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ABSTRACT Apprenticeship learning is a framework in which an agent learns a policy to perform a given
task in an environment using example trajectories provided by an expert. In the real world, one might
have access to expert trajectories in different environments where system dynamics is different while the
learning task is the same. For such scenarios, two types of learning objectives can be defined. One where the
learned policy performs very well in one specific environment and another when it performs well across all
environments. To balance these two objectives in a principled way, our work presents the cross apprenticeship
learning (CAL) framework. This consists of an optimization problem where an optimal policy for each
environment is sought while ensuring that all policies remain close to each other. This nearness is facilitated
by one tuning parameter in the optimization problem. We derive properties of the optimizers of the problem
as the tuning parameter varies. We identify conditions under which an agent prefers using the policy obtained
from CAL over the traditional apprenticeship learning. Since the CAL problem is nonconvex, we provide a
convex outer approximation. Finally, we demonstrate the attributes of our framework in the context of a
navigation task in a windy gridworld environment.

INDEX TERMS Apprenticeship learning, multiagent systems, reinforcement learning, stochastic control.

I. INTRODUCTION
Reinforcement learning involves learning via interaction with
the environment to perform a task optimally in a sequential
decision-making process [1]. Commonly, the agent takes an
action at a state, transitions to another state, obtains a re-
ward from the environment and repeats the whole process
again. Learning occurs when the agent looks to maximize
the long-term reward, and so the efficacy of learning relies
heavily on the reward structure. Poorly defined rewards lead to
unwanted behaviour. In several control applications, defining
appropriate rewards is difficult, and most likely, the desired
behaviour can be demonstrated by an expert. For such cases,
several methods under the broad umbrella of learning from
demonstrations are studied in the past, where the behaviour of
an expert is available in terms of state-action trajectories [2].
This information can be used in different ways, out of which, a
common one is the framework of apprenticeship learning [3].
Here, the goal is to recover optimal policies for a given

Markov decision process (MDP) using demonstrations from
the expert and the fact that the set where the reward function
belongs to is known.

In real life, we envision scenarios where trajectories from
multiple experts in different environments are available, but
the underlying task is common across environments. In such
settings, an agent in an environment can learn a policy that
seeks a trade-off between its performance in its own envi-
ronment and across multiple environments. The former is
attractive when the agent is supposed to only operate in its
own environment and the available trajectories from its own
expert are sufficient. The latter is advantageous in cases where
the learned policy is supposed to work well across a range of
environments and also possibly work as a warm start for spe-
cialized learning in any particular environment. Taking these
considerations as the motivation, we present the cross appren-
ticeship learning (CAL) framework in this work. We analyze
the properties of the policies obtained from this framework
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and then address computational issues. We also show that our
framework is beneficial, for example, when one agent has
access to imperfect expert behavior or when agents need to
perform the task in unseen environments.

A. LITERATURE REVIEW
Apprenticeship learning, as introduced in [4] consisted of
two steps, first was to infer the reward function governing
the expert’s actions using inverse reinforcement learning, and
the second was learning a suitable optimal policy for this
reward function using reinforcement learning. Here, although
the reward function was unknown to the agent, it was known
to belong to the set of linear combinations of certain basis
vectors. The applications of this framework are plenty, for
example, to learn aerobatic manoeuvres on a helicopter [5],
[6], quadrupled locomotion [7], navigation in a parking lot [8],
and automated parking [9]. In [10] a game-theoretic approach
for apprenticeship learning was proposed: the problem was
cast as a two-player zero-sum game where the learning agent
chooses the policy and the environment selects the reward
function. This framework resulted in computationally inex-
pensive method and it found policies that are guaranteed to
be at least as good as the expert policy for any given re-
ward function. Building on [10] and the linear programming
(LP) approach for finding optimal policies given in [11],
the work [3] proposes an LP formulation for apprenticeship
learning. The work [12], motivated by [13], extended this LP
framework to large-scale problems by solving an approximate
problem where the decision variable is assumed to lie in a
subspace generated by feature vectors.

In our work, we use the LP framework for apprenticeship
learning as a starting point. Our objective in this article differs
from the above mentioned methods because we wish to learn
a policy that is able to perform a task well in multiple environ-
ments by exploiting the availability of expert demonstrations
in these environments. Such policies have a definite edge in
terms of robustness as compared to policies that are learned in
only one environment.

Closely related to our work are [14], [15] and [16]. The
work [14] aims to find a policy that performs well in different
scenarios of an MDP where the scenarios are supposed to
be representative of the change in the agent’s environment.
We note that the setting is not of learning from an expert.
Instead, they assume that the reward function is given. In [15],
expert demonstrations from different environments, parame-
terized by a context variable, are used to infer a parameterized
reward function. The aim is to use the inferred function to
perform learning in unseen environments. The work [16] ex-
plores a similar setup for imitation learning as ours. Here,
minimization of the Jensen-Shannon divergence between the
agent’s policy and the experts’ policies in different envi-
ronments improved robustness to variations in environment
dynamics compared to baseline imitation learning techniques.
Unlike these methods, we use the LP-based approach to define
cross-learning, where we borrow the key ideas of centrality

of policies from [17] to find a middle ground between per-
formance in one single environment and performance in all
environments.

Apart from these works, there is a growing interest in
inverse reinforcement or imitation learning for linear sys-
tems [18], nonlinear systems [19], [20], [21] and MDPs [22],
[23], [24].

B. SETUP AND CONTRIBUTIONS
For a single-agent single-environment case, the apprentice-
ship learning framework involves finding a policy that min-
imizes the worst-case discrepancy between the cost incurred
by the said policy and an expert policy. In here, the worst-case
discrepancy is computed by considering all cost functions
that belong to a linear subspace spanned by a certain number
of basis vectors. This is motivated by the setting where the
learning agent does not have access to the actual cost func-
tion driving the expert behaviour but knows the set where it
belongs to. This worst-case minimization problem can be cast
as an LP in terms of the occupation measure. It is assumed
that the learning agent does not have access to the policy of
the expert. Instead, the occupation measure corresponding to
the expert policy is available as it can be easily approximated
using available expert trajectories.

Our first contribution proposes the CAL framework that ex-
tends the above defined single agent apprenticeship learning to
multiple agents. At the core of this framework is the optimiza-
tion problem where we seek a policy for each environment
that balances two objectives. First, it minimizes the worst-case
discrepancy measure, as explained above for a single agent
case, for its own environment. Second, it aims to be in close
proximity to policies associated to other environments. While
the former is codified in the objective function of the CAL
optimization problem, the latter appears as a linear constraint.
The degree of proximity between policies is tuned by a param-
eter termed as the centrality measure. Our second contribution
is to present properties of the optimizers of the CAL problem
as the centrality measure varies from low to high values. We
show that when this parameter is low, all policies are close to
each other and so the obtained optimizers have good generic
performance. That is, policies perform well across all envi-
ronments. On the other hand, when the parameter value is
high, each agent’s policy maximizes performance in its own
environment, that is, it displays good specific performance.
Our third contribution is to identify conditions under which it
is preferable for an agent to choose a policy obtained from the
CAL problem over the individually optimal one. In particular,
when an agent has inaccurate information about expert behav-
ior and all environments and expert behaviors are sufficiently
close, then the policy obtained from the CAL problem has
a provably better performance as compared to the individual
one. We formalize this statement by deriving a sufficient con-
dition on the various error bounds. Since the CAL problem is
nonconvex, our fourth contribution is an outer convex approx-
imation of the problem using McCormick envelopes. We then
discuss how this approximation can be solved in a distributed
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manner. Our last contribution demonstrates the properties of
the CAL framework in a numerical example where agents
learn to navigate to a goal position in a windy gridworld.

We organize the rest of our article as follows. Section II
provides preliminaries. The CAL framework is presented in
Section III. In Section IV, we provide properties of the opti-
mizers of the CAL optimization problem. Section V outlines a
convex outer approximation of the CAL problem. Section VI
demonstrates the use of the presented framework for a navi-
gation task in a windy gridworld environment.

II. PRELIMINARIES
Here we collect notations and background on perturbation
analysis of optimization problems.

A. NOTATIONS
We use R and R� 0 to denote real and nonnegative real
numbers, respectively. Unless otherwise specified, ‖·‖ is ‖·‖2.
By ek we represent a vector of dimension N with all entries
being 0 expect for the kth entry which is 1. A vector with
all entries as unity is denoted by 1. A k-dimensional simplex
is represented by �k = {x ∈ R

k
�0 | 1�x = 1}. For any posi-

tive integer n, we use the notation [n] = {1, 2, . . . , n}. The
number of elements in a set S is denoted by |S|. Given two
sets X and Y , a set-valued map f : X ⇒ Y associates to each
point in X a subset of Y . The set-valued map f is closed
if its graph gph( f ) := {(x, y) ∈ X × Y | y ∈ f (x)} is closed.
Furthermore, the set-valued map f is upper semicontinuous
at a point x0 ∈ X if for any neighborhood N f (x0 ) of the set
f (x0) there exists a neighborhood Nx0 of x0 such that for every
x ∈ Nx0 the inclusion f (x) ⊂ N f (x0 ) holds. If this property
holds for all x0 ∈ X , then f is said to be upper semicontin-
uous.

B. PERTURBATION OF PARAMETERIZED OPTIMIZATION
PROBLEMS
Consider the following problem:

min
x

f (x, u)

subject to x ∈ X ,
G(x, u) � 0, (1)

where u is a parameter that belongs to a closed set u ∈ U ⊂
Rnu and X ⊂ Rnx is a closed set. The functions f : X × U →
R and G : X × U → R are continuous. The feasibility set for
the above optimization problem can be parameterized as the
following set-valued map:

U � u �→ H(u) := {x ∈ X | G(x, u) � 0}. (2)

Similarly, the set of optimizers of (1) is written as the follow-
ing set-valued map:

U � u �→ S (u) := arg min
x∈H(u)

f (x, u). (3)

We are interested in the continuity of the map S : U ⇒ X
in the neighborhood of a point u0 ∈ U (see Section II-A for
relevant definitions).

Proposition 1: Upper semicontinuity of S [[25] Proposi-
tion 4.4] Given u0 ∈ U , suppose the following hold:

1) the map H(·) is closed,
2) there exists α ∈ R and a compact set C ⊂ X such that

for every u in the neighborhood of u0, the level set
levα f (·, u) := {x ∈ H(u) | f (x, u) � α} is nonempty
and contained in C,

3) for any neighborhood NS (u0 ) ⊂ X of the set S (u0),
there exists a neighborhood Nu0 ⊂ U of u0 such that
NS (u0 ) ∩ H(u) 
= ∅ for all u ∈ Nu0 .

Then, the set-valued map u �→ S (u) is upper semicontinu-
ous at u0.

III. PROBLEM STATEMENT
We consider N learning agents and their correspond-
ing environments. Each agent i ∈ [N] is associated with
a Markov decision process given by the tuple Mi =(S,A,Pi, γ , ν0

)
. Here, the finite sets S := (

s1, . . . , s|S|
)

and
A := (

a1, . . . , a|A|
)

represent the common state and action
spaces, respectively. Agents evolve in different environments
specified by their individual transition matrices. In particular,
the transition matrix for agent i is Pi ∈ [0, 1]|S||A|×|S|, where
given a state-action pair (s, a) ∈ S × A, the row correspond-
ing to it, Pi

(s,a),:, gives the distribution of the next state. For
notational convenience, we also denote this distribution as
Pi(·|s, a). Thus, given a state ŝ ∈ S , the probability of reach-
ing it from state s using action a is Pi(ŝ|s, a). The discount
factor and the distribution of the initial state of all agents are
denoted by γ ∈ (0, 1) and ν0 ∈ �|S|, respectively.

An agent i has access to an expert’s behaviour in its envi-
ronment. Each expert i acts according to a policy given by the
map πEi

: S → �|A|, that is, at state s ∈ S , the distribution of
the selected action by the expert is given by πEi

(s). We assume
that each expert’s policy is stationary and we denote the set of
stationary policies by �, that is, � := {

π : S → �|A|}. The
expert i’s policy is aimed at minimizing a cost function ci :
S × A → R associated with the task. This cost is unknown to
us, however, the set where the cost belongs is known and is

given as ci ∈ Clin :=
{∑nc

j=1 w jψ j | ‖w‖∞ � 1
}

, where each

w j is the j-th component of the cost weight vector w ∈ R
nc

and it represents the weight associated to the j-th basis vector
ψ j ∈ R

|S||A|. These nc basis vectors are fixed and they satisfy
‖ψ j‖∞ � 1 for all j ∈ [nc]. Note that the cost basis vector
are assumed to be common for all the environments. The
behavior of the expert that is governed by its policy is known
to us through the occupation measure that it generates. We
elaborate on this next.

Given a policy π and the initial distribution ν0 ∈ �|S|, the
induced probability measure over the canonical sample space
	 := (S × A)∞ for agent i is, Pπ ,iν0 [·]. Here, Pπ ,iν0 [st = s, at =
a] denotes the probability that agent i is in state s and takes an

38 VOLUME 2, 2023



action a at time instant t starting from an initial state distri-
bution ν0 and following a policy π . For a given π ∈ �, the
discounted occupation measure for agent i, denoted μπi : S ×
A → R, is defined as μπi (s, a) := ∑∞

t=0 γ
t Pπ ,iν0 [st = s, at =

a]. It is interpreted as the discounted expected number of times
a state-action pair is visited by the agent i starting from an
initial state distribution ν0, and by following a policy π . We
assume that for each environment i the occupation measure

generated by the expert μ
πEi
i is known. This constitutes the

behavior of the expert available to us. For environment i,
consider the set

Fi :=
{
μ ∈ R

|S||A|
�0 | (

B − γPi)�
μ = ν0

}
, (4)

where B ∈ {0, 1}|S||A|×|S| is a binary matrix where the el-
ement B(s j ,ak ),sl = 1 if j = l , and B(s j ,ak ),sl = 0 otherwise.
From [3, Theorem 2] we know that, for every π ∈ �, the
corresponding occupation measure μπi belongs to Fi. Also,
given any μi ∈ Fi, a stationary policy πμi

∈ � is obtained by

setting πμi
(s, a) := μi (s,a)∑

a′∈A μi (s,a
′ ) . In addition, this correspon-

dence is one-to-one, that is, the induced occupation measure

for the policy πμi
is μ

πμi
i = μi. Given any cost function

ci : S × A → R, the expected discounted cost incurred by the
agent i is ηci (π ) = Eπ ,iν0

[∑∞
t=0 γ

t ci(st , at )
]
, here the expec-

tation is with respect to the distribution Pπ ,iν0 . This can also
be represented as the inner product of discounted occupation
measure and the cost vector, that is, ηci (π ) = 〈

μ
π

i , ci
〉
.

For agent i, the goal of learning (when decoupled from the
other agents and environments) is to find a policy πi ∈ � such

that
〈
μ
πi
i , ci

〉
�

〈
μ
πEi
i , ci

〉
, where μ

πEi
i is the occupation mea-

sure induced by the expert’s policy πEi
. However, note that

the expert’s cost ci is usually unknown as only the behavior
in terms of trajectories is available. Instead of knowing the
exact cost, we assume that the agent knows the set Clin where
the true cost belongs. Consequently, the goal of learning then

translates to finding a policy πi such that 〈μπi
i , c〉 � 〈μπEi

i , c〉
for all c ∈ Clin, i.e., the policy π must out-perform the expert
policy for all c ∈ Clin. Such a framework is well studied in the
apprenticeship learning literature, see e.g., [4], [10], and [3].
Thus, the objective for agent i in apprenticeship learning,
decoupled from all other agents and environments, is:

min
πi∈�

sup
c∈Clin

(〈
μ
πi
i , c

〉
−

〈
μ
πEi
i , c

〉)
. (5)

One can simplify the objective function (5) by utilizing the
structure of Clin. Following the notation in [12], we define
� := [ψ1, . . . , ψnc ] ∈ R

|S||A|×nc as the cost basis matrix. For
every πi, the following holds [12, Lemma 1],

sup
c∈Clin

(〈
μ
πi
i , c

〉
−

〈
μ
πEi
i , c

〉)
=

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1
.

Thus, problem (5) can be equivalently written as

min
πi∈�

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1
. (6)

Note that the objective function is nonnegative and the optimal
value is zero as π∗

i = πEi
is one of the optimizers. Addition-

ally, for any optimizer π∗
i of (6), we have〈

μπ
∗
i , c

〉
= 〈
μ
πEi , c

〉
for all c ∈ Clin.

If Clin contains all possible cost functions, then the expert
policy is the only optimizer of (6). The lower the number
of basis vectors in Clin the more flexibility we have to find
a policy that performs as well as the expert policy πEi

.
Each agent i can solve problem (6) and obtain an optimal

policy that performs well in its own environment. Such a
policy might not perform well in other environments, while
the learning task is same in all environments. To capture these
commonalities between the environments, motivated by [17],
we define the following cross apprenticeship learning (CAL)
problem:

min
{πi}N

i=1,πc

N∑
i=1

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1

(7a)

subject to πc ∈ �, (7b)

πi ∈ � for all i ∈ [N] , (7c)∥∥πi − πc

∥∥∞ � ε for all i ∈ [N] . (7d)

We denote the set of optimizers of the above problem by
Scal ⊂ �N+1. In the above problem, through the decision
variable πi we seek a policy that performs well in environment
i. The objective function is decoupled in this set of individual
policies. On the other hand, these individual policies are re-
quired to be close to a cross-learned policy πc. The variable ε
defines this proximity and is termed as the centrality measure.
The individual policies an agent learns via cross-learning sac-
rifices optimality in its environment for generalization across
all other environments. Note that the objective function (7a)
is linear in occupational measures and the constraints (7b)–
(7d) are linear in the set of policies. Since the relationship
between policies and occupational measures is nonlinear, the
optimization problem is nonconvex. This is elaborated further
in Section V. Regarding the objecitve function (7a), we can
consider different cost basis vectors that are encoded in matrix
� for each environment without affecting the computational
effort of solving the problem. Such a case can capture different
form of tasks in each environment, for example.

Our aim in this paper is to analyze the properties of the CAL
framework (7) and design methods to solve this optimization
problem approximately.

IV. PROPERTIES OF CAL FRAMEWORK
The objective of this section is to analyze the performance of
the individual and the cross-learned policies across different
environments. We consider the following general perfor-
mance function for a policy π ∈ �:

Vβπ :=
N∑

i=1

βi

∥∥∥��μπi −��μ
πEi
i

∥∥∥
1
, (8)
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where β ∈ �N represents the weight given to individ-
ual environments. In the above definition, the value∥∥∥��μπi −��μ

πEi
i

∥∥∥
1

determines how well the policy π per-

forms in an environment i. A lower value indicates that the
cost incurred by the policy is close to that by the expert.
Therefore, a low value of performance function implies that
the policy performs better across environments, where the
importance attached to each environment is represented by the
weighing β. Below we will analyze the properties of the above
function.

A. CONTINUITY OF Vβ

The right-hand side of (8) depends on the policy implicitly
through the occupation measure generated. Therefore we will
first examine the maps representing the correspondence be-
tween the policy and the occupation measure. To this end, we
define the following two maps between the policy space �
and the set of feasible occupation measures Fi (see (4)) for
some environment i ∈ [N]:

gi : Fi → �, where gi(μ)(s, a) = μ(s, a)∑
a′∈A μ(s, a′)

(9a)

hi : � → Fi, where hi(π )(s, a)

=
∞∑

t=0

γ t Pπ ,iν0 [st = s, at = a], (9b)

for all μ ∈ Fi, π ∈ � and (s, a) ∈ S × A. Note that gi is
same for all environments. We have used the subscript to
denote that the domain is different for each of these functions.
Recall that in the shorthand notation that we introduced ear-
lier, we use gi(μ) = πμ and hi(π ) = μ

π

i . Before we delve
into analyzing properties of the above defined maps, we derive
the following bounds on the occupation measure that will be
used later.

Lemma 2. (Bounds on the state occupation measure):
Given a policy π ∈ � and any environment i ∈ [N], for all
s ∈ S , it follows that ν0(s) �

∑
a∈A μ

π

i (s, a) � |A|
1−γ .

Proof: Following the definition of the occupation measure,
we have,

∑
a∈A

μ
π

i (s, a) =
∑
a∈A

∞∑
t=0

γ t Pπ ,iν0 [st = s, at = a]

=
∞∑

t=0

γ t
∑
a∈A

Pπ ,iν0 [st = s, at = a]

=
∞∑

t=0

γ t Pπ ,iν0 [st = s]

(a)= Pπ ,iν0 [s0 = s] +
∞∑

t=1

γ t Pπ ,iν0 [st = s]
(b)
� ν0(s),

where Pπ ,iν0 [st = s] is the probability that the agent i is in
state s at time instant t starting with initial distribution ν0 and

following policy π . In the above relations, (a) is obtained by
taking out the first term from the summation and (b) is due to
that fact that the second term is nonnegative in the previous
equality and ν0(s) = Pπ ,iν0 [s0 = s]. For the upper bound we
have,

∑
a∈A

μ
π

i (s, a) =
∑
a∈A

∞∑
t=0

γ t Pπ ,iν0 [st = s, at = a]

�
∑
a∈A

∞∑
t=0

γ t = |A|
1 − γ

.

This completes the proof. �
Using the preceding results, in the following Lemma we

present continuity properties of the maps gi and hi. In
particular, both these functions are bijections, continuously
differentiable, and Lipschitz.

Lemma 3. (Properties of the maps gi and hi): For some
environment i ∈ [N], consider the maps gi and hi as defined
in (9). The following properties hold:

1) Maps gi and hi are continuously differentiable on Fi and
�, respectively.

2) For all μ1, μ2 ∈ Fi we have, ‖gi(μ1) − gi(μ2)‖2 �
2

mins∈S ν0(s)‖μ1 − μ2‖1.

3) There exists a Lh
i > 0 such that, for all π1, π2 ∈ � we

have, ‖hi(π1) − hi(π2)‖2 � Lh
i ‖π1 − π2‖2.

Proof: The map hi has Lipschitz continuous gradient over
the set�, as shown in [26, Proposition 1]. Thus, hi is continu-
ously differentiable. Regarding gi, denote the Jacobian as the
map Dgi : Fi → R

|S||A|×|S||A|. For a given μ, the (i, j)-th el-
ement of the Jacobian Dgi(μ), where index i and j correspond
to state-action pairs (si, ai ) and (s j, a j ), respectively, is

Dgi(μ)(i, j)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
a′∈A μ(si,a′)−μ(si,ai )

(
∑

a′∈A μ(si,a′ ))2 if (si, ai ) = (s j, a j ),

−μ(si,ai )

(
∑

a′∈A μ(si,a′ ))2 if si = s j,

0 otherwise.

From Lemma 2 we know that for any state s ∈ S , we have∑
a′∈A μ(s, a′) � ν0(s) > 0. Thus, Dgi given in the above

expression is well-defined and continuous on Fi. This proves
the first claim. The second claim was established in [26,
Proposition 1]. The last conclusion follows from the facts that
hi has a Lipschitz continuous gradient and it is continuously
differentiable in �. �

The Lipschitz property of the map hi established in the
above result aids us in showing the same for the performance
function Vβ given in (8). The next result formalizes this state-
ment. This property implies that if two policies are close to
each other, as might be the case due to the centrality con-
straint (7d) in the CAL problem, then their performance across
the environments will be similar.

Lemma 4. (Sensitivity of the performance function with
respect to policies): Given two policies π1, π2 ∈ � and β ∈
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�N , the following holds:
∣∣Vβπ1 − Vβπ2

∣∣ � ncLh
√

|S| |A| ∥∥π1 − π2

∥∥
2 (10)

where Lh = maxi∈[N] Lh
i , with each Lh

i being the Lipschitz
constant for the map hi as stated in Lemma 3.

Proof: We compute

∣∣Vβπ1 − Vβπ2

∣∣ =
∣∣∣∣

N∑
k=1

βk

(∥∥∥��μπ1
k −��μ

πEk
k

∥∥∥
1

−
∥∥∥��μπ2

k −��μ
πEk
k

∥∥∥
1

)∣∣∣∣
(a)
�

N∑
k=1

βk

( ∥∥∥��μπ1
k −��μπ2

k

∥∥∥
1

)

(b)
�

∥∥��∥∥
1,1

N∑
k=1

βk

( ∥∥∥μπ1
k − μ

π2
k

∥∥∥
1

)

(c)
� ncLh

√
|S| |A| ∥∥π1 − π2

∥∥
2

N∑
k=1

βk

(d )= ncLh
√

|S| |A| ∥∥π1 − π2

∥∥
2 ,

where inequality (a) is a consequence of the triangle inequal-
ity, (b) is due to the submultiplicity of induced matrix norm,
(c) is due to Lemma 3 and the fact that the elements of the
cost basis� satisfy ‖ψ j‖∞ � 1 for all j = 1, . . . , nc, and (d )
is because β ∈ �N . �

From the above result, by considering β = ei for some
environment i ∈ [N], we obtain the bound on the difference
in the performance of two policies in that environment. This
set of Lemmas will be useful in the subsequent section in
analyzing the specific and generic performance of the policies
obtained through the CAL problem.

B. SPECIFIC AND GENERIC PERFORMANCE OF CAL
As mentioned earlier, the solution of the CAL-framework
results in N individual policies and a cross-learned policy. In
this section, we investigate the performance of these policies
in individual environments as well as across environments.
We term these properties as specific and generic performance,
respectively. We demonstrate how by tuning the centrality
measure ε, one targets to maximize for one of these perfor-
mances.

We first introduce relevant notation. Let the set of optimal
policies for the decoupled learning problem of agent i given
in (5) be denoted as Sdec

i ⊂ �. That is,

Sdec
i := arg min

πi∈�

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1
.

We refer to πdec,∗
i ∈ Sdec

i as the optimal decoupled policy.
Note that if we choose ε to be large enough, then the CAL
framework finds these decoupled optimal policies in the form

of individual policies. Specifically, if

2ε > max
i, j∈[N]

{∥∥∥πi − π j

∥∥∥∞

∣∣∣∣ πi ∈ Sdec
i , π j ∈ Sdec

j

}
,

then any optimizer of CAL, denoted
({
π∗

i

}N
i=1 , π

∗
c

)
∈ Scal,

satisfies π∗
i ∈ Sdec

i for all i ∈ [N]. That is, not all constraints
of the CAL problem are binding. On the other hand, when
ε = 0, then π∗

i ∈ Scen for all i ∈ [N] where

Scen := arg min
π∈�

N∑
i=1

∥∥∥��μπi −��μ
πEi
i

∥∥∥
1
. (11)

We refer to any policy π cen,∗ ∈ Scen as the optimal centralized
policy. We have the following first result that provides the
specific performance of the optimizers in Scal.

Proposition 5. (Specific performance of Sdec
i and Scal): For

any πdec,∗
i ∈ Sdec

i and
({
π∗

i

}N
i=1 , π

∗
c

)
∈ Scal, the following

hold:
1) Vei (π

dec,∗
i ) � Vei (π

∗
i ) � Vei (π

∗
c ), where ei is the unit

vector with i-th component being unity,
2) Vei (π

∗
i ) � Vei (π

∗
j ) for all i and j 
= i.

Proof: The first inequality follows from the fact πdec,∗
i is

an optimizer of π �→ Vei (π ) over the set � and π∗
i belongs to

the set �. For the second inequality, note that

π∗
i ∈ arg min

π∈�

{
Vei (π ) | ∥∥π − π∗

c

∥∥∞ � ε
}
. (12)

This is true because otherwise we contradict the fact that({
π∗

i

}N
i=1 , π

∗
c

)
is an optimizer of (7). From the above obser-

vation and the fact that π∗
c trivially belongs to the feasibility

set of (12), we conclude the second inequality. The last in-
equality also follows from the fact that π∗

j belongs to the
feasibility set of (12), therefore Vei (π

∗
i ) is at most equal to

Vei (π
∗
j ). �

The above result shows that, as expected, the decoupled
policy of environment i outperforms the individual and the
cross-learned policy obtained from the CAL problem in that
environment. Moreover, in environment i, the individual op-
timal policy π∗

i obtained in CAL performs better than the
cross-learned policy π∗

c and any other individual policy π∗
j .

The above result is irrespective of the value of the centrality
measure. Next, we analyze the performance of the policies
obtained across environments, where the selection of cen-
trality measure ε becomes key. We will use Lemma 4 and
show that for small enough values of ε, the individual optimal
policies of CAL outperform the decoupled optimal policies
across environments. In order to obtain the formal result, the
first step is to analyze the set-valued map that gives the set of
optimizers of the CAL problem given the parameter ε.

Lemma 6. (Upper semicontinuity of set of optimizers of CAL
with respect to ε): Define the map,

�(ε) :=
{({

πi

}N
i=1 , πc

)
∈ �N+1

∣∣∣
∥∥πi − πc

∥∥∞ � ε, for all i ∈ [N]
}

(13)
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that gives the feasibility set of (7) for a given ε � 0. Then, the
set-valued map Scal : [0, 1] ⇒ �N+1 defined as

Scal(ε) := arg min(
{πi}N

i=1,πc

)
∈�(ε)

N∑
i=1

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1

(14)

is upper semicontinuous at ε = 0.
Proof: Our proof is based on Proposition 1 that analyzes

the continuity of optimizers of a parameterized optimization
problem. Drawing the parallelism between (3) and (14), the
decision variable x, the parameter u, the set U , the objective
function f , and the set-valued map H as given in (3) are to be
considered analogously in (14) as the variable ({πi}N

i=1, πc),
the parameter ε, the set [0,1], the objective function

f̄
({
πi

}N
i=1 , πc

)
:=

N∑
i=1

∥∥∥��μπi
i −��μ

πEi
i

∥∥∥
1
,

and the map � defined in (13), respectively. Note that in (14),
the objective function does not depend on the parameter. The
proof now proceeds by checking the conditions of Proposi-
tion 1. Firstly, the objective function f̄ and the constraint
function in (13) are continuous. The set-valued map � is
closed. The second condition in Proposition 1 holds as f̄ is
bounded on�N+1 and the set�(ε) is nonempty and contained
in the compact set�N+1 for any nonnegative ε. Lastly, for the
third condition, note that for every neighborhood N0 ⊂ [0, 1]
of ε = 0, we have�(0) ⊂ �(ε) for all ε ∈ N0. Consequently,
Scal(0) ⊂ �(ε) for all ε ∈ N0 and so for any neighborhood
NScal(0) of Scal(0) we have NScal(0) ∩�(ε) for all ε ∈ N0.
Thus, condition three in Proposition 1 holds and so, we con-
clude that Scal is upper semicontinuous at the origin. �

With the above continuity property in mind, we next show
that if ε is small, then the individual optimal policy obtained
in CAL has better performance across environments as com-
pared to the decoupled optimal policy.

Proposition 7. (Generic performance of Sdec
i and Scal):

For any
({
π∗

i

}N
i=1 , π

∗
c

)
∈ Scal and π cen,∗ ∈ Scen, we have

VN−11π
cen,∗ � VN−11(π∗

i )

where N−11 denotes the vector with each entry as 1
N . Further,

for any j ∈ [N], if VN−11(π cen,∗) < VN−11(πdec,∗
j ), then there

exists an ε > 0 such that the following holds,

VN−11π
∗
j � VN−11(πdec,∗

j ) for all ({π∗
j }N

j=1, π
∗
c ) ∈ Scal(ε).

Proof: The first inequality trivially follows from the def-
inition of π cen,∗. For the second inequality, from Lemma 4,
the function VN−11 is Lipschitz continuous everywhere on the
compact set �. Thus, for any i ∈ [N] where VN−11(π cen,∗) <
VN−11(πdec,∗

i ) holds, there exists a neighborhood NScen ⊂ �

of the set Scen such that

VN−11π � VN−11(πdec,∗
i ), for all π ∈ NScen . (15)

Noting the fact that Scal(0) = (Scen)N+1 and using Lemma 6,
we conclude that there exists ε̄ > 0 such that for all ε ∈ [0, ε̄)

we have Scal(ε) ⊂ (NScen )N+1. This inclusion along with the
inequality (15) yields the conclusion. �

The two results presented in this section highlight the fact
that the optimizers of the CAL framework balance the prop-
erties of the centralized and decoupled optimal policies. This
balance is tunable using the centrality measure ε. As an addi-
tional advantage of our framework, our next section illustrates
how agents can learn from each other’s experts.

C. ROBUSTNESS AGAINST OUTLIERS
Here we present a scenario where an agent can benefit from
the proximity of policies imposed by the CAL framework.
To this end, we require the following assumption that the
occupancy measure induced by a policy in two different en-
vironments is bounded by the difference in transition kernels
of these environments.

Assumption 8. (Sensitivity of occupation measure to the
changes in transition matrix): There exists C̃ > 0 such that
given a policy π ∈ � and any two environments i, j ∈ [N],
we have ∥∥∥μπi − μ

π

j

∥∥∥
1
� C̃

∥∥Pi − P j
∥∥

1 .

The following result gives a bound on the different between
the occupancy measure induced by two feasible policies of the
CAL problem.

Lemma 9. (Properties of feasible points of CAL): Let
({πi}N

i=1, πc) be a feasible point of the CAL problem. Suppose
Assumption 8 holds. Assume that ‖Pi − P j‖1 � δ2 for all
i, j ∈ [N]. Then, we have∥∥∥μπi

i − μ
π j
j

∥∥∥
1
� 2 |S| |A| Lhε + C̃δ2, for all i, j ∈ [N].

Proof: Note that∥∥∥μπi
i − μ

π j
j

∥∥∥
1
�

∥∥∥μπi
i − μ

πi
j

∥∥∥
1
+

∥∥∥μπi
j − μ

π j
j

∥∥∥
1

� C̃
∥∥Pi − P j

∥∥
1 +

∥∥∥μπi
j − μ

π j
j

∥∥∥
1

� C̃
∥∥Pi − P j

∥∥
1 +

√
|S| |A|Lh

∥∥πi − π j
∥∥

2

� C̃δ2 + 2 |S| |A| Lhε,

where the first is the triangle inequality, the second uses
Assumption 8, the third uses the Lipschitz property given
in Lemma 3, and the last inequality is due the fact that for
feasible points of CAL problem, we have ‖πi − π j‖∞ � 2ε.
�

Our main result is given next. It identifies conditions under
which an agent would prefer using policy obtained from the
CAL problem over the optimal decoupled policy. Particularly,
this captures the scenario where environments and expert be-
haviors are similar while one environment has a poor estimate
of the expert occupation measure.

Proposition 10. (Robustness against error-prone expert oc-

cupation measures): Assume that ‖μπEi
i − μ

πE j
j ‖1 � δ1 and

‖Pi − P j‖1 � δ2 for all i, j ∈ [N]. Suppose Assumption 8
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holds. Let k ∈ [N] be the agent with error-prone expert occu-
pation measure, that is, μerr

k ∈ Fk be the estimate of the expert
occupation measure available to agent k and∥∥∥��μerr

k −��μ
πEk
k

∥∥∥
1
� M.

Let ({π err,∗
i }N

i=1, π
err,∗
c ) be the optimizer of the CAL prob-

lem, where μ
πEk
k is replaced with μerr

k . Let πdec,∗
k,err be the

optimal decoupled policy for agent k using the available es-
timate μerr

k of the expert occupation measure. That is,

π
dec,∗
k,err ∈ arg minπk∈�

∥∥��μπk
k −��μerr

k

∥∥
1 . (16)

If the following condition is satisfied

M > 4 |S| |A| Lhε + 2C̃δ2 + 2δ1, (17)

then Vek (π err,∗
k ) < Vek (πdec,∗

k,err ).

Proof: Due to optimality in (16), we have ��μ
π

dec,∗
k,err

k =
��μerr

k . As a consequence, Vek (πdec,∗
k,err ) = ‖��μ

π
dec,∗
k,err

k −
��μ

πEk
k ‖1 = ‖��μerr

k −��μ
πEk
k ‖1 � M. For the sake of

contradiction, assume that Vek (π err,∗
k ) � Vek (πdec,∗

k,err ) � M.
Expanding this expression gives∥∥∥∥��μπ

err,∗
k

k −��μ
πEk
k

∥∥∥∥
1
� M. (18)

Note that for any j ∈ [N], j 
= k, we have∥∥∥∥��μ
π

err,∗
j

j −��μ
πE j
j

∥∥∥∥
1

=
∥∥∥��μ

π
err,∗
j

j −��μπ
err,∗
k

k +��μπ
err,∗
k

k −��μ
πEk
k

+��μ
πEk
k −��μ

πE j
j

∥∥∥
1

�
∥∥∥∥��μπ

err,∗
k

k −��μ
πEk
k

∥∥∥∥
1
−

∥∥∥∥��μ
π

err,∗
j

j −��μπ
err,∗
k

k

∥∥∥∥
1

−
∥∥∥��μ

πEk
k −��μ

πE j
j

∥∥∥
1

� M − 2 |S| |A| Lh ncε − C̃ncδ2 − ncδ1, (19)

where in the above inequality, the first term is lower bounded
due to (18), the second term is lower bounded due to Lemma 9
as both πerr,∗

k and π err,∗
j are feasible points of the CAL prob-

lem, and the last term is lower bounded due to the hypothesis.
Using the above inequality, we lower bound the value that
the objective function of the CAL problem takes at the point
({π err,∗

i }N
i=1, π

err,∗
c ) as∥∥∥∥��μπ

err,∗
k

k −��μerr
k

∥∥∥∥
1
+

∑
j 
=k

∥∥∥∥��μ
π

err,∗
j

j −��μ
πE j
j

∥∥∥∥
1

� (N − 1)(M − 2 |S| |A| Lh ncε − C̃ncδ2 − ncδ1), (20)

where the above uses (19). We next show that there exists a
feasible point of the CAL problem that incurs less value than

the right-hand side of the above inequality. This leads to a
contradiction.

Consider a feasible point ({πi}N
i=1, πc) such that πk = πc =

πμ
err
k . Then, the value the objective function of the CAL prob-

lem takes at this feasible point is∑
j 
=k

∥∥∥��μπ j
j −��μ

πE j
j

∥∥∥
1

� (N − 1) max
j

∥∥∥��μπ j
j −��μ

πE j
j

∥∥∥
1

= (N − 1) max
j

∥∥∥��μπ j
j −��μπk

k +��μπk
k

−��μ
πEk
k +��μ

πEk
k −��μ

πE j
j

∥∥∥
1

� (N − 1) max
j

(∥∥∥��μπ j
j −��μπk

k

∥∥∥
1

+
∥∥∥��μ

πEk
k −��μ

πE j
j

∥∥∥
1

)

� (N − 1) max
j

(∥∥∥μπ j
j − μ

πk
k

∥∥∥
1
+

∥∥∥μπEk
k − μ

πE j
j

∥∥∥
1

)

(a)
� (N − 1)

(
2 |S| |A| Lh ncε + C̃ncδ2 + ncδ1

)
(b)
< (N − 1)(M − 2 |S| |A| Lh ncε − C̃ncδ2 − ncδ1)

(c)
�

∥∥∥∥��μπ
err,∗
k

k −��μerr
k

∥∥∥∥
1
+

∑
j 
=k

∥∥∥∥��μ
π

err,∗
j

j −��μ
πE j
j

∥∥∥∥
1
,

where (a) is due to Lemma 9, (b) follows from the condi-
tion (17), and the last inequality is due to (20). The above
reasoning implies that there exists a feasible point that takes
value strictly less than the optimal value which is a contradic-
tion. This completes our proof. �

V. ALGORITHMS FOR SOLVING CAL PROBLEM
In this section, we investigate both centralized and distributed
approaches to approximate the solution of the CAL prob-
lem (7). To this end, observe that the objective function in (7)
is non-convex with respect to the policies but is convex with
respect to the corresponding induced discounted occupation
measures. Therefore, in line with the approach used in [12],
we proceed to rewrite (7) in terms of the discounted occupa-
tion measure. This process results into a convex objective, but
renders the constraints bilinear, as explained below. We han-
dle the nonconvexity caused by such constraints by forming
convex outer approximation of the feasibility set.

Recalling the set of feasible occupation measures given
in (4) and the bijection between policies and occupation mea-
sures, we rewrite (7) equivalently as

min
{μi}N

i=1,πc

N∑
i=1

∥∥∥��μi −��μ
πEi
i

∥∥∥
1

(21a)

subject to μi ∈ Fi for all i ∈ [N], (21b)

πc ∈ �, (21c)
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∣∣∣∣ μi(s, a)∑
a′∈A μi(s, a′)

− πc(s, a)

∣∣∣∣ � ε

for all i ∈ [N], s ∈ S, a ∈ A. (21d)

The equivalence here refers to the fact that policies ob-
tained from the optimal occupation measures of the above
problem along with the cross-learned policy will be an
optimizer of (7). The constraint (21d) can be written as
|μi(s, a) − πc(s, a)

∑
a′∈A μi(s, a′)| � ε

∑
a′∈A μi(s, a′) and

so it is bilinear in variables πc and μi. Thus, the feasibil-
ity set of the above problem is nonconvex, in general. For
computational ease, we use a set of linear inequality con-
straints to bound the nonconvex feasibility set that is formed
by the bilinear constraint (21d). To this end, we make use
of McCormick envelopes [27], [28]. Specifically, consider a
bilinear constraint z = xy for decision variables x, y, and z
where the former two are further constrained as xl � x � xu

and yl � y � yu. Then, the McCormick envelope for the set

{(x, y, z)∈R
3| z=xy, xl � x � xu, yl � y � yu} (22)

is the set consisting of four linear inequalities in place of the
bilinear equality:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(x, y, z) ∈ R

3

∣∣∣∣∣∣∣∣∣∣

z � xl y + xyl − xl yl ,

z � xuy + xyu − xuyu,

z � xuy + xyl − xuyl ,

z � xl y + xyu − xl yu,

xl � x � xu, yl � y � yu.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23)

In the definition of the above set, the first two inequalities are
the so called underestimating convex functions, and the next
two are overestimating concave functions. The set defined
in (22) is a subset of that in (23). In the following, we make
use of this procedure to form an outer approximation of (21d).

Let {yi,wi}i∈[N] be the new set of decision variables where
yi ∈ R

|S| and wi ∈ R
|S||A|. The variable yi(s) will take the

value of
∑

a∈A μi(s, a) and the variable wi(s, a) will play the
role of πc(s, a)

∑
a∈A μi(s, a). Then, the bilinear constraint

wi(s, a) = πc(s, a)
∑

a∈A μi(s, a) will be replaced with four
linear inequalities, similar to the way explained above. With
these additional decision variables, we define the following
McCormick relaxation of (21) as

min
{μi}N

i=1,πc,

{wi}N
i=1,yi

N∑
i=1

∥∥∥��μi −��μ
πEi
i

∥∥∥
1

(24a)

subject to μi ∈ Fi, ∀ i ∈ [N] , (24b)

πc ∈ �, {wi}N
i=1 ∈ R

|S||A|
�0 , ∀ i ∈ [N] , (24c)

{wi}N
i=1 ∈ R

|S||A|
�0 , ∀ i ∈ [N] , (24d)

yi(s) =
∑
a∈A

μi(s, a), ∀ i ∈ [N] , (24e)

for all i ∈ [N] , s ∈ S, a ∈ A :∣∣μi(s, a) − wi(s, a)
∣∣ � εyi(s), (24f)

wi(s, a) � ν0(s)πc(s, a), (24g)

wi(s, a) � yi(s)+ |A|
1 − γ

(πc(s, a)−1),

(24h)

wi(s, a) � yi(s)+ν0(s)(πc(s, a)−1),
(24i)

wi(s, a) � |A|
1 − γ

πc(s, a). (24j)

Here constraints (24g)–(24j) are obtained using the under-
estimators and over-estimators for wi(s, a) = πc(s, a)yi(s)
along with the bounds ν0(s) � yi(s) � |A|

1−γ and 0 �
πc(s, a) � 1 for the occupation measure and policy, respec-
tively. The next result summarizes the guarantee of the above
approximation.

Proposition 11. (Solutions of (24) as approximation of those
of (7)): If ({πi}N

i=1, πc) is a feasible point of the CAL prob-
lem (7), then there exist {yi,wi}i∈[N] such that these variables
along with ({μπi

i }N
i=1, πc) together are feasible for (24). Con-

sequently, the optimal value of (24) is a lower bound for the
optimal value of (7).

Note that if ({μ∗
i }N

i=1, π
∗
c ) is part of the optimizers of (24),

then the obtained policies from these measures might not be
feasible for the CAL problem (7). To obtain feasible policies,
one can resort to one of the following two strategies:

1) Project all the policies {π
μ∗

i
}N
i=1 obtained from (24) onto

an ε−ball (under the inf-norm) with its centre as the
cross-learned policy π∗

c .
2) Project all the individual policies {π

μ∗
i
}N
i=1 onto an ε-

ball centred at the average policy 1
N

∑
i∈[N] πμ∗

i
.

The former gives more importance to π∗
c , while the later

perceives that the obtained individual policies π
μ∗

i
perform

well and so their average is selected as an estimate of the
cross-learned policy.

Remark 12. (An inner approximation approach): The Mc-
Cormick relaxation described above forms an outer convex
approximation of the feasibility set. One can also form an
inner convex approximation by using the bound given in
Lemma 2. Specifically, given any environment i ∈ [N] and
two occupation measures μ1, μ2 ∈ Fi, we have

∥∥πμ1
− πμ2

∥∥
2 � 2

νmin
0

∥∥μ1 − μ2

∥∥
1 , (25)

where νmin
0 := mins∈S ν0(s) and πμ1

and πμ2
are policies cor-

responding to measures μ1 and μ2, respectively. This bound
was obtained in [26, Proposition 1] and a closer look at the
proof in there reveals that occupation measures need not be
restricted to Fi for the bound to hold. In fact, if two measures
μ1, μ2 belong to the set J , where

J :=
{
μ∈R|S||A|

�0 | νmin
0 �

∑
a′∈A

μ(s, a′)� |A|
1−γ for all s∈S

}
,
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then the bound (25) is satisfied. Further, for any vector z ∈
R

n, we have ‖z‖∞ � ‖z‖2 and ‖z‖1 � n‖z‖∞. Using these
bounds in (25), we obtain

∥∥πμ1
− πμ2

∥∥∞ � 2 |S| |A|
νmin

0

∥∥μ1 − μ2

∥∥∞ ,

for all μ1, μ2 ∈ J . Note that Fi ⊂ J for all i ∈ [N]. Using
these facts, the convex inner approximation of (21) is

min
{μi}N

i=1,μc

N∑
i=1

∥∥��μi −��μπEi
∥∥

1 (26a)

subject to μi ∈ Fi, ∀i ∈ [N] , (26b)

μc ∈ J , (26c)

∥∥μi − μc

∥∥∞ � νmin
0

2 |S| |A|ε, ∀i ∈ [N] . (26d)

Once an optimizer ({μ∗
i }N

i=1, μ
∗
c ) of the above problem is

obtained, then the individual policies are {π
μ∗

i
}N
i=1 and the

cross-learned policy is πμ∗
c
. As the size of state and action

spaces appear in the denominator of the constraint (26d), this
approximation is very conservative and often leads to infeasi-
bility for large state and action spaces. •

Remark 13. (Distributed computation): For applications in
the real world, we can envision the scenario where informa-
tion or behavior of the expert is not available at one particular
geographical location. For example, two individuals can be
driving two different vehicles in two different geographical
locations. In such a case, it is desirable to solve the CAL
problem or its convex approximations in a distributed manner.
By this we mean that the data about the expert behavior and
the model of the environment remains as local information for
an agent and is not shared with other agents. Under this infor-
mation constraint, the convex approximations (24) and (26)
both have structures that allow easy implementation of dis-
tributed algorithm. They both have objective functions as the
summation of local functions and constraints that are local
once a consensus constraint is added. For this case, either one
can opt for primal-dual distributed algorithms or distributed
alternating direction method of multiplier, see [29] for com-
plete details. However, solving the bilinear problem (21) in a
distributed manner is unexplored in the literature and we plan
to pursue it in future. •

VI. SIMULATIONS
Here we illustrate the properties of the proposed CAL frame-
work using a navigation task in a windy gridworld. Such
an environment is often used to demonstrate the efficacy of
reinforcement learning algorithms [1]. We consider four grid-
worlds, each of which consists of 7 × 10 cells (similar to [1,
Example 6.5]), as depicted in Fig. 1. These four instances
differ in the magnitude of the crosswind that is flowing from
bottom to top. Each cell in the gridworld is a state of the
environment. An agent in the gridworld aims to reach the
target cell by taking at each time instance one of the four

FIGURE 1. An instance of the windy gridworld and a sample trajectory of
an agent in it. The yellow and the blue cells are the initial and target cells.
The numbers at the bottom of each column stand for the magnitude of
wind flowing in the upward direction in all cells belonging to that column.

available actions, i.e., move left, right, up, or down. When
the magnitude of the wind at a particular cell is zero, then
the action causes intended movement by one unit as long as
it respects the boundary. For instance, action up results in
moving of the agent by one unit in the upward direction. In
case the wind has non-zero magnitude, then the displacement
equivalent to the magnitude and along the direction of the
wind is added to the displacement caused due to the action
of the agent. For example, if the agent opts for moving right
and the wind has unit magnitude, then the agent move to the
top-right adjacent cell. This specifies completely the transition
probability attached to an environment given the wind direc-
tion and magnitude at each cell. Roughly speaking, the aim
for the agent is to reach the target cell (3,7), see Fig. 1, from
any cell in the gridworld using minimum number of steps.

The direction of the wind for all environments and all cells
is down to up. For each environment, the magnitude of the
wind is the same for all cells in one column, refer to Fig. 1,
and so the magnitude for the whole environment is specified
by a vector. The wind vectors for four environments are:

Gridworld 1 : [0 0 0 1 1 1 2 2 1 0],

Gridworld 2 : [1 1 0 0 0 2 0 0 1 0],

Gridworld 3 : [0 1 0 1 2 0 1 1 1 0],

Gridworld 4 : [0 0 1 1 2 2 0 0 1 0].

One can observe a commonality to the task specified for each
environment, while the transition probabilities differ. To ob-
tain the behaviour of the expert specified by the occupation
measure generated by the expert, we first obtain expert poli-
cies in each environment using ε-greedy SARSA algorithm,
see ([1, Example 6.5]) for further details. Given the expert
policies, we compute the discounted occupation measure gen-
erated by them using 10000 sample trajectories, each starting
randomly at a location in the gridworld and consisting of 5000
time steps. For cost basis, we assume the simple case of |S||A|
number of vectors given by ψi = ei for all i ∈ [|S||A|], where
ei ∈ R

|S||A| has 1 at the ith position and all other entries are
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TABLE 1 Average length of 1000 trajectories for which the policies obtained using ε = 1, ε = 0.8, ε = 0.6, ε = 0.4, ε = 0.2 and ε = 0 reached the target cell
within a maximum of 2000 time steps.

TABLE 2 Comparison between the cal optimization problem solutions using mccormick relaxation (24) solved using CVXPY with gurobi solver and
directly solving (21) using an off-the-shelf non-convex solver gurobipy for the simulation example presented. Here, * represents the scenario where the
solver fails to converge to the optimal value within 300 seconds, and only the lower and upper bound for the optimal value is returned.

0. This completely specifies the CAL optimization problem
that we aim to solve. We consider six values for the centrality
measure, namely ε = 1, ε = 0.8, ε = 0.6, ε = 0.4, ε = 0.2
and ε = 0. We employ an outer approximation based on the
McCormick envelope to find an approximate optimizer of the
CAL problem. Since the obtained policies might not satisfy
the closeness condition (7d), we use the second strategy ex-
plained in the discussion following Proposition 11 to obtain
feasible cross-learned and individual policies. In Table 2 we
present the difference between optimal values when solving
the CAL problem without relaxation and with relaxation.

As stated earlier, the optimal value of the CAL objective
increases as the coupling between agents’ policies in differ-
ent environments increases via a decrease in the value of ε,
which can be observed in Fig. 2. The performance of the
obtained policies is shown in Fig. 3 and Table 1. For each
policy, we computed the occupation measure matching error
between the expert occupation measure in an environment and
the occupation measure induced by policies learned via the
CAL framework. This error is indicated for each policy for
each girdworld at different values of ε in Fig. 3. The closer
the occupation measure of a policy in an environment is to
the occupation measure of the expert in that environment,
the better its performance will be. One can note that when
ε is big, the individual policies are close to optimum in their
respective environments (for ε = 1 the agent learns its optimal
decoupled policy) and their performance in other gridworlds
is not necessarily good, e.g., Individual policy 3 for ε = 1 in

FIGURE 2. Optimal value of the CAL objective function solved via
McCormick relaxation approach for different values of ε.

the Fig. 3. On the other extreme is the case of ε = 0, and
as observed from Fig. 3, all policies induce almost the same
occupation measure matching error across environments for
ε = 0. Note that their performance may not exactly be the
same as the obtained policies are stochastic, and we provide
the results based on a finite number of trajectories. Our pre-
sented CAL framework balances these extreme cases when
ε is chosen to be between 0 and 1. To present another ap-
proach for evaluating the performance of the policies learned
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FIGURE 3. Variation in occupation measure matching error (calculated as 1-norm of the difference) between the expert occupation measure and
occupation measures induced by policies learned via CAL framework in gridworlds 1, 2, 3 and 4 for different values of ε.

using the CAL framework, we provide Table 1 to indicate
the average number of time steps taken by a policy to reach
the goal state. Here the time steps are averaged over 1000
randomly initialized trajectories, and if the goal state is not
reached within 2000 time steps for any trajectory, the time
required to reach the target cell is taken as 2000. Observe
that the average time steps required by various policies in
an environment other than theirs decrease as we move from
ε = 1 to ε = 0, indicating that the cross-learning has added
to the performance of policies. However, there are some out-
liers to this general trend, possibly due to the non-convexity
of the framework and approximation involved in finding the
solution.

We next demonstrate two properties of our framework
along the line of generalization and robustness. First, we in-
vestigate the performance of policies obtained using our above
simulation setup on unseen environments to demonstrate how
the CAL framework aids the generalization of learned policies
experimentally. We denote them as Gridworld 5 and 6, with
the following wind vectors:

Gridworld 5 : [0 0 1 1 1 1 0 0 1 0]

Gridworld 6 : [1 1 2 2 1 1 0 0 2 0].

Table 3 reports the performance in the sense of average time
steps required to reach the target. It is observed from both
tables that the cross-learned policy performs well in the un-
seen environments for all values of ε. On the other hand,
in most cases, some individual policy performs poorly in
unseen environments, but with the decrease in ε, the perfor-
mance of the individual policies also improve. This indicates

TABLE 3 Average time steps required by the policies obtained using ε = 1,
ε = 0.8, ε = 0.6, ε = 0.4, ε = 0.2 and ε = 0 to reach the target cell in two
unseen environments within a maximum of 2000 time steps.

the ability of our framework to obtain policies that gener-
alize well to unseen situations. Regarding the robustness of
the CAL framework, we considered the scenario where the
number of expert trajectories available in an environment is
significantly lower than the number required to generate an
accurate estimate of the expert occupation measure. In such
a case, the individual and cross-learned policies may perform
considerably better than the optimal decoupled policy in its
environment. An example of such a scenario is presented in
Table 4 where there is only a small number (10 and 15) of

VOLUME 2, 2023 47



ARAVIND ET AL.: CROSS APPRENTICESHIP LEARNING FRAMEWORK: PROPERTIES AND SOLUTION APPROACHES

TABLE 4 Average time steps required by the individual policy in
environment 3 to reach the target cell when number of expert trajectories
available were 10, 15 and 10000.

expert trajectories are available for environment 3. Observe
from Table 4 that the performance of the individual policy
learned by the agent in this scenario improves initially as the
value of ε decreases. Moreover, for most of the considered
ε values, the performance is better than that of the optimal
decoupled policy, which corresponds to ε = 1.

VII. CONCLUSION
We have introduced the cross apprenticeship learning (CAL)
framework for apprenticeship learning when the expert tra-
jectories of the task to be learned are available from multiple
environments. We presented various properties of the optimiz-
ers of the problem that stands at the core of our framework.
Further, since the problem is non-convex, we provided a con-
vex approximation approach to solve it. Our findings were
implemented in a numerical example related to navigation
in a windy gridworld. Future work will explore distributed
algorithms for bilinear optimization problems with tunable
accuracy so as to solve the CAL problem for a large number
of environments. We also wish to study agents’ ability to
learn from experts in other environments when the number
of expert trajectories available is quite different in various
environments. Lastly, we would like to explore the scalability
of our approach to large-scale state-action spaces.
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