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ABSTRACT Imperfect models lead to imperfect controllers and deriving accurate models from first prin-
ciples or system identification is especially challenging in networked systems. Instead, data can be used
to directly compute controllers, without requiring any system identification or modeling. In this paper we
propose a strategy to directly learn control actions when data from past system trajectories is distributed
among multiple agents in a network. The approach we develop provably converges to a suboptimal solution
in a finite number of steps, bounded by the diameter of the network, and with a sub-optimality gap that
can be characterized as a function of data, and that can be made arbitrarily small. We further characterize
the robustness properties of our approach and give provable guarantees on its performance when data are
affected by noise or by a class of attacks.

INDEX TERMS Distributed control and optimization, learning for control, network analysis and control,
optimal control.

I. INTRODUCTION
Networks and multi-agent systems have been studied exten-
sively in the control community in the context of formation
control [1], [2], consensus algorithms [3], and coordination of
multi-agent systems [4], to cite a few. These results have seen
application in various real-world scenarios from robotics [5],
[6] to power grids [7]. Together with its opportunities, mod-
eling the interaction between possibly heterogeneous systems
through networks presents practical challenges. In fact, build-
ing accurate models of large networks is a burdensome task
and modeling errors (e.g., missing or extra links, incorrect
link weights) are often unavoidable [8], [9]. Network mod-
els can be built either through first principles or via system
identification. In the former, a dynamical model is deduced
from the physical properties of the system, which are often
not fully characterized. Alternatively, system identification
can be used when data are available [10], [11]. Unfortunately,
this approach, too, has limitations and has returned a set of
mixed results in application to modern network systems [12],
[13], [14]. This is especially problematic when the end goal
of system identification is to provide the basis for controller

design since errors in the modeling phase can compound in
the controller design phase. In this work, we propose a model-
agnostic control approach for a network system. That is, we
bypass the system modeling phase altogether by using data to
directly learn suitable control actions.

The direct data-driven control literature leverages data to
design controllers in a one-step solution, as opposed to the
indirect approach, where data are used to identify a model that
is then used to design a controller. Although direct data-driven
controls can be dated as far back as [15], they have recently
been the subject of renewed interest from the control com-
munity. A modern approach to designing direct data-driven
controls includes data-driven open-loop optimal control [16],
[17], [18], closed-loop and robust control [19], [20], [21],
[22], and predictive and nonlinear control [23], [24], [25],
[26], [27]. The problem of learning optimal controls in net-
work systems has remained, however, relatively unexplored.
To the best of our knowledge, the first result in this direction
is [28], soon followed by [29] and [30]. In [28], the authors
propose a modified version of the DeePC algorithm [23] to
stabilize a network system through a primal-dual flow (while
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minimizing a quadratic function of the inputs and the states).
This strategy is based on a Model Predictive Control approach
(MPC) where a behavioral systems representation built upon
a recorded system trajectory is used in place of the system’s
model. A limit of this approach is that it assumes that input-
state data from past trajectories, as well as the current state,
can be freely shared among neighboring agents. In addition,
the distribution of the primal-dual flow among the agents in
the network requires a substantial number of messages to be
shared [35]. This assumption is limiting because it presup-
poses that the time scales of communication and computation
processes are significantly shorter than that of the controller
action. An alternative approach appeared in [30], where the
same problem is tackled through the system level synthesis
framework (SLS) [36]. SLS parameterizes closed-loop system
responses directly from collected open-loop trajectories. The
result of [30] reduces to a distributed computation of a dy-
namic state-feedback controller via the alternating direction
method of multipliers (ADMM) [37]. This approach shares
much of the limitations of [28], namely the necessity of high
frequency communication between nodes in the network, and
the need to share input-state trajectories among the networks’
nodes. Further recent results on the control of interconnected
systems include [31], [32], [33], [34]. However, these works
focus on finding stabilizing controllers, and do not include
optimization over an objective function, robustness bounds,
nor explicit data-driven formulas.

The contribution of this paper is a data-driven and dis-
tributed algorithm to learn optimal controls in a multi-agent
environment. Our approach is data-driven as the control de-
sign relies exclusively on prerecorded input-state trajectories
of an unknown linear system, and it is distributed as it as-
sumes that the recorded trajectories are not available to any
single agent, but are partitioned throughout the network. The
goal of the agents is to compute the control action which
globally minimizes a given quadratic cost function of the
states and inputs, from a given initial condition. To do this,
we leverage an algorithm based on iterative projections in
order to distribute the computation of the control in a network
of agents with partial access to data. This work builds upon
and significantly expands the approach presented in [29] and
departs from the cited literature in a number of ways. First,
it does not require data from past recordings to be shared (at
least directly) among the networks’ nodes, offering an implicit
layer of privacy. Moreover, it relies on a closed-form expres-
sion that provably converges to a solution, with a prescribed
distance from optimality, after a finite number of iterations
of the algorithm bounded by the diameter of the network.
Finally, while the aforementioned papers consider the case of
noiseless data, in this work we also study the robustness of
the approach when the collected data are injected with noise
or adversarial attacks.

The remainder of the paper is organized as follows. Sec-
tion II contains the problem setup and necessary preliminary
notions. In Section III we derive closed-form solutions to the
problem of designing optimal data-driven controls and present

our distributed algorithm. In Section IV we derive results on
the robustness of the proposed approach to noisy data, and in
Section V we numerically validate our results and compare
them with alternative approaches. We conclude our paper in
Section VI and leave the proofs to the Appendices.

II. PROBLEM SETUP
A. NOTATION
Let R (N) and R

+ (N+) denote the set of real (integer) and
strictly positive real (integer) numbers, respectively. Given
a matrix A ∈ R

n×m, we let Rank(A), Basis(A), Ker(A), AT,
σmin(A) denote the rank, a basis of the column space, the
kernel, the transpose, and the smallest singular value of A,
respectively. We let blkdiag(A1, . . . , An) be the block diagonal
matrix with blocks Ai ∈ R

ni×mi . For a matrix A ∈ R
n×m, and

for p < n and q < m, we let [A]1:p,1:q be the matrix formed
by the first p rows and q columns of A. For any matrix A,
we denote its Moore-Penrose pseudoinverse as A†. We let
A � 0 (A � 0) denote a positive definite (positive semidefi-
nite) matrix. The spectral norm of matrix A is ‖A‖, and the
Kronecker product between matrices A and B is denoted by
A ⊗ B. In and 0n,m stand for the n × n identity matrix and
n × m zero matrix, respectively (subscripts will be omitted
when clear from the context). Given a sequence of vectors
x(t ) ∈ R

n, with t ∈ {1, . . . , T }, we let col(x(1), . . . , x(T )) =
[x(1)� · · · x(T )�]� ∈ R

nT . Let vec(·) : Rn×m → R
nm denote

the vectorization operator of a matrix. Given two vectors
v,w ∈ R

n, we say that they are orthogonal if vTw = 0, and
indicate this as v ⊥ w. To stress the fact that two vectors are
not orthogonal we shall use v 
⊥ w. For a random variable
x : � → R, we let P[x ∈ S] and E[x] be the probability that x
takes on a value in a set S ⊆ R and the mean or expected value
of x, respectively. Finally, we say that a function f : R → R

grows sublinearly with x if limx→∞ | f (x)|/x = 0.

B. PROBLEM DEFINITION
We study the controllable linear system

x(t + 1) = Ax(t ) + Bu(t ), (1)

where x ∈ R
n and u ∈ R

m are the state and the input vec-
tors at time t ∈ N

+, respectively, and with A ∈ R
n×n and

B ∈ R
n×m. We seek to compute the input sequence uT =

col(u(0), . . . , u(T − 1)) that minimizes the following finite-
horizon quadratic objective function:

arg min
uT

xT
T QxT + uT

T RuT

subject to x(t + 1) = Ax(t ) + Bu(t )

x(0) = x0, (2)

where Q ∈ R
n(T +1)×n(T +1) � 0, R ∈ R

mT ×mT � 0 are the
state and input weighting matrices, respectively, and xT =
col(x(0), . . . , x(T )). When the matrices Q and R in (2) are
block diagonal the minimization problem (2) is referred to
as the finite-horizon discrete-time linear quadratic regulator
(LQR) problem [38].
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In solving the minimization problem (2) we assume that the
pair (A, B) is not known. We assume, however, that a series of
experiments has been performed to learn the solution of (2)
directly through experimental data. In particular, we assume
that N experiments of length T have been performed and that
the experimental data are

X1:T =
[
x1

T · · · xN
T

]
, (3a)

U =
[
u1

T · · · uN
T

]
, (3b)

X0 =
[
x1

0 · · · xN
0

]
, (3c)

where X1:T ∈ R
nT ×N contains the state trajectories, U ∈

R
mT ×N the input sequences, and X0 ∈ R

n×N the initial states
of the N experiments: x j

T = col(x j (1), . . . , x j (T )), u j
T =

col(u j (0), . . . , u j (T − 1)), and x j
0 = x j (0) of the jth exper-

iment.
Notice that we can write the state evolution of (1) from

initial condition x0 and subject to the input sequence uT as

xT =

⎡
⎢⎢⎢⎢⎢⎢⎣

I

A

A2

...

AT

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
OT

x0 +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0

B · · · 0 0

AB · · · 0 0
. . .

AT −1B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
FT

uT . (4)

Thus, without measurement noise, the data matrices satisfy

X :=
[

X0

X1:T

]
= [OT FT

] [X0

U

]
. (5)

We assume that the following holds throughout the paper.
Assumption II.1 (Persistency of excitation of data): The

experimental inputs and initial conditions satisfy

Rank

[
X0

U

]
= n + mT .

�
Assumption II.1 is standard in data driven studies [20],

[21] and places a lower bound on the number of experiments
needed to build exact data-driven expressions, namely, N ≥
n + mT , where T is the length of each experiment [39].

In the absence of a model, the minimization problem (2)
can be solved using experimental data as shown in [20], [23],
[40]. However, these works assume that the experimental data
are collectively available. Instead, motivated by the increas-
ing interest in data-driven control of multiagent and network
systems, we assume that the experimental data are distributed
across a set of agents, and we seek a solution to the minimiza-
tion problem (2) that relies on distributed computation.

C. SETUP FOR MULTIAGENT LEARNING
Let G = (V, E) be the graph associated with the matrix A in
(1), where V = {1, . . . , n} and (i, j) ∈ E if and only if A ji 
= 0.

FIGURE 1. In this figure we show a visual depiction of the data collection
phase. N experiments of length T are carried out over a network system.
Each agent i ∈ {1, . . . , M} collects input-state trajectories of a subset of the
network nodes, i.e., the initial state x j

0,i , the state trajectory x j
T,i , and the

input trajectory u j
T,i , for each experiment j.

Let V be partitioned as V = V1 ∪ · · · ∪ VM , with |Vi| = ni.
Then, after reordering the nodes, the matrix A reads as

A =

⎡
⎢⎢⎣

A11 . . . A1M
...

...
...

AM1 . . . AMM

⎤
⎥⎥⎦ .

We assume1 that the input matrix in (1) can be written as

B = blkdiag(B1, . . . , BM ). (6)

Then, system (1) can equivalently be written as the
interconnection of M subsystems of the form

xi(t + 1) = Aiixi(t ) +
M∑

j=1, j 
=i

Ai jx j (t ) + Biui(t ), (7)

where xi ∈ R
ni and ui ∈ R

mi are the states and inputs,
respectively, of the nodes in Vi.

We assume the presence of M agents, each one responsi-
ble for one subsystem (see also Fig. 1). In particular, agents
are interconnected according to a directed communication
graph Gc = (Vc, Ec), and agent i selects the input ui to the
ith subsystem using local data and information exchanged
with neighboring agents Ni = { j : (i, j) ∈ Ec}. The local data
available to agent i are

Xi =
[
x1

T,i · · · xN
T,i

]
, (8a)

Ui =
[
u1

T,i · · · uN
T,i

]
, (8b)

X0,i =
[
x1

0,i · · · xN
0,i

]
, (8c)

1Although some of our results hold also for general input matrices, this
assumption simplifies the presentation and is also common in distributed data-
driven studies [28], [30].
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that is, the components indexed by Vi of the state trajectories,
control inputs, and initial conditions of the N experiments.
Thus, after a possible reordering of the system states,

X =

⎡
⎢⎢⎣

X1
...

XM

⎤
⎥⎥⎦ , U =

⎡
⎢⎢⎣

U1
...

UM

⎤
⎥⎥⎦ , and X0 =

⎡
⎢⎢⎣

X0,1
...

X0,M

⎤
⎥⎥⎦ .

Agents cooperate to collectively compute the local inputs that
solve the minimization problem (2). A naive solution to this
problem requires the agents to share all their local experimen-
tal data with all other agents, and then employ centralized
data-driven formulas for the solution of the minimization
problem (2) (see [20], [23], [40] and Theorem III.1 below).
Instead, we will develop algorithms that require the agents
to exchange reduced information to compute, in finite time,
a solution to the minimization problem (2) in a distributed
manner.

III. MULTIAGENT LEARNING OF OPTIMAL CONTROLS
We start by providing a data-driven solution to the minimiza-
tion problem (2) when there is only one agent. This solution
is general, and appeared previously in [40]. In particular, the
optimal control u∗

T minimizing (2) can be computed in closed
form as

u∗
T = −UK0S†(XK0)�QXKU (X0KU )†x0, (9)

with

S = (XK0)�Q(XK0) + (UK0)�R(UK0),

and K0 = Basis(Ker(X0)) and KU = Basis(Ker(U )), high-
lighting the dependency of the optimal controls on the data.
We now give an alternative formula to compute u∗

T in closed
form. This formula requires a stronger assumption on Q, but
is more compact and holds in most scenarios.

Theorem III.1 (Single-agent data-driven solution (2)): Let
X0, X and U be as in (3) and (5), and satisfying Assumption
II.1. Define P ∈ R

(n+mT )×(n+mT ) as

P =
⎛
⎝X

[
X0

U

]†
⎞
⎠T

Q

⎛
⎝X

[
X0

U

]†
⎞
⎠+

[
0n×n 0

0 R

]
. (10)

If Q1/2OT has full column rank the matrix P is invertible, then
the solution u∗

T to (2) can be extracted from[
x0

u∗
T

]
= P− 1

2

([
I 0

]
P− 1

2

)†
x0, (11)

with x(0) = x0, �
Theorem III.1 provides a data-driven expression of the opti-

mal control input for the minimization problem (2) alternative
to (9). The assumption that Q1/2OT has full column rank is
required to ensure the invertibility of P and is typically satis-
fied in practice. For instance, it is satisfied when Q � 0, or, in
the case of block diagonal Q with diagonal blocks Qd ∈ R

n×n

(standard LQR setup), when the pair (A, Q1/2
d ) is observable.

This assumption on Q1/2OT is made in order to keep expres-
sion (9) more compact, which helps simplifying notation in
the rest of the paper. If needed, however, this assumption can
be lifted and we refer the interested reader to Appendix B.
Both expressions (11) and (9) require the knowledge of all
the experimental data, as well as the knowledge of the cost
function, which is undesirable for interconnected and possibly
large systems. While a distributed data-driven solution to the
minimization problem (2) could be obtained using standard
techniques for distributed optimization, e.g., see [28], [30], we
follow a different approach that will lead to an algorithm with
finite-time convergence guarantees. To this aim, we define the
following auxiliary problems:

arg min
α,β

∥∥∥∥∥
[

Q
1
2 X Q

1
2 X

0 R
1
2 U

][
α

β

]∥∥∥∥∥
2

subject to

⎡
⎢⎣X0 0

U 0

0 X0

⎤
⎥⎦
[
α

β

]
=

⎡
⎢⎣x0

0

0

⎤
⎥⎦ (12)

and

arg min
α,β,v,w

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

α

β

v

w

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

subject to

⎡
⎢⎢⎢⎢⎢⎢⎣

X0 0 0 0

U 0 0 0

0 X0 0 0

Q
1
2 X Q

1
2 X εIX 0

0 R
1
2 U 0 εIU

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α

β

v

w

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(13)

where ε ∈ R
+ is a tunable parameter, with IX = In(T +1), IU =

ImT and therefore α ∈ R
N , β ∈ R

N , v ∈ R
n(T +1), w ∈ R

mT .
We now characterize the feasibility and optimality properties
of (12) and (13).

Lemma III.2 (Relationship between the solution of (2) and
(12)): If α∗ and β∗ are minimizers of problem (12), then
u∗

T = Uβ∗ is the minimizer of problem (2). �
Lemma III.3 (Relationship between the solution of (2) and

(13)): The minimization problem (13) is feasible and admits
a unique solution when ε > 0. Furthermore, if α∗(ε), β∗(ε),
v∗(ε) and w∗(ε) are minimizers of problem (13), then

lim
ε→0+

Uβ∗(ε) = u∗
T , (14)

where ε > 0, and u∗
T is the minimizer of problem (2). �

Since the constraints in the minimization problem (13) can
be partitioned row-wise in a way that each row depends only
on the data available to a single agent (see below), a dis-
tributed algorithm can be readily obtained. Further, given the
equivalence between the minimization problems (2), (12), and
(13) as stated in Lemma III.2 and Lemma III.3, a distributed
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Algorithm 1: Distributed Data-Driven Optimal Control.

solution to (2) can be obtained by solving (13) in a distributed
manner. Our distributed algorithm for the agents to solve the
minimization problem (2) via distributed computation is in
Algorithm 1, where Wi is defined in (15) and d denotes the
diameter of Gc.2 We now provide an informal description of
the algorithm:

(S1) Initially, each agent i computes the minimum norm solu-
tion to Wiγi = col(x0,i, 0mT , 0n, 0n(T +1), 0mT ), where Wi ∈
R

(ni+miT +ni+ni (T +1)+miT )×(N+N+n(T +1)+mT )

Wi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X0,i 0 0 0

Ui 0 0 0

0 X0,i 0 0

Q
1
2
i Xi Q

1
2
i Xi εIi

X 0

0 R
1
2
i Ui 0 εIi

U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and Ki = Basis(Ker(Wi )). Here, Ii
X (resp. Ii

U ) is a matrix
whose rows are the rows of InT (resp. ImT ) correspond-

ing to the indices that extract Q
1
2
i Xi (resp. R

1
2
i Ui) from

Q
1
2 X (resp. R

1
2 U ). From the notation in (13), let γi =

col(αi, βi, vi,wi )∈ R
N+N+n(T +1)+mT be such solution.

(S2) At each iteration, each agent i transmits γi and Ki to its
neighboring agents j, and receives γ j and Kj from each
neighbor j.

(S3) At each iteration, each agent i updates γi and Ki as

γ +
i = γi + [Ki 0

][− Ki Kj
]†

(γi − γ j ),

Ki = Basis(Im(Ki ) ∩ Im(Kj )).

(S4) Convergence of this iterative procedure is guaranteed
after a number of steps equal to the diameter of commu-
nication graph (see below). Upon convergence, each agent
returns the vector βi = [γi]N+1:2N , extracted from γi at the
algorithm’s final iteration.

2The diameter of a graph G is the maximum distance between any two
nodes of G.

A high level walkthrough of the algorithm is in order. Step
(S1) is simply the initialization step, in which we compute
a preliminary solution γi = W †

i col(x0,i, 0) which uses only
local data and is feasible for agent i. In step (S2) neighboring
agents share the information that is needed to update the
provisory solution γi. In step (S3) γi is updated to γ +

i with
information from its neighbors in such a way that γ +

i is a fea-
sible solution for agent i and its neighbors. More specifically
we find the new γ +

i to satisfy

γ +
i = W †

i col(x0,i, 0) + Kiκi (16a)

= W †
j col(x0, j, 0) + Kjκ j, (16b)

for all j ∈ N, where κi and κ j are vectors of appropriate
dimension. In the proof (cf. Appendix E) we show how κi

and κ j such that γ +
i satisfies (16) always exist, and show how

this can be computed through the procedure described in (S3).
Finally, (S4) gives one condition for ending the algorithm
once it converges, which is also detailed in the proof.

Theorem III.4 (Distributed learning of data-driven optimal
controls): Let Gc be a strongly connected communication
graph. Let βi(ε) be the value returned by Algorithm 1 when Wi

is as in (15), and let α∗(ε), β∗(ε), v∗(ε), w∗(ε) be minimizers
of problem (13), for some ε > 0. Then, for all i ∈ {1, . . . , M},
βi(ε) = β∗(ε). �

From Theorem III.4, Algorithm 1 returns in a finite number
of steps the solution of the minimization problem (13). Due to
Lemma III.3, such solution yields the minimizer of (2) as the
parameter ε decreases to zero. In fact, for any finite value of ε,
the sub-optimality gap between the minimizer of (2) and the
input Uβ∗(ε) reconstructed from the minimizer of (13) can
also be quantified. Let

Y =

⎡
⎢⎣X0 0

U 0

0 X0

⎤
⎥⎦ , H =

[
Q

1
2 X Q

1
2 X

0 R
1
2 U

]
, x̄0 =

⎡
⎢⎣x0

0

0

⎤
⎥⎦ .

(17)

Lemma III.5 (Optimality gap of (14) for finite ε): Let β∗(ε)
be the minimizer of Problem (13), and let δ(ε) = ‖u∗

T −
Uβ∗(ε)‖. Then,

δ(ε) ≤ ∥∥U [0N,N IN
]
KY Z (ε)K�

Y H�HY †x0
∥∥ , (18)

where Z (ε) = (K�
Y (ε2I + H�H )KY )† − (K�

Y H�HKY )†, and
KY = Basis(Ker Y ). �

Using Lemma III.5, Algorithm 1 can be used to compute
a sub-optimal solution to (2) in a finite number of distributed
calculations and within any desired sub-optimality guarantee.
In fact, once βi is computed by each agent i, the sub-optimal
and local control at each agent is simply uT,i = Uiβi.

Remark III.6 (Convergence of Algorithm 1): Algorithm 1
converges after d iterations, where d is the diameter of Gc

(cf. Appendix E). When d is not available the algorithm can
be stopped after n iterations, since n is always available to
each agent through the size of the vector vi, and d ≤ n always
holds.
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IV. ROBUSTNESS OF DATA-DRIVEN CONTROL INPUTS
So far, we discussed a distributed approach to learn optimal
controls in a multiagent environment through noiseless data.
This assumption on the data is often too restrictive in practice.
In what follows we study how noisy datasets affect the re-
sults of Section III, assuming different degrees of knowledge
on the noise distribution. In particular, we are interested in
characterizing the robustness of our approach by bounding, in
probability, the distance between the true cost of the optimal
control problem in (2) and the one computed through our
data-driven approach with a noisy dataset.

Assume that the state trajectory in (3) is collected as

X̃1:T = X1:T + 
X ,

where X1:T is the ground truth data and 
X is a matrix
containing stochastic perturbations. We highlight that pertur-
bation 
X affects the state trajectory at times t = {1, . . . , T }.
However, the analysis that follows can be carried out in a
similar fashion for noisy initial states and inputs, as well
as for alternative data-driven expressions, e.g., (9). Let F :
R

mT ×N × R
n×N × R

n(T −1)×N → R
mT +n be the data-driven

map (11). We define the perturbed control map[
x0

ũT

]
= F (U, X0, X̃1:T ) = P̃− 1

2

([
I 0

]
P̃− 1

2

)†
x0, (19)

where

P̃ =
⎛
⎝[ X0

X̃1:T

][
X0

U

]†
⎞
⎠T

Q

⎛
⎝[ X0

X̃1:T

][
X0

U

]†
⎞
⎠+

[
0 0

0 R

]
.

Assumption IV.1 (Invertibility of P̃): We assume that matrix
P̃ is almost surely invertible. �

Assumption IV.1 is required for the (almost sure) existence
of the map (19). This is a technical assumption which is
typically verified in practice. Following a procedure similar
to [?] we let supp(
X ) denote the set of corrupted entries of
X1:T and supp(
X ) = {i : δX,i 
= 0}, where δX,i = vec(
X )i

is the i-th entry of vec(
X ). Further, since F (U, X0, X̃1:T ) is
Fréchet-differentiable with respect to X1:T [41],3 we can write
it through its Taylor expansion

F (U, X0, X̃1:T ) = F (U, X0, X1:T )

+ ∇FX (U, X0, X1:T ) vec(
X )

+ r(U, X0, X1:T ,
X ), (20)

with lim‖
X ‖→0
‖r(U,X0,X,
X )‖

‖
X ‖ = 0 and where ∇FX is the
Jacobian matrix of F (U, X0, X1:T ) with respect to X1:T .

Finally, we let J and J̃ be the cost function of (2) obtained
from x0 through uT and ũT in (11) and (19), respectively, and
we let the error on the cost function be


J = |J̃ − J|. (21)

3The fact that F is differentiable in X can be proved by noticing that the
partial derivatives of F with respect to each element of X exist (cf. (52)) and
that they are continuous in an arbitrarily small neighborhood of X .

We are now ready to give probabilistic bounds with re-
spect to 
J on control (11) for different assumptions on the
noise 
X . In particular, given tolerance τ , and assuming that
r(·) = 0 in (20), we characterize the probability that 
J is
greater than such tolerance. In this context, a smaller proba-
bility P[
J ≥ τ ] translates to a more robust controller, while
a probability close to one implies a poor robustness perfor-
mance with respect to the desired tolerance. In the following
we let

V =
([

OT FT
])T

Q
([

OT FT
])+

[
0 0

0 R

]
, (22)

and we refer the reader to Appendix G for a detailed derivation
of the results that follow.

Theorem IV.2 (Probabilistic upper bound on 
J): Let 
J
be as in (21). Then, for any τ > 0,

P [
J ≥ τ ] ≤ 1√
τ

⎛
⎝ ∑

i∈supp(
X )

cX,i E[|δX,i|]
⎞
⎠ , (23)

where cX,i = ‖V
1
2 ∇FX,i‖ and ∇FX,i is the ith column of the

Jacobian matrix of (19) with respect to X1:T . �
Theorem IV.2 provides a simple upper bound on the ac-

curacy of the data-driven control (11). In fact, bound (23)
captures the sensitivity of (11) to perturbations of the dataset:
the less sensitive the data-driven map is, i.e., the smaller cX,i

is in absolute value, the closer the control input computed
through the perturbed dataset in (19) is to the optimal input
in (11) and, in turn, the smaller 
J is. The bound (23) re-
quires that the noise distribution has a defined variance, but is
typically loose. For instance, in the case of i.i.d. Gaussian per-
turbations δX,i ∼ N(0, σ 2), it holds that E[|δX,i|] = σ

√
2/π

and (23) reads as

P [
J ≥ τ ] ≤ σ

√
2

τπ

⎛
⎝ ∑

i∈supp(
X )

cX,i

⎞
⎠ , (24)

which exhibits a square root decay in the ratio τ/σ 2. More
informative bounds can be established for specific classes of
perturbations, as we show next for the Gaussian case.

Theorem IV.3 (Probabilistic upper bound on 
J for
Gaussian perturbations): Let 
J be as in (21) and assume
that the entries of 
X are i.i.d. Gaussian random variables
with zero mean and variance σ 2. Then, for any τ > 0,

P [
J ≥ τ ]≤ (n + mT + 1) exp

(
− 1

2σ 2

τ∑
i∈supp(
X ) c2

X,i

)
(25)

where cX,i = ‖V
1
2 ∇FX,i‖. �

Notice that the bound in Theorem IV.3 decays exponen-
tially in the ratio τ/σ 2, and is therefore tighter than (24), as
shown in the numerical simulations in Fig. 2.

We next investigate how the sensitivity of the data-driven
map (as quantified by the norm of the Jacobian matrices
∇FX,i) is related to the number of experiments N . This study
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FIGURE 2. In this figure we plot the probabilistic bounds discussed in
Section IV for a random (unstable) system with n = 5, m = 2 and compare
them with a Montecarlo simulation (averaged over 106 simulations, with
T = 5 and N = n + mT = 12). In particular, Bound 1 refers to (24) and
Bound 2 to (25). The thin horizontal line is the implicit probability bound
P[·] ≤ 1. �X ∼ N(0, σ2I), with σ = 1. Probability values are rounded up to
10−6.

is especially interesting in a scenario in which an attacker
can affect some entries of X̃1:T deliberately, while supp(
X )
grows sublinearly with respect to N .

Lemma IV.4 (Asymptotic behavior of ‖∇FX,i‖ for large N):
Assume that the entries of X0, U are independent of N and
σ 2

min([X T
0 U T]T) ≥ cN where c > 0 is a constant independent

of N . Then, for all i ∈ supp(
X ), ‖∇FX,i‖ ≤ kX,i/N where
kX,i > 0 is independent of N .4 �

We remark that the condition σ 2
min([X T

0 U T]T) ≥ cN is typi-
cally satisfied for random i.i.d. initial conditions and inputs.5

Thus, Lemma IV.4 shows that all ‖∇FX,i‖ typically converge
to zero as the number of experiments N increases. Under this
scenario, the map F becomes less sensible to corrupted data as
more data becomes available. This conclusion is instrumental
to prove the following result.

Theorem IV.5 (Asymptotically vanishing perturbation for
large N): In addition to the assumption in Lemma IV.4,
assume that the distributions of the entries of 
X are inde-
pendent of N and |δx,i| have finite mean. Then, if supp(
X )
grows sublinearly with N , for any τ > 0,

lim
N→∞

P [
J ≥ τ ] = 0. (26)

�
Under the assumptions of Theorem IV.5 we can guarantee

that the error on 
J goes to zero for increasing N , regardless
of 
X , as shown in Fig. 3, ensuring the robustness of the
control action under attack on the data set.

V. NUMERICAL RESULTS AND ILLUSTRATIVE EXAMPLES
In this section we provide numerical validations of the results
presented in this paper. First, we show how Algorithm 1 and

4We say that a random variable X is independent of a deterministic param-
eter N if the distribution of X is not a function of N .

5If U and X0 have i.i.d. zero mean entries P[limN→∞
[X �

0 U�]�[X �
0 U�] = NI] = 1 by the (strong) Law of Large

Numbers [42]. We remark that N is the number of experiments (columns of
X0,U ) and I is the identity matrix.

FIGURE 3. This figure shows the convergence of �J in (21) computed with
noisy data for increasing number of experiments N. We remark that J̃ is the
cost function (2) from the perturbed control map (19) computed when
supp(�X ) grows sublinearly in N and δi ∼ N(1, 0). Equivalent results can
be obtained for any distribution on supp(�X ) that satisfies the conditions
on Theorem IV.5. Data are gathered from a randomly generated unstable
system with n = 5, m = 3 and T = 15. Assumption II.1 is met for all N to
the right of the red solid vertical line.

FIGURE 4. This figure shows the results associated with the experiment of
Section V.V-A. In panel (a) we show the communication graph of an
example network, with M = 6 and d = 3. All other networks in this
example are similar in structure (ring network), with varying diameters
d ∈ {3, . . . , 8}. All experiments shown in panel (b) are performed with
T = 5, ε = 10−3 and the tolerance for the pseudoinverse operation is set to
tol = 10−8.

Theorem III.4 can be used to solve the problem in (2) when the
system (1) is unknown but data (8) are available. We further
discuss how our formulas can be used directly, for a fixed-
window control, in a receding horizon fashion. Finally, we
compare and discuss our approach to alternative approaches
in the literature.

A. AN APPLICATION TO SCALING RING NETWORKS
We assess the results of Section III by analyzing the conver-
gence of Algorithm 1 for networks of varying diameter. We
consider randomly generated ring networks, with communi-
cation graph Gc as in Fig. 4(a), here shown for a ring network
with M = 6 and d = 3. In Fig. 4(b) we plot the error between
the solution of (2) and the result of Algorithm 1. For the kth
iteration of Algorithm 1, subnetwork i computes its own con-
trol inputs as ui[k] = Uiβi[k], where βi[k] is the interim value
of βi at iteration k. The dynamics of (1) when ui[k] is injected
to all i ∈ {1, . . . , M} is compared to the one induced by the
model-based optimal control (11). As discussed in Theorem
III.4, Algorithm 1 converges to the solution in a number of
steps equal to the diameter of the communication graph Gc.

VOLUME 2, 2023 99



CELI ET AL.: DISTRIBUTED DATA-DRIVEN CONTROL OF NETWORK SYSTEMS

FIGURE 5. This figure shows the results associated with the experiment of
Section V-B. In panel (a) we show a randomly generated Watts-Strogats
network with M = 30 agents. In panel (b) we show the convergence of
Algorithm 1, comparing it to the model-based centralized solution of (2).
Additional simulation parameters are T = 5, ε = 10−3 and the tolerance for
the pseudoinverse operation is set to tol = 10−8.

B. AN APPLICATION TO WATTS-STROGATZ NETWORKS
To prove the effectiveness of this approach in more complex
network structures, we test Algorithm 1 on a Watts-Strogats
network of larger size [43]. In Fig. 5 we run Algorithm 1
over a randomly generated Watts-Strogats network with M =
30, mean node degree 4 and rewiring probability of 0.15,
see the documentation for the WattsStrogatz function in
MATLAB [44]. The particular realization of Fig. 5(a) is a
network with diameter 5, as testified by the convergence of
Algorithm 1 shown in Fig. 5(b).

C. RECEDING HORIZON IMPLEMENTATION
Theorem III.1 assumes that T is the control horizon of prob-
lem (2) as well as of the dataset (8). It is possible to lift
this requirement by implementing Algorithm 1 in a receding
horizon fashion. That is, once Algorithm 1 is executed, each
agent applies only a finite horizon h ≤ T of the computed
controller uT,i = Uiβi. After h time steps, then, Algorithm
1 is executed again, and a new controller is found for the
subsequent horizon h. This approach is formally described
in Algorithm 2. Clearly, there is no limit to the number of
times that this algorithm can be run, i.e., we can use this
approach to design an arbitrarily long controller. A receding
horizon implementation is common throughout the literature,
often termed Model Predictive Control (MPC), and is also
implemented in related works [28], [30]. Comparison of these
approaches with our method are discussed next.

D. COMPARISON WITH SPLITTING METHODS
Several strategies have been proposed to solve MPC problems
in a distributed fashion. Among these, splitting methods [35],
[?] have been explored in a model-based [45] and data-
driven [28] setting. These consist in splitting one optimization
problem in a family of smaller optimization problems. In the
context of the problem setup (2), each agent needs to solve
a local optimization problem, while iteratively exchanging
information with other agents in order to properly converge to
the global optimal solution. The accuracy of the approach is
closely related to the number of iterations of the algorithm, a

Algorithm 2: Receding Horizon Algorithm 1.

FIGURE 6. This figure shows a comparison between the approach in
Algorithm 2 and a distributed data-driven solver based on [28] (splitting
method). The experiments are performed with noiseless data from the
same system, a randomly generated network with M = 3 agents, and
diverse state size. This comparison highlights the computational time to
accuracy tradeoff that the approaches have with respect to a particular
design parameter, namely the number of iterations of the splitting method,
and the parameter ε for Algorithm 2. The runtime is reported in seconds
(lower is better), and the distance from the optimal input is computed as
the norm of the difference of the solution and the exact optimal control
computed through a model-based LQR solver (lower is better). Additional
simulation parameters are T = 5, tol = 10−8.

higher number of them leading to a more accurate solution.
A known downside of these approaches is their slow con-
vergence; typically, a large number of iterations is needed to
converge to an acceptable solution (measured as its distance
from the exact optimal solution). Recently [28] proposed split-
ting (2) trough a primal-dual flow. In Fig. 6 we compare the
convergence properties of Algorithm 2 with a primal-dual
algorithm based on [28]. In particular, we keep the problem
formulation and data-collecting phase of [28], while modi-
fying the cost function through the Augmented Lagrangian
method, which is known to improve the convergence speed of
the flow. As a standard practice, we distribute the Augmented
Lagrangian through the Alternating Directions Method of
Multipliers (ADMM), see [?, Chapter 8]. As highlighted in
Fig. 6, Algorithm 2 returns a stabilizing controller even for
higher noise values.
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FIGURE 7. This figure compares the robustness of two different
distributed data driven controllers when the recorded data are affected by
noise. The underlying model is a chain of four interconnected
bi-dimensional oscillators, as discussed in [30, Sec. VI]. Problem (2) is
considered with Q = 1, R = 1, and random initial condition. The top panel
shows the difference between the reference state evolution and the
solution of Algorithm 2 (left) and of [30] (right) when data are collected
without noise. As expected, both methods converge to the equilibrium (the
planning horizon for both methods is set to T = 10). In the middle panel
the same comparison is shown when data are collected with noise (each
input and state trajectory is perturbed with an additive i.i.d. disturbance
with zero mean and variance σ2 = 0.1). Finally, in the bottom panel, the
same simulation is when data are collected with variance σ2 = 5.
Additional parameters are ε = 0.01 and tol = 10−8.

E. COMPARISON WITH [30] WITH NOISY DATA
We now compare the performance of our approach to [30],
when data are collected with noise. We consider the same
system used in [30, Sec. VI], a ring network with M = 4
subsystems, i.e., Ec = {(i, i + 1), (i + 1, i), i = 1, . . . , M} ∪
{(1, M ), (M, 1)}. Each subsystem (7) is a two-dimensional
linearized and discretized (
t = 0.2) swing dynamics, with

Aii =
[

1 
t

− ki
mi


t 1 − di
mi


t

]
, Ai j =

[
0 0

ki j
mi


t 0

]
,

and Bii = [0 1]T. The design parameters are drawn ran-
domly from continuous uniform distributions mi ∼ U[0, 2],
di ∼ U[0.5, 1], and ki j ∼ U[1, 1.5], with ki =∑ j∈Ni

ki j . We
run the same experiment three times with Q = I and R = I ,
the first assuming that 
X = 0 (i.e., noiseless case), the sec-
ond that 
X ∼ N(0, σ 2I ), with σ 2 = 0.1, and finally with the
same noise distribution but with σ 2 = 5.0. We run our al-
gorithm with the receding horizon implementation described
in Algorithm 2, with h = 1. We notice from Fig. 7 that
our method and that of [30] perform well when 
X = 0.
Crucially, however, the convergence of [30] to a stabilizing
controller is significantly slower than Algorithm 2, when data
are corrupted by noise.

VI. CONCLUSION
In this paper we propose an algorithm to distributedly learn
optimal controllers for an unknown network system through
data. Our approach provably converges to a suboptimal so-
lution in a finite number of steps, with a subopotimality
gap that can be characterized as a function of the available
data. Moreover, although data are distributed among multiple
agents in the network, and communication between agents is
therefore necessary to find a globally optimal control, this
approach does not require to directly share trajectory data
between agents. We discuss how these features are attractive,
especially when compared to alternative approaches in the
literature. Finally, we characterize the robustness properties
of our approach and show that we can bound, in probability,
the error on the cost function of the control computed with
corrupted data.

APPENDIX
A. DATA-DRIVEN TRAJECTORIES OF (1)
We start by recalling a structural Lemma, which appeared for
input-output trajectories in [39], and is here adapted for input-
state trajectories.

Lemma A.1 (Data-driven trajectories of (1)): Let (3) be the
data generated by the system (1) with T ≥ n, and let x̄T be the
state trajectory of (1) generated with some initial condition
and control input. Then,

x̄T = [XKU XK0
] [α

β

]
, (27)

for some vectors α and β. �
Proof: Let x̄0 and ūT be the initial condition and input to

(1). Since the matrices X0KU and UK0 are full-row rank (see
Assumption II.1), there exists α and β such that

x̄0 = X0KU α and ūT = UK0β. (28)

From (4) we have

x̄T = OT x̄0 + FT ūT = OT X0KU α + FT UK0β

= XKU α + XK0β,

where the last equality follows from (5). �
Lemma A.1 shows how any trajectory of (1) can be written

as a linear combination of the available data. In particu-
lar, state trajectories are obtained in (27) as the sum of the
free (XKU α) and forced responses (XK0β), which are recon-
structed from data of arbitrary control experiments.

B. PROOF OF THEOREM III.1
Consider the following problem

arg min
γ

∥∥∥P 1
2 γ

∥∥∥2

subject to [I 0] γ = x0. (29)

where P is as in (10). Note that, the solution to the above
problem is γ ∗ = col(x0, u∗

T ) with u∗
T being the solution to (2).
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This follows from (4) and the fact that

P =
⎛
⎝X

[
X0

U

]†
⎞
⎠T

Q

⎛
⎝X

[
X0

U

]†
⎞
⎠+

[
0 0

0 R

]

= [OT FT
]T

Q
[
OT FT

]+
[

0 0

0 R

]
(30)

when Assumption II.1 holds. If P is invertible, letting v =
P1/2γ problem (29) becomes

arg min
v

‖v‖2

subject to [I 0]P−1/2v= x0. (31)

whose solution is v∗
T = ([I 0]P−1/2)†x0. Thus, the solution

to (29) is

γ ∗ =
[

x0

u∗
T

]
= P−1/2v∗

T = P−1/2([I 0]P−1/2)†x0. (32)

We show that if Q1/2OT has full column rank, then P � 0,
which in turn implies that P is invertible. To this end, notice
that, from (30),

P =
[

OT
T QOT OT

T QFT

F T
T QOT F T

T QFT

]
︸ ︷︷ ︸

P1

+
[

0 0

0 R

]
.

Since OT
T QOT � 0 (which directly follows from the assump-

tion that Q1/2OT has full column rank) and P1 � 0, the
Schur complement of the block OT

T QOT of P1 must be pos-
itive semidefinite [?, Theorem 1.12], namely S = F T

T QFT −
F T

T QOT
T (OT

T QOT )−1OT
T QFT � 0. Next, since S � 0 and R �

0, the Schur complement of the block OT
T QOT of P, namely

S + R, is positive definite. Since the block OT
T QOT of P and

its Schur complement are both positive definite, follows that
P � 0 [?, Theorem 1.12]. �

We complement the proof by noticing that, for P not invert-
ible, and for any Q � 0, problem (29) becomes

arg min
vT ,w

‖vT ‖2

subject to [I 0]((P1/2)†vT + KPw)= x0, (33)

where w is a vector of appropriate size, from which a solution
alternative to (32) can be found.

C. PROOF OF LEMMA III.2
From Lemma A.1 we can write

xT = [XKU XK0
] [ᾱ

β̄

]
,

with x0 = X0KU ᾱ and uT = UK0β̄. Equivalently, we can
write

xT = [X X ]

[
α

β

]

where α = KU ᾱ (i.e., Uα = 0), and β = K0β̄ (i.e., X0β = 0),
and consequently x0 = X0α, uT = Uβ and the cost function
of (12) equals that of (2). When u∗

T is the solution to (2) and
α∗, β∗ is the solution to (12), it is then straightforward to see
that u∗

T = Uβ∗.
We can further derive an explicit form of the optimal vec-

tors α∗ and β∗ instrumental to other results in the paper. By
substituting the constraints of (12) into the cost function, and
for H , Y , and x̄0 as in (17), problem (12) can be written as

arg min
w

∥∥H (Y †x̄0 + KY w
)∥∥2

, (34)

where KY = Basis(Ker(Y )). The minimizers to (34) define the
set of optimal vectors α∗, β∗ via[

α∗

β∗

]
= Y †x̄0 + KY w∗

= (I − KY (HKY )†H
)

Y †x̄0 + r (35)

where r ∈ Ker(H ) ⊆ Ker(U ). The resulting, unique, optimal
control uT = Uβ∗ is the solution to (2). �

D. PROOF OF LEMMA III.3
From the constraints in (13) it holds, for all ε > 0,

v = −1

ε
Q

1
2 X (α + β ), w = −1

ε
R

1
2 Uβ.

Substituting these equations in the cost function, and for H , Y
and x̄0 as in (17), problem (13) can be rewritten as

γ ∗(ε) =
[
α∗(ε)

β∗(ε)

]
= arg min

α,β

ε2

∥∥∥∥∥
[
α

β

]∥∥∥∥∥
2

+
∥∥∥∥∥H
[
α

β

]∥∥∥∥∥
2

s.t. Y

[
α

β

]
= x̄0.

(36)
If γ ∗(ε) is bounded as ε → 0+, then γ ∗(ε) converges to
the (minimum norm) solution to problem (12) as ε → 0+,
and (14) holds. Thus, it remains to prove the boundedness
of γ ∗(ε) as ε → 0+. To this end, we note that by writing
γ ∗(ε) = γ1(ε) + γ2(ε) with

γ1(ε) ⊥ Ker H ∩ Ker Y and γ2(ε) ∈ Ker H ∩ Ker Y,

the cost of (36) evaluated at γ ∗(ε) reads as

C(γ ∗(ε)) = ε2 ‖γ1(ε)‖2 + ε2 ‖γ2(ε)‖2 + ‖Hγ1(ε)‖2 , (37)

since γ2(ε) ∈ Ker H . Further, the vector γ1(ε) satisfies
Y γ1(ε) = Y γ ∗(ε) = x̄0 since γ2(ε) ∈ Ker Y . From the latter
fact and (37), it follows that it must be γ2(ε) = 0, ∀ε > 0,
for γ ∗(ε) to be optimal. Further, from (37) and the fact that
there always exists a γ (e.g., γ = Y †x̄0) which is independent
of ε and satisfies the constraint in (36) (thus yielding a cost
which is bounded ∀ε > 0), it follows that γ1(ε) = γ ∗(ε) must
be bounded as ε → 0+. �
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E. PROOF OF THEOREM III.4
The proof follows an argument similar to the one of [46,
Theorem 3.3]. Let γi be the estimate of agent i, Wi be de-
fined as in (15), and Ki = Basis(Ker(Wi )). Observe that γi =
W †

i col(xi,0, 0, 0, 0, 0) ⊥ Ker(Wi ). Let i and j be two neigh-
boring agents, i.e, (i, j) ∈ Ec, then there exist two vectors κi

and κ j such that γi + Kiκi = γ j + Kjκ j . In particular, such
vectors can be chosen as[

κi

κ j

]
= [− Ki Kj

]† (
γi − γ j

)
.

Substituting κi back in γi we have that the vector

γ +
i = γi + [Ki 0

][− Ki Kj
]†

(γi − γ j )

is such that col(x0,i, 0, 0, 0, 0) = Wiγ
+
i and

col(x0, j, 0, 0, 0, 0) = Wjγ
+
i . Moreover, we have that

γ +
i ⊥ (Im(Ki ) ∩ Im(Kj )), since[

κi

κ j

]
⊥ Ker

([− Ki Kj
])

.

We notice that Kiκi ⊥ Im(Kj ); by contradiction, if Kiκi 
⊥
Im(Kj ), then one can find κi = κ̃i + κ̄i, where Kiκ̃i ⊥ Im(Kj )
and Kiκ̄i ∈ Im(Kj ). Let κ̄ j = K†

j Kiκ̄i and κ̃ j = κ j − κ̄ j .
Then col(κ̄i, κ̄ j ) ∈ Ker([−Ki Kj]) and hence col(κ̄i, κ̄ j ) 
⊥
Ker([−Ki Kj]), which contradicts the hypothesis. We con-
clude that [Ki 0][−Ki Kj]†(γi − γ j ) ⊥ Im(Kj ), and, since
γi ⊥ Im(Ki ), we can conclude that γ +

i ⊥ (Im(Ki ) ∩ Im(Kj )).
The theorem follows by noticing that after a number of steps
equal to the diameter of Gc, each vector γi verifies all the mea-
surements, since we will have that γi ⊥⋂M

j Im(Kj ). Finally,
we remark that the solution we are interested in involves only
the second N elements of γi, corresponding to βi. �

F. PROOF OF LEMMA III.5
For H , Y and x̄0 as in (17), problem (13) can be rewritten as[

α∗(ε)

β∗(ε)

]
= arg min

α,β

∥∥∥∥∥
[
εI

H

][
α

β

]∥∥∥∥∥
2

s.t. Y

[
α

β

]
= x̄0. (38)

The solution to (38) is Y †x̄0 − KY w∗(ε) with

w∗(ε) = arg min
w

∥∥∥∥∥
[
εI

H

] (
Y †x̄0 − KY w

)∥∥∥∥∥
2

=
([

εI

H

]
KY

)† [
εI

H

]
Y †x̄0

= (K�
Y (ε2I+H�H )KY

)†
K�

Y (ε2I+H�H )Y †x̄0

= (K�
Y (ε2I+H�H )KY

)†
K�

Y H�HY †x̄0, (39)

where in the last-but-one step we used that A† = (A�A)†A�
for any matrix A, and in the last step K�

Y Y † = 0. Similarly, we
can rewrite any minimizer to Problem (12) as (cf. (35))[

α∗

β∗

]
= (I − KY (HKY )† H

)
Y †x̄0 + r

=
(

I − KY
(
K�

Y (H�H )KY
)†

K�
Y H�H

)
Y †x̄0 + r,

(40)

where r ∈ Ker(H ) ⊆ Ker(U ) and r ∈ Ker(H ) ⊆ Ker(X0).
From (39) and (40) and from the fact that ‖ col(α, β )‖ ≥ ‖β‖
for any α and β, it follows that ‖U (β∗ − β∗(ε))‖ = ‖u∗

T −
Uβ∗(ε)‖ is bounded as in (18). �

G. CHARACTERIZING BOUNDS FOR �J.
Since F (U, X0, X̃1:T ) is Fréchet-differentiable with respect to
X1:T [41], we rewrite F as in (20). We write (20) in compact
form as

F̃ = F + ∇FX vec(
X ) + r. (41)

We then define J = F TV F = (V
1
2 F )T(V

1
2 F ) = GTG and

J̃ = F̃ TV F̃ = G̃TG̃, where G̃ := V
1
2 F̃ and

V = ([OT FT ])T Q ([OT FT ]) +
[

0 0

0 R

]

For technical reasons, we let


G = ∥∥G̃ − G
∥∥ (42)

be a proxy for the optimality error 
J (21). In particular, in the
following we study bounds on 
G which we can then easily
express as a function of 
J . To do this we need the following
lemma.

Lemma G.1 (Relating 
G and 
J): It holds that


J = 
G2 almost surely (a.s.). (43)

Proof: We recall that


J = ∥∥J̃ − J
∥∥ = |G̃TG̃ − GTG|

and we notice that


G2 = ∥∥G̃ − G
∥∥2 = |G̃TG̃ − GTG − 2(G̃ − G)TG|.

Then, condition (43) holds when GTG = G̃TG, that is

F̃ TV F = F TV F. (44)

The above can be shown by noticing that

V F = V P− 1
2

(
[I 0]P− 1

2

)†

= V P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

=
[(

[P−1]1:n,1:n
)−1

0

]
,

where we used the facts that A† = A�(AA�)−1 when A ∈
R

n×m is full-row rank, and V P−1 = I when Assumption II.1
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holds. Through a similar argument, in view of Assumption
IV.1, we notice that

F̃ = P̃− 1
2

(
[I 0]P̃− 1

2

)† = [I] a.s.,

and

F = P− 1
2

(
[I 0]P− 1

2

)† = [I].

We can therefore conclude that (44) holds and, in particular,
F̃ TV F = F TV F = ([P−1]1:n,1:n)−1 almost surely. �

Lemma G.2 (First order approximation of G̃): Let ∇FX,i

denote the ith column of ∇FX in (41) and let

 =
∥∥∥∥∥∥G̃ − G −

∑
i∈supp(
X )

δX,iV
1
2 ∇FX,i

∥∥∥∥∥∥ .

Then, for any τ > 0,

lim
E[‖vec(
X )‖]→0

P

[
 ≥ τ

√
E[‖vec(
X )‖

]
= 0. (45)

�
Proof: From (41) let F̃ = F +∑d

i=1 δi∇FX,i + r. Mul-

tiplying both sides by V
1
2 we obtain V

1
2 r = G̃ − G −∑d

1 δiV
1
2 ∇FX,i. Noting that

P

[ ∥∥∥V 1
2 r
∥∥∥ ≥ τ

√
E[‖vec(
X )‖]

]
→ 0

as E[‖ vec−1(
X )‖] → 0 the proof follows verbatim
from [41, Theorem 3.1.1]. �

Lemma G.2 confirms that when the expected value of the
perturbation on X1:T is small so is the residual r of the expan-
sion (41). In the following we let

G̃ = G +
∑

i∈supp(
X )

δX,iV
1
2 ∇FX,i, (46)

that is, we assume ‖V
1
2 r‖ = 0. We highlight that vector ∇FX,i,

consisting of the partial derivatives of the map F with respect
to the entries of X1:T , captures the sensitivity of the data-
driven control inputs to perturbations of X1:T .

The results that follow are given as a function of 
G but can
easily be given as a function of 
J by noticing that P[x2 >

τ ] = P[x >
√

τ ], when x > 0.

H. PROOF OF THEOREM IV.2
From (46) we write 
G as,


G = ∥∥G̃ − G
∥∥ =
∥∥∥∥∥∥
∑

i∈supp(
X )

δX,iV
1
2 ∇FX,i

∥∥∥∥∥∥ ,

≤
∑

i∈supp(
X )

|δX,i|
∥∥∥V 1

2 ∇FX,i

∥∥∥ = 
G. (47)

Hence, for any τ > 0, the set inclusion {
G ≥ τ } ⊆ {
G ≥
τ } holds, which implies P[
G ≥ τ ] ≤ P[
G ≥ τ ], by the

monotonicity of probability measures. Note that 
G is a non-
negative random variable. Thus, by Markov’s inequality [42]
and the linearity of the expected value, for any τ > 0,

P
[

G ≥ √

τ
] ≤ 1√

τ

⎛
⎝ ∑

i∈supp(
X )

∥∥∥V 1
2 ∇FX,i

∥∥∥E[|δX,i|]
⎞
⎠
(48)

which yields (23) following P[
J >τ ]=P[
G>
√

τ ]. �

I. PROOF OF THEOREM IV.3
From the tail bound on rectangular matrix Gaussian series
in [47, Theorem 1.5], it holds

P
[

G ≥ √

τ
] = P

⎡
⎣
∥∥∥∥∥∥
∑

i∈supp(
X )

δX,iV
1
2 ∇FX,i

∥∥∥∥∥∥ ≥ √
τ

⎤
⎦

≤ (n + mT + 1) exp
(
− τ

2σ̄ 2

)
(49)

where

σ̄ 2 := σ 2 max

⎧⎨
⎩
∥∥∥∥∥∥
∑

i∈supp(
X )

(V
1
2 ∇FX,i )(V

1
2 ∇FX,i )

T

∥∥∥∥∥∥ ,

∥∥∥∥∥∥
∑

i∈supp(
X )

(V
1
2 ∇FX,i )

T(V
1
2 ∇FX,i )

∥∥∥∥∥∥
⎫⎬
⎭ .

Equation (25) follows from (49) and the bound σ̄ 2 ≤
σ 2∑

i∈supp(
X ) ‖V
1
2 ∇FX,i‖2. �

J. PROOF OF LEMMA IV.4
Let vec(
X ) be the set of corrupted entries of X1:T , with xi :=
vec(
X )i and rewrite (11) as

F (U, X0, X1:T ) = P− 1
2

([
I 0

]
P− 1

2

)†
x0

= P−1

[
I

0

]([
I 0

]
P−1[I0

])−1
x0. (50)

It holds that (51)–(53) shown at the bottom of the next page.
Notice that

P =
⎛
⎝[ X0

X1:T

][
X0

U

]†
⎞
⎠T

Q

⎛
⎝[ X0

X1:T

][
X0

U

]†
⎞
⎠+

[
0 0

0 R

]

= [OT FT
]T

Q
[
OT FT

]+
[

0 0

0 R

]

when Assumption II.1 holds. Moreover ∇FX,i can be written
as in (52), where �i is a (n − 1)T × N matrix with one entry
(corresponding to the perturbed element xi) equal to one and
zeros otherwise, and where we used that ∂P−1

∂xi
= P−1 ∂P

∂xi
P−1

(e.g., see [48]). From (52),

‖∇F (1)
X,i ‖ ≤ �

(1)
X,i

∥∥∥∥∥∥�i

[
X0

U

]†
∥∥∥∥∥∥
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≤ �
(1)
X,i

∥∥∥∥∥∥∥�i

[
X0

U

]T
⎛
⎝[X0

U

][
X0

U

]T
⎞
⎠−1
∥∥∥∥∥∥∥

≤ �
(1)
X,i

∥∥∥∥∥∥�i

[
X0

U

]T
∥∥∥∥∥∥ σ−2

min

([
X0

U

])

≤ �
(1)
X,i

∥∥∥∥∥∥�i

[
X0

U

]T
∥∥∥∥∥∥

1

cN
(54)

where

�
(1)
X,1 = 2‖P−1‖2‖Q‖‖

[
OT FT

]
‖·

·
∥∥∥∥∥∥
[

I

0

](
[I 0]P−1

[
I

0

])−1

x0

∥∥∥∥∥∥ (55)

does not depend on N . In the first step of (54) we used the
submultiplicativity of matrix 2-norm, in the second step the

fact that A† = AT(AAT)−1 when A is full-row rank, the third
step from ‖A‖ ≥ σmin(A), and the fourth step follows by the
assumption on σ 2

min([X T
0 U T]T) ≥ cN . Finally, since the matrix

�i
[
X T

0 U T] has only one row different from zero and the
entries of such row are independent of N by assumption,
(54) implies that ‖∇F (1)

X,i ‖ ≤ k(1)
X,i/N , where k(1)

X,i > 0 does not

depend on N . Next, notice that we can write ∇F (2)
X,i as in (52)

and, similarly as above,

‖∇F (2)
X,i ‖ ≤ �

(2)
X,i

∥∥∥∥∥∥�i

[
X0

U

]†
∥∥∥∥∥∥ ≤ �

(2)
X,i

∥∥∥∥∥∥�i

[
X0

U

]T
∥∥∥∥∥∥

1

cN
(56)

where

�
(2)
X,1 = ‖Q‖ ‖[OT FT ]‖

∥∥∥∥∥∥
(

[I 0]P−1

[
I

0

])−1
∥∥∥∥∥∥

2

‖x0‖

(57)

∇FX,i = ∂F (U, X0, X1:T )

∂xi
= ∂P−1

∂xi

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0︸ ︷︷ ︸
=∇F (1)

X,i

+ P−1

[
I

0

] ∂

(
[I 0]P−1

[
I

0

])−1

∂xi
x0︸ ︷︷ ︸

=∇F (2)
X,i

. (51)

∇F (1)
X,i = ∂P−1

∂xi

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0 = P−1 ∂P

∂xi
P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0

= P−1

⎛
⎜⎝
⎛
⎝�i

[
X0

U

]†
⎞
⎠T

QX

[
X0

U

]†

+
⎛
⎝X

[
X0

U

]†
⎞
⎠T

Q�i

[
X0

U

]†
⎞
⎟⎠P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0

= P−1

⎛
⎜⎝
⎛
⎝�i

[
X0

U

]†
⎞
⎠T

Q
[
OT FT

]+ [OT FT
]T

Q�i

[
X0

U

]†
⎞
⎟⎠P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0, (52)

∇F (2)
X,i = P−1

[
I

0

] ∂

(
[I 0]P−1

[
I

0

])−1

∂xi
x0

= P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

[I 0]
∂P−1

∂xi

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0

= P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

[I 0]P−1 ∂P

∂xi
P−1

[
I

0

](
[I 0]P−1

[
I

0

])−1

x0. (53)
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is a constant independent of N . Thus, from (56), ‖∇F (2)
X,i ‖ ≤

k(2)
X,i/N , where k(2)

X,i > 0 does not depend on N . Finally, from

(51) and ‖∇FX,i‖ ≤ ‖∇F (1)
X,i ‖ + ‖∇F (2)

X,i ‖, we conclude that
‖∇FX,i‖ ≤ kX,i/N , where kX,i is independent of N . �

K. PROOF OF THEOREM IV.5
By Theorem IV.2,

P [
G ≥ τ ] ≤ 1

τ

⎛
⎝ ∑

i∈supp(
X )

cX,i E[|δX,i|]
⎞
⎠

≤ ‖V
1
2 ‖

τ

⎛
⎝ ∑

i∈supp(
X )

‖∇FX,i‖E[|δX,i|]
⎞
⎠

≤ ‖V
1
2 ‖

τ

(
| supp(
X )| max

i

{‖∇FX,i‖E[|δX,i|]
})

(58)

where in the second step we used that cX,i = ‖V
1
2 ∇FX,i‖ ≤

‖V
1
2 ‖‖∇FX,i‖. Since the distributions of δX,i are independent

of N so are E[|δX,i|]. Hence, by Lemma IV.4, it follows that
maxi { ‖∇FX,i ‖ E [|δX,i|]} ≤ maxi ‖∇FX,i‖ maxi E[|δX,i|] ≤
κX,i/N , where κX,i is independent of N and we used the
assumption E[|δxi |] < ∞. If supp(
X ) is a sublinear function
of N , (26) follows from the latter inequalities and (58). �
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