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ABSTRACT This article presents a new method for model-free verification of a general class of control
systems with unknown nonlinear dynamics, where the state space has both a continuum-based and a discrete
component. Specifically, we focus on finding what choices of initial states or parameters maximize a given
probabilistic objective function over all choices of initial states or parameters from such hybrid state space,
without having exact knowledge of the system dynamics. We introduce the notion of set initialized Markov
chains to represent such systems. Our method utilizes generalized techniques from multi-armed bandit theory
on the continuum, in an attempt to make an efficient use of the available sampling budget. We introduce a new
algorithm called the Hybrid Hierarchical Optimistic Optimization (HyHOO) algorithm, which is designed to
address the problem outlined in this paper. The algorithm combines elements of the existing Hierarchical Op-
timistic Optimization (HOO) bandit algorithm with carefully chosen parameters to create a fresh perspective
on the problem. By viewing the problem as a multi-armed bandit problem, we are able to provide theoretical
regret bounds on sample efficiency of our tool, HyHooVer. This is achieved by making assumptions about
the smoothness of the underlying system. The results of experiments in formal verification and parameter
synthesis of variety of scenarios, indicate that the proposed method is effective and efficient when applied to
realistic-sized problems and it performs well compared to other methods, specifically PlasmaLab, BoTorch,
and the baseline HOO algorithm. Specifically, it demonstrates better efficiency when employed on models
with large state space and when the objective function has sharp slopes in comparison with other tools.

INDEX TERMS Autonomous systems, black-box optimization, monte-carlo tree search, multi-armed ban-
dits, safety verification.

I. INTRODUCTION
Our interest is in verifying safety and synthesizing parameters
of autonomous and cyber-physical systems, where the system
dynamics are not explicitly known. In other terms, our goal
is to identify the choices of initial states or parameters that
maximize a given objective function, while not having a de-
tailed knowledge of the underlying system dynamics, and by
only using noisy observations of the system. This problem

is relevant in applications such as predictive monitoring or
runtime verification of safety-critical systems like self-driving
vehicles, drones and medical devices that incorporate complex
black-box algorithms, where guaranteeing the safety of the
system is essential.

Addressing this problem remains challenging because the
system dynamics are not fully known and querying the system
can be costly. Also typically the state space could be big
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and hybrid (with continuum-based and discrete components)
which make the problem even harder. This problem can be
categorized as a black-box optimization problem that involves
expensive system queries. To address this problem, searching
for black-box optimization methods that are sample efficient
is logical. In the context of finite state-space systems, the the-
ory of multi-armed bandits has demonstrated its efficiency in
learning about unknown systems through adaptive sampling.
Therefore, our approach not only utilizes the multi-armed
bandits approach but also extends it to a new setting with a
hybrid state space, marking the first time such an extension
has been made.

The field of multi-armed bandits [1], [2], [3] has seen
significant growth and development in both technique and
practical use in the recent years [4], [5]. Especially relevant
to our research is X -armed bandit in [5] with its applica-
tion in black-box optimization, where the goal is to find the
maximum of an unknown function f with only noisy queries
of the function (i.e. a query of x returns f (x)+ noise). One
well-known algorithm in this area is the Upper Confidence
Bound (UCB) [6] which utilizes the Principle of Optimism
for adaptive search. Since the exact value of f (x) is unknown,
this principle uses an estimated upper bound on the function
– this is constructed from samples, and thus holds with high
probability. The x chosen at each time is the one that max-
imizes this estimated upper bound. Thus, initially different
parts of state space are explored, and as more information is
gathered, it becomes less optimistic. This principle has been
used in the context of black-box optimization by reformulat-
ing problems as tree search [4], [5], [7], [8]. These algorithms
use a tree structure to search through the unknown function’s
domain, balancing the exploration of less explored areas with
the exploitation of high-value regions that have already been
identified, to obtain an approximate solution within a given
sampling budget.

These algorithms are assessed based on a measure called
cumulative regret, which is the expected accumulated differ-
ence between the highest value found by the algorithm and
the true maximum value. To ensure theoretical guarantees
for the regret, these methods typically require that the ob-
jective function satisfy some smoothness properties. While
the approach in [5] requires smoothness with respect to a
semi-metric, the algorithms in [9], [10] relax the requirement
of an exact semi-metric that captures the smoothness of f ,
and instead use two smoothness parameters to define their
notion of smoothness. When estimating these parameters is
not practical, [10] provides an algorithm to simultaneously
test different parameters, and this approach has been extended
to multi-fidelity settings in [9].

Given this, we can utilize the X -armed bandits method to
tackle the problem at hand, where the concept of regret can be
related to the error in verification and synthesis in our specific
context (for more details refer to Section III-D).

In this article, we introduce a new algorithm for statisti-
cal verification and parameter synthesis of a new generalized
class of discrete-time Markov chains (MCs) with hybrid state

space, consisting of a continuum-based and a discrete part,
which can be applied in situations where information about
the transition probabilities are not known and sampling budget
is limited. We carefully introduce the notion of set initialized
Markov chains (SIMC) that captures the properties of discrete-
time MCs with hybrid state space. Our algorithm is called
Hybrid Hierarchical Optimistic Optimization (HyHOO), that
is built upon a tree-structured method called hierarchical
optimistic optimization (HOO) [5] and is designed to maxi-
mize unknown functions. HyHOO extends our previous work
in [11] to systems with hybrid state space and has the follow-
ing features:
� It expands HOO to cover hybrid systems whose states

live in state space that has both continuum-based and
discrete components. We use the terminology state to
refer to continuous components, and the terminology
mode to refer to discrete components. This allows the
algorithm to be applied in a wider range of situations
where the set of initial states or parameters includes both
hyper-rectangles and finite sets.

� It employs the principle of optimism to explore the hy-
brid state spaces, by strategically allocating the available
budget to the regions of the state space that are likely to
be optimal.

� It is designed with batched simulations feature which
improves its memory usage and running time.

To provide theoretical guarantees for the regret achieved
by our algorithm HyHOO, we make assumptions about the
smoothness of the function f . These assumptions relate to
the smoothness of f in the vicinity of f (x∗) over the regions
of the state space that correspond to each mode. This is less
restrictive than the smoothness assumptions required for HOO
and our previous work [11], which require the smoothness
of f in the vicinity of f (x∗) over the entire state space. The
theoretical bound on the regret of HyHOO is a function of
the smoothness parameters, the sampling budget, the batch
size parameter, and a property of the function called the
near-optimality dimension which captures the steepness of
the slope of the function around the optimum. This bound
is different from the existing performance bounds found in
the literature on statistical model checking. For example,
the bounds relevant for tools like PlasmaLab [12] often use
techniques like Monte Carlo sampling, Chernoff bounds, or
sequential hypothesis testing.

We have built an open-source tool HyHooVer that uti-
lizes the HyHOO algorithm, and have established benchmarks
using Python to showcase its abilities and gauge its per-
formance in terms of sample efficiency. These benchmarks
involve traffic scenarios in a car simulation environment called
“highway-env” [13], which offers a minimalist yet realistic
framework for simulating cars1. Our tool’s source code and

1Highway-env is a minimal car simulation environment for autonomous
driving and tactical decision-making tasks which is available at https://github.
com/eleurent/highway-env.
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usage instructions, along with the examples, are also avail-
able2.

Through our experiments on the benchmarks, we have ob-
served the following:
� Our tool is capable of performing verification and syn-

thesis in scenarios with hybrid state spaces and it
demonstrated better sample efficiency than other meth-
ods in situations with higher dimensions and multiple
modes.

� The tool performs better in scenarios where the slope
of the function is steeper around the maximum. This
means that the tool is particularly well-suited to situa-
tions where there is a rare event involved.

� The batch size parameter can be adjusted to optimize the
tool’s performance in terms of running time and memory
usage, without compromising the results of the verifica-
tion and synthesis.

A. COMPARISON WITH RELATED APPROACHES
There is a substantial body of literature on model-based
approaches for the verification and parameter synthesis of
stochastic systems [14], [15], [16], [17], [18] (and the ref-
erences therein), which rely on detailed knowledge of the
probability transition kernel, which may not always be avail-
able. Statistical model checking (SMC) also addresses similar
verification problems. SMC methods collect samples through
system execution and use statistical tests to determine if the
constraints have been met or violated [19], [20], [21], [22].
Notable methods in this category include MODEST for prob-
abilistic automata [23], PlasmaLab [12], the learning-based
algorithm of [24], [25] in PRISM [26] and UPPAAL, and
approaches for Markov Decision Processes with restricted
classes of schedulers implemented in [27], [28], [29].

Comparing HyHooVer to other discrete-state SMC tools is
challenging because the guarantees are different and it is hard
to factor out platform-specific constants. We provide a de-
tailed comparison with PlasmaLab in Section IV-D, which is a
tool for model checking of unknown systems. HyHooVer gen-
erally have better estimation results with fewer samples than
PlasmaLab, particularly for higher dimensional models and
models with sharp slopes around the maxima. This suggests
that HyHOO may be more effective in finding hard-to-detect
bugs with fewer samples. The approach of [30] uses the origi-
nal HOO algorithm of [5] but we could not find this tool online
for running comparative experiments. Our approach differs
from [30] in two important ways: (1) we use a search algo-
rithm spawning different smoothness parameters and return
the result of the best one; (2) we exploit batched simulations;
and (3) we have extended HOO to hybrid state-space settings.

One of the prominent techniques for optimizing black-
box functions in stochastic systems is through Bayesian
optimization-based approaches such as BoTorch [31].
BoTorch is developed using PyTorch and is appropriate for

2The source code is available at https://github.com/NeginMusavi/
HyHooVer.git.

FIGURE 1. Roundabout scenario which can be instantiated with different
number of vehicles and initialization.

systems with costly queries. We built upon our previous
work [11] by providing a comparison of our tool with BoTorch
in Section IV-D. Our results indicate that, overall, HyHooVer
outperforms BoTorch in terms of running time, especially
when a large number of queries are required to verify a model.
This difference is particularly noticeable in cases where there
are difficult-to-detect bugs or high-dimensional scenarios.

B. MOTIVATING EXAMPLE, TRAFFIC ROUNDABOUT
Consider a roundabout scenario of multiple cars which is sim-
ulated in highway-env and is depicted in Fig. 1. Each vehicle
starts from an initial position which is randomly distributed
from a distribution D and moves toward a target destination
while meeting a target speed. Suppose the blue vehicles carry
their motion according to Intelligent Driver Model (IDM)
and Minimizing Overall Braking Induced by Lane Changes
(MOBIL) decision policies (built-in policies in highway-env)
while avoiding other cars. The green car, on the other hand is
able to track its lane while meeting a target speed, however
cannot detect rear-end hazards. Define collision as when dis-
tance between the green car and any of the blue cars become
less than a threshold. We would like to find the most unsafe
situation over a set of target destinations and intervals of initial
speeds and target speeds of the cars. In this scenario the state
space X can be constructed such that it consists of a discrete
and a continuum-based component. Let us explain this with
an example. In this scenario, let the letters N, E, W, and S
represent the north, east, west, and south exits, respectively.
Then let, for instance, the tuple (N, E) represent the north
exit and east exit as the target destination for the green car
and one of the blue cars. Additionally, let vl

0, vu
0 denote
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lower and upper bounds for the initial speed of the green car,
and let vl

t , vu
t denote lower and upper bounds for the target

speed of the green car. Then an example of a set that con-
sists of a discrete and a continuum-based component would
be {(E, E), (N, E), (W, E), (S, N)} × [[vl

0, v
u
0], [vl

t , v
u
t ]]. De-

tailed descriptions and Python simulators for our models are
available from the HyHooVer source page3.

II. PROBLEM STATEMENT
Background and Notation: Let Z be a measurable space
in R

m and let X := [L]× Z , where [L] = k1, k2, . . . , kL for
some integer L ≥ 1. Let the pair (X ,FX ) be a measurable
space, where FX is a σ -algebra over X and the elements of
FX are referred to as measurable sets. Let P : X × FX →
[0, 1] be a Markovian transition kernel on a measurable
space (X ,FX ), such that for all x ∈ X , P(x, ·) is a prob-
ability measure on FX ; and for all A ∈ FX , P(·,A) is a
FX -measurable function. Also let Pβ be a Markovian tran-
sition kernel that depends on parameter β ∈ R

n. For a σ > 0,
a real-valued random variable X is σ 2-sub-Gaussian, if for
all s ∈ R, E[exp(s(X − EX ))] ≤ exp(σ 2s2/2) holds, where E
denotes expectation. For a matrix z ∈ R

n×m, ‖z‖F denotes its
Frobenius norm.

Definition 1: A set initialized Markov chain (SIMC) M is
defined by a tuple ((X ,FX ),Pβ,B,�), with:
� (X ,FX ), a measurable space over the state space X ;
�
Pβ : X × FX → [0, 1], a Markovian transition kernel
depending on parameter β ∈ B;

� B ⊆ X , a set of parameters; and
� � ⊆ X , a set of possible initial states.
In the examples in Section II-B, the state-dependent prob-

abilistic choices are modeled by the Markov transition kernel
Pβ . We reiterate that our algorithm will not rely on the knowl-
edge of this kernel. Let α, a sequence of states α = x0x1 · · · xk ,
be an execution of M of length k for any x0 ∈ � and any
β ∈ B, where xis ∈ X . Given x0, β and a sequence of measur-
able sets of states A1, . . . , Ak ∈ FX , the measure of the set of
executions {α | α0 = x0 and αi ∈ Ai,∀ i = 1, . . . , k} is given
by:

Pr({α | α0 = x0 and αi ∈ Ai,∀ i = 1, . . . , k})

=
∫

A1×···×Ak

Pβ (x0, dx1) · · ·Pβ (xk−1, dxk ),

which is a standard result from the Ionescu Tulceă theo-
rem [32], [33]. We address two classes of problems:

A. VERIFICATION
Given an SIMCM and a measurable unsafe set U ∈ FX , we
are interested in evaluating the worst-case probability of M
hitting U over all possible nondeterministic choices of an
initial state x0 ∈ �. Once an initial state x0 ∈ � is fixed, the
probability of a set of paths is determined by the Markovian
transition kernel in the model M, as described above. Circling

3https://github.com/NeginMusavi/HyHooVer.git.

back to our motivating example in Section II-B, the set �

would correspond to a set of target destinations and intervals
of initial speeds and target speeds of the cars, and x0 would be
an element in this set.

We say that an execution α of length k hits the unsafe set
U if there exists an integer i ∈ {0, . . . , k}, such that αi ∈ U .
The complement of U , the safe subset of X , is denoted by
S . The safe set is also a member of the σ -algebra FX since
σ -algebras are closed under complementation. From a given
initial state x0 ∈ � and a given parameter β ∈ B, the probabil-
ity of M hitting U within k steps is denoted by pk,U ,β (x0). By
definition, pk,U ,β (x0) = 1, if x0 ∈ U . For x0 /∈ U and k ≥ 1,

pk,U ,β (x0) = 1−
∫

S×···×S
Pβ (x0, dx1) · · ·Pβ (xk−1, dxk ).

(1)
We are interested in finding the worst-case probability of
hitting unsafe states over all possible initial states of the model
M. This can be regarded as solving, for some k and some
β ∈ B, the following optimization problem:

sup
x0∈�

pk,U ,β (x0). (2)

B. PARAMETER SYNTHESIS
Given an execution α of length k and a β ∈ B, let r(α, β )
be a real-valued objective function. Then, we are interested
in evaluating the maximum of expected objective function
over all possible nondeterministic choices of the parameter
β ∈ B. This can be regarded as solving, the following related
optimization problem:

sup
β∈B

E[r(α, β )|β], (3)

where the expectation is over the randomness of the transition
and the initial state (drawn from a given distribution).

III. VERIFICATION AND PARAMETER SYNTHESIS WITH
HIERARCHICAL OPTIMISTIC OPTIMIZATION
We will solve the optimization problems in (2) and (3) by
developing the HyHOO algorithm with mini batches. This
can be regarded as a variant of the HOO algorithm [5]. The
setup is as follows: suppose we have a sampling budget of
N and want to maximize the function f : X → R based on
receiving noisy observations of f , i.e., f + noise. It is assumed
that f has a unique global maximum that achieves the value
f ∗ = supx∈X f (x), where X = [L]× Z is as introduced in
Section II. Our approach gets to choose a sequence of sam-
ple points (arms) x1, x2, . . . xN ∈ X , for which it receives the
corresponding sequence of noisy observations (or rewards)
y1, y2, . . . , yN . When the sampling budget N is exhausted, the
algorithm has to decide the optimal point x̄N ∈ X with the aim
of minimizing regret, which is defined as:

SN = f ∗ − f (x̄N ). (4)

Our approach has two key properties:
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� It is adaptive in the sense that the ( j + 1)st sample x j+1

should depend on the previous samples and their corre-
sponding noisy observations; and

� It does not rely on detailed knowledge of f but only on
the sampled noisy observations.

Algorithms with these properties are called black-box or
zeroth-order algorithms. In order to derive rigorous bounds
on the regret, however, we will need to make some assump-
tions on the smoothness of f (see Assumption 2) and on the
relationship between f (x j ) and the corresponding observation
y j . Assumption 1 formalizes the latter by stating that y j is
distributed according to some (possibly unknown) distribution
with mean f (x j ) and a strong tail-decay property.

Assumption 1: There exists a constant σ > 0 such that for
each sampled x j , the corresponding noisy observation y j is
distributed according to a σ 2-sub-Gaussian distribution Mx j

satisfying
∫

udMx j (u) = f (x j ).
Hence any random variable that is bounded is a sub-

Gaussian random variable and thus there exists a σ > 0
satisfies the conditions of this assumption. Next, we present
the HyHOO algorithm. In Sections III-B and III-C we present
its analysis leading to the regret bound and discuss the choice
of its parameters as well as their implications. In Section III-D
we discuss how HyHOO can be used for solving the optimiza-
tion problems in (2) and (3).

A. HYBRID HIERARCHICAL TREE OPTIMIZATION
HyHOO (Algorithm 1) is a batched-sampling variant of
HOO [5], which also takes into account a hybrid state space.
HyHOO selects the next sample x j+1 by building a tree in
which each height (or level) partitions the state space X
into a number of regions. The algorithm samples states to
estimate upper bounds on f over a region, and based on
this estimate, decides to expand certain branches (i.e., re-
partition certain regions) to reduce the region sizes based on
the smoothness of f . HyHOO allows us to execute batch
simulations of size b to reduce the variance in the estimate of
f (xi ) obtained from the noisy observations yis for any state
xi and, more importantly, maintain a lighter data structure.
In Section III-C, we discuss the implications of the choice
of batch size parameter b. The tree construction is based
on the noisy tree-search algorithms (HOO and variants) [5].
The root of the tree has L children, where the l-th child is
the root of the l-th binary4 sub-tree constructed over kl × Z .
Each node in the tree except for its root is labeled by a triple
of integers (l, h, i), where l ∈ [L] is the sub-tree index that
it belongs to, h ≥ 1 is the height, and i ∈ {1, . . . , 2h−1}, is
its position within level h. Each node (l, h, i) can have two
children (l, h+ 1, 2i − 1) and (l, h+ 1, 2i). Node (l, h, i) is
associated with the region Pl,h,i ⊆ kl × Z , where Pl,h,i =

4As we go down the tree the partition is refined via bisection along the
dimension of the coarsest subdivision (ties are broken arbitrarily). We note
that a binary tree is discussed only for ease of exposition; the construction
allows a general tree structure generated by other partitionings (e.g. a p-ary
tree).

Algorithm 1: HyHOO with parameters: sampling bud-
get N , noise parameter σ , smoothness parameters (ν, ρ),
batch size parameter b, number of sub-trees L.

1: tree = {(−, 0, 1)}, B1,1,1 = · · · = BL,1,1 = +∞,
n = 0.

2: while n ≤ N do
3: (path, (lnew, hnew, inew))← Traverse(tree)
4: choose x ∈ Plnew,hnew,inew

5: query x and get b observations y1, y2, . . ., yb

6: tree.Insert ((lnew, hnew, inew))
7: for all (l, h, i) ∈ path do
8: tl,h,i ← tl,h,i + 1

9: f̂l,h,i ← (1− 1
tl,h,i

) f̂l,h,i +
∑b

j=1 y j

b×tl,h,i

10: n← n+ b,
Blnew,hnew+1,2inew−1 ←+∞,
Blnew,hnew+1,2inew ←+∞

11: for all (l, h, i) ∈ tree do leaf up:

12: Ul,h,i ← f̂l,h,i +
√

2σ 2 ln(n/b)
b×tl,h,i

+ νρh

13: Bl,h,i ← min

{
Ul,h,i,

max{Bl,h+1,2i−1, Bl,h+1,2i}
}

14: return a point among x1, x2, . . ., xN chosen uniformly
at random.

Pl,h+1,2i−1 ∪ Pl,h+1,2i, and for each h these disjoint regions

satisfy ∪2h−1

i=1 Pl,h,i = kl × Z . Thus, larger values of h repre-
sent finer partitions of kl × Z . It is noted that the root of tree
is associated with the whole state space {k1, . . . , kL} × Z . For
each node (l, h, i) in the tree, HyHOO computes the following
quantities:
� tl,h,i is the number of times the node is chosen or consid-

ered for re-partitioning.
� f̂l,h,i is the empirical mean of observations over points

sampled in Pl,h,i.
� Ul,h,i is an initial estimate of the upper-bound of f over
Pl,h,i based on the smoothness parameters.

� Bl,h,i is a tighter and optimistic upper bound for the
same.

The tree starts with a single root (−, 0, 1), with B-values
of its L children B1,1,1, B2,1,1, . . . , BL,1,1 initialized to +∞.
At each iteration a path from the root to a leaf is found by
traversing the child with the higher B-value (with ties bro-
ken arbitrarily), then a new node (lnew, hnew, inew) is added
and all of the above quantities are updated. The partitioning
continues until the sampling budget N is exhausted. After
that the algorithm returns a point among x1, x2, . . ., xN chosen
uniformly at random. The details are provided in Algorithm 1.
Hence, Algorithm 1 can be additionally adjusted to return the
best-scoring input instead of a randomly chosen one, in order
to enhance its performance in practice.
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B. ANALYSIS OF REGRET BOUND
The notation and analysis of the regret bound for HyHOO
closely follows that in [5] (and followups in [9], [10]).

Let �l,h,i denote the sub-optimality gap of node (l, h, i),
that is, �l,h,i = f ∗ − supx∈Pl,h,i

f (x). A node (l, h, i) is opti-
mal if �l,h,i = 0 and it is sub-optimal if �l,h,i > 0. We say
that a node (l, h, i) is ε-optimal if �l,h,i ≤ ε. These nodes
are also called near-optimal nodes. Let �l denote the sub-
optimality gap of the node associated with region k1 × Z , that
is, �l = f ∗ − supx∈k1×Z f (x). We will use two parameters
ν > 0 and ρ ∈ (0, 1) to characterize the smoothness of f
relative to the partitions (see Assumption 2). We define Nh(ε)
as in [10] as the number of ε-optimal nodes at depth h, that is,
the number of nodes with �l,h,i ≤ ε.

From the sampled estimate of f (xi ) at a single point xi,
HyHOO attempts to estimate the maximum possible value
that f ∗ can take over X . This is achieved by assuming that f
is locally smooth around x∗, which is formalized in Assump-
tion 2. It basically ensures that f does not change arbitrarily
in the regions that are near-optimal. Based on the fact that
the hierarchical partitioning is done over the region associ-
ated with each mode, this assumption relaxes the smoothness
assumption in [9], which restricts the function to satisfy the
smoothness assumption for all near-optimal regions across the
entire state space.

Assumption 2: There exist ν > 0 and ρ ∈ (0, 1) such that
for all (l, h, i) satisfying �l,h,i ≤ cνρh (for a constant c ≥ 0),
we have f ∗ − f (x) ≤ max{2c, c+ 1}νρh for all x ∈ Pl,h,i.

Here c is a parameter that relates the variation of f over
all cνρh-optimal nodes at all h ≥ 0. For instance, for c = 0,
it implies that there exist smoothness parameters such that
the gap between the f ∗ and the value of f over all optimal
nodes at all h ≥ 0 is bounded by νρh. For instance, for c = 2,
it implies that there exist smoothness parameters such that
over all 2νρh-optimal nodes, the gap between the f (x∗) and
value of f over those nodes is bounded by 4νρh-optimal,
and so on.

Hence, for a finite sampling budget N the final constructed
tree has a maximum height hmax. Therefore it would be suf-
ficient for f to satisfy the conditions of Assumption 2, for
all h ∈ [0, hmax]. This would allow f to have finite little
jumps around x∗. We now define a modified version of the
near-optimality dimension which plays an important role in
the analysis of black-box optimization algorithms [5], [10].
This is a measure of closeness with respect to the number of
nodes that have function values that are “close” to that of the
optimum.

Definition 2: hmax-bounded near-optimality dimension of
f with respect to (ν, ρ) is: dm(ν, ρ) = inf{d ′ ∈ R>0 : ∃B >

0, ∀h ∈ [0, hmax],Nh(2νρh) ≤ Bρ−d ′h}.
In other words, Nh(2νρh) grow exponentially with h, and

the near-optimality dimension gives the exponential rate of
this growth. Thus, Nh(2νρh) ≤ Bρ−dm (ν,ρ)h. The modified
version of near-optimality dimension is adapted for a finite
sampling budget case, and would allow the theoretical guaran-
tees in Theorem 1 to hold for any f that satisfies Assumption 2

with a finite sampling budget. We are now ready to sketch a
regret bound for HyHOO.

Theorem 1: With the input parameters satisfying Assump-
tions 1 and 2, a batch size parameter b, and a sampling budget
of N , HyHOO achieves a regret bound of

E[SN ] = O

((
B

(
σ 2 log (N/b)+ b

)
N

) 1
dm+2

)
,

where dm = dm(ν, ρ) is the hmax-bounded near-optimality di-
mension and B is the constant appearing in Definition 2.

This theorem suggests that when the near-optimality di-
mension dm and/or the constant B decrease, indicating a
decrease in the number of near-optimal regions and steeper
slopes around the function’s maxima, it theoretically leads to
a decrease in the regret achieved by HyHOO. This aspect will
be elaborated in the experiments. The proof of this theorem is
presented below.

Proof: The proof closely follows the approach in [5] (see
also [9], [10]), however, attention is needed when batched
simulations are used (especially for large batches). Let RN =∑N

i=1( f ∗ − f (xi )) be the cumulative regret at the end of it-
eration N , where xi ∈ X is the point returned by HyHOO at
iteration i. Let T be the tree constructed by HyHOO at the
end of N iterations. Let H be a positive integer, that can be
optimized for the best bound. As in [5], we divide T into three
groups: T1 that includes all 2νρh-optimal nodes at h ≥ H , T2

that includes all 2νρh-optimal nodes at h ∈ [0, H − 1], and
T3 that includes sub-optimal nodes with sub-optimality gaps
greater than 2νρh for h ≥ 0. All nodes belonging to these
groups contribute to the cumulative regret as E[RN ]

≤ O

(
ρH N + bBρ−H (dm+1) + Bσ 2 log (N/b)ρ−H (dm+1)

)
,

where the first, second, and the third terms are the contribu-
tions of T1, T2, and T3 to the cumulative regret, respectively.
If b = 1, the third term dominates the second term, and we re-
cover the bound in [5]. However, if b is large, we can optimize
H to get:

E[RN ] ≤ O

(
N

dm+1
dm+2

(
B

(
σ 2 log (N/b)+ b

) ) 1
dm+2

)
,

This can be easily converted to the desired simple regret
bound of the algorithm (for more details refer to Remark
1 [5]). To be more precise, the connection between simple
regret and cumulative regret can be represented in the follow-
ing manner: E[SN ] ≤ E[RN ]

N , which serves as the concluding
statement of the proof. �

A common alternative to Algorithm 1 where L > 1 is to
equally distribute the sampling budget N among L modes and
use HOO to address the following optimization problem

sup
kl∈[L]

sup
z∈kl×Z

f (z).

We call such alternative approach the “baseline HOO” ap-
proach. With no loss of generality suppose that the optimum
belongs to the region of the state space associated with the first
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Algorithm 2: parallel search with parameters: sampling
budget N , number of instances K , maximum smoothness
parameters (νmax, ρmax).
1: for i = 1 : K do
2: Spawn HyHOO with (ν = νmax, ρ = ρ

K/(K−i+1)
max )

with budget N/K
3: Let x̄i be the point returned by the ith HyHOO instance

for i ∈ {1, .., K}
4: return {x̄i| i = 1, .., K}

mode, i.e. �1 = 0. This algorithm achieves the regret bound
of:

E[SN ] = O

((
B

(
σ 2 log (N/bL)+ b

)
N/L

) 1
dm+2

)

+
L∑

l=2

�l O

((
B

(
σ 2 log (N/bL)+ b

)
N/L

) 1
dm+2

)
.

Comparing this bound with HyHOO’s regret bound reveals
that the larger L and �l for l �= 1 get, the more HyHOO gains
advantage over the baseline HOO. This is because the baseline
HOO would spend a good portion of budget (i.e. (L−1)N

L ) on
searching for the optimum over the parts of state space that do
not include the optimum. This is captured in the second term
of the regret bound for this algorithm.

1) KNOWLEDGE OF SMOOTHNESS PARAMETERS:
It is worth noting that the exact values of the smoothness
parameters in Assumption 2 are not crucial for the imple-
mentation of Algorithm 1. They are only necessary to achieve
the most precise regret guarantees. If only upper bounds of
these parameters are known, they can still be used in a parallel
search algorithm. It is noted that determining the optimal
smoothness parameters for a given verification problem is a
difficult task and requires further research. When only ap-
proximate bounds for these parameters are available, which is
often the case for physical processes, the search for the opti-
mal parameters can be efficiently performed using the parallel
optimistic optimization algorithm developed in [10] (Algo-
rithm 2). This algorithm adaptively searches for the optimal
smoothness parameters by creating multiple parallel instances
of the HyHOO algorithm with different (ν, ρ) values. In the
Section IV, the impact of the upper bound choice of (ν, ρ) on
the performance of HyHOO will be discussed.

C. DISCUSSIONS ON CHOICE OF BATCH SIZE b
In the HyHOO algorithm, each node (l, h, i) is sampled mul-
tiple times (b times) as opposed to the original non-batched
version where each node is only sampled once. This change
in sampling affects the update rules for the values Ul,h,i and
Bl,h,i. Indeed, by setting b = 1, the original HOO algorithm
can be recovered and the simple regret bound is E[SN ] =
O

((
Bσ 2 log N

N

) 1
dm+2

)
.

When comparing the regret bound of the batched version
of HyHOO to the non-batched version, it is observed that the
regret bound gets worse with larger b, but it has the benefit
of reducing the number of nodes in the tree by a factor of
b. This leads to a reduction in running time and makes the
batched version more memory-efficient compared to the non-
batched version. Therefore, the parameter b holds significant
importance as a hyperparameter and it is important to ensure
that it does not compromise the accuracy of the verification
or synthesis. This will be further elaborated in the experiment
section.

D. VERIFICATION AND PARAMETER SYNTHESIS WITH
HYHOO
Our objective now is to employ the HyHOO algorithm pre-
sented in Algorithm 1 to address both the verification problem
in (2) and the synthesis problem in (3). To achieve this,
we establish a connection between these problems and the
optimization problem introduced earlier in Section III. Specif-
ically, we need to identify the function f , the states x, and the
noisy observations y in both problems.
� Verification: When using HyHOO for verification, we

can choose the objective function as f (x) := pk,U ,β (x)
for any initial state x ∈ � and a given β ∈ B. Here,
pk,U ,β (x) represents the probability of hitting the unsafe
set U within k steps, starting from the initial state x and
following the execution α. We define the noisy observa-
tion y as follows:

y = 1 if α hits U within k steps, and 0 otherwise.

Thus, for a given initial state x ∈ �, y = 1 with probabil-
ity pk,U ,β (x), and y = 0 with probability 1− pk,U ,β (x).
In other words, y is a Bernoulli random variable with a
mean of pk,U ,β (x).

� Parameter Synthesis: When using HyHOO for parame-
ter synthesis, we can choose the objective function as
f (β ) := E[r(α, β )|β] for any parameter state β ∈ B.
Here, r(α, β ) represents the outcome of the execution
α starting from an initial state x0 sampled from a given
distribution, with the parameter set as β. The noisy ob-
servation y is defined as:

y = r(α, β ),

where the mean of y is E[r(α, β )|β].
By establishing this connection between the verification

and synthesis problems and the optimization problem ad-
dressed by Algorithm 1, we can utilize HyHOO with a
sampling budget of N to tackle these problems. Furthermore,
we can present the following propositions that provide theo-
retical guarantees regarding the optimization error of HyHOO
when applied to the verification and synthesis problems.

Proposition 1: Under the assumption that the noisy ob-
servations y1, . . . , yN in the verification problem satisfy
Assumption 1, and the smoothness parameters (ν, ρ) sat-
isfy Assumption 2 for the function f (x) = pk,U ,β (x), if
Algorithm 1 returns x̄N ∈ �, then the expected value of the

VOLUME 2, 2023 269



MUSAVI ET AL.: HyHooVer: VERIFICATION AND PARAMETER SYNTHESIS IN STOCHASTIC SYSTEMS WITH HYBRID STATE SPACE

FIGURE 2. HyHooVer components. Input parameters N, K, (ρmax, νmax), b,
and σ stand for sampling budget, number of HyHOO instances, upper
bounds for smoothness parameters, batch size parameter, and noise
parameter, respectively. We fix K = 1 and νmax = 1.0 throughout all
experiments in Section IV. We will discuss the choice of ρmax and b later in
this section.

simple regret SN = pk,U ,β (x∗)− pk,U ,β (x̄N ) is upper bounded
by Theorem 1.

Proposition 2: Under the assumption that the noisy ob-
servations y1, . . . , yN in the synthesis problem satisfy As-
sumption 1, and the smoothness parameters (ν, ρ) sat-
isfy Assumption 2 for the function f (β ) = E[r(α, β )|β], if
Algorithm 1 returns x̄N ∈ B, then the expected value of
the simple regret SN = E[r(α, β )|β∗]− E[r(α, β )|x̄N ] is
bounded from above by Theorem 1.

The following remark discuss how Assumption 2 is satis-
fied by the verification and synthesis problems:

Remark 1: Assumption 2 asserts that choices of initial
states that are near x∗ (the initial states that make the system
most unsafe) also lead to unsafe states in a verification prob-
lem. This requires the probability transition kernel to have a
local Lipschitz property at x∗ ∈ �. For the safety verification
scenarios considered in this article, this assumption implies
that initial configurations of the cars that are close to the most
unsafe configuration are also unsafe, which aligns with our
understanding of the physical dynamics involved. A similar
argument holds for the parameter synthesis as well. If the
probability transition kernel has a local Lipschitz property
at x∗ ∈ B, then Assumption 2 holds for parameter synthesis
problems.

IV. HyHooVer TOOL, EVALUATION, AND DISCUSSION
We devote this section to explain the structure of HyHooVer,
to introduce several benchmark scenarios and to carefully
evaluate its performance over instances of these scenarios.
It is noted that our experiments were conducted on a Linux
workstation with two Xeon Silver 4110 CPUs and 32 GB
RAM.

HyHooVer consists of several components, as shown in
Fig. 2. To use HyHooVer, the user needs to provide a Python
code for the model that needs to be verified or synthesized
(model.py), along with some input parameters. These input
parameters include the sampling budget N , the upper bounds

for the smoothness parameters (νmax, ρmax), the number of
HyHOO instances K , the noise parameter σ , the batch size
parameter b, and the number of modes L. Once the input
is provided, HyHooVer runs K instances of HyHOO with
automatically calculated smoothness parameters (see Algo-
rithm 2). For each instance i, it generates random trajectories
from the model, receives noisy observations (rewards) (see
Algorithm 1, line 5), and returns an estimate x̄i of the opti-
mum. Once the sampling budget N is exhausted, HyHooVer
returns the best x̄i by comparing the mean reward for each
x̄i using Monte-Carlo simulations. For each x̄i, this is done
by querying the model for n times (for some n determined
by the user) and taking the average of the noisy observations
returned by the model f̂ (x̄i ). Finally, HyHooVer outputs the
x̄ that gives the highest mean reward and its corresponding
f̂ (x̄).5

In the following subsection, we describe the benchmarks
used to evaluate the performance of HyHooVer.

A. BENCHMARKS
We evaluate the performance of HyHooVer using a variety
of scenarios including a synthetic example, an LQR example
and autonomous driving scenarios. It is noted that each of
these scenarios presents unique characteristics. The synthetic
example and the LQR example are designed to show the ap-
plication of HyHooVer in parameter synthesis. The synthetic
example, in addition, allows us to evaluate the performance of
HyHooVer in state spaces with higher dimensions and modes.
The purpose of the driving scenarios including BrokenLidar
and Roundabout is to demonstrate how HyHooVer performs
in safety verification. These scenarios are created specifically
to address the challenges of testing the safety of automatic
braking and collision warning systems, which are becoming
standard features in vehicles. According to statistics, over
25% of accidents involve rear-end collisions, and about 85%
of these occur on straight roads [34]. The BrokenLidar and
Roundabout scenarios are designed to capture these fea-
tures. The BrokenLidar scenario assesses the performance of
HyHooVer in rare event scenarios, while the Roundabout
scenario is created using a car simulator called Highway-env.
This simulator is equipped with motion planning algorithms
and controllers that enable the creation of autonomous driv-
ing scenarios. The goal of the Roundabout scenario is to
demonstrate the application and performance of HyHooVer
in decision-making tasks related to autonomous driving. Ex-
amples of these scenarios are described in detail below.

1) Synthetic EXAMPLE
Let Z ⊂ R

m, and let f : [L]× Z → R be defined as

f (x) = g(z)− al × 1{l �= 1}, (5)

5The source code is available at https://github.com/NeginMusavi/
HyHooVer.git.
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where

g(z) = 0.5 sin(13z1) sin(27z1)−
m∑

i=2

z2
i ,

with zi the i-th component of z. Suppose we have access
to noisy observations y(x) = f (x)+ ε with ε ∼ N (0, σε ) for
some σε > 0. Our goal is to solve the optimization problem

sup
x∈B

f (x)

for a given set B ⊂ [L]× Z . This problem is similar to the one
presented in (3) in Section II. The function sin(13z1) sin(27z1)
is an example of a function with a near-optimality dimension
dm = 0, as introduced in [5]. This means that the near-optimal
nodes of the function can be bounded by a constant B as
defined in Definition 2. As a consequence, the near-optimality
dimension of both g and f is also equal to zero.

2) LQR EXAMPLE
Consider the following linear system in discrete time:

xt+1 = Axt + But ,

where A ∈ R
n×n and B ∈ R

n×m are unknown matrices, and
we are interested in finding a state-feedback gain matrix W
that minimizes the cost function c(W ) for the control policy
ut = −W xt . The cost function is defined as follows:

c(W ) = Ex0∼D
[ ∞∑

t=0

(xT
t Qxt + uT

t Rut )

]
,

where D is a distribution that initial state x0 is randomly
drawn from N (x̄0, σ

2
ε I ) for some x̄0 and σε , and matrices

Q ∈ R
n×n � 0 and R ∈ R

m×m � 0 that parameterize the cost.
The optimization problem we want to solve is

sup
W∈B
−c(W ),

where B is a given set and we only have access to noisy
observations

∑∞
t=0(xT

t Qxt + uT
t Rut ) with x0 ∼ D. This opti-

mization problem is similar to (3) in Section II.

3) BrokenLidar SCENARIO
This scenario models a car running on a single-lane road and
a pedestrian crossing the road in front of the car. The car is
equipped with a broken Lidar device that somehow cannot
detect obstacles in a specific direction. If the car detects the
pedestrian, it starts braking. The probability of detecting the
pedestrian is a function of the relative angle and distance (θ ,
d) between the car and the pedestrian is given by

p(θ, d ) =
(

1− exp

(
− (θ − θb)2

s

))(
max

{
0,

db − d

db

})2

,

where θb is a constant angle along which the pedestrians
cannot be detected, and db is the maximum distance that the
Lidar can cover. Here s is a parameter controlling how fast the
probability decreases when θ → θb. The detecting probability
also declines as the distance d increases. This model is almost

FIGURE 3. BrokenLidar scenario.

always safe unless θ = θb holds constantly for every step. This
rarely happens when the speed and initial position of the car
and the pedestrian satisfy some constraints. This is a realistic
verification problem in the sense that the system is almost al-
ways safe unless it triggers some bugs. The goal of verification
is to find such rare unsafe cases before deployment.

Let unsafety be defined as where the distance between the
car and pedestrian falls below a certain threshold. We aim to
solve the optimization problem for a given k, U and s

sup
x0∈�

pk,U ,s(x0),

where � is a given set of possible initial position and speed
of the car and the pedestrian. This optimization problem is
similar to (2) in Section II.

4) Roundabout SCENARIO
This scenario is described in detail in Section I-B and is
illustrated in Fig. 1.

It is worth noting that the unsafety probability/objective
function in all these scenarios exhibits nonlinearity concern-
ing the states/parameters.

B. PERFORMANCE OF HyHooVer WITH VARIOUS BATCH
SIZE AND SMOOTHNESS PARAMETERS
The batch size parameter in the tool serves as a hyper-
parameter designed to reduce running time and memory
usage. However, it requires careful consideration to ensure
that it does not compromise the accuracy of the verification
or synthesis process. Theoretical analysis, as presented in
Theorem 1, shows that the simple regret concerning the

batch size b scales as O(( b
N )

1
dm+2 ) with a sampling budget

of N . In Fig. 4, the convergence rate of the actual re-
gret and the theoretical regret rate is depicted for instances
of the Synthetic example with different sampling budgets
N = 50K, 100K, 300K . The actual regret rate is shown to
be upper-bounded by the theoretical rate provided by the
theorem. While larger batch sizes can negatively impact the
regret, choosing an appropriate batch size parameter b can
significantly improve the running time and memory usage of
HyHooVer without substantially sacrificing the quality of the
final result. This observation is supported by Fig. 5 and Ta-
ble 1. Fig. 5 illustrates the impact of the batch size parameter
b on the performance of HyHOO for the Synthetic example.
When the sampling budget exceeds 100K , the performance of
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FIGURE 4. Actual regret rate and theoretical rate versus different batch
sizes b on an instance of the Synthetic example with m = 10, L = 1, and
σε = 0.1. Here, ρmax = 0.95, and any data represented by “*” is averaged
over 100 runs. It is noted that the lines are fitted to the data using the
least square method, and the slopes of the lines are 0.25, 0.21, 0.22 for
the three sampling budgets, respectively.

FIGURE 5. Impact of batch size b on performance of HyHooVer on instance
of Synthetic example with m = 10, L = 1 and σε = 0.1. Here ρmax = 0.95 and
results are averaged over 10 runs.

TABLE 1 Impact of batch size b on tree size, running time, memory usage,
and results returned by HyHooVer on instance of Synthetic example with
m = 10, L = 1 and σε = 0.1. Here N = 100K, ρmax = 0.95 and results are
averaged over 10 runs.

HyHOO remains unaffected for batch sizes b ≤ 20, but it is
negatively influenced when b = 100. For batch size b = 100,
more sampling budget is required to achieve similar perfor-
mance compared to batch sizes b ≤ 20.

On the other hand, Table 1 demonstrates that with a sam-
pling budget of 100K and batch size b ≤ 20, we can achieve
comparable results with a smaller tree size, reduced memory
usage, and faster running time. In essence, finding the optimal
value for the hyperparameter b, which minimizes running time
while keeping the actual regret below a specific threshold,
is challenging to calculate precisely. Nevertheless, based on
our observations, we recommend using a batch size ranging

TABLE 2 Impact of smoothness parameter ρmax on the results returned by
HyHooVer on instance of Synthetic example with m = 10, L = 1 and
σε = 0.1. Here N = 200K, b = 20 and results are averaged over 10 runs.

from 5 to 20 to achieve faster running times while maintaining
satisfactory results.

As discussed in Section III-B, it is not always practical to
determine the exact upper bound for ρ. To investigate the
impact of different choices of ρmax on the performance of
HyHooVer, experiments were conducted and the results are
recorded in Table 2. According to the results, the performance
of the tool is not influenced by different choices of ρmax for
the Synthetic example. However, when ρmax is higher, the
tool tends to perform a more aggressive search, resulting in
more thorough exploration of the shallower levels of the tree
due to uncertainty in observations over the region of state
space associated with each node. Therefore, if the smoothness
of the model is unknown, a higher ρmax can be chosen as a
conservative approach, which still provides reasonably good
estimates.

C. PERFORMANCE OF HyHooVer IN COMPARISON WITH
OTHER METHODS
We found that among the available SMC tools, Plas-
maLab [35] is the most similar to HyHooVer in terms
of its ability to verify black-box systems with continu-
ous/hybrid state spaces. It should be noted that Storm [36] and
PRISM [26] do not have support for continuous state-space
models. While it would be possible to compare HyHooVer
with these tools using discrete versions of the examples, the
comparison would not be appropriate as the guarantees of-
fered by these tools are different. The SMC approach in [30],
is related, but we were unable to find an implementation to
compare against. Given this we conduct a more in-depth com-
parison with PlasmaLab. In addition, we conduct experiments
with BoTorch [31] which is a Bayesian optimization based
tool for black-box optimization of stochastic system and we
provide in-depth comparison with HyHooVer’s performance.
For scenarios involving a hybrid state space, we also compare
the performance of our tool with a traditional approach called
baseline HOO. More information about these approaches is
provided below:
� PlasmaLab: It utilizes a smart sampling algorithm [37]

to efficiently distribute the simulation budget among the
schedulers of an MDP. To use this algorithm, one must
set the parameters ε and δ in the Chernoff bound, with
Nmax > ln (2/δ)/(2ε2), where Nmax is the per-iteration
simulation budget. We set the confidence parameter δ

to 0.01, and then, for a given Nmax, obtained the pre-
cision parameter ε by ε = √ln (2/δ)/(2× 0.8× Nmax).
To make a fair comparison, we developed a PlasmaLab
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FIGURE 6. Performance of HyHooVer in comparison with baseline HOO on
instance of Synthetic example with m = 10, L = 10, and σε = 0.1.

plugin that enables PlasmaLab to use the same exter-
nal Python simulator as HyHooVer. It is noted that the
comparisons with PlasmaLab are conducted over safety
verification scenarios.

� BoTorch: It is a software tool that is designed for
black-box optimization of expensive-to-evaluate func-
tions through Bayesian optimization techniques. It is a
PyTorch-based library that can be utilized in a range
of situations, including hyperparameter optimization for
machine learning models, as well as scientific and en-
gineering problems. To utilize BoTorch for our specific
scenarios, we employ its Ax module. It is worth men-
tioning that we compare BoTorch with our tool in both
parameter synthesis and safety verification scenarios.

� Baseline HOO: A common approach for addressing a
problem with multiple modes is to divide the budget
equally among the modes and conduct multiple HOOs
and then compare the results. The theoretical guarantee
of this approach is discussed in Section III-B.

The evaluation of the four approaches (HyHooVer, Plas-
maLab, BoTorch, and baseline HOO) involves the use of two
metrics: sample complexity and running time. More infor-
mation on the detail of these comparisons is provided as we
go through the scenarios. Unless otherwise stated, we fix the
batch size parameter to b = 10 and the maximum smoothness
parameter to ρmax = 0.95 for all experiments conducted using
HyHooVer. Additionally, we present the results of 10 inde-
pendent runs for each approach.

1) PERFORMANCE OF HyHooVer ON PARAMETER
SYNTHESIS
We tested HyHooVer on an instance of the Synthetic example
with m = 10, L = 10 to evaluate the performance of HyHOO
in high-dimensional state space with multiple modes. The
results shown in Fig. 6 indicate that HyHOO needs fewer
queries from the system compared to the baseline HOO,
which is consistent with the theoretical guarantees provided
for both methods in Section III-B.

Examining the plots more closely, it is evident that both
methods show a decline in performance after initial improve-
ment. This is mainly due to the non-monotonic behavior of the

FIGURE 7. Performance of HyHooVer in comparison with baseline HOO
and BoTorch on instance of Synthetic example with m = 10, L = 10 and
σε = 0.1. Note t3 ∼ 30 × t1 and t3 ∼ 6 × t2.

function f (x) in (5). Specifically, the UCB algorithm initially
discovers regions of the state space that is close to optimal,
but as it continues to explore, it finds other regions that are
also near optimal but separate from the initial ones, and it
then chooses to explore further to reduce the uncertainty of
its observations.

Remark 2: We did not compare the running time perfor-
mance of our tool with PlasmaLab, despite noticing a signif-
icant lower running time of HyHOO compared to PlasmaLab
to reach the same level of performance in the BrokenLidar
and Roundabout scenarios. This decision was made because
the PlasmaLab plug-in is developed in Java, and we used
a simulation bridge between Python and PlasmaLab. The
difference in performance could potentially be attributed to
communication issues between the two languages, making a
comparison between the two tools unfair.

We conducted a comparison between our tool and BoTorch
by testing their performance on the Synthetic example in
terms of their running time. The results are illustrated in
Fig. 7. The graph demonstrates that HyHOO outperforms
baseline HOO and BoTorch in terms of running time. Notice
HyHOO achieves a result after only 0.04 hours of running
time, whereas BoTorch could not achieve this level of per-
formance even after running for 1.12 hours, indicating that
HyHOO is approximately 30 times faster than BoTorch. It is
noted that we expect the other approaches to achieve similar
results as HyHOO achieves in a longer run; however, due
to high computational times, we decided not to continue the
runs for the other methods. In addition, note that BoTorch
needed 1250 queries to achieve this result, whereas HyHOO
requires 100K queries to achieve these results. Moreover,
with 1250 queries, HyHOO attains a performance result of
0.677± 0.006, while BoTorch achieves a performance result
of 0.734± 0.106 with the same number of queries. In sum-
mary, while HyHOO performs better in terms of running time,
BoTorch performs better in terms of number of queries.

Remark 3: We did not compare the performance of Hy-
HooVer and BoTorch based on the number of queries due
to the long running time required for BoTorch to obtain its
results.
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FIGURE 8. Performance of HyHooVer on instance of LQR example with
n = 2, m = 1, and σ2

ε = 0.001. Here c refers to the value of cost evaluated
at W returned by HyHooVer. In addition, W ∗ and c∗ refers to the optimal
state feedback gain and optimal cost computed by solving Algebraic
Riccati Equation, respectively.

To explain further, Bayesian optimization is computa-
tionally expensive for two main reasons: (1) it requires an
iterative numerical optimization step to fit a probabilistic
model to the observed data, and (2) it involves optimizing an
acquisition function to select the next point for evaluation
at each iteration. In contrast, HyHooVer does not require
such optimization steps, which is why it has a faster running
time compared to BoTorch. Therefore, in scenarios where the
cost of evaluating the system at each iteration is high and
dominates the optimization process, BoTorch is expected to
perform better than HyHooVer. However, in scenarios where
the opposite is true, HyHooVer is expected to outperform
BoTorch. The Synthetic example is an instance of the latter
scenario.

We tested HyHooVer on an instance of the LQR example
with n = 2, m = 1 to demonstrate its application in parameter
synthesis in an optimal control setting. This problem has an
analytical solution which can be computed by solving Alge-
braic Riccati Equation. The results shown in Fig. 8 indicate
the accuracy of estimation is improved with increasing the
sampling budget.

2) PERFORMANCE OF HyHooVer ON SAFETY VERIFICATION
We tested HyHooVer on instances of the BrokenLidar sce-
nario with m = 4, L = 1 and different s parameters. Different
parameters s result in functions with different slopes around
their optimum. The smaller s corresponds to rarer unsafe

FIGURE 9. Performance of HyHooVer in comparison with PlasmaLab on
instance of BrokenLidar scenario with m = 4 and L = 1.

FIGURE 10. Performance of HyHooVer in comparison with BoTorch on
instance of BrokenLidar scenario with m = 4 and L = 1.

event. The results shown in Fig. 9 demonstrates comparison
between performance of HyHooVer with s = 5e−5, and Plas-
maLab with s = 5e−2. It suggests that as the unsafe event gets
rarer (with s = 5e−5), HyHOO’s performance is superior to
PlasmaLab in terms of number of queries. This is because
as s decreases, the number of near-optimal regions also de-
creases and from a theoretical standpoint, this corresponds
to the smaller constant B introduced in Definition 2 which
also corresponds to a lower simple regret in Theorem 1. Thus
HyHOO offers an advantage if the function exhibits a sharper
slope around the maxima in comparison with methods that
rely on random sampling like PlasmaLab.

Fig. 10 displays the performance of HyHOO and BoTorch
in terms of running time with different values of s parameter
s = 5e−2, s = 1e−2, and s = 1e−3. The graph indicates that as
the value of s decreases, which implies a rarer event, HyHOO
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FIGURE 11. Performance of HyHooVer in comparison with baseline HOO
and PlasmaLab on Roundabout scenario with m = 4 and L = 15.

outperforms BoTorch. In the case s = 1e−3, this difference
became even more significant. In this case HyHOO achieved
its best performance in roughly 2 minutes, whereas BoTorch
after 16 minutes still could not achieve one-fifth of HyHOO’s
result. It is noted that the BoTorch achieves these results with
500 queries. This scenario is another example of the scenarios
where the cost of evaluating the system at each iteration is
dominated by the cost of the optimization process in BoTorch
and as a result HyHooVer performs better than BoTorch.

Finally, we ran HyHooVer on instances of the Round-
about scenario with m = 4, L = 15 and compared its per-
formance with both the baseline HOO and PlasmaLab. As
shown in Fig. 11, HyHOO generally performs better than the
baseline HOO, which supports our claim that HyHooVer is
effective when the number of modes increases. This is because
the baseline HOO approach spends a significant portion of
the budget on exploring regions of the state space associated
with modes that do not contain the optimum. In addition,
HyHooVer is more sample-efficient than PlasmaLab because
the later relies on random exploration which is not efficient in
state spaces with multiple modes.

V. CONCLUSION AND FUTURE FOCUS
We introduced HyHOO, an optimistic mini-batched tree
search algorithm designed for verification and parameter syn-
thesis in a specific class of discrete-time Markov chains. These
Markov chains have states consisting of both discrete and
continuum-based components. HyHOO operates by sequen-
tially sampling executions of the Markov chain in batches,
leveraging a mild assumption about the smoothness of the
objective function. Its objective is to find solutions that are
near-optimal, minimizing the corresponding regret. We pro-
vided theoretical regret bounds that consider factors such as
the sampling budget, smoothness, near-optimality dimension,
and sampling batch size. Importantly, HyHOO exhibits ef-
fective performance without requiring exact parameters or
quantities. We created a tool named HyHooVer and assessed
its effectiveness by analyzing various benchmark models
and we showed that our approach competes favorably with
BoTorch (a Bayesian-based tool), PlasmaLab (a tool based on

random sampling), and the baseline HOO method, in terms of
sample efficiency and/or running time.

Our current approach focuses on minimizing regret but
could be extended to minimizing the sampling budget. This
presents an intriguing area for further investigation and
exploration.
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