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ABSTRACT Accurate velocity information is often essential to the control of robot manipulators, especially
for precise tracking of fast trajectories. However, joint velocities are rarely directly measured and instead
estimated to save costs. While many approaches have been proposed for the velocity estimation of robot
joints, no comprehensive experimental evaluation exists, making it difficult to choose the appropriate method.
This paper compares multiple estimation methods running on a six degrees-of-freedom manipulator. We
evaluate: 1) the estimation error using a ground-truth signal, 2) the closed-loop tracking error, 3) convergence
behavior, 4) sensor fault tolerance, 5) implementation and tuning effort. To ensure a fair comparison, we
optimally tune the estimators using a genetic algorithm. All estimation methods have a similar estimation
error and similar closed-loop tracking performance, except for the nonlinear high-gain observer, which is not
accurate enough. Sliding-mode observers can provide a precise velocity estimation despite sensor faults.

INDEX TERMS Genetic algorithms, manipulators, robots, tuning, velocity estimation.

I. INTRODUCTION
Accurate joint velocity signals of robot manipulators are
needed for many fundamental control purposes, e.g., tra-
jectory tracking, collision detection, and force control [1].
Sensors for measuring joint positions, e.g., encoders, have
become inexpensive, reliable, and have a high resolution. The
same cannot be said for velocity measurements. Direct mea-
surements, e.g., through magnetic tachometers are affected
by discontinuities of the magnetic field, ripple torques, and
other high-frequency noise [2], while encoders are much more
robust. Compactness and economic reasons often lead to not
integrating joint velocity sensors at all.

Starting with the works of Nicosia and Tomei [3] in the
1990 s, velocity estimation for robots has been discussed
widely in the literature, and many different methods have
been proposed since then. From a practitioner’s point of view,
however, it is still hard to select a proper estimation method,
because 1) it is hard to infer differences between estimation
methods from previous papers, 2) many techniques have only
been evaluated in simulation, and 3) the evaluations have been
carried out on different robots.

Our paper addresses this issue by systematically compar-
ing popular velocity estimation concepts and evaluating them
using criteria which are important to practitioners, such as
tuning and robustness to faults. Together with this paper, we
also publish a MATLAB tool package, that includes an imple-
mentation of all discussed methods ready-to-use.

Previous studies that involve comparing velocity estimation
methods can be found in [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. Simulative comparisons of derivative filters
for discrete position measurements showed that no approach
works best for all velocity profiles [4], [5], [6]. In the simula-
tive comparison in [7], an extended Kalman filter, a nonlinear
high-gain observer, and a linear observer have been compared
considering their position estimation error and tracking er-
ror on a two degrees-of-freedom (DOF) robot. The authors
in [8], [9] experimentally compare the tracking error of differ-
ent tracking controllers using linear high-gain observers. The
study in [10] experimentally analyzes the tracking error of a
2-DOF planar robot using five different observers. However,
each observer uses a different tracking controller and only
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trapezoidal trajectories were tested. An experimental compar-
ison between a nonlinear high-gain observer, a Kalman filter,
and a lead-lag based filter has been conducted on a parallel
kinematics robot in [11], where the authors use a dual-mode
controller and a proportional-derivative (PD) controller. The
comparisons in [10] and [11] have two main drawbacks: 1) the
gains of the proposed methods were chosen without apparent
justification, although the performance of velocity estimation
mainly depends on such gains, and 2) these comparisons did
not evaluate the performance in terms of velocity estima-
tion error. Our paper addresses these issues by including a
gain tuning approach that allows a comparison of optimally
tuned estimators, while the velocity estimation error is mea-
sured through an actual ground-truth signal. Further works
that compare model-free and model-based observers, used in
conjunction with different controller structures, can be found
in [12], [13], [14].

In contrast to previous works, our paper presents for the
first time an experimental comparison of a wide variety of
estimation methods, including multiple filters and multiple
observers. We use the same 6-DOF robot manipulator, the
same tracking controller, and the same test trajectory for all
estimators.

This paper is organized as follows: in Section I, we state the
problem at hand and survey the literature for popular existing
velocity estimators. In Section II, we provide an in-depth
review of selected estimators, which we consider to be among
the most suitable for practical applications. The automatic
parameter tuning is explained in Section III. The evaluated
estimators are compared experimentally in Section IV and we
conclude the paper in Section V.

A. PROBLEM STATEMENT
Let us consider the rigid dynamics of robot manipulators with
n revolute joints written in state-space form as

ẋ1 = x2,

ẋ2 = f (x1, x2, u) = M−1(x1)(u − n(x1, x2)),
(1)

where x1 ∈ Rn is the vector of joint positions, x2 ∈ Rn is
the vector of joint velocities, u ∈ Rn is the vector of motor
torques, M(x1) ∈ Rn×n is the inertia matrix, and n(x1, x2) ∈
Rn is the vector-valued function including Coriolis and cen-
tripetal forces, gravity, and friction. The joint positions are
measured at a finite resolution using rotational encoders.

The robot tracks a desired trajectory of positions, veloci-
ties, and accelerations xd

1 (t ), xd
2 (t ), xd

3 (t ) ∈ Rn via an inverse
dynamics controller [15, Sec. 8.5.2]

u = M(x̂1)ν + n(x̂1, x̂2), (2)

ν = xd
3 + Kp(x̂1 − xd

1 ) + Kd (x̂2 − xd
2 ), (3)

where x̂1, x̂2 are the vectors of estimated joint positions and
velocities. Some of the discussed methods do not estimate x̂1;
but since x1 is measured directly, x̂1 can be replaced by x1 in
(2) and (3), when applicable.

TABLE 1. Velocity estimation methods identified in this survey (references
with * are evaluated in our comparison).

The objective of this paper is to compare different methods
to obtain x̂2 and to tune the parameters of all estimators,
such that the error x2 − x̂2 between the estimated and the
ground-truth velocity is minimized. To obtain a ground-truth
signal, any method can be used that returns a significantly
more accurate velocity than the evaluated estimations, e.g.,
using external encoders with a higher resolution and sampling
rate. In our paper, we simulate external measurement by arti-
ficially decreasing the sensor resolution and sampling rate of
the internal sensors for closed-loop control, while the ground
truth is obtained using the actual sensor resolution at a higher
sampling rate.

The estimation methods are subject to disturbances in our
robot system. Amongst others, there can be
� quantization errors due to the finite resolution of the

encoders;
� high-frequency noises due to manufacturing errors of the

encoders [16];
� modeling errors due to an inaccurate parametrization of

f (x1, x2, u);
� sensor faults due to communication errors.
In the subsequent literature survey we group the approaches

we identified for velocity estimation into model-based ap-
proaches, that require the computation of the nonlinear dy-
namical model in (1), and model-free approaches, which do
not need this model. Model-free methods can be implemented
decentrally at each individual joint, if the methods do not have
dependencies between joints. Model-based methods, however,
must be implemented in a centralized manner. The considered
approaches are collected in Table 1, which also sorts them
according to the fact that they are validated in the literature
using simulations or experiments.

B. MODEL-BASED METHODS
We first survey model-based schemes. The popular and pi-
oneering model-based method of Nicosia and Tomei in [3]
presents an asymptotically stable observer whose region of
attraction can be enlarged via the observer gain. In contrast to
previous work, the authors design the model-based observer
in conjunction with a controller; many subsequent works fol-
lowed this idea. The authors in [17] propose a model-based
observer which provides semi-global exponentially stable er-
ror dynamics of the velocity tracking error, considering a
dedicated controller structure. Effectiveness of this approach
is shown by experiments on a 2-DOF manipulator. Another
model-based extension of the approach from Nicosia and
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Tomei can be found in [18], in which the authors show
semi-global exponential stability of their proposed combined
observer and controller. The authors in [19] and [20] dis-
cuss nonlinear high-gain observers for the velocity estimation
problem, including how to avoid the peaking phenomenon in
the transient behavior, i.e., the initial estimation error may
exhibit an impulse that could destabilize the controller. An
adaptive approach providing locally asymptotically stable es-
timation error dynamics has been proposed in [21] in which
the authors show that their proposed approach is superior
to simple numerical differentiation; the authors perform ex-
periments on a 6-DOF PUMA-560 robot. The work in [22]
introduces a combined observer/controller structure providing
global exponential convergence of the estimation error. How-
ever, that paper only shows practical effectiveness by means
of simulations. More recently, the author in [23] showed the-
oretically that a proposed Luenberger-like observer with a
simple proportional-derivative control with gravity compen-
sation achieves uniformly ultimately bounded stability, which
is confirmed by experiments on a 2-DOF robot. Model-based
approaches using sliding mode observers have been proposed
for robots in [2], [24], [25], whose effectiveness was only
demonstrated by simulations.

C. MODEL-FREE METHODS
In this subsection, we survey model-free approaches. In the
works of Nicosia et al. [8], a simple high-gain observer is
introduced, which supports distributed implementations; this
approach also provides uniformly ultimate boundedness of
the velocity estimate and is presented and tested using both
simulations and experiments on a 6-DOF robot. The work
in [26] introduces a model-free observer providing uniformly
ultimate boundedness of the velocity estimation error. This
scheme accounts for model uncertainties in its design and its
effectiveness have been verified by means of experiments with
a 2-DOF robot. Both [8] and [26] consider inverse dynam-
ics control and proportional-derivative control for tracking,
provide a closed-loop stability analysis for both cases, and
suggest parameters to ease gain tuning of the observer. Sub-
sequently, the authors in [27] also proposed a model-free
observer that provides uniformly ultimate boundedness of
both tracking and observer errors when used in conjunction
with their proposed robust controller. The authors in [28],
[29] introduce a model-free observer which provides asymp-
totic stability of the velocity estimation error dynamics. To
achieve this, [28] uses passivity arguments, while more gen-
eral Lyapunov arguments are used in [29], where also external
disturbance is taken into account and the performance is
shown using simulations on a 2-DOF robot. Similarly, the
works in [30], [31] present model-free observers that provide
asymptotic stability demonstrated in simulation [30] and ex-
periments [31]. A model-free sliding-mode observer has been
proposed in [32]; its practical effectiveness has been presented
by simulations. As an extension, some estimators incorporate
neural networks [33], [34].

Furthermore, there exist popular estimators without explicit
closed-loop stability proofs. Kalman filters [35] are such an
example, which assume white noise to approximate the robot
dynamics. Also, the derivative filtering methods, such as the
ones in [5], are not yet proven to be stable in closed-loop.
However, the author of [36] introduces a possible theoretical
framework to foster the use of derivative filtering in place of
state observers for a stable output-feedback control of robots.

From the available literature, we select several estimation
methods, of which we conduct an in-depth review, which
can be divided into four model-free methods from the works
in [5], [8], [37], and two model-based methods from the works
in [20], [25]. The selected methods have an asterisk in Table 1.
These have been mainly selected for their popularity, ease
of implementation, ease of tuning, and their robustness with
respect to the chosen controller.

II. REVIEW OF SELECTED ESTIMATORS
In this section, we discuss the estimators that we exper-
imentally compare, namely moving average filtering [5],
derivative filtering [5], Kalman filtering [37], linear high-gain
observer [8], nonlinear high-gain observer [19], and sliding-
mode observer [25]. We review their respective properties as
studied in the literature. Furthermore, we discuss the imple-
mentation aspects.

A. FINITE DIFFERENCE AND MOVING AVERAGE FILTERING
This basic technique numerically approximates the deriva-
tive by dividing the difference between successively obtained
position measurements by a time window p�t , where �t
is the sampling time of the controller and p is an integer
that determines the size of the window for which we take
the average. We denote a position measurement as x1,k−1 =
x1((k − 1)�t ). The estimated velocity is given by

x̂2,k = x1,k − x1,k−p

p�t
. (4)

With large p, the averaging effect attenuates quantization
noise in the measurements, but introduces a delay in the es-
timated velocity, while small p values amplify the noise [37].
For our comparison, we use p = 1, which we also call the
finite difference (FinDiff) method, and an optimally chosen
p > 1, which we call the moving average (MovAv) method.

B. DERIVATIVE FILTERING
Here, we describe a class of methods that compute the deriva-
tive through filtering the position signal. Various predictive
strategies have been proposed in the literature based on a poly-
nomial fitting of previous measurements, such as Taylor series
expansion (TSE), and backward difference expansion (BDE),
which are characterized by the number of samples nTSE and
nBDE. To counter the problem of overfitting and the resulting
noise amplification, the least-squares fit (LSF) has been pro-
posed in [5], that uses regression to find a polynomial of the
order pLSF with the smallest error among nLSF measurements,
where pLSF < nLSF. In-depth comparisons of these methods
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and a description of their implementation can be found in [4],
[5], [38]. The findings of Brown et al. [5] are that TSE and
BDE are good for transient responses and LSF filters are more
suited for constant velocities. For velocity profiles that vary a
lot, such as for robot manipulators, no single filtering method
is best [38]. In our comparison, we will first evaluate the TSE,
BDE, and LSF filters amongst each other, and choose the best
one for the overall comparison with other methods.

C. KALMAN FILTER
The Kalman filter is a linear observer, that has been used
in many engineering fields, such as for state and parameter
estimation, data merging, or signal processing [39]. Bélanger
proposes such an observer for rotary encoders [37], and in-
stead of using the dynamical model in (1), assumes a triple
integrator model for each individual axis i, consisting of the
state zi = [x1,i, x2,i, x3,i] ∈ R3 (position, velocity, and accel-
eration of each axis), the output yi, and the Gaussian white
noises vi (sensor noise) and wi (process noise) [37, Eq. 14]:

żi = Azi + �wi

yi = Czi + vi,

A =

⎡
⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎦ , � =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ ,

C =
[
1 0 0

]
.

According to [37], vi can be chosen to be zero-mean with

variance
�q2

m,i
3 , where �qm,i is the quantization error of each

axis. The noise wi is also assumed to be zero-mean and has
a variance Qi, which has to be tuned for each axis. In the
same work, a second-order system is additionally proposed
for velocity estimation which, however, does not perform as
well as the third-order one. The analysis in [37] showed an
improvement compared to the finite difference method, espe-
cially at low speeds up to one tenth of an encoder increment
per time step.

To further improve the acceleration estimation [7] or to pro-
vide estimations for flexible robots [40], one could estimate
the state of the full model of the robot considering the nonlin-
ear dependencies between joints. For those systems, extended
Kalman filters are required due to the nonlinearity of the
system. Since both cases are not relevant in our application,
we deliberately exclude this method in our comparison.

D. LINEAR HIGH-GAIN OBSERVER
High-gain observers are theoretically well understood (see,
e.g., the works of Khalil [20]) and have been experimentally
examined, e.g., in [7], [8], [9], [10], [11]. In this work, we
discuss both the linear and the nonlinear versions. The linear
observer (linHG) uses a scalar gain εl and two matrix gains

H1, H2 ∈ Rn×n [8, 9]:

˙̂x1 = x̂2 + 1

εl
H1(x1 − x̂1),

˙̂x2 = 1

ε2
l

H2(x1 − x̂1).

This observer is asymptotically stable if the eigenvalues of[−H1 I
−H2 0

]
have negative real parts [20]. It has been shown

in [8], that there exists an ε∗
l so that the closed-loop dynamics

is asymptotically stable for εl ∈ [0, ε∗
l ], for any uniformly

asymptotically stable controller. In other words, high-gain ob-
servers can be flexibly combined with any tracking controller,
while overall stability is guaranteed.

In practice, however, the observer gains are limited, i.e.,
εl is lower-bounded by measurement noise and the sampling
time of the controller [20]. Therefore, a trade-off between the
noise suppression and estimation accuracy has to be found.
To partially overcome this compromise, one can filter mea-
surements and implement time-varying gains, as discussed
in [20]; this extension is excluded in our comparison since we
limit ourselves to easily implementable approaches. Also, a
peaking phenomenon occurs (not examined by [8]). For these
cases, an input saturation is sufficient for stability [20].

E. NONLINEAR HIGH-GAIN OBSERVER
Considering the full robot model (1) as an additional source
of information, there exists a potential for better results us-
ing nonlinear observers. The nonlinear high-gain observer
(nnlHG) is such a model-based approach, that is similar to its
above-discussed linear version. For robots, this observer has
first been introduced by Lee and Khalil in [19]. The observer
uses the scalar gain εn and two matrix gains L1, L2 ∈ Rn×n

[20, 9.4]:

˙̂x1 = x̂2 + 1

εn
L1(x1 − x̂1),

˙̂x2 = f (x1, x̂2, u) + 1

ε2
n

L2(x1 − x̂1).

Similar to the linear version, asymptotic stability is given if

the real part of the eigenvalues of
[−L1 I

−L2 0

]
are negative and

a nonlinear separation principle can be established for the
stability of the closed-loop system [41], meaning that also this
observer can be flexibly combined with any stable tracking
controller. A simulation study in [20] has shown that, indeed,
a better velocity estimation compared to the linear version can
be achieved, if the model is precise. However, this advantage
becomes less and less significant, when the gains εl and εn

decrease [20].

F. SLIDING MODE OBSERVER
Robustness, finite-time convergence, and the ability to handle
discontinuous systems are major reasons for the application of
sliding mode observers (SliMod) [42]. Real implementations
of sliding mode observers, however, suffer from chattering
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while sliding along the switching surfaces. This effect can be
alleviated by second or [42] or third-order [43] sliding-mode
observers. Third-order versions experience a slower conver-
gence than second-order observers, as shown by Fraguela
Cuesta et al. in [43]. The version we consider in our com-
parison is the third-order version proposed in [25], which
adds a linear term to improve convergence. It consists of
the gain vectors α1, α2, α3 ∈ Rn×1, the linear gain matrices
K1, K2 ∈ Rn×n, the signum function sgn(·), the element-wise
absolute values | · |, and element-wise powers, such that [25,
Eq. 28]:

˙̂x1 = x̂2 + α3|x1 − x̂1|2/3sgn(x1 − x̂1) + K1(x1 − x̂1),

˙̂x2 = f̂ (x1, x̂2, u) + α2| ˙̂x1 − x̂2|1/2sgn( ˙̂x1 − x̂2),

+ K2(x1 − x̂1) + ẑeq,

˙̂zeq = α1sgn( ˙̂x1 − x̂2),

where ẑeq is the observed input disturbance, which could also
be used to improve the tracking performance, as described
in [25]. For continuous-time systems, this observer has finite-
time convergence, and can thus be trivially combined with
stable tracking controllers, since the observer only has to
reach the exact velocity before the controlled system would
leave the stability bounds [42].

G. IMPLEMENTATION
Except for derivative filtering, the above estimation methods
and their properties have been developed and presented in the
literature assuming continuous-time control. Real implemen-
tations, however, are usually in discrete time, which is why we
briefly review their implementation here.

Discrete-time versions of Kalman filters can be obtained by
transforming the system model to discrete time and solving
the discrete Riccati equation. As an example, the MATLAB
functions c2d, dlqe, and destim provide the respective
functionality. Discrete-time implementation of both linear and
nonlinear high-gain observers are reviewed in [20, Ch. 9], and
boundedness of the estimation error has been shown. For the
linear version, the bilinear transformation performs best, as
shown in [20], and can also be formulated as an FIR filter [44].
For both nonlinear high-gain and sliding-mode observers, the
forward difference transformation can be used, for which
boundedness of the estimation error has been shown in [20]
and [42].

III. GAIN TUNING USING A GENETIC ALGORITHM
Control gain tuning is one of the main concerns in industrial
applications [45]. For a fair comparison, one has to find the
optimal gains for each estimator—some of them feature up
to 90 gains, when every matrix element is considered (see
Table 2). Manually tuning the gains is a time-consuming task
for some estimation methods. Instead, we propose to use an
automatic approach to find the optimal gains, which can be
applied to all estimators.

TABLE 2. Number of gains of velocity estimators for 6-DOF robots.

Possible automatic tuning techniques for PID controllers
are reviewed in [46]; however, these are not applicable to
multi-input multi-output systems. Instead, genetic algorithms
(GA) have shown promising results for the gain tuning of
nonlinear controllers, as demonstrated by simulations in [47]
for flight controllers and in [48], [49], [50] for robot con-
trollers. Genetic algorithms are bio-inspired techniques, for
which existing tools can be used, e.g., the Global Optimization
Toolbox in MATLAB.

To accelerate the tuning process, we reduce the number of
gains. For high-gain observers, the original authors propose
to choose H1, H2, L1, L2 a priori and subsequently decrease
εl , εn as far as possible. As can be seen in the equations
of Section II-D and Section II-E, the ε gains are, however,
redundant, since one can equally choose large values for the
matrices. This is why we arbitrarily set εl = εn = 0.03 a priori
and tune H1, H2, L1, L2 instead. Additionally, we only con-
sider to tune their diagonals to reduce the number of gains.
For the sliding-mode observer, we choose α1 = 1.1 f +, α2 =
1.5( f +)1/2, and α3 = 1.9( f +)1/3, as proposed in [42], [43],
where f + ∈ R6 represents the upper bound of the model per-
turbation. Furthermore, we replace K1 and K2 by the scalars k1

and k2, respectively. We found these choices to be suitable as a
compromise between optimality and decreased tuning effort.

The cost function we use in this paper for tuning, as well as
for evaluating the performance of the estimators is the integral
squared error (ISE) of the velocity estimation

ISE(t ) =
∫ t

0
(x2(τ ) − x̂2(τ ))2dτ. (5)

This cost function depends on a measurement of the ground
truth of x2, which must be more accurate than the estimation
from the reviewed methods. In our case, we run the estimation
methods online at a lower sampling rate with a lower encoder
resolution, while the ground truth position is measured by the
same encoders at a higher sampling rate and resolution. The
ground truth velocity is then obtained offline by computing
the finite difference and downsampling it with an anti-aliasing
filter [51] to match the sampling rate of the online estimation
methods. If measuring at a higher sampling rate and resolution
is not feasible, we propose to use offline zero-phase filter-
ing [51] to obtain a ground truth, so that we can minimize
the phase delay of the estimated velocity.

The hyperparameters of the genetic algorithm are chosen to
be almost the same as in [49] (see Table 3), except for the
number of generations. Although our tuning is carried out
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TABLE 3. Hyperparameters of GA for gain tuning.

FIGURE 1. The testbed consists of a 6-DOF robot manipulator and a
controller running on Simulink Real-Time.

on a real robot instead of simulations, we determined that
20 generations are sufficient for the gains to converge to an
optimal value.

IV. EXPERIMENTAL COMPARISON
In this section, we experimentally compare the velocity esti-
mation methods reviewed in Section II. Our testbed consists of
a 6-DOF Schunk LWA-4P robot, whose model has been iden-
tified in [52]. The controller and estimators are implemented
in Simulink Real-Time on a target machine with an i7-3770 K
3.5 GHz processor (see Fig. 1). For the computed-torque con-
troller, we choose Kp = 100 and Kd = 13. To measure the
ground-truth velocity, we run the position encoder at 1 mil-
lidegree per increment at a sampling rate of 250 Hz. The actual
velocity estimation is done at a resolution of 10 millidegrees
per increment and at a sampling rate of 125 Hz.

We structure the experimental comparison as follows: in
Section IV-A, we compare the tuning process using our pro-
posed genetic algorithm. In Section IV-B, we show the main
performance results, including the estimation error, the track-
ing error, and the convergence behavior of each estimator.
Afterwards in Section IV-C, we compare the performance,
when sensor faults are introduced. In Section IV-D, we
compare the performance when using different encoder res-
olutions or sampling rates. The experimental comparison is
concluded with a discussion of the results in Section IV-E. For
simplicity in some of the plots, we only show the behavior of
one axis because the behavior of the other axes are similar.
The implemented velocity estimation methods, the experi-
mental results, trajectories, and the robot model are provided
as supplementary data1 to this paper.

1[Online]. Available: https://dx.doi.org/10.21227/tse3-h285

FIGURE 2. Desired trajectory for gain tuning.

TABLE 4. Optimal gains of velocity estimation methods
(10 millidegrees, 125 Hz).

A. TUNING BEHAVIOR
We apply our automatic tuning procedure described in Sec-
tion III to the four observers: Kalman filter, linear high-gain
observer, nonlinear high-gain observer, and the sliding-mode
observer. The remaining estimation methods only involve in-
teger gains, which is why a grid search for each robot axis
was sufficient. For tuning, we execute the trajectory displayed
in Fig. 2 for each genome. With 20 generations, each with a
population of 60 genomes, this translates to roughly 12 hours
of tuning per estimation method, including the computation
time.

In Fig. 3, we show how fast our genetic algorithm con-
verges. The model-free observers (Kalman filter and linear
high-gain observer) converge fast, while the model-based ob-
servers converge more slowly. According to our intuition,
this may be because the gains of the model-based observers
are more dependent on each other, where varying one gain
affects the estimation performance of multiple joints. For the
model-free observers, the gains are decoupled for each joint,
which makes the search easier. The resulting optimal gains are
shown in Table 4.

B. ESTIMATION PERFORMANCE
We compare the performance of the velocity estimation meth-
ods using a more varied trajectory than the tuning trajectory.
As shown in Fig. 4, it consists of a sine wave, a point-to-
point trajectory in joint space using 5th-order polynomials,
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FIGURE 3. Gain tuning using our proposed genetic algorithm. After each generation the mean cost (5) slowly approaches the best achieved cost per
generation.

FIGURE 4. Estimation performance: desired trajectory. The velocity signal
q̇d consists of a sine part, a polynomial part, and a trapezoidal part.

TABLE 5. Integral squared error of the derivative filters
(10 millidegrees, 125 Hz).

and a trapezoidal point-to-point trajectory in both joint and
task space with inverse kinematics included. The experiments
are performed in closed-loop control, meaning that the esti-
mated velocities are directly applied to the computed-torque
controller.

At first, we choose the best derivative filter out of the TSE,
BDE, and LSF filters. Table 5 shows the ISE metric for the
test trajectory for all considered filters. These are the same
ones that have been analyzed in the previous comparisons
in [4] and [5]. For this experiment (and all subsequent ones)
we have determined that the LSF1/4-filter (i.e., nBDE = 2)
has the smallest velocity estimation error. Mathematically, the
LSF1/3-filter (i.e., pBDE = 1 and nLSF = 3) equals the moving
average filter for n = 2, and LSF1/2, BDE1, and TSE1 equal

the finite difference method, which is why we exclude them
in this comparison.

Next, we compare the LSF1/4-filter with all other opti-
mally tuned estimation methods. To reflect the fact that the
estimation performance can vary over time when used in
closed-loop, we run the test trajectory four times for each
estimator. In Fig. 5(b) we show the mean cumulative ISE over
the course of the test trajectory, as well as their maxima and
minima (shaded areas).

Except for the nonlinear high-gain observer, all other meth-
ods have a very similar estimation error. By small margins we
can see that the Kalman filter and the linear high-gain observer
perform slightly better than the rest. Although the finite differ-
ence method performs well in terms of ISE, we can also see
in Fig. 5(a) that it is a noisy estimation due to the quantization
error of the position encoder. On the one hand, the moving
average filter improves the smoothness, but on the other hand,
the error is larger due to the increased delay. Except for
nnlHG, the other estimation signals are less noisy than the
finDiff, while having a smaller delay than MovAv, which re-
sults in smaller estimation errors. The sliding-mode observer
behaves interestingly: for the smooth sine and polynomial
trajectories, it is an accurate estimation method. However,
in the trapezoidal section, the error increases faster than for
other methods, especially at the sections with sudden high
acceleration.

In terms of the performance of the tracking control, the
estimation methods do not differ significantly. As the overlap-
ping shaded areas in Fig. 6 show for the ISE of the tracking
error, the variation between multiple tests is far larger than the
influence of the estimation method. Only nnlHG has a worse
tracking error, resulting from its poor velocity estimation per-
formance.

To explain the different behaviors of the methods, we anal-
yse how fast they converge by analyzing their step responses.
To do that, with reference to the result in Fig. 7, we execute
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FIGURE 5. Estimation performance: velocity error. The left side (a) shows an excerpt of the estimated velocity x̂2 (colored) versus the ground truth x2

(black) for axis 6. The right side (b) shows the cumulative mean integral squared error (ISE) for each method (four experiments each).

FIGURE 6. Estimation performance: tracking error. Cumulative ISE of the
tracking performance xd

1 − x1.

FIGURE 7. Estimation performance: convergence of each method. Both
plots show at different time scales the step response and the time of
convergence (squares) of each estimator compared to the ground truth x2

for axis 2 of the robot manipulator.

TABLE 6. Estimation error (ISE) with faulty sensors.

a trapezoidal trajectory and activate the estimators simultane-
ously when the reference velocity is constant (t = 8 seconds)
to observe their response. We can see that the nonlinear
high-gain observer never really converges, since it is not fast
enough. The sliding-mode observer has the smallest over-
shoot, but requires much longer than the rest of the estimators
to converge to the actual velocity. This is why in cases such as
high accelerations in trapezoidal trajectories, the sliding-mode
observer deviates, and the slow re-convergence accumulates
to a large estimation error, although otherwise it is an accu-
rate observer. The other methods converge significantly faster,
which explains their good closed-loop performance.

C. FAULT TOLERANCE
We analyze how the estimation methods react to errors in the
position measurement. To do that, we randomly simulate a
loss of communication for 10% of the measurements of axis
6 of our robot. The resulting velocity estimation can be seen
in Fig. 8(a). The estimated velocities experience severe chat-
tering, except for the sliding mode observer, which responds
more robustly by remaining smoother.

However, the robustness of the estimators can be improved.
To demonstrate that, we repeat the tuning process, in which
the sensor stays faulty. As Fig. 8(b) shows, the estimation
improves. As Table 6 shows, the retuned estimators signifi-
cantly sacrifice accuracy during normal operation, except for
the Kalman filter and the sliding-mode observer, which is why
we conclude that these two are the most fault tolerant methods
regarding our error model.
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FIGURE 8. Sensor fault tolerance: the left side (a) shows an excerpt of the estimated velocity of axis 6 given sensor errors, using the parameters from
Table 4. The right side (b) shows the estimated velocity with new gains, that mitigate the noise.

TABLE 7. Optimal gains of velocity estimation methods
(2 millidegrees, 125 Hz).

TABLE 8. Optimal gains of velocity estimation methods
(1 millidegree, 250 Hz).

D. HIGHER SENSOR RESOLUTION AND SAMPLING RATE
At last, we compare the estimation methods when operating
the robot at a higher sensor resolution and higher sampling
rate. We repeat the tuning process for two configurations:
1) 2 millidegrees per increment and sampling at 125 Hz, and
2) 1 millidegrees per increment and sampling at 250 Hz. For
the latter configuration we compute the ground truth using the
filtfilt zero-phase filter from MATLAB with a cut-off
frequency at 28 Hz.

FIGURE 9. Higher sensor resolution and sampling rate: comparison of the
velocity estimation methods.

The resulting optimal gains are shown in Tables 7 and 8,
and the cumulative ISEs are shown in Fig. 9. The estima-
tion errors decrease due to the improved measurement and
the higher gains for the observer methods. What is imme-
diately noticeable from the ISE graphs is that the relative
difference between the filtering methods (FinDiff, MovAv,
LSF1/4) depends much on the sampling rate and the encoder
resolution. In the first case, FinDiff and LSF1/4 perform better
than MovAv; in the second case, MovAv is the best of the
filters. In contrast, the relative difference between the observer
methods (Kalman, linHG, nnlHG, SliMod) stays similar in all
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TABLE 9. Qualitative comparison of each estimation method.

considered cases. The linear high-gain observer is consistently
amongst the best in terms of accuracy in all experiments.

E. DISCUSSION
We have thoroughly investigated the performance of velocity
estimation methods, considering multiple aspects that are im-
portant for applying them to real robots. The moving average
and the derivative filters are easy to implement and to tune,
but their accuracy varies between different sensor resolutions
and sampling rates. In our experiments, the derivative filters
(LSF, BDE, TSE) did not perform very well and can lead
to large errors, as can be seen by comparing Table 5 to the
ISE. The linear high-gain observer consistently has the best
accuracy when the gains are properly tuned. The nonlinear
high-gain observer has not proven to be a suitable option
in our experiments, although we tried our best to identify
the robot model as accurately as possible. The sliding-mode
observer, which is also model-based, performs well and has
the added benefit of being robust against erroneous sensor
measurements, but often experienced a loss of accuracy at
high accelerations. From our comparison we cannot conclude
that model-based observers, which are harder to implement
due to the dynamical model of the robot, perform better than
model-free estimation methods. Finally, our experiments have
shown that most of the chosen estimators do not noticeably
influence the tracking error, when they are optimally tuned.
However, an inaccurate velocity estimation, such as the non-
linear high-gain observer in Fig. 6, will significantly degrade
the tracking performance of the controller. This emphasizes
the practical relevance of having accurate estimates and the
importance of tuning to reach the best performance. In Ta-
ble 9, we qualitatively summarize our discussed observations.

V. CONCLUSION
This work experimentally compares multiple velocity esti-
mation methods for robot manipulators, namely the finite
difference algorithm, moving average filtering, derivative
filtering, Kalman filtering, linear high-gain observer, non-
linear high-gain observer and the sliding mode observer.
Additionally, we propose an automatic tuning procedure
based on a genetic algorithm. The linear high-gain ob-
server is consistently amongst the best in terms of accuracy,
independent of the sampling rate and sensor resolution, while

the sliding-mode observer is robust against sensor faults.
Simple-to-implement schemes, such as the moving average
filter, can perform well enough, when optimally tuned, with-
out affecting the tracking error of the closed-loop robot
system. The nonlinear high-gain observer was not suitable for
our robot. Overall, when the other estimators are tuned using
our genetic algorithm, their optimal performance is similar.
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