
Received 26 January 2023; revised 6 May 2023; accepted 6 June 2023. Date of publication 28 June 2023;
date of current version 27 July 2023. Recommended by Senior Editor Mazid Zamani.

Digital Object Identifier 10.1109/OJCSYS.2023.3290408

Attack-Resilient Supervisory Control of
Discrete-Event Systems: A Finite-State

Transducer Approach
YU WANG 1 (Senior Member, IEEE), ALPER KAMIL BOZKURT 2, NATHAN SMITH 1,

AND MIROSLAV PAJIC 3 (Senior Member, IEEE)

(Formal Verification and Synthesis of Cyber-Physical Systems)
1Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 USA

2Department of Computer Science, Duke University, Durham, NC 27708 USA
3Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA

CORRESPONDING AUTHOR: YU WANG (e-mail: yuwang1@ufl.edu)

This work was supported in part by ONR under Grants N00014-20-1-2745, N00014-17-1-2012, and N00014-17-1-2504, in part by AFOSR under Grant
FA9550-19-1-0169, and in part by NSF under Grant CNS-1652544.

ABSTRACT Resilience to sensor and actuator attacks is a major concern in the supervisory control of
discrete events in cyber-physical systems (CPS). In this work, we propose a new framework to design
supervisors for CPS under attacks using finite-state transducers (FSTs) to model the effects of the discrete
events. FSTs can capture a general class of regular-rewriting attacks in which an attacker can nondeter-
ministically rewrite sensing/actuation events according to a given regular relation. These include common
insertion, deletion, event-wise replacement, and finite-memory replay attacks. We propose new theorems and
algorithms with polynomial complexity to design resilient supervisors against these attacks. We also develop
an open-source tool in Python based on the results and illustrate its applicability through a case study.

INDEX TERMS Control system security, cyber-physical systems, formal methods.

I. INTRODUCTION
Supervisory control is a widely-used high-level control tech-
nique to deal with discrete events (e.g., turning on/off one of
many switches) in cyber-physical systems (CPS) that work for
various applications including transportation [1], [2], smart in-
frastructure [3], and healthcare [4]. The goal of the supervisor,
typically implemented by cyber controllers, is to ensure that
the possible discrete events happen in the correct sequences to
prevent system failure. Mathematically, the discrete events are
captured by a set of symbols that are implemented by sensors
and actuators, their effect on the controlled physical plant is
captured by finite-state machines whose transitions are driven
by these symbols, and the goal is to apply feedback control to
restrict the plant’s execution, as shown in Fig. 1.

With increasing applications in contested scenarios, such
as autonomous driving [2], [5] and distributed manufactur-
ing [6], [7], there is a growing interest in ensuring the
resilience of supervisors against sensor/actuator attacks [8],

FIGURE 1. Supervisory control of cyber-physical systems. At each time, the
plant sends a sensing symbol, which will be corrupted by oP to the
supervisor. Then, the supervisor replies to the plant with an actuating
symbol iP . A plant transition can only happen if the pair (iP ,oP)
matches the transition’s label. In practice, the symbols oP and iP may be
revised by malicious attackers, causing the plant to make transitions not
allowed by the supervisor.

[9], [10]. In supervisory control, the possible attacks are
illustrated in Fig. 1. The sensor attacks aim to corrupt the
true sensing symbols from the plant to the supervisor by

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

208 VOLUME 2, 2023

https://orcid.org/0000-0002-0431-1039
https://orcid.org/0000-0001-5845-4003
https://orcid.org/0000-0001-5637-7964
https://orcid.org/0000-0002-5357-0117
mailto:yuwang1@ufl.edu

FIGURE 2. Block diagram for supervisory control of plants modeled by
FSTs.

either hacking into the plant’s sensor [11], [12], [13] or the
communication network [14], [15], [16], [17]. Similarly, the
actuator attacks aim to corrupt the true actuating symbols from
the supervisor to the plant by either hacking into the plant’s
actuator or the communication network. This setup captures
simultaneous (including coordinated) attacks on sensors and
actuators and is more general than [18], [19] for either sensor
or actuator attacks.

The block diagram for supervisory control under sen-
sor/actuator attacks is shown in Fig. 2. In a real system,
multiple sensor attacks can happen via different vectors (e.g.,
network or sensor). In Fig. 2, the overall effect is repre-
sented by a single attacker As. The input-output relation of
As captures how a sequence of true sensing symbols may be
nondeterministically rewritten into a sequence of corrupted
sensing symbols. Similarly, the overall effect of multiple pos-
sible actuator attacks is represented by a single attacker Aa,
whose input-output relation captures how a sequence of true
actuator symbols may be nondeterministically rewritten into a
sequence of corrupted actuator symbols.

The common presence of attackers in CPS has motivated
recent works on developing new theories and algorithms for
attack-resilient supervisory control. However, many of them
only deal with simple and history-independent attack strate-
gies, e.g., symbol insertion, deletion, or replacement attacks
(e.g., [18]), while many attackers in CPS can use complex
and history-dependent attack strategies. Among the works in-
volving history dependent attacks (e.g., [20]), the attacks are
typically modeled by a function: the attack is determined by
the plant’s transition history. Our attacker model is described
by an FST giving an intuitive visual representations of the
attackers.

Take the replay attack [21], [22] as an example, which is
a common strategy for launching cyber-attacks. It works by
first recording a fragment of symbols and then replaying it
repeatedly to trap the system. Implementing this attack re-
quires the attacker to decide when to continue recording or
start replaying. This requires the attackers to possess internal
states to make such decisions based on previous actions. The
idea of using states to model attack behaviors has been pro-
posed in [20]. However, in that work, the state space is shared
between the attack and the system. In practice, the attacker
and the system are typically implemented separately. Thus, it
is more appropriate to model the attacker individually with its
own state space. This will help study the impact of different
attacks on the same plant and study the impact of multiple
combined attacks.

This work proposes to use finite-state transducers
(FSTs) [23], [24], which generalize finite-state automata, to
model the complex and history-dependent strategies of the
attackers. These FST models can be viewed as abstractions of
cyber/network attacks implemented by embedded programs
(e.g., malware). FST transitions are driven by an input sym-
bol and also produce a different output. This feature allows
FSTs to capture general complex attack strategies, including
previously-studied attacks (e.g., symbol insertion, deletion,
or replacement) and new history-dependent attacks (e.g., re-
play attacks). In addition, one can easily compose multiple
attack strategies to form new attack strategies via FST model
compositions [25], [26], [27], [28], which have polynomial
complexity and are well supported by existing C++/Python
libraries (e.g., [29]). Finally, one can implement constraints
on unconstrained attack strategies and facilitate problem
analysis with common security measures (e.g., intrusion de-
tectors [30], intermittently authentication [16], [31], [32]).

Our main contribution is the development of a new theory to
synthesize resilient supervisors against sensor and actuator at-
tacks. The supervisory control diagram is shown in Fig. 2. We
assume the FST models for attackers are known a priori and
capture all the possible attack behaviors (e.g., nondeterminis-
tic symbol deletion or insertion). The supervisor is resilient
in the sense that it can restrict the plant’s execution to an
allowed set under the attacks. Our theory gives a constructive
algorithm with polynomial complexity to synthesize the su-
pervisor, if feasible. It also shows that the feasible supervisor
is realizable by an FST.

This work improves our previous work [33] in two aspects.
First, we generalize it to plants modeled by FSTs (instead of
automata) to handle CPS equipped with sensors and actuators
that yield different input and output symbols. Our plant model
is similar to [34], [35], although no attacks were considered
in those works. Second, we develop an open-source tool in
Python based on the new results and illustrate its applicability
through a case study. The rest of the article is organized as
follows. We provide preliminaries on FSTs and regular rela-
tions in Section II and formalize the problem in Section III.
Then, we demonstrate the advantages of using FSTs to model
attacks in Section IV and provide resiliency conditions and al-
gorithms to design resilient supervisors for FST-based sensor
and actuator attacks in Section IV. Finally, case studies are
presented in Section VI, before concluding in Section VII.

RELATED WORK
Supervisory control under attacks has been studied exten-
sively in the literature, so we provide a detailed comparison
with previous work as follows. This work considers simulta-
neous actuator and sensor attacks, while only sensor attacks
are considered in [36]. Furthermore, our attack model allows
symbol revision of unbounded length, while [36] only studied
bounded attacks. We notice that [37], [38] consider simul-
taneous actuator and sensor attacks. Our work can handle
regular desired languages while [37] only focuses on reach-
ability. In addition, we provide an explicit attack model via

VOLUME 2, 2023 209

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

FST, while the attack model is only given implicitly in [37]
through the attacked plant model. Our attack model can be
history-dependent and thus more complex than the history-
independent attack model in [38]. In addition, we deal with
the regular desired languages instead of liveness in [38]. The
problem of synthesizing complex attackers has been studied
in [20], [39], [40], [41], [42], [43], while our work focuses
on the supervisor synthesis problem. Our work can synthesize
supervisors to counter the attacks, while [44] only focuses
on synthesizing estimators to detect the attacks. Our work
can handle attackers that tamper with the system dynamics,
while [45] can only handle eavesdroppers. Compared to [10]
that deals with supervisor design under attacks, we focus on
restricting the plant to a desired language K , while the super-
visor in [10] prevents the plant from reaching unsafe states.
Consequently, their supervisor synthesis problem is converted
to an equivalent game theoretic dual problem. Lastly, our
framework handles both sensor and actuator attackers simul-
taneously while [10] is restricted to only sensor attackers.

II. PRELIMINARIES ON FSTS
To start with, we introduce the following common notations
for arithmetic over symbols. Specifically, we denote the set
of natural numbers including zero by N, set cardinality by
|S|, power set by 2S , and set subtraction by S1\S2 = {s ∈
S1 | s /∈ S2}. We write “iff” for “if and only if”. For n ∈ N,
let [n] = {1, .., n}. We follow the common notations for se-
quences. For a given finite set of symbols, a finite-length
sequence of symbols is called a word. A set of words is called
a language. A word can be viewed as a singleton language.
The empty symbol/word is denoted by ε. The concatenation
of two languages (or words) is defined by

L1L2 = {I1I2 | I1 ∈ L1, I2 ∈ L2}.
The Kleene star (i.e., finite repetition) of a language (or word)
is defined by L∗ = {I1 . . . In | I1, . . . , In ∈ L, n ∈ N}; by con-
vention, ε ∈ L∗. For singleton sets, the notation convention is
I∗
1 = {I1}∗. The union of two languages (or words) is the same

as the union of sets, denoted by L1 ∪ L2. A language is regular
if it can be represented only using union, concatenation, and
Kleene star [46]. In addition, a word I1 is a prefix of another
word I if there exists I2 such that I = I1I2. The prefix closure
L of a language L is derived by including all prefixes of all
I ∈ L in L. A language L is prefix-closed if L = L.

Now, we provide a mathematical introduction to FSTs.
FSTs can be seen as automata with input and output symbols
on their transitions. Similarly, automata can be viewed as
FSTs with identical input and output.

Definition 1: A finite-state transducer (FST) is a tuple
A = (S, sinit, I, O,Trans,Sfinal) where
� S is a finite set of states;
� sinit ∈ S is the initial state;
� I is a finite set of non-empty input symbols;
� O is a finite set of non-empty output symbols;
� Trans ⊆ S × (I ∪ ε) × (O ∪ ε) × S is a transition rela-

tion, where ε is the empty symbol;

� (s, ε, ε, s) ∈ Trans for all s ∈ S;
� Sfinal ⊆ S is a finite set of final states.
In Definition 1, the symbol ε stands for the empty symbol.

An FST transition with ε as the input symbol can self-trigger.
An FST transition with ε as the output symbol yields no
output symbol. The self-loop (s, ε, ε, s) means the FST can
stay in the same state without receiving an input symbol and
generating an output symbol.

A. LANGUAGES OF AN FST
For the FST A, we define an execution by a sequence of
transitions (s0, i1, o1, s1). . .(sn−1, in, on, sn) where s0 = sinit
and (si−1, ii, oi, si) ∈ Trans for i ∈ [n]. The execution defines
an allowed word of input/output pairs (i1, o1) . . . (in, on). The
set of such allowed words (i.e., sequences of input/output
symbol pairs) is called the language of the FST A, denoted
by L(A). In addition, we call I = i1 . . . in an allowed input
word and O = o1 . . . on an allowed output word. The set of
allowed input words is the input language of A, denoted by
Lin(A). Similarly, the output language is defined and denoted
by Lout(A).

B. FSTS AND RELATIONS
The FST A defines a relation between I∗ and O∗ by

RA = {(i1 . . . in, o1 . . . on) | ∃ an execution (sinit, i1, o1, s1)

. . .(sn−1, in, on, sn) and sn ∈ Sfinal} ⊆ I∗ × O∗

In this case, we say the FST A realizes the relation RA.
More specifically, RA can be seen as a relation between the
input language Lin(A) and the output language Lout(A), since
Lin(A) = R−1

A (O∗) and Lout(A) = RA(I∗). Here, RA is not
necessarily a function since an input word can be mapped
nondeterministically to multiple output words.

To facilitate further discussion on relations, we introduce
the following common notations. For a relation R ⊆ S1 × S2,
we define (with a slight abuse of notation) the image of a
subset T1 ⊆ S1 (an element is viewed as a singleton set) over
the relation R by

R(T1) = {s2 ∈ S2 | s1 ∈ T1, (s1, s2) ∈ R}.
The relation R is a partial function if |R(s1)| ≤ 1 for any s1 ∈
S1. The inverse of the relation R is defined by

R−1 = {(s2, s1) | (s1, s2) ∈ R},
whereas the composition of two relations is defined by

R1 ◦ R2 = {(s1, s3) | ∃s2. (s1, s2) ∈ R1, (s2, s3) ∈ R2}.
Here, the relation composition is read from left to right.

C. FSTS AND AUTOMATA
Like finite automata define regular languages, FSTs define
regular relations as described below.

Definition 2: For two finite sets I and O, the relation R ⊆
I∗ × O∗ is a regular relation iff

{(i1, o1) . . . (in, on) | (i1 . . . in, o1 . . . on) ∈ R}

210 VOLUME 2, 2023

is a regular language over I × O. Here, i1, o1, . . . in, on can be
the empty symbol ε.

Since FSTs can be seen as automata with input and out-
put symbols on their transitions, we have the following
lemma [47].

Lemma 1: The relation defined by an FST is regular. Any
regular relation is realizable by an FST.

III. PROBLEM FORMULATION
This section introduces our problem formulation for attack-
resilient supervisory control. Section III-A discusses how to
properly use FST models in supervisory control. Section III-B
presents the fundamentals of the supervisory control of plants
modeled by FSTs without attacks. Section III-C discusses the
supervisory control with attackers modeled by FSTs.

A. USING FST MODELS IN SUPERVISORY CONTROL
We use the FSTs from Definition 1 to model the plant in Fig. 2.
Since the FSTs are placed in a control loop, the transitions are
implicitly timed. The FSTs are executed iteratively, and each
iteration requires a unit of time.

Definition 3: An FST A is observable if 1) it has no tran-
sition labeled by (ε, ε) other than self-loops and 2) only one
execution exists for an allowed word in L(A).

The observability from Definition 3 ensures that the execu-
tions of the FSTs, and thus their current states, are uniquely
determined by both the previous input/output words. It can
facilitate the hardware and software implementation of the
plant and attackers. In addition, the observable FSTs from
Definition 3 allow empty input or output symbols. In the
supervisory control setup, an empty symbol means the plant
or attackers give no input or output for the current time.

The observability described in Definition 3 strict the tran-
sition in the FST Definition 1 from a relation to a (partial)
function Trans : S × I × O → S. An observable FST is dif-
ferent from a Mealy automaton whose transition is defined
as the (partial) function Trans : S × I → S × O [48]. Thus,
observable FSTs can still capture nondeterministic attack be-
haviors that rewrite an input symbol into different output
symbols. We will discuss these issues in detail in Section IV.

Two words (i1, o1) . . . (in, on) and (i′1, o
′
1) . . . (i′m, o′

m) of the
plant or attackers are viewed as different even if i1 . . . in =
i′1 . . . i′m and o1 . . . on = o′

1 . . . o′
m after ignoring the empty

symbols. More specifically, for a plant, (i1, ε)(ε, o1) and
(i1, o1)(ε, ε) are different words. The former means the plant
inputs i1 and outputs nothing at Time 1 and inputs nothing and
outputs i2 at Time 2; the latter means the plant inputs i1 and
outputs i2 at Time 1 and inputs and outputs nothing at Time 2.

An FST transition labeled with input/output symbols (ε, ε)
is similar to the ε-transitions in automata. They can happen
spontaneously without receiving and generating any input and
output. In addition, observing the FST’s input and output
cannot determine whether they have happened or not. Such
unobservability is unrealistic and undesirable in modeling
plants and attackers in the control loop. Thus, we focus on
using observable FSTs in this work.

FIGURE 3. Example of supervisory control of FST plants.

B. SUPERVISORY CONTROL OF FST PLANTS
The plant modeled by FSTs can generate output symbols that
are different from the input symbols. Thus, unlike classic su-
pervisory control [49] using automata as supervisors, we use
FSTs as supervisors to control such plants, as shown in Fig. 2.
Accordingly, the control loop executes iteratively as follows.
Both the supervisor and the plant start from their initial states.

1) The supervisor (modeled by an FST) chooses an output
symbol oS , which will be sent to the plant, based on an
eligible transition that has this symbol as its output.

2) The plant receives iP = oS and makes a transition non-
deterministically whose input symbol matches it. This
transition will generate an output symbol oP .

3) Upon receiving iS = oP , the supervisor completes
this iteration by executing the transition labeled by
(iS , oS) = (oP , iP). Otherwise, when there is no such
transition, the supervisor will stop the control loop and
raise an alarm.

In this setup, the supervisor has the freedom to choose the
symbol oS in each iteration. Upon receiving iP = oS , the plant
has the freedom to choose one of many transitions whose in-
put symbol matches it. The set of all possible plant executions
in the supervisory control loop can be captured by an FST
derived from the loop composition defined below.

Definition 4: The loop composition of the plant
P = (SP , si,P , IP , OP ,TransP , S f ,P) with the supervisor
S = (SS , si,S , IS , OS ,TransS , S f ,S) in Fig. 2 is an FST given
by P|S = (SP × SS , (si,P , si,S), IP , OP ,Transloop,S f ,P ×
S f ,S) where the transition ((s1,P , s1,S), iP , oP , (s2,P , s2,S)) ∈
Transloop if the following two conditions are met;

1) (s1,P , iP , oP , s2,P) ∈ TransP
2) (s1,S , oP , iP , s2,S) ∈ TransS .
Accordingly, the plant’s executions in the supervisory con-

trol loop in Fig. 2 is given by L(P|S), i.e., the language of the
loop composition P|S .

Definition 5: Let P be an observable FST plant and K ⊆
L(P) be the prefix-closed regular language capturing its de-
sired executions. The supervisor S controls the plant P to the
language K if and only if the set of plant executions under
the supervisor’s regulation satisfies

L(P|S) = K .

Example 1: Fig. 3 shows an example of the supervisory
control of FST plants. Suppose the plant is modeled by the
FST shown by Fig. 3(a). It has one state 0 and two transitions
t1 and t2 with input/output symbols (α1, α2) and (α2, α2),
respectively. The goal is to restrict the plant execution to

VOLUME 2, 2023 211

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

FIGURE 4. Block diagram for supervisory control under sensor and
actuator attacks. The serial composition of Aa, P , and As in the dashed
box form the corrupted supervisor. The executions of the plant P in this
control loop is derived by its loop composition with the corrupted
supervisor.

(t1t2)∗, or equivalently restrict the plant language to K =
((α1, α2)(α2, α2))∗. For this goal, consider a supervisor real-
ized by an FST shown by Fig. 3(b), which has two states 0 and
1 and two transitions τ1 and τ2. At Time 1, only the transition
τ1 labeled by (α2, α1) is allowed by the supervisor whose
current state is 0. Thus, only the input/input pair (α1, α2) is
allowed on the plant, and only the transition t1 can happen.
The symbols are flipped since the plant’s input is the supervi-
sor’s output and the plant’s output is the supervisor’s input. At
Time 2, the supervisor state jumps to 1 following the transition
τ1. Now, only the transition τ2 labeled by (α2, α2) is allowed
by the supervisor. Thus, only the input/output pair (α2, α2) is
allowed on the plant, and only the transition t2 can happen. If
the plant tries to execute the other transition t1, the supervisor
will stop the control loop and raise the alarm. Repeating the
process, the supervisor restricts the plant’s execution to (t1t2)∗
before stopping.

Based on the loop composition, we introduce the following
theorem on the supervisory control of FST plants without
attacks.

Theorem 1: The observable FST S that has the language

L(S) = {(o1, i1) . . . (on, in) | (i1, o1) . . . (in, on) ∈ K }
controls the P to the desired language K .

Proof: The FSTs S and P can be viewed as automata that
take input/output symbol pairs. Thus, the theorem follows the
classic supervisor control theory for automata [49]. Specifi-
cally, the FST realization S of the supervisor exists since K
is regular. Because K is prefix-closed, any state of S is a final
state, i.e., the executions of S can stop at any time. Finally, the
symbols are flipped since the plant’s input is the supervisor’s
output and the plant’s output is the supervisor’s input. �

C. INCLUDING ATTACKS IN SUPERVISORY CONTROL
Now we consider simultaneous sensor and actuator attacks
between the supervisor S and the plant P as shown in Fig. 4.

1) ATTACK MODEL
In practice, there can be many attacks (e.g., via hacking into
sensors or communications) that corrupt the symbols sent be-
tween the plant to the supervisor. In this work, we propose to

capture their overall effect by two FSTs, the actuator attacker
Aa and the sensor attacker As. The input-output relation of
the FSTs Aa and As captures how a sequence of true sens-
ing/actuating symbols can be revised nondeterministically
into another sequence of corrupted symbols. Mathematically,
these relations fall into the category of regular relations [47],
according to Lemma 1. For simplicity, we assume As and Aa

are observable so their internal executions can be captured by
their languages.

The regular-rewriting attacks provide a general framework
to model various attack behaviors. They generalize previous
history-independent attacks (e.g., insert, delete, and replace)
studied in [18], [19], [39], [50] and can capture new history-
dependent attacks such as finite-memory replay attacks [21],
[22]. Finally, we clarify that attackers modeled by observable
FSTs can still rewrite input symbols in different ways to
capture nondeterministic attack behaviors, according to Defi-
nition 3. We will discuss these issues in detail in Section IV.

2) CONTROL LOOP UNDER ATTACKS
With the attackers As and Aa, the supervisory control loop of
Fig. 4 works as follows. At each time, consider a state transi-
tion of the plant with the input and output symbols iP and oP .
Due to the attacks, the plant’s true input and output symbols
may be revised to corrupted symbols iP and iS , respectively,
before the output symbol is sent to the supervisor. The super-
visor has no access to the true output symbol from the plant
and can only see the corrupted symbol. The plant’s transition
is allowed if and only if the corrupted symbol pair (iS , oS)
is allowed by the supervisor. Otherwise, the supervisor will
stop the control loop and raises the alarm. This procedure is
formalized with the following steps:

1) The supervisor (modeled by an FST) chooses an output
symbol oS , which will be sent to the plant, based on an
eligible transition that has this symbol as its output.

2) The actuator attacker Aa receives oS and makes a tran-
sition whose input symbol matches oS . There may be
many such transitions and the attacker can choose any-
one non-deterministically. This transition will generate
an output symbol iP which will be sent to the plant.

3) The plant receives iP and non-deterministically makes
a transition whose input symbol matches it. This transi-
tion will generate an output symbol oP .

4) The sensor attacker As receives oP and non-
deterministically makes a transition whose input symbol
matches it. This transition will generate an output sym-
bol iS , which will be sent to the supervisor.

5) Upon receiving iS ., the supervisor completes this iter-
ation by executing the transition labeled by (iS , oS) =
(oP , iP). Otherwise, when there is no such transition,
the supervisor will stop the control loop and raise an
alarm.

Mathematically, the attacker FSTs are joined into the
control loop with serial composition. Each attacker is
serially composed with the supervisor to create the corrupted

212 VOLUME 2, 2023

FIGURE 5. Example for serial composition of FSTs.

supervisor Sc. We now describe how serial composition can
be done.

Definition 6: Let A = (S, sinit, I, O,Trans,Sfinal) and
A′ = (S′, s′init, I′, O′,Trans′,S′

final) be two FSTs. The
serial composition A′′ = A ◦ A′ is derived by connecting
the FSTs A and A′ in series as shown in Fig. 7
(a), where the input word sequentially passes A and
A′. The composition is defined as the FST given by
A′′ = (S × S′, (sinit, s

′
init), I, O′,Trans′′,Sfinal × S′

final). A
transition ((s1, s′

1), i, o′, (s2, s′
2)) if there exists an α ∈ O ∩ I′

with the following properties:
1) (s1, i, α, s2) is a valid transition in Trans.
2) (s′

1, α, o′, s′
2) is a valid transition in Trans′.

Lemma 2: For any two FSTs A1 and A2, it holds that
RA1 ◦ RA2 = RA1◦A2 where R denotes the regular relation
defined by an FST.

The model derived from the series composition is still
an observable FST. Since FSTs define regular relations,
Definition 6 also provides an FST realization for the com-
position of regular relations in Lemma 2 [47]. We can now
explicitly define the corrupted supervisor as Sc = As ◦ P ◦
Aa.

Example 2: Consider two FSTs A1 and A2 shown in
Fig. 5(a) and (b), where one replaces α1 with α2 and the
other injects α3. The overall FST attack model, captured
with the serial composition of the two FSTs is derived us-
ing Definition 6 and shown in Fig. 5(c). Also, it holds that
RA1◦A2 = RA1 ◦ RA2 .

3) CONTROL GOAL
Let K be a desired prefix-closed regular sub-language K ⊆
L(P) for the plant. The attackers aim to “stealthily” incur
an undesired plant execution that yields a word outside K
without triggering the supervisor’s alarm.

We assume that the attackers have some knowledge about
the plant. We will now describe why this assumption is made
with several simple scenarios where the supervisor can detect
an attack, stop the control loop, and raise the alarm. If the actu-
ator attacker sends iP to the plant while the plant currently has

no possible transition defined by iP as an input symbol, then
the plant will be at a standstill. The supervisor will recognize
this abnormality and raise the alarm. This would occur when
Lout(Aa) �⊆ Lin(P).

Similarly, if the sensor attacker intercepts a message oP
and has no valid transitions with oP as an input symbol in
its current state then the supervisor will notice the delay and
raise the alarm. In other words, if the supervisor is expecting a
response from the plant and it does not receive one then it will
raise the alarm and stop the control loop. This failed attack
occurs if Lout(P) �⊆ Lin(As). For the rest of the analysis, we
will assume that the attackers have enough knowledge of the
plant so that Lout(Aa) ⊆ Lin(P) and Lout(P) ⊆ Lin(As).

For the sensor attacker As, at some time, its input symbol
oP may be disallowed by the supervisor in its current state, or
its output symbol oS (as the supervisor’s input symbol) may
be disallowed in the supervisor’s current state. Similarly, for
the actuator attacker Aa, at some time, its input symbol oS
may be disallowed in its current state, or its output symbol iP
(as the plant’s input symbol) may be disallowed in the plant’s
current state. In all these cases, the attackers are viewed as
failed since the supervisor or plant can detect the abnormality,
immediately stop the supervisory control loop, and raise the
alarm.

Given the discussion above, the supervisor S aims to re-
strict the executions of the plant P to ones that only yield
words in the desired language K ⊆ L(P). We denote by
L(P|Sc) the language of the plant and corrupted supervisor’s
loop composition. This is the set of possible executions of
the plant in the supervisory control loop with the attackers.
Formally, the control goal is given below.

Definition 7: Let P , As, and Aa be observable FSTs
modeling the plant, sensor attacker, and actuator attacker,
respectively, and K ⊆ L(P) be the prefix-closed regular lan-
guage capturing its desired executions. The supervisor S
controls the plant P to the language K iff the set of plant
executions under the supervisor’s regulation satisfies

L(P|Sc) = K .

This ensures that 1) the plant execution is restricted by
the desired set K under the attacks and 2) each word in
K corresponds to a possible plant execution under certain
behavior of the supervisor and attackers.

IV. ADVANTAGES OF FSTS TO MODEL ATTACKS
This section introduces the advantages of using FSTs to
model attack behaviors in supervisory control, following
the discussions in Section III-C. Since the attack behaviors
are mathematical by regular relations, we refer to the class
of attacks modeled by FSTs as regular-rewriting attacks.
The regular relations can mathematically capture the attack-
ers’ nondeterministic behaviors. These include previously
studied history-independent attacks (e.g., insert, delete, and
replace) [18], [19], [39], [50] and more sophisticated history-
dependent attacks such as finite-memory replay attacks [21],

VOLUME 2, 2023 213

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

FIGURE 6. FST models for common attacks.

[22], which can potentially bypass existing intrusion detec-
tors by recording and replaying previous system executions.
The work in [20] also implements history-dependent attacks.
However, they use sensor attackers modeled by a function: the
attack is determined by the plant’s transition history. Compar-
atively, our attacker model is described by an FST allowing
relatively straightforward analysis and intuitive visual repre-
sentations of the attackers.

A. MODELING COMMON ATTACKS BY FSTS
FSTs can model a diverse range of nondeterministic attacks
in supervisory control. FST models can be derived from the
regular relations that the attacks obey, e.g., by analyzing the
security services and (possible) attack surfaces from the sys-
tem’s architecture and deployment. In return, the resilience
analysis given later in this article can guide improving the
security services in the deployed system. Below, we give a
few examples of modeling common attacks with FSTs.

Example 3: Let I′ ⊆ I. The projection attack

ProjectI′ (i) =
{
i, if i ∈ I′

ε, otherwise,
(1)

captures the attack that results in removing all symbols that
belong to I \ I′. On the other hand, the nondeterministic dele-
tion attack is defined as

DeleteI′ (i) =
{
i, if i ∈ I′

ε or i, otherwise.
(2)

It extends the ProjectI′ attack as it captures that the at-
tacker may (or may not) remove symbols from I \ I′; e.g., if
I′ = I this model can be used to capture Denial-of-Service
attacks [51] over the communication network. Finally, the
nondeterministic injection attack is defined as

InjectI′ (ε) = i where i ∈ I′. (3)

In it, a finite number of symbols from I′ can be added before
and/or after the symbols. These attacks can be represented by
FSTs as shown in Fig. 6(a), (b) and (c), respectively.

Example 4: A replacement-removal attack defined by the
rule φ : I → 2I∪ε is represented by an FST as shown in
Fig. 6(d).

Example 5: Let I′ ⊆ I. An injection-removal attack nonde-
terministically injects or removes symbols in I′ from a word.
This is modeled by the FST in Fig. 6(e).

Beyond the simple attackers in Example 3–5, FSTs can
also model complex history-dependent attacks, motivated by
cyber/network attacks implemented by embedded programs
(e.g., malware). Since the attackers modeled by FSTs have
(internal) states, they can perform different attack actions
depending on their current state, which is affected by their
previous attack actions. Take the replay attack as an example,
which is a common strategy for launching cyber attacks [52],
[53]. It works by first recording a fragment of symbols and
then replaying it repeatedly to trap the system. Implementing
this attack requires the attacker to know when to continue
recording or start replaying.

Example 6: A replay attack records a prefix of a word and
replaces the rest with the repetitions of the recorded prefix,
with the prefix size being bounded by the finite-memory ca-
pacity (i.e., size) N . This relation is regular, so can be modeled
by FSTs. For example, a replay attack recording a prefix of
length up to N = 2 for any word I = {i1, i2} can be modeled
by an FST as shown in Fig. 6(f). Note that the FST can
be viewed as the parallel composition of two replay attacks
recording prefixes of length 1 and 2, respectively.

In [20], the attackers are also modeled with states. However,
these states are shared with the plant (referred to as the envi-
ronment). For different plant models, this approach requires
building a new combined model to capture the same replay
attack. On the other hand, our approach allows modeling a

214 VOLUME 2, 2023

FIGURE 7. Modeling attack composition and attack constraints.

replay attack separately and then composing it with the plant
model to study its impact. Our compositional approach can
help the users to 1) model each component separately, 2) study
the impact of different attacks on the same plant, 3) study the
impact of multiple combined attacks.

B. COMPOSITION OF MULTIPLE ATTACKS
Multiple attacks modeled by FSTs can be combined into
an overall FST model. This justifies our modeling from the
general system architecture in Fig. 1 to the control diagram
in Fig. 2. Specifically, in Fig. 1, there may be coordinated
attacks from multiple deployed attack vectors with different
“point-of-entries” from the sensors, actuators, and communi-
cation networks. For example, on the sensor side, there may
be false data injection via sensor spoofing [1], [54] together
with denial-of-service (DoS) attacks on network transmis-
sions. The overall effect of those attacks is equivalent to their
serial composition as illustrated in Fig. 7(a), which is repre-
sented by a single FST As in Fig. 2. Similarly, if there is
one of several possible attacks that may be deployed at the
same “point-of-entry” as studied in [18], the overall effect,
and the corresponding FST model, is equivalent to the parallel
composition of the two FSTs capturing the basic attacks, as
shown in Fig. 7(b). Algorithmically, the parallel composition
is computed as follows.

1) Compute the union of the states, final states, and transi-
tions.

2) Add a new starting state with transitions ε/ε to the
initial states sinit and s′init.

C. IMPOSING CONSTRAINTS ON ATTACKS
FSTs also facilitate imposing (operational) constraints and
transform history-independent attacks (e.g., injection attacks
from (3)) to history-dependent attacks. For example, in some
networked control systems, cryptographic primitives (e.g.,
Message Authentication Codes) can only be intermittently
used due to resource constraints, and thus can only inter-
mittently prevent injection attacks [16], [17], [55]. FSTs can
facilitate modeling such constraints as frequency constraints
on the attacker as studied in [50].

To illustrate this, we take the simple FST in Fig. 6(a) and
show how to impose a frequency constraint.

Example 7: The FST in Fig. 6(a) can remove the input
symbol i non-deterministically. The removal can happen for
all symbols in the worst case. Suppose we want to constrain
the frequency to at most once every three symbols. Then, we
can model it by the FST model in Fig. 7(c) which is modified
from the former FST.

V. ATTACK-RESILIENT SUPERVISOR DESIGN
This section presents theories and algorithms to synthesize
resilient supervisors for the formulation in Definition 7. Since
the plants are modeled by FSTs and can generate different
input and output symbols, we consider supervisors that can
monitor a pair of different input and output symbols each
time, as discussed in Section III-A. Synthesizing the resilient
supervisor that satisfies Definition 7 is not always feasible.
Thus, we consider a related problem of designing a can-
didate resilient supervisor that can restrict L(P|Sc) where
Sc = Aa ◦ S ◦ As to the minimal feasible super-language of
K , i.e., finding a S such that L(P|Sc) is the smallest possible
language that contains K .

Definition 8: The FST S is a candidate resilient supervisor
for a desired language K iff

1) K ⊆ L (P|Aa ◦ S ◦ As), and
2) for any S ′ that satisfies K ⊆ L(P|Aa ◦ S ′ ◦ As), it

holds that L(P|Aa ◦ S ◦ As) ⊆ L(P|Aa ◦ S ′ ◦ As).
If L(P|Aa ◦ S ◦ As) is equal to K , then the candidate

resilient supervisor is the resilient supervisor that satisfies
Definition 7. In the following, we study attacks on sensors in
Section V-A, on actuators in Section V-B, and on both sensors
and actuators in Section V-C.

A. DESIGN RESILIENT SUPERVISORS TO SENSOR ATTACKS
To synthesize the candidate resilient supervisor in Definition 8
with only the sensor attacker As, we use the FST inverse A−1

s
as the countermeasure.

Definition 9: Given an FST, A = (S, sinit, I, O,Trans,
Sfinal), the FST inverse is also an FST denoted by A−1 =
(S, sinit, O, I,Trans−1,Sfinal), where the transition (s, o, i,
s′) ∈ Trans−1 if and only if (s, i, o, s′) ∈ Trans.

The inverse of an FST is derived by flipping the in-
put/output symbols on each transition, as given in Defini-
tion 9. By inverting an FST, the regular relation it defines
is also reverted, as stated by the following lemma [47], and

VOLUME 2, 2023 215

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

Definition 9 provides an FST realization for the inverse of
regular relations.

Lemma 3: For an FST A, it holds that RA−1 = R−1
A , where

RA denotes the regular relation defined by A.
The composition of a relation and its inverse includes the

identity map. Thus, we have the following lemma on the
composition of an FST and its inverse.

Lemma 4: For any FST A, it holds that

∀I ∈ Lin(A). I ∈ RA◦A−1 (I),

∀I ∈ Lout(A). I ∈ RA−1◦A(I).

Equivalently, it holds that

RMLin (A) ⊆ RA◦A−1 , RMLout (A) ⊆ RA−1◦A.

Here, Lin(A) and Lout(A) are the input and output languages
of A, and ML is the automaton realization (thus also an FST)
of the regular language L.

Recall Theorem 1. For the desired language K ⊆ L(P) of
the plant P , the FST S can supervise the plant’s language
in the closed loop without attacks, i.e., let L(P|S) = K ,
if S = M−1

K where MK is a deterministic FST realizing
K . The supervisor should be the inverse of MK since the
plant and supervisor have flipped input and output. Now, after
introducing the sensor attacker As, we show that the compo-
sition of the inverse of As and M−1

K can potentially serve
as a resilient supervisor, as stated below. Intuitively, in the
supervisor S = A−1

s ◦ M−1
K , the part A−1

s partially reverts the
attacks of As by finding out the possible true words before
the attacks, and then the part M−1

K filters out undesirable
words. Thus, the natural choice of the candidate supervisor is
(MK ◦ As)−1 = A−1

s ◦ M−1
K . The theorem below formally

explains this approach.
Theorem 2: With only the sensor attacker As, for any FST

plant P and desired prefix-closed regular language K ⊆
L(P), the deterministic FST satisfying

RSmin = RA−1
s ◦M−1

K

is a candidate resilient supervisor. It is a resilient supervisor
iff

L
(MK ◦ As ◦ A−1

s

) ∩ L(P) = K .

Proof: We defer the proof until Theorem 4. �

B. DESIGN RESILIENT SUPERVISORS TO ACTUATOR
ATTACKS
Similar to Section V-A, when there is only the actuator at-
tacker Aa, we use the FST inverse A−1

a as the countermeasure.
The theorem below formally explains this approach.

Theorem 3: With only the actuator attacker Aa, for any
plant P and desired prefix-closed regular language K ⊆
L(P), the deterministic FST satisfying

RSmin = RM−1
K ◦A−1

a

is a candidate resilient supervisor. It is a resilient supervisor
iff

L
(A−1

a ◦ Aa ◦ MK

) ∩ L(P) = K .

Proof: We defer the proof until Theorem 4. �
Intuitively, the supervisor is corrupted by the composition

with Aa, thus the natural choice of the candidate supervisor is
M−1

K ◦ A−1
a , according to Theorem 1.

C. DESIGN RESILIENT SUPERVISORS TO BOTH SENSOR
AND ACTUATOR ATTACKS
When both the sensor and actuator attackers As and Aa ex-
ist, we combine the approaches from Section V-A and V-B
and use the FST inverse A−1

s and A−1
a as the countermea-

sure. Again, we can think of the composition Aa ◦ P ◦ As as
the corrupted plant, and L(Aa ◦ MK ◦ As), thus the natural
choice of the candidate supervisor is (Aa ◦ MK ◦ As)−1 =
A−1

s ◦ M−1
K ◦ A−1

a , according to Theorem 1. The theorem
below formally explains this approach.

Theorem 4: For any plant P and desired prefix-closed reg-
ular language K ⊆ L(P), the deterministic FST satisfying

RS = RA−1
s ◦M−1

K ◦A−1
a

(4)

is a candidate resilient supervisor. It is a resilient supervisor
iff

L
(A−1

a ◦ Aa ◦ MK ◦ As ◦ A−1
s

) ∩ L(P) = K . (5)

Proof: We start with proving the deterministic FST Smin

satisfying (4) is a candidate resilient supervisor. The existence
of Smin results from Lemma 1 and that RA−1

s ◦M−1
K ◦A−1

s
is a

regular relation.
First, we prove the supervisor Smin satisfies Condition 2)

of Definition 8. Consider another supervisor S that satisfies
Condition 1) of Definition 8. Thus, it should allow any word in
K for the plant under the attackers. Namely, any pair of input
and output words IP = i1 . . . in and OP = o1 . . . on satisfying
(i1, o1) . . . (in, on) ∈ K , i.e.,

(IP , OP) ∈ RMK
, (6)

should be allowed for the plant. Here, i1, o1, . . . in, on may be
the empty symbol ε. Similarly, the pair of input and output
words OS and IP , should be allowed by the attacker Aa if

(OS , IP) ∈ RAa . (7)

And the pair of input and output words OP and IS , should be
allowed by the attacker Aa if

(OP , IS) ∈ RAs . (8)

Since the plant P and attackers As and Aa are deterministic,
their executions corresponding determined by IP , OP , IS , OS .
Combining (6), (7), (8) gives

(OS , IS) ∈ RAa ◦ RMK
◦ RAs .

216 VOLUME 2, 2023

Algorithm 1: Resilient supervisor for both sensor and
actuator attacks.
Require: Desired language K ⊆ L(P), and attackers As

and Aa.
1: Build an FST MK realizing K .
2: Compute inverse A−1

a , M−1
K and A−1

s .
3: Compute composition S = A−1

s ◦ M−1
K ◦ A−1

a .
4: if L((As ◦ S ◦ Aa)−1) ∩ L(P) = K then
5: return S
6: else
7: return Infeasible
8: end if

That is, by Lemmas 2 and 3,

(IS , OS) ∈ RA−1
s ◦M−1

K ◦A−1
s

. (9)

By construction, any such pair of IS and OS should be ac-
cepted by S , thus

RA−1
s ◦M−1

K ◦A−1
s

= RSmin ⊆ RS .

Therefore, Smin is the “minimal” supervisor.
Second, we prove the supervisor Smin satisfy Condition 1)

of Definition 8. Again, consider a pair of words IP and OP
satisfying (6) generated from the plant P . Let IS and OS be the
corresponding corrupted words sent to the supervisor. Then,
the pair (OS , IP) should satisfies (7) and the pair (OP , IS)
should satisfies (8). Since the supervisor Smin and attackers
As and Aa are deterministic, their executions corresponding
determined by IP , OP , IS , OS . Combining the above condi-
tions, we have that any such pair of IS and OS should satisfy
(9), and thus allowed by the supervisor Smin.

Finally, we show that the left-hand side of (5) gives the
language L(P | Aa ◦ S ◦ As) of the plant in the closed loop
with supervisor and attackers. Following the formulation in
Section III-C, the set of plant words (i.e., sequences of
input/output symbol pairs of the plant) allowed by the super-
visor Smin and attackers As and Aa is

L
(
(As ◦ Smin ◦ Aa)−1)=L

(A−1
a ◦ Aa ◦ MK ◦ As ◦ A−1

s

)
.

(10)
This result can be derived by viewing As ◦ Smin ◦ Aa as a
corrupted supervisor and applying Theorem 1. The inverse is
because the plant’s input is the supervisor’s output and the
plant’s output is the supervisor’s input. Therefore, the plant
language L(P | Aa ◦ S ◦ As) is the intersection of (10) with
L(S). When (5) holds, we have L(P | Aa ◦ S ◦ As) = K ,
thus Smin is a resilient supervisor. �

Theorem 4 gives Algorithm 1 for resilient supervisors to
the actuator and sensor attacks. This algorithm computes
a minimal superlanguage of K . If the aforementioned su-
per language equates to K , then the designed supervisor is
resilient. The algorithm only involves FST inverse and com-
position and thus has polynomial complexity in time. Our
previous work [32] develops a method to compute the largest
subset of K that the plant can follow with supervisory control

FIGURE 8. Example supervisors for both sensor and actuator attacks.

under the influence of attackers. The latter is known as a
maximal sublanguage. However, this approach is much more
computationally expensive than the former since it relies on
fixed point operations. Below is an illustrative example. A
more complex example is given in Section VI.

Example 8: As shown in Fig. 8, consider
� set of input and output symbols I = {i1, i2, i3, i4, i5} and

O = {o1, o2, o3, o4, o5},
� a plant P with language {t1t2, t3t4, t5}∗ as shown and

defined in Fig. 8(a),
� a desired language K = {t1t2}∗ realized by FST MK

in Fig. 8(b),
� two actuator attackers: Aa1 from Fig. 8(c) rewrites o1 to
o3 and vice versa while Aa2 from Fig. 8(d) rewrites o3 to
o1 only,

� two sensor attackers: As1 from Fig. 8(e) rewrites i5 to i1
and vice versa while As2 from Fig. 8(f) rewrites i1 to i5
only.

In this example, we have shown two different types of
attacks and supervisors for the same plant FST and desired

VOLUME 2, 2023 217

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

FIGURE 9. Example supervisors resilient to sensor and actuator attacks.

language, K . The supervisor shown in Fig. 8(g) was designed
to counter Aa1 and As1. Similarly, the supervisor in Fig. 8(h)
was designed to counter Aa2 and As2.

Both supervisors were designed using Algorithm 3. The
supervisor language L(A−1

s ◦ M−1
K ◦ A−1

s) was computed to
determine if the plant can be restricted to K . The choice of
Aa2 and As2 does not allow for a feasible resilient supervisor
design because the As2 forces i5 to be the only symbol sent
to the plant. The supervisor will then receive o5 and raise the
alarm. Thus, no transitions will ever occur.

In practice, it is unrealistic to assume a design engineer
has complete knowledge of the attackers on a CPS. However,
this algorithm is still very useful because it can quickly test
for resilient supervisor existence based on a wide variety of
nondeterministic attacks. In practice, our proposed FST attack
model would act as a conservative overestimate of the true
attacker.

D. RELATIONSHIP TO PREVIOUS WORK
Due to its generality, the presented FST-based framework de-
scribed in Sections III and IV can emulate several previously-
studied setups of supervisory control. For example, we can
emulate the classical supervisory control [49] with uncontrol-
lable symbols Iuc in our framework by adopting the following
setups in Fig. 2 by letting P be the plant (an automaton)
of interest and the actuator attacker be A(s)

a = InjectIuc
and

InjectIuc
◦ P be the serial composition of the injection attack

from (3) and the plant. This attacker injects uncontrollable
symbols in Iuc whenever they are acceptable by the plant.
The supervisory control under sensor/actuator enablement and
disablement attacks [19] can be emulated in our framework by
letting the sensor/actuator attacks be A(ed)

a ◦ A(s)
a , where A(s)

a

is defined above and A(ed)
a is the injection-removal attack on

a set of vulnerable control symbols from Example 5. Finally,
the supervisory control under replacement-removal sensor at-
tacks [18] can be emulated in our framework by letting the
sensor attacks be A(rr)

s ◦ A(s)
s , where A(s)

s is defined above and
A(rr)

s is the replacement-removal attack from Example 4.

VI. CASE STUDIES: ARSC TOOL AND SYNTHESIS
SCALABILITY
Based on the proposed algorithms, we developed an open-
source tool ARSC [56] based on the OpenFst library [29]
and illustrated its efficiency on problems on different scales.
For all evaluations, the tool was executed on an Intel Core
i7-7700 K CPU, and the execution time and memory usage
were measured.

To illustrate the effectiveness of our approach, we consider
a scheduling problem from [49], where n players indepen-
dently require service for m sequential tasks ti j, i ∈ [n], j ∈
[m] on a central server. The tasks of each player have to be
served in the index order. The sensors are corrupted by an
attacker that removes the tasks performed by the first player,
and the actuator attacks nondeterministically rotating the in-
put sequence t1 jt2 j . . . t(n−1) jtn j to t2 jt3 j . . . tn jt1 j for any task
index j ∈ [m]. For n = 2, m = 2, the desired language K for
the system, as well as the attacks are modeled as shown in
Fig. 9. From Theorem 4, the language K is controllable and
the attacks can be countered by the supervisor constructed
by Algorithm 1. The supervisor for the case n = 2, m = 2 is
displayed in Fig. 9(e).

The complexity of the supervisor synthesis algorithms is
determined by the composition operation. The composition
A1 ◦ A2 requires O(|SA1 ||SA2 |DA1 (log(DA2) + MA2)) time
and O(|SA1 ||SA2 |DA1MA2) space where |S·|, D· and M· de-
note the number of states, the maximum out-degree and the

218 VOLUME 2, 2023

TABLE 1 Execution time and memory usage of the supervisory
synthesizing algorithm for different values of n and m.

maximum multiplicity for the FST, respectively [29]. The
order in which the composition operations are performed can
also change the overall complexity. For simplicity, the term
P−1 is dropped and the supervisor is computed as (A−1

s ◦
M−1

K) ◦ A−1
a in our implementation. Therefore, the overall

time complexity is reduced to O(|SMK
||SAa |DAs log(DAa))

where SMK
∼ O((m + 1)n) and SAa=DAs=DAa ∼ O(mn)

for this problem.
Table 1 shows the running times of the algorithm averaged

over 100 synthesis and the maximum amount of memory
used during the tool execution for different values of n and
m. We can observe that a tenfold increase in the number of
states in MK increases the execution time and the memory
usage by at most 100 times. This sub-quadratic increase is a
consequence of the composition operations performed by the
algorithm.

VII. CONCLUSION
We studied the supervisory control of discrete-event systems
under sensor and actuator attacks. Both the system and the
attacks are mathematically modeled by finite-state transducers
(FST). We discussed the advantage of using FSTs to model
attacks in capturing history dependency, composing multiple
attacks, and imposing constraints on attacks. Then we pro-
posed theorems and algorithms to design resilient supervisors
for given attacks in three cases: only sensor attacks, only
actuator attacks, and both sensor and actuator attacks. Finally,
we implemented the algorithms with computer programs and
demonstrated their applicability in case studies. Our work ex-
tended previous studies on attack-resilient supervisory control
and provided a new framework based on FSTs.

REFERENCES
[1] D. Shepard, J. Bhatti, and T. Humphreys, “Drone hack,” GPS World,

vol. 23, no. 8, pp. 30–33, 2012.
[2] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee,

“Design and implementation of attack-resilient cyberphysical systems:
With a focus on attack-resilient state estimators,” IEEE Control Syst.,
vol. 37, no. 2, pp. 66–81, Apr. 2017.

[3] C. G. Cassandras, “Smart cities as cyber-physical social systems,” En-
gineering, vol. 2, no. 2, pp. 156–158, 2016.

[4] Z. Jiang, M. Pajic, and R. Mangharam, “Cyber-physical modeling of
implantable cardiac medical devices,” Proc. IEEE, vol. 100, no. 1,
pp. 122–137, Jan. 2012.

[5] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Proc.
18th Int. Conf. Hybrid Syst.: Comput. Control, 2015, pp. 239–248.

[6] Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic, “Distributing se-
quential control for manufacturing automation systems,” IEEE Trans.
Control Syst. Technol., vol. 28, no. 4, pp. 1586–1594, Jul. 2020.

[7] V. Lesi, Z. Jakovljevic, and M. Pajic, “Security analysis for distributed
IoT-based industrial automation,” IEEE Trans. Automat. Sci. Eng.,
vol. 19, no. 4, pp. 3093–3108, Oct. 2022.

[8] L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of re-
silient supervisors,” in Proc. IEEE 58th Conf. Decis. Control, 2019,
pp. 7659–7664.

[9] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Secu-
rity against communication network attacks of cyber-physical systems,”
J. Control, Automat. Elect. Syst., vol. 30, no. 1, pp. 125–135, 2019.

[10] R. Meira-Góes, S. Lafortune, and H. Marchand, “Synthesis of super-
visors robust against sensor deception attacks,” IEEE Trans. Autom.
Control, vol. 66, no. 10, pp. 4990–4997, Oct. 2021.

[11] A. H. Rutkin, “Spoofers use fake GPS signals to knock a Yacht off
course,” 2013. [Online]. Availbale: www.technologyreview.com/news/
517686/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course

[12] J. S. Warner and R. G. Johnston, “A simple demonstration that the
global positioning system (GPS) is vulnerable to spoofing,” J. Secur.
Admin., vol. 25, no. 2, pp. 19–27, 2002.

[13] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in Proc. Int. Conf.
Cryptogr. Hardware Embedded Syst, 2013, pp. 55–72.

[14] R. S. Smith, “A decoupled feedback structure for covertly appropriat-
ing networked control systems,” IFAC Proc. Volumes, vol. 44, no. 1,
pp. 90–95, 2011.

[15] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” in Proc. Conf.
High Confidence Netw. Sys., 2012, pp. 55–64.

[16] I. Jovanov and M. Pajic, “Relaxing integrity requirements for attack-
resilient cyber-physical systems,” IEEE Trans. Autom. Control, vol. 64,
no. 12, pp. 4843–4858, Dec. 2019.

[17] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embed-
ded control tasks,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s,
Sep. 2017, Art. no. 188.

[18] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control
of discrete-event systems under attacks,” Dyn. Games Appl., vol. 9,
pp. 965–983, 2017.

[19] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121–133, 2018.

[20] R. Meira Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis
of sensor deception attacks at the supervisory layer of cyber-physical
systems,” Automatica, vol. 121, 2020, Art. no. 109172.

[21] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[22] T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,” Computer,
vol. 44, no. 4, pp. 91–93, Apr. 2011.

[23] J. Sakarovitch and R. Thomas, Elements of Automata Theory. Cam-
bridge, U.K.: Cambridge Univ. Press, 2003.

[24] M. Droste, W. Kuich, and H. Vogler, Eds., Handbook of Weighted Au-
tomata (Series Monographs in Theoretical Computer Science). Berlin,
Germany: Springer, 2009.

[25] M. Mohri, “Finite-state transducers in language and speech processing,”
Computat. Linguistics, vol. 23, pp. 269–311, 1997.

[26] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Comput. Speech Lang., vol. 16, no. 1, pp. 69–88,
2002.

[27] M. Mohri, “Weighted finite-state transducer algorithms. An overview,”
in Formal Languages and Applications, vol. 148, J. Kacprzyk, C.
Martín-Vide, V. Mitrana, and G. Păun, Eds. Berlin, Germany: Springer,
2004, pp. 551–563.

[28] M. Mohri, “Weighted automata algorithms,” in Handbook of Weighted
Automata, M. Droste, W. Kuich, and H. Vogler, Eds. Berlin, Germany:
Springer2009, pp. 213–254.

[29] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “Open-
FST: A general and efficient weighted finite-state transducer library,”
in Implementation and Application of Automata (Series Lecture Notes
in Computer Science), J. Holub and J. Ždárek, Eds. Berlin, Germany:
Springer, 2007, pp. 11–23.

[30] A. K. Bozkurt, Y. Wang, and M. Pajic, “Secure planning against stealthy
attacks via model-free reinforcement learning,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 10656–10662.

[31] V. Lesi, I. Jovanov, and M. Pajic, “Network scheduling for secure
cyber-physical systems,” in Proc. IEEE Real-Time Syst. Symp., 2017,
pp. 45–55.

VOLUME 2, 2023 219

www.technologyreview.com/news/517686/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course
www.technologyreview.com/news/517686/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course

WANG ET AL.: ATTACK-RESILIENT SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS: A FINITE-STATE TRANSDUCER APPROACH

[32] Y. Wang and M. Pajic, “Attack-resilient supervisory control with in-
termittently secure communication,” in Proc. IEEE 58th Conf. Decis.
Control, 2019, pp. 2015–2020.

[33] Y. Wang and M. Pajic, “Supervisory control of discrete event systems in
the presence of sensor and actuator attacks,” in Proc. IEEE 58th Conf.
Decis. Control, 2019, pp. 5350–5355.

[34] S. Xu and R. Kumar, “Discrete event control under nondeterministic
partial observation,” in Proc. IEEE Int. Conf. Automat. Sci. Eng., 2009,
pp. 127–132.

[35] T. Ushio and S. Takai, “Nonblocking supervisory control of discrete
event systems modeled by mealy automata with nondeterministic output
functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 799–804,
Mar. 2016.

[36] R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,” Automatica, vol. 94, pp. 35–44, Aug. 2018.

[37] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Secu-
rity of cyber-physical systems: Design of a security supervisor to thwart
attacks,” IEEE Trans. Automat. Sci. Eng., vol. 19, no. 3, pp. 2030–2041,
Jul. 2022.

[38] D. You, S. Wang, and C. Seatzu, “A liveness-enforcing supervisor tol-
erant to sensor-reading modification attacks,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 52, no. 4, pp. 2398–2411, Apr. 2022.

[39] R. M. Goes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy deception
attacks for cyber-physical systems,” in Proc. IEEE 56th Annu. Conf.
Decis. Control, 2017, pp. 4224–4230.

[40] L. Lin, Y. Zhu, and R. Su, “Synthesis of covert actuator attackers for
free,” Discrete Event Dyn. Syst., vol. 30, no. 4, pp. 561–577, 2020.

[41] L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers,”
Automatica, vol. 130, 2021, Art. no. 109714.

[42] R. Tai, L. Lin, and R. Su, “Synthesis of optimal covert sensor–
Actuator attackers for discrete-event systems,” Automatica, vol. 151,
2023, Art. no. 110910.

[43] J. Yao, X. Yin, and S. Li, “Sensor deception attacks against initial-state
privacy in supervisory control systems,” in Proc. IEEE 61st Conf. Decis.
Control, 2022, pp. 4839–4845.

[44] Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Joint state estima-
tion under attack of discrete event systems,” IEEE Access, vol. 9,
pp. 168068–168079, 2021.

[45] R. Tai, L. Lin, Y. Zhu, and R. Su, “Privacy-preserving co-synthesis
against sensor–Actuator eavesdropping intruder,” Automatica, vol. 150,
2023, Art. no. 110860.

[46] M. Sipser, “Introduction to the theory of computation,” ACM SIGACT
News, vol. 27, no. 1, pp. 27–29, 1996.

[47] M. Holcombe, Algebraic Automata Theory. Cambridge, U.K.: Cam-
bridge Univ. Press, 1982.

[48] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell Syst.
Tech. J., vol. 34, no. 5, pp. 1045–1079, Sep. 1955.

[49] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York, NY, USA: Springer, 2008.

[50] R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,” Automatica, vol. 94, pp. 35–44, 2018.

[51] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,”
Comput., vol. 35, no. 10, pp. 54–62, 2002.

[52] F. Miao, M. Pajic, and G. Pappas, “Stochastic game approach for replay
attack detection,” in Proc. IEEE 52nd Annu. Conf. Decis. Control, 2013,
pp. 1854–1859.

[53] Y. Mo et al., “Cyber–physical security of a smart grid infrastructure,”
Proc. IEEE, vol. 100, no. 1, pp. 195–209, Jan. 2012.

[54] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in Proc. 18th
ACM Conf. Comput. Commmun. Secur., 2011, pp. 75–86.

[55] V. Lesi, I. Jovanov, and M. Pajic, “Integrating security in resource-
constrained cyber-physical systems,” ACM Trans. Cyber-Phys. Syst.,
vol. 4, no. 3, pp. 1–27, May 2020.

[56] “ARSC–Tool for synthesis of attack-resilient supervisory controllers,”
Accessed Jul. 2023. [Online]. Available: https://github.com/alperkamil/
arsc

YU WANG (Senior Member, IEEE) received the
Ph.D. degree in mechanical engineering and the
M.S. degree in statistics and mathematics from
the University of Illinois at Urbana-Champaign,
Champaign, IL, USA. He is currently an Assis-
tant Professor with the Department of Mechan-
ical and Aerospace Engineering, University of
Florida, Gainesville, FL, USA, and the Group Lead
of Autonomous and Connected Vehicles of the
UF Transportation Institute. He was a Postdoctoral
Researcher with the Department of Electrical and

Computer Engineering, Duke University, Durham, NC, USA. His research in-
terests include assured autonomy, cyber-physical systems, machine learning,
and formal methods. This work on statistical verification of hyperproperties
for cyber-physical systems was selected as one of the Best Paper Finalists of
the ACM SIGBED International Conference on Embedded Software (EM-
SOFT) in 2019.

ALPER KAMIL BOZKURT received the B.S.
and M.S. degrees in computer engineering from
Bogazici University, Istanbul, Turkey, in 2015 and
2018, respectively. He is currently working toward
the Ph.D. degree with the Department of Computer
Science, Duke University, Durham, NC, USA. His
research interests include the intersection of ma-
chine learning, control theory, and formal methods.
In particular, he focuses on developing learning-
based algorithms that synthesize provably safe and
reliable controllers for cyber-physical systems.

NATHAN SMITH received the Bachelor of Sci-
ence degree in aerospace engineering and mathe-
matics from the University of Florida, Gainesville,
FL, USA, in 2021. He is currently working toward
the Ph.D. degree in aerospace engineering under
Dr. Yu Wang. He is from Jupiter, FL, USA. His
research interests include applications of game the-
ory and reinforcement learning to model attacks on
cyber-physical systems.

MIROSLAV PAJIC (Senior Member, IEEE) re-
ceived the Dipl. Ing. and M.S. degrees in electrical
engineering from the University of Belgrade, Bel-
grade, Serbia, in 2003 and 2007, respectively, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the University of Pennsylvania, Philadel-
phia, PA, USA, in 2010 and 2012, respectively.
He is currently the Dickinson Family Associate
Professor with the Department of Electrical and
Computer Engineering, Duke University, Durham,
NC, USA. He also holds secondary appointments

with the Computer Science, and Mechanical Engineering and Material Sci-
ence Departments. His research interests include the design and analysis of
high-assurance cyber-physical systems with varying levels of autonomy and
human interaction, at the intersection of (more traditional) areas of learning
and controls, AI, embedded systems, formal methods, and robotics. He was
the recipient of various awards, including the ACM SIGBED Early-Career
Award, IEEE TCCPS Early-Career Award, NSF CAREER Award, ONR
Young Investigator Program Award, ACM SIGBED Frank Anger Memorial
Award, Joseph and Rosaline Wolf Best Dissertation Award from Penn Engi-
neering, IBM Faculty Award, and seven Best Paper and Runner-up Awards at
top cyber-physical systems venues.

220 VOLUME 2, 2023

https://github.com/alperkamil/arsc
https://github.com/alperkamil/arsc

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

