiting H → ∞.

Let T be the maximal operation time required by trajecto-
ries {pi(t )}n

i=1 with velocities {vi(t )}n
i=1 and {pi(hT/H )}H

h=0
be the intermediate positions with pi(0) = si and pi(T ) = di

for i = 1, . . ., n. The goal of the hth sub-navigation task for
agent Ai is from pi((h − 1)T/H ) to pi(hT/H ) and the opera-
tion time required by each sub-navigation task is δt = T/H .
In this context, we separate the procedure of online environ-
ment optimization as a number of time slices with duration
2δt . At each time slice, we change the obstacle region for
sub-navigation tasks with duration δt and navigate the agents
with duration δt in an alternative manner. From the condition
(9), the area of the obstacle region that can be changed at each
time slice is

2br̂‖v̂‖2δt ≤
∣∣ (�⋃�̃)\(�⋂

�̃
) ∣∣

2
<2(b+1)r̂‖v̂‖2δt (43)

where � is the original obstacle region and �̃ is the changed
obstacle region. From (43) and the proof of Theorem 2, at
each time slice, we can change the obstacle region to make
the environment “well-formed” w.r.t. the sub-navigation tasks
of only b agents instead of all n agents, i.e., it only guar-
antees the success of b sub-navigation tasks. For the agents
whose sub-navigation tasks are not selected for environment
optimization, we keep them static until the next time slice
when their sub-navigation tasks are selected. By tuning the
selections of b sub-navigation tasks across time slices, we
prove there exists a selection scheme such that sub-navigation
tasks of all agents can be carried out successfully without
collision and the navigation time of the agents can be bounded
inverse proportionally to their priorities.

Specifically, let T1 = H1(2δt ) with H1 ≥ H be the maxi-
mal navigation time required by agent A1 with the highest
priority ρ1, i.e., agent A1 requires completing its H sub-
navigation tasks within H1 time slices, and Ti = Hi(2δt ) =
�H1ρ1/ρi�(2δt ) be the maximal navigation time required by

agent Ai with the priority ρi for i = 2, . . . , n. For agent A1,
there exists a scheme that selects the sub-navigation task of A1

for environment optimization H times within H1 time slices
because H1 ≥ H and thus, its H sub-navigation tasks can be
carried out successfully without collision. By concatenating
these sub-tasks, the navigation task of A1 can be carried out
successfully without collision within the required time.

For agents A1 and A2, if it holds that

min{1, b}(H2 − H1) + min{2, b}H1 ≥ 2H (44)

there exists a scheme that selects the sub-navigation tasks of
A1 and A2 for environment optimization H times during H2

time slices, respectively. The minimal operations min{1, b}
and min{2, b} in (44) represent the facts that single agent can
be selected at most once at each time slice, and each time slice
can select at most b agents. Thus, the navigation tasks of A1

and A2 can be carried out successfully without collision within
the required time. Analogously for agents {A1, . . . ,Ai}, if it
holds that

i∑
j=1

min{ j, b} (Hi+1− j − Hi− j
) ≥ iH (45)

with H0 = 0 by default, there exists a scheme that selects
the sub-navigation tasks of {A1, . . . ,Ai} for environment op-
timization H times during Hi time slices, and their navigation
tasks can be carried out successfully without collision within
the required time. Therefore, we conclude that if

n∑
j=1

min{ j, b} (Hn+1− j − Hn− j
) ≥ nH (46)

there exists a scheme that selects the sub-navigation tasks
of all n agents for environment optimization H times during
Hn time slices, and all navigation tasks can be carried out
successfully without collision within the required time. Since
Hi = �H1ρ1/ρ2�, i.e., Hi can be represented by H1 and the
associated priorities for i = 1, . . . , n, we can rewrite (46) as

n∑
j=1

min{ j,b}
(⌈

H1ρ1

ρn+1− j

⌉
−
⌈

H1ρ1

ρn− j

⌉)
≥nH. (47)

Since {ρi}n
i=1, H are given and the left-hand side of (47)

increases with H1, there exists a large enough H1 such that
(47) holds. Therefore, the navigation tasks of all agents can
be carried out successfully and the navigation time of agent
Ai is bounded by Ti = Hi(2δt ) = �H1ρ1/ρi�(2δt ).

When H is sufficiently large, i.e., δt is sufficiently small,
the agents and the obstacles can be considered moving simul-
taneously. Since H1 ≥ H is sufficiently large as well, we have
�H1ρ1/ρi�(2δt ) ≈ 2H1ρ1δt/ρi. With this observation and the
conclusion obtained from (47), we complete the proof, i.e.,
the navigation tasks of all agents can be carried out suc-
cessfully without collision and the navigation time of agent
Ai is bounded by Ti = CT /ρi for i = 1, . . . , n where CT =
2H1ρ1δt is the time constant.
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APPENDIX F
PROOF OF COROLLARY 2
From the proof of Theorem 4, for any integer 1 ≤ η ≤ n, if it
holds that

η∑
j=1

min{ j, b}
(⌈

H1ρ1

ρη+1− j

⌉
−
⌈

H1ρ1

ρη− j

⌉)
≥ηH (48)

there exists a scheme with a sufficiently large H1 that selects
the sub-navigation tasks of η agents for environment opti-
mization H times during Hη = �H1ρ1/ρη+1− j� time slices
and the navigation tasks of agents {Ai}ηi=1 can be carried
out successfully without collision within time {Ti}ηi=1, respec-
tively. Since the agents are required to reach their destinations
within time Tmax, i.e., the maximal navigation time is Tmax,
the maximal (allowed) number of time slices is Hmax =
�Tmax/2δt�. This is equivalent to requiring

Hη =
⌈

H1ρ1

ρη

⌉
≤
⌊

Tmax

2δt

⌋
(49)

because Hη is the maximal number of time slices required by
the first η agents. Thus, we have

H1 ≤
⌊Tmax

2δt

⌋
ρη

ρ1
. (50)

Since the left-hand side of (48) increases with H1, substituting
(50) into (48) yields

η∑
j=1

min{ j, b}
(⌈

H1ρ1

ρη+1− j

⌉
−
⌈

H1ρ1

ρη− j

⌉)

≤
η∑

j=1

min{ j, b}
(⌈⌊Tmax

2δt

⌋
ρη

ρη+1− j

⌉
−
⌈⌊Tmax

2δt

⌋
ρη

ρη− j

⌉)
. (51)

By substituting (51) into (48), we have

η∑
j=1

min{ j, b}
⎛⎝⎡⎢⎢⎢

⌊
Tmax
2δt

⌋
ρη

ρη+1− j

⎤⎥⎥⎥−
⎡⎢⎢⎢
⌊

Tmax
2δt

⌋
ρη

ρη− j

⎤⎥⎥⎥
⎞⎠≥ηH. (52)

By using the fact T = Hδt where T is the maximal operation
time of trajectories {pi(t )}n

i=1, we get

η∑
j=1

min{ j, b}
⎛⎝⎡⎢⎢⎢

⌊
HTmax

2 T

⌋
ρη

ρη+1− j

⎤⎥⎥⎥−
⎡⎢⎢⎢
⌊

HTmax
2 T

⌋
ρη

ρη− j

⎤⎥⎥⎥
⎞⎠≥ηH.

(53)

When H is sufficiently large, we have ��HTmax/(2 T )�
ρη/ρη+1− j� ≈ HTmaxρη/(2 Tρη+1− j ) and ��HTmax/(2 T )�
ρη/ρη− j� ≈ HTmaxρη/(2 Tρη− j ), and (53) is equivalent as

η∑
j=1

min{ j, b}
(

Tmaxρη

2 Tρη+1− j
− Tmaxρη

2 Tρη− j

)
≥η. (54)

By setting np as the maximal η that satisfies (54) and follow-
ing the proof of Theorem 4, the navigation tasks of {Ai}np

i=1
can be carried out successfully without collision within the
required time Tmax, completing the proof.

APPENDIX G
PROOF OF THEOREM 5
For a feasible solution of problem (19) with the constraint
constant Cq = (1 − δ + ε)/(1 − γ ) [cf. (18)], it satisfies that

E

[∞∑
t=0

γ t1
[
hq
(
X(t )

o ,U
(t )
o

)≤0
]]= ∞∑

t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

)≤0
]

≥ 1 − δ + ε

1 − γ
= 1

1 − γ
− δ − ε

1 − γ
, for q = 1, . . . ,Q (55)

where the linearity of the expectation and (26) are used. For
the term

∑∞
t=0 γ

t P [hq(X(t )
o ,U(t )

o ) ≤ 0], we have

∞∑
t=0

γ t P
[
hq
(
X(t )

o ,U
(t )
o

)≤0
]= ∞∑

t=0

γ t−
∞∑

t=0

γ t P
[
hq
(
X(t )

o ,U
(t )
o

)
>0

]
= 1

1 − γ
−

∞∑
t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

)
> 0

]
. (56)

By comparing (55) and (56), we get
∞∑

t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

)
> 0

] ≤ δ − ε

1 − γ
. (57)

For the maximal time horizon T , we have

T∑
t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

)
> 0

]
≤

∞∑
t=0

γ t P
[
hq
(
X(t )

o ,U(t )
o

)
> 0

] ≤ δ − ε

1 − γ
(58)

because each term in the summation is non-negative. Then, by
setting ε = δ(1 − γ T (1 − γ )) < δ and substituting the latter
into (58), we get

∑T
t=0 γ

t P [hq(X(t )
o ,U(t )

o ) > 0] ≤ γ T δ. Since
γ T ≤ γ t for all t ≤ T , we have

∑T
t=0 γ

T P [hq(X(t )
o ,U(t )

o ) >
0] ≤ γ T δ and thus

T∑
t=0

P
[
hq
(
X(t )

o ,U(t )
o

)
> 0

] ≤ δ. (59)

By leveraging the Boole-Frechet-Bonferroni inequality, we
complete the proof that for each step 0≤ t ≤T , it holds that

P
[∩0≤τ≤t

{
hq
(
X(τ )

o ,U(τ )
o

) ≤ 0
}] ≥ 1 − δ. (60)
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