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ABSTRACT This paper proposes an accurate and efficient Universal Adaptive Stabilizer (UAS) based online
parameters estimation technique for a 400 V Li-ion battery bank. The battery open circuit voltage, parameters
modeling the transient response, and series resistance are all estimated in a single real-time test. In contrast to
earlier UAS based work on individual battery packs, this work does not require prior offline experimentation
or any post-processing. Real time fast convergence of parameters’ estimates with minimal experimental effort
enables update of battery parameters during run-time. The proposed strategy is mathematically validated and
its performance is demonstrated on a 400 V, 6.6 Ah Li-ion battery bank powering an induction motor driven
prototype electric vehicle (EV) traction system.

INDEX TERMS Adaptive parameters estimation, battery bank, electric vehicle traction system, Li-ion
battery, real-time parameters’ estimation, universal adaptive stabilizer.

I. INTRODUCTION
High energy density and low self-discharge rate have made Li-
ion batteries a premium candidate for electric vehicle (EV) ap-
plications. Accurate estimation of open circuit voltage (OCV),
series resistance, and State-of-Charge (SoC) are indispensable
for an effective battery management system. Precise estimates
of internal states of a Li-ion battery like SoC, State-of-Health
(SoH) also rely on an accurate battery model. The Chen and
Mora equivalent circuit model [1] has been widely adopted in
the literature for Li-ion battery modeling. The salient features
of this model are: it can model real time voltage and current
dynamics; can capture temperature effects and the effect of the
number of charge-discharge cycles; it is simple to implement
for a run-time battery management system; has low com-
putational effort, and it includes SoC dependent equivalent
circuit elements without requiring to solve partial differential
equations (PDEs) common in electrochemical Li-ion battery
models. Therefore, Chen and Mora’s battery model [1] has
been utilized in this work [2], [3], [4]. Different strategies are
available in the literature for extracting Li-ion battery model
parameters [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16].

Dual unscented Kalman filter [5] and H∞ Kalman filter [6]
based approaches were proposed to overcome the limitations
of Kalman Filters (KFs) and Extended Kalman Filters (EKFs)
for accurate battery SoC estimation. Such methods require
prior knowledge of battery model parameters. A fractional
calculus based equivalent circuit model of a Li-ion battery is
presented in [7]. The authors in [7] use the Particle Swarm
Optimization (PSO) algorithm for estimation of equivalent
circuit elements. Yet this strategy requires a precise knowl-
edge of open circuit voltage, PSO requires high computational
effort, and optimality is not guaranteed as it is heuristic based.
The authors in [8] proposed a moving window based least
squares method to reduce the complexity and computational
cost of online equivalent circuit elements’ identification, along
with the battery SoC estimation. But, the length of the lin-
ear approximation window may affect the overall accuracy.
Attempts in [9] were made to identify the equivalent circuit
elements of a Li-ion battery model by voltage relaxation tests,
this requires several offline pulse charging and discharging
experiments, and accurate open circuit voltage measurement.
Two extended Kalman filters (named as dual EKF) are com-
bined in [10] for simultaneous estimation of Li-ion battery
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model parameters and SoC. However, the accuracy of esti-
mated parameters and open circuit voltage are not analyzed
in [10]. More recently, a variable time window-based least
squares method in [11] is proposed to effectively capture
the nonlinear dynamics of a Li-ion battery. Similarly, a par-
tial adaptive forgetting factor-based least squares method is
proposed in [12] for Li-ion battery parameters estimation in
electric vehicles. Likewise, a trust region optimization-based
least squares approach is proposed in [13], which claims to
reduce the complexity, and thus the estimation time, com-
pared to a conventional least squares estimation procedure.
To overcome the potential limitations of Genetic Algorithm
(GA), such as higher computational effort, and possible con-
vergence to local minima, the authors in [14] deployed the
Particle Swarm Optimization (PSO) routine after GA for ac-
curate identification of both temperature and SoC dependent
Li-ion battery parameters. An algorithm based on a high pass
filter and active current injections is developed in [15] for
accurate and quick estimation of Li-ion battery parameters.
It is shown in [15] that higher frequencies in an injected
current improves the performance of the parameters estima-
tion process. Various Neural Network (NN)-based data-driven
strategies have also been reported in the literature for Li-ion
battery parameters estimation. Different variants of NN-based
methods, such as [16] learn and capture the dynamics of a
Li-ion battery model. However, the major downsides of [11],
[12], [13], [14] include offline pre-processing for appropriate
selection of initial parameters, offline open-circuit voltage
determination, appropriate tuning of optimization parameters,
higher computational efforts, and unsatisfactory convergence
performance. The performance of NN-based methods [16]
also relies on effective training with large datasets, requiring
extensive time-commitments for testing and data collection.

There is research related to parameters identification of bat-
teries in electric vehicles using adaptive forgetting factors with
least squares estimation [17]. However, even [17] requires
offline experimentation and analysis for determining the open
circuit voltage (OCV). There has been recent work [18] com-
paring Nelder-Mead particle swarm optimization (NM-PSO)
and OCV-recursive least squares (RLS) for battery parameters
estimation, although the work [18] still needs OCV determi-
nation separately, and the computational time requirements
of PSO are high too. Further, the authors in [18] show the
computation time, and data requirements for different meth-
ods. They show that NN-based, machine learning (ML)-based,
and porous electrode theory based methodologies require the
most amount of data. Whereas, electrochemical, and even
single particle models require substantial amounts of data and
computation time. There have been recent efforts related to
coming up with SoC dependent Li-ion battery models [19],
[20], [21]. However, such efforts use a simplified model of
a Li-ion battery with only one time constant, which may be
limiting in terms of modeling transient voltage dynamics.
Also, [19], [20], [21] require separate experiments for gath-
ering the OCV data, and terminal voltage data. In contrast,
eliminating the need to perform multiple experiments, and not

having to disconnect the battery from the load periodically
and letting the voltage settle for observing the OCV, are the
motivations and salient features of the work in this paper.
Literature also exists related to the identifiability of Li-ion
battery model parameters [22]. As mentioned in [22], if an in-
correct model structure is chosen this can hinder identifiability
due to observability issues that may arise out of an incorrect
choice/assumption about the model structure. Also, even if a
satisfactory model structure is available, using black-box esti-
mation may require estimating a large number of parameters,
for which it may be challenging to select the type and num-
ber of inputs that provide sufficient excitation to the system
towards ensuring that parameters can be identified [22]. This
in-turn leads to increased number of experiments or increased
data and computation time requirements.

A novelty of this work is that a physics based approach is
combined with an advanced adaptive technique, specifically
to get around the above identifiability issues. Several works
in the literature have used equivalent circuit models, which
are known to be identifiable. Thus inspired we choose an
equivalent circuit model too, but the one chosen has param-
eters that allow variation of the circuit elements values with
change in SoC. To create the proposed UAS-based high-gain
adaptive observer, a copy of the same equivalent circuit model
is created where the elements values update with the estima-
tion error, and an adaptive control signal forces the observer’s
states to remain close to the actual internal states. And the
chosen strategy has the advantage that the adaptive control
input vanishes when the estimation error goes to zero. In
other words, the only means now for the time evolution of
the estimated states to remain close to the time evolution of
the actual states is possible if the parameters themselves have
acquired the correct values. If not, the estimated states drift
apart from the actual states, and the estimation error increases,
which causes a change in the estimated parameters values, and
also an increase in the adaptive control signal which now tries
to reduce the estimation error. So, effectively the only way to
run with zero adaptive control effort requires zero estimation
error, which is only possible if the evolution of the estimated
and actual states are exactly the same, which further requires
the estimated parameters to evolve to be the same as the
actual parameters. As shown in this paper, selecting the model
parameters bounds and initial values based on other models of
Li-ion batteries available in the literature e.g. [1] allows very
fast parameters estimation, and with only one experimentation
run required. Due to the speed of convergence, it can also be
suitable for real-time applications.

This work proposes a UAS-based adaptive parameters esti-
mation scheme for a Li-ion battery that does not need any kind
of offline pre-processing. Unlike optimization and NN-based
methods, the proposed method is very quick and yet effective.
Thus it maybe suitable for BMS and real-time EV applica-
tions. The proposed method has been tested and verified at the
battery cell, pack, and bank levels for simultaneous estimation
of battery parameters, and open circuit voltage. This work uti-
lizes a high-gain universal adaptive stabilization (UAS) based
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observer. The switching function required by UAS [23], is
realized by a Nussbaum function. A Nussbaum function has
rapid oscillations and variable frequency by definition [23].
When a Nussbaum function is input to the observer, it injects
enough sinusoids into the high-gain observer, possibly satis-
fying the required persistence of excitation (PE) condition.
Detailed discussion related to this is available in Section VIII-
B. The contributions of this work are as follows. This work
extends previous work in [2] further, by estimating Li-ion
battery open circuit voltage, series resistance and other battery
model parameters; all in a single experiment conducted in
real-time. The proposed approach is validated at the battery
cell, pack levels as well as on a 400 V, 6.6Ah Li-ion bat-
tery bank supplying an induction motor driven prototype EV
traction system. In our previous work, open circuit voltage
and series resistance parameters were found by the voltage
relaxation test and curve fitting, respectively, and then the
remaining parameters were estimated using a UAS based
strategy. The previous offline adaptive parameters estimation
(APE) strategy in [2] required eight experiments to estimate
all battery model parameters, while the proposed online APE
scheme runs online requiring only one experiment for param-
eters estimation. Furthermore, in contrast to [5], [6], [7], [8],
[9], [10], our proposed strategy does not require any prior
experimentation to gain knowledge of the open circuit volt-
age, rather the open circuit voltage is also estimated by the
strategy proposed in this paper. Compared to previous work,
the current work also shows by derivations that all the state
and parameters estimates converge to their actual values. And
in addition to presenting the conditions required to be checked
to ensure such convergence occurs, this work also provides the
conditions that the choices of initial values, upper and lower
bounds must satisfy to get convergence.

The rest of the article is organized as follows. Necessary
background information about the CM [1] Li-ion battery
equivalent circuit model and UAS are provided in Section II.
Section III formulates the proposed UAS based high gain
adaptive observer for parameters estimation. Section IV pro-
vides mathematical justification of our proposed method.
Simulation and experimental results are presented in Sec-
tion V and VI respectively for validating the proposed online
APE strategy. Real time implementation results for an EV
traction system are shared in Section VII. A discussion re-
lated to the PE condition, selection of bounds, initial guesses
and confidence levels required for the proposed approach,
and Li-ion battery stability, is available in Section VIII. Fi-
nally, the concluding remarks are made in Section IX of this
article.

II. BACKGROUND
This section provides information about the CM Li-ion battery
equivalent circuit model and UAS used in this work. The
battery equivalent circuit model is described in Section II-A,
while Section II-B presents the details of the Nussbaum type
switching function employed in the proposed online APE al-
gorithm.

FIGURE 1. Li-ion battery equivalent circuit model.

A. LI-ION BATTERY EQUIVALENT CIRCUIT MODEL
The Chen and Mora [1] equivalent circuit model of a Li-ion
battery is shown in Fig. 1. This work aims at providing an
accurate and simple online adaptive parameters estimation
method, for a battery at the cell/pack/bank level using the
Li-ion battery model shown in Fig. 1. The state space rep-
resentation of Fig. 1 is described by (1)–(6). Here, the battery
SoC is denoted by z ∈ [0, 1]. The discharge current i(t ) ≥ 0.
The states x1, x2, x3, x4, represent the open circuit voltage,
the voltage across Rts||Cts, the voltage across Rtl ||Ctl , and the
battery series resistance Rs respectively. The term Cc and y(t )
denote the battery capacity in ampere-hour (Ah) and battery
terminal voltage. The factors f1, f2, f3 ∈ [0, 1] account for
the effects of temperature, charge-discharge cycles, and self
discharging respectively. The battery open circuit voltage x1 in
(2), battery series resistance x4 in (5), and equivalent circuit el-
ements Rts, Rtl ,Cts,Ctl can be defined from Chen and Mora’s
work [1] by (7)–(12). Note that the formulation in (1)–(5) is
novel compared to [2], as the notation introduced here for the
CM model specifically allows simultaneous online estimation
of battery parameters, and open circuit voltage.

ż(t ) = − 1

Cc
i(t ), Cc = 3600C f1 f2 f3,

z(t0) = z0, 0 ≤ z0 ≤ 1

ẋ1(t ) = ∂x1(z)

∂z(t )
ż(t ), therefore (1)

ẋ1(t ) = −
(

r1r2e−r2z + r4 − 2r5z + 3r6z2
)

i(t )

Cc
(2)

ẋ2(t ) = − x2(t )

Rts(z)Cts(z)
+ i(t )

Cts(z)
(3)

ẋ3(t ) = − x3(t )

Rtl (z)Ctl (z)
+ i(t )

Ctl (z)
(4)

ẋ4(t ) = ∂x4(z(t ))

∂z(t )
ż(t ) =

(
r19r20e−r20z

)
i(t )

Cc
(5)

y(t ) = x1(z) − x2(t ) − x3(t ) − i(t )x4(t ). (6)

Eo(z) = −r1e−r2z + r3 + r4z − r5z2 + r6z3 = x1(z) (7)

Rts(z) = r7e−r8z + r9 (8)
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Rtl (z) = r10e−r11z + r12 (9)

Cts(z) = −r13e−r14z + r15 (10)

Ctl (z) = −r16e−r17z + r18 (11)

Rs(z) = r19e−r20z + r21 = x4(z). (12)

The parameters r1, . . . , r21 used in the circuit elements in
equation (7)–(12) are all constant positive real numbers.

B. UNIVERSAL ADAPTIVE STABILIZATION
The UAS based strategy has been employed in [24] for fast
error convergence. This motivated us to employ the UAS
based adaptive estimation method for quick [24] and yet ac-
curate [2], [4], [25] Li-ion battery parameters (r1, . . . , r21)
estimation. The implementation of a UAS based technique
requires a switching function with high growth rate [23]. A
Nussbaum function is a switching function, which is defined
as a piecewise right continuous function N (·) : [k′,∞) → R,
k0 > k′, that satisfies (13) and (14).

sup
k>k0

1

k − k0

∫ k

k0

N (τ )dτ = +∞, (13)

inf
k>k0

1

k − k0

∫ k

k0

N (τ )dτ = −∞. (14)

Here, ko ∈ (k′,∞). In this work a Nussbaum type switching
function has been implemented using the Mittag-Leffler (ML)
function, described by (15).

Eα (ρ) =
∞∑

k=0

ρk

�(kα + 1)
, (15)

Here �(ρ + 1) = ρ�(ρ), ρ > 0 is the standard Gamma func-
tion. A Nussbaum switching function of ML type is employed
in this work and in [2], [4] for the UAS based adaptation strat-
egy. If α ∈ (2, 3] and λ > 0 then the ML function Eα (−λtα )
is a Nussbaum function [26]. The MATLAB implementation
of an ML type Nussbaum switching function can be found
in [27]. In the section III, a proposed UAS observer-based
Li-ion battery model parameter estimator is described for ac-
curate estimation of battery model parameters r1, . . . , r21.

III. PROPOSED ADAPTIVE PARAMETERS ESTIMATION
METHODOLOGY OF A LI-ION BATTERY MODEL
This first subsection provides the formulation details,
whereas, the second section describes the operational flow of
our proposed methodology.

A. PROPOSED UAS BASED BATTERY PARAMETERS
ESTIMATION METHODOLOGY
A high gain adaptive estimator for a Li-ion battery model,
based on (1)–(6), is described by (16)–(21).

˙̂z(t ) = − 1

Cc
i(t ),Cc = 3600C f1 f2 f3, ẑ(t0) = z(t0)

˙̂x1(t ) = ∂ x̂1( ẑ )

∂ ẑ(t )
˙̂z(t ) − u(t ), x̂1(t ) ≥ 0, therefore giving

(16)

˙̂x1(t ) = −
(

r̂1r̂2e−r̂2 ẑ + r̂4 − 2̂r5̂z + 3̂r6̂z2
)

i(t )

Cc
− u(t ),

(17)

˙̂x2(t ) = − x̂2(t )

R̂ts( ẑ )Ĉts( ẑ )
+ i(t )

Ĉts( ẑ )
+ u(t ), x̂2(t ) ≥ 0

(18)

˙̂x3(t ) = − x̂3(t )

R̂t l ( ẑ )Ĉt l ( ẑ )
+ i(t )

Ĉt l ( ẑ )
+ u(t ), x̂3(t ) ≥ 0 (19)

˙̂x4(t ) = ∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t ) + u(t ), therefore giving

˙̂x4(t ) =
(

r̂19r̂20e−r̂20 ẑ
)

i(t )

Cc
+ u(t ), x̂4(t ) ≥ 0 (20)

ŷ(t ) = x̂1(t ) − x̂2(t ) − x̂3(t ) − i(t )̂x4(t ). (21)

Here u(t ) is the input received from the UAS based observer,
i(t ) is the actual battery current and ẑ(t ) is the estimated SoC,
which is the same as z(t ) in (1). The states x̂1, x̂2, x̂3, and x̂4

denote the estimates of open circuit voltage, voltage across
R̂ts||Ĉts, R̂t l ||Ĉt l , and estimated series resistance respectively.
For simplicity, the values of f1, f2, f3 are taken as 1 in this
work. The estimated voltage is represented by ŷ(t ), whereas
the estimated circuit elements are given by (22)–(27).

Êo( ẑ ) = −r̂1e−r̂2 ẑ + r̂3 + r̂4̂z − r̂5̂z 2 + r̂6̂z 3 = x̂1( ẑ ) (22)

R̂ts( ẑ ) = r̂7e−r̂8 ẑ + r̂9 (23)

R̂t l ( ẑ ) = r̂10e−r̂11 ẑ + r̂12 (24)

Ĉts( ẑ ) = −r̂13e−r̂14 ẑ + r̂15 (25)

Ĉt l ( ẑ ) = −r̂16e−r̂17 ẑ + r̂18 (26)

R̂s( ẑ ) = r̂19e−r̂20 ẑ + r̂21 = x̂4( ẑ ). (27)

The control input u(t ) of the UAS based-observer is designed
by employing (28)–(31).

e(t ) = y(t ) − ŷ(t ), (28)

k̇(t ) = e2(t ), k(t0) = k0 (29)

N (k(t )) = Eα (−λk(t )α ), (30)

u(t ) = −N (k(t ))e(t ). (31)

In this work, the value of α = 2.5, and λ = 1. The adaptive
equation for battery parameters estimation from [2], [4], is
given by (32).

˙̂rn(t ) = e2(t ) + λxn (rnu − r̂n(t )) + λyn (rnl − r̂n(t )). (32)

The adaptive update law in (32) requires a steady-state upper
bound rnu and a lower bound rnl for each estimated parameter
r̂n(t ), n ∈ {1, 2, . . . , 21}\{3, 21}, and user’s confidence levels,
λxn and λyn , on the upper and lower bounds respectively.
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FIGURE 2. Flowchart of the proposed online UAS based adaptive
parameters estimation algorithm for Li-ion battery cells/packs/banks.

It is shown in Lemma 2 that r̂n(t ) converges to a constant
with time. Also from (61) it is easy to see that positive
real values of r̂n(t0), rnu , rnl , λxn , and λyn lead to r̂n(t ) > 0,
for all t ≥ t0. The flowchart of the proposed online APE
method for Li-ion battery parameters estimation is shown
in Fig. 2. Note that the UAS based parameters estimation
method, explained above, is capable of estimating the bat-
tery parameters n ∈ {1, 2, . . . , 21}\{3, 21}. The estimates of
r̂3 and r̂21 can be obtained, during or after the adaptation
process, by applying the least squares estimation or curve
fitting techniques on (22) and (27) respectively. However, this
work uses a direct approach to estimate r̂3 and r̂21, during
the adaptation process. Our approach to estimate r̂3 and r̂21

is based on the results of Theorem 2. Theorem 2 shows that
x̂1(t ) → x1(t ) and x̂4(t ) → x4(t ), and r̂n → rn as t → ∞,
here n ∈ {1, 2, . . . , 21}\{3, 21}. Thus using x̂1(t ) → x1(t ) and
x̂4(t ) → x4(t ) at t → ∞, lets us write the (22) and (27) into
the forms shown in (33) and (34) to estimate r̂3 and r̂21 re-
spectively.

r̂3 = x1(t ) + r̂1e−r̂2 ẑ − r̂4̂z + r̂5̂z2 − r̂6̂z3, (33)

r̂21 = x4(t ) − r̂19e−r̂20 ẑ. (34)

The steps to implement the proposed UAS based adapta-
tion methodology for battery model parameters estimation are
described next.

B. PROPOSED ALGORITHM FOR ON-LINE LI-ION BATTERY
MODEL PARAMETERS ESTIMATION
This section provides the details of our proposed UAS based
adaptation algorithm to estimate Li-ion battery model param-
eters. The flowchart of the algorithm is shown in Fig. 2. The
UAS based adaptation process begins with the measurement
of current and voltage of a Li-ion battery. As per Theorem
2, a bounded discharge current, with bounded first derivative
needs to be maintained during the adaptation, and the cur-
rent needs to go to zero at some point of time for accurate
results. These requirements are not hard to maintain as the

discharge current and the rate of change of discharge current
are bounded in reality, and also any battery supplying a load
will at some point either be shut off, or will die - thus the
current will have an opportunity to go to zero even if the
profile of the discharge current does not frequently provide
opportunities for the current to go to zero. The error between
actual and estimated terminal voltages is used by UAS and the
adaptive estimation equation in (32) to identify r̂n(t ), where
n ∈ {1, 2, . . . , 21}\{3, 21}. These estimated parameters are
employed to calculate the equivalent circuit elements. Next,
the equivalent circuit elements’ estimates, together with the
output of UAS and current are input to the high gain adap-
tive estimator. The adaptation process ends with estimation
of the states x̂1(̂t ), x̂2(t ), x̂3(t ), x̂4(̂t ), followed by terminal
voltage estimation error update defined by (28). When the er-
ror magnitude goes below the user’s defined threshold during
the adaptation, the estimated states approach to actual states
of a Li-ion battery model, as per Theorem 2. Thereafter, the
convergence of estimated states to their actual values allows
us to use equation (33) and (34) for identification of r̂3(t )
and r̂21(t ). In the following section, we provide mathematical
justification of our proposed online UAS based adaptation
strategy for Li-ion battery model parameters estimation.

IV. MATHEMATICAL JUSTIFICATION
This section first proves the convergence of the terminal volt-
age estimation error e(t ) to zero. Further analysis leads to the
conclusion that the proposed method can accurately estimate
the Li-ion battery model parameters. Before proving the above
results, some criteria for λxn , λyn , rnu , and rnl selection needs
to be established in Lemma 1.

Lemma 1: Suppose λxn , λyn , rnu , and rnl are positive real
numbers for n = {13, 15, 16, 18}, and ẑ(t ) ∈ (0, 1], then
the following conditions hold for all t > t0. (i) If r̂13(t0) >

r̂15(t0) > 0, λx15 + λy15 > λx13 + λy13 , λx15r15u + λy15r15l <

λx13r13u + λy13r13l , and r̂14(t ) > − 1

ẑ(t )
ln
(

r̂15(t )

r̂13(t )

)
, then

Ĉts (̂z(t )) > 0. (ii) If r̂16(t0) > r̂18(t0) > 0, λx18 + λy18 >

λx16 + λy16 , λx18r18u + λy18r18l < λx16r16u + λy16r16l , and

r̂17(t ) > − 1

ẑ(t )
ln
(

r̂18(t )

r̂16(t )

)
then Ĉt l (̂z(t )) > 0.

Proof: The detailed proof of Lemma 1 is available in [2],
Lemma 4.1]. The only notational replacements required are:
replace â, a, x̂1 in [2], Lemma 4.1] by r̂, r, ẑ respectively to
get the required proof. �

For all Li-ion batteries there is a minimum value of the
SoC zmin beyond which the battery is not operated. Similarly
given any particular fully charged battery there exists a time
T beyond which the battery will not be usable i.e. it will
be out of charge and will not supply any current. Based on
this understanding, it is possible to establish guarantees that

allow the conditions r̂14(t ) > − 1

ẑ(t )
ln
(

r̂15(t )

r̂13(t )

)
and r̂17(t ) >

− 1

ẑ(t )
ln
(

r̂18(t )

r̂16(t )

)
to be satisfied for Lemma 1 to hold. This is

shown in Corollary 1.
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Corollary 1: Given that α, zmin, T , amin1 , amin2 ,
λxn , λyn , rnu , rnl are positive real numbers, where
n = {13, 14, 15, 16, 17, 18}, ẑ(t ) ∈ [zmin, 1], T > t0.
Let t ∈ [t0, T ], α > 1, zmin ∈ (0, 1) and assuming

amin1 = mint∈[t0,T ]
r̂15(t )

r̂13(t )
, amin2 = mint∈[t0,T ]

r̂18(t )

r̂16(t )
exist.

Then the following hold:
i) If r̂13(t0) > r̂15(t0) > 0, λx15 + λy15 > λx13 + λy13 ,

λx15r15u + λy15r15l < λx13r13u + λy13r13l , λx14 + λy14 = 1

T
,

and r̂14(t0) ≥ −αe
ln(amin1 )

zmin
then r̂14(t ) > − 1

ẑ(t )
ln
(

r̂15(t )

r̂13(t )

)
,

for t ∈ [t0, T ].
ii) If r̂16(t0) > r̂18(t0) > 0, λx18 + λy18 > λx16 + λy16 ,

λx18r18u + λy18r18l < λx16r16u + λy16r16l , λx17 + λy17 = 1

T
,

and r̂17(t0) ≥ −αe
ln(amin2 )

zmin
, then r̂17(t ) > ln

(
r̂18(t )

r̂16(t )

)
, for

t ∈ [t0, T ].
Proof: Let T > 0, α > 1, zmin ∈ (0, 1) be given. Suppose

r̂13(t0) > r̂15(t0) > 0, λx15 + λy15 > λx13 + λy13 , λx15r15u +
λy15r15l < λx13r13u + λy13r13l , λx14 + λy14 = 1

T
, as per as-

sumptions for proving the first item in the statement of
corollary 1. Pick positive real numbers λx14 , λy14 so that

λx14 + λy14 = 1

T
. Pick r̂14(t0) ≥ −αe

ln(amin1 )

zmin
. Based on the

assumptions, and by making the following notational re-
placements i.e. replace â, a, x̂1 in [2, Lemma 4.1] by r̂, r, ẑ
respectively, and by following the steps in [2, Lemma 4.1]
gives r̂15(t ) < r̂13(t ) for all t > t0, r̂15(t ), r̂13(t ) are positive.
This provides that 0 <

r̂15(t )
r̂13(t ) < 1 for all t > t0. And because it

is assumed that amin1 = mint∈[t0,T ]
r̂15(t )

r̂13(t )
exists, this provides

0 < amin1 < 1. Now, the solution to (32) is

r̂14(t ) = r̂14(t0)e−(λx14 +λy14 )t

+
(

(λx14r14u + λy14 r14l ) ×
∫ t

t0

e−(λx14 +λy14 )τ dτ

)
+
∫ t

t0

e2(t − τ )e−(λx14 +λy14 )τ dτ. (35)

From our choice of r̂14(t0) we get

r̂14(t ) ≥ − α
ln(amin1 )

zmin
e(1− t

T )

+
(

(λx14 r14u + λy14 r14l ) ×
∫ t

t0

e−(λx14 +λy14 )τ dτ

)
+
∫ t

t0

e2(t − τ )e−(λx14 +λy14 )τ dτ (36)

Based on the above discussion, it is easy to see that all terms
on the R.H.S. of (36) are positive. Further from the defini-
tion of amin1 and because zmin ∈ (0, 1), ẑ(t ) ∈ [zmin, 1] we get

−α
ln(amin1 )

zmin
e(1− t

T ) > − 1

ẑ(t )
ln
(

r̂15(t )

r̂13(t )

)
, for t ∈ [t0, T ]. This

combined with the fact that that all terms on the R.H.S. of (36)

are positive gives r̂14(t ) > − 1

ẑ(t )
ln
(

r̂15(t )

r̂13(t )

)
, for t ∈ [t0, T ].

This completes the proof of the first statement. For the proof
of the second statement, the above process is to be followed
by replacing r̂13, r̂14, r̂15, λx13 , λx14 , λx15 , λy13 , λy14 , λy15 , r13u ,
r14u , r15u , r13l , r14l , r15l , and amin1 with r̂16, r̂17, r̂18, λx16 , λx17 ,
λx18 , λy16 , λy17 , λy18 , r16u , r17u , r18u , r16l , r17l , r18l and amin2

respectively.
The following result shows that the two quantities

amin1 , amin2 exist. The existence of these quantities guarantees
that the selection of initial values for the parameters estimates
which meet the assumptions in Lemma 1, are possible. �

Corollary 2: Given that r̂n(t0), λxn, λyn, rnu and rnl are
positive real numbers for n ∈ {13, 15, 16, 18}, and time t ∈
[t0, T ], then the quantities amin1 = mint∈[t0,T ]

r̂15(t )

r̂13(t )
, amin2 =

mint∈[t0,T ]
r̂18(t )

r̂16(t )
exist.

Proof: The solution to (32) provides r̂n(t ) as shown in
(61). From (61), and from assumptions it is obvious that
r̂n(t ) �= 0 for all t ∈ [t0, T ]. Further, all the terms on the
R.H.S. of (61) represent continuous functions in time. For
this proof, t ∈ [t0, T ] and r̂n(t ) : [t0, T ] → R. So for all n ∈
{13, 15, 16, 18} we have that r̂n(t ) are continuous functions,
on a non-empty compact metric space (please see Theorem

3). Further, let g1(t ) = r̂15(t )

r̂13(t )
, g2(t ) = r̂18(t )

r̂16(t )
. From the above

discussion we know that r̂13(t ), r̂18(t ) �= 0 for all t ∈ [t0, T ],
and so using Proposition 1 we know that g1(t ), g2(t ) are
also continuous. Then, on further application of Corollary

3 we get that amin1 = mint∈[t0,T ] g1(t ) = mint∈[t0,T ]
r̂15(t )

r̂13(t )
,

amin2 = mint∈[t0,T ] g2(t ) = mint∈[t0,T ]
r̂18(t )

r̂16(t )
exist. This com-

pletes the proof.
Corollary 2 shows that the quantities amin1 and amin2 ex-

ist. Also, Corollary 1 shows that the conditions required for
Lemma 1 to hold can be satisfied by simply choosing ini-
tial values, upper and lower bounds on the parameters being
estimated. This is also not necessarily challenging, because
the current work aims to contribute to physics-based system
identification, where the user engaging in system identifica-
tion is expected to have at least a vague idea of the magnitude
and the expected range of the physical model parameters that
are being estimated, and two positive constants α, zmin. The
constant α can be chosen to be any number greater than 1, and
similarly zmin can be selected as the limit below which the
battery SoC is not allowed to fall, e.g. in most cases this limit
is around 10% as allowing the battery SoC to fall substantially
below this may cause damage to a battery. Further notice that
the type of parameters estimation being dealt with in this work
is contrary to black-box parameters estimation where the user
may have no clue about the model parameters or in some cases
even have no idea about the model structure. So for the type
of system identification where this work contributes, it is not
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unreasonable to request the initial values/guesses, upper and
lower bounds on the parameters values from the user. The
advantages of this have been mentioned in the introduction,
and are also emphasized in the Appendix where the compu-
tation time of different parameters estimation strategies are
compared.

Further, the conditions established in Lemma 1 are utilized
in the following theorem to prove the convergence of terminal
voltage error e(t ) to zero, which leads to the convergence of
estimated values of the circuit elements to actual ones.

Remark 1: The novelty of the mathematical development
presented in this work in comparison to the earlier work [2] is
the following. In [2], the battery series resistance and battery
open circuit voltage are not included as states in the observer.
As a result, in [2] parameters related to the battery series
resistance and battery open circuit voltage cannot be estimated
online but needs pre/post processing of data. In the current
work, not only are the battery series resistance and battery
open circuit voltage included as states in the proposed ob-
server, but also the parameters r̂1, . . . , r̂6 of the open circuit
voltage in (22) and parameters r̂19, . . . , r̂21 of the battery
series resistance, in (27) are estimated online. This requires
introducing additional states in the proposed observer formu-
lation, and makes the mathematics in this work, much more
involved compared to [2].

Theorem 1: Let i(t ) ≥ 0 represent the Li-ion bat-
tery discharge current, and let r̂n(t0) > 0 for n ∈
{1, 2, . . . , 21}\{3, 21}. Further let y(t ) be the Li-ion battery
voltage as in (6), let ŷ(t ) be the estimated terminal voltage as
in (21), and let e(t ) = y(t ) − ŷ(t ). If the conditions needed
for Lemma 1 to hold are satisfied, then e(t ) → 0 as t → ∞.

Proof: Suppose the assumptions mentioned above are sat-
isfied. Take the time derivative of (28) to get

ė(t ) = ẏ(t ) − ˙̂y(t ), (37)

Addition and subtraction of e(t ) to the R.H.S. of (37), and
recognizing that e(t ) = y(t ) − ŷ(t ) provides

ė(t ) = −e(t ) + y(t ) − ŷ(t ) + ẏ(t ) − ˙̂y(t ). (38)

Now, substitution of −ŷ(t ) and ˙̂y(t ) from (21) in (38) provides

ė(t ) = − e(t ) + y(t ) + ẏ(t ) − x̂1( ẑ (t )) + x̂2(t ) + x̂3(t )

+ i(t )̂x4( ẑ (t )) − ˙̂x1( ẑ (t )) + ˙̂x2(t ) + ˙̂x3(t )

+ di(t )

dt
x̂4( ẑ (t )) + i(t )˙̂x4( ẑ (t )) (39)

Using (18) and (19) in (39) gives

ė(t ) = − e(t ) + y(t ) + ẏ(t ) − x̂1( ẑ (t )) + x̂2(t ) + x̂3(t )

+ i(t )̂x4( ẑ (t )) − ˙̂x1( ẑ (t )) − x̂2(t )

R̂ts( ẑ (t ))Ĉts( ẑ (t ))

− x̂3(t )

R̂t l ( ẑ (t ))Ĉt l ( ẑ (t ))
+ i(t )

Ĉts( ẑ (t ))
+ i(t )

Ĉt l ( ẑ (t ))

+ 2u(t ) + di(t )

dt
x̂4( ẑ (t )) + i(t )˙̂x4( ẑ (t )). (40)

Re-arrangement of (40) yields the following

ė(t )= − e(t ) + y(t ) + ẏ(t ) + x̂2(t )

(
1 − 1

R̂ts( ẑ (t ))Ĉts( ẑ (t ))

)
+ x̂3(t )

(
1 − 1

R̂t l ( ẑ (t ))Ĉt l ( ẑ (t ))

)
− x̂1( ẑ (t )) + i(t )̂x4( ẑ (t )) − ˙̂x1( ẑ (t ))

+ i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
+ di(t )

dt
x̂4( ẑ (t ))

+ i(t )˙̂x4( ẑ (t )) + 2u(t ). (41)

By definition in (23) and (24), because r̂n(t0) > 0 for n ∈
{1, 2, . . . , 21}\{3, 21}, and ẑ(t ) = z(t ) which belongs to [0,1];
so R̂ts( ẑ (t )) > 0, R̂t l ( ẑ (t )) > 0 for all t > t0. Also by
Lemma 1, we know that Ĉts( ẑ (t )) > 0 and Ĉt l ( ẑ (t )) >

0 for all t > t0. Therefore, R̂ts( ẑ (t ))Ĉts( ẑ (t )) > 0 and
R̂t l ( ẑ (t ))Ĉt l ( ẑ (t )) > 0.

which implies 1 − 1

R̂ts( ẑ (t ))Ĉts( ẑ (t ))
< 1, (42)

From (18), x̂2(t ) ≥ 0, Thus,

x̂2(t )

(
1 − 1

R̂ts( ẑ (t ))Ĉts( ẑ (t ))

)
≤ x̂2(t ), (43)

Similarly using x̂3(t ) ≥ 0 from (19) provides

x̂3(t )

(
1 − 1

R̂t l ( ẑ (t ))Ĉt l ( ẑ (t ))

)
≤ x̂3(t ), (44)

From (43) and (44) we get

x̂2(t ) + x̂3(t ) ≥ x2(t )

(
1 − 1

R̂ts( ẑ (t ))Ĉts( ẑ (t ))

)
+ x̂3(t )

(
1 − 1

R̂t l ( ẑ (t ))Ĉt l ( ẑ (t ))

)
. (45)

Using (45) in (41) and re-arrangement of terms provides the
following

ė(t ) ≤ − e(t ) + y(t ) + ẏ(t ) − x̂1( ẑ (t )) + x̂2(t ) + x̂3(t )

+ i(t )̂x4( ẑ (t )) − ˙̂x1( ẑ (t )) + di(t )

dt
x̂4( ẑ (t ))

+ i(t )˙̂x4( ẑ (t )) + i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
+ 2u(t ). (46)

Simplification of (46) using (21) and (28) gives

ė(t ) ≤ − y(t ) + ŷ(t ) + y(t ) + ẏ(t ) − ŷ(t ) − ˙̂x1( ẑ (t ))

+ di(t )

dt
x̂4( ẑ (t )) + i(t )˙̂x4( ẑ (t ))

+ i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
+ 2u(t ), i.e. (47)

ė(t ) ≤ ẏ(t ) − ˙̂x1( ẑ (t )) + di(t )

dt
x̂4( ẑ (t )) + i(t )˙̂x4( ẑ (t ))
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+ i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
+ 2u(t ). (48)

Using (17) and (20) in (48) gives

ė(t ) ≤ ẏ(t ) − ∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t ) + di(t )

dt
x̂4( ẑ (t ))

+ i(t )
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t ) + i(t )u(t )

+ i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
+ 3u(t ). (49)

Following this, the proof of error e(t ) convergence to zero is
derived from the equation (49). For the proof some inequal-
ities are required to be established, which are first shown.
Consider the following inequality related to |e(t )| and the first
term of R.H.S. of (49),

(|e(t )| − ẏ(t ))2 ≥ 0,

1

2
|e(t )|2 + 1

2
ẏ2(t ) ≥ |e(t )|ẏ(t ). (50)

The inequality related to |e(t )| and the second term of R.H.S.
of (49) is as follows,(

|e(t )| + ∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

≥ 0,

1

2
|e(t )|2 + 1

2

(
∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

≥ −|e(t )|∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t ).

(51)

The inequality related to |e(t )| and the third term of R.H.S. of
(49) is given as,(

|e(t )| − di(t )

dt
x̂4( ẑ (t ))

)2

≥ 0,

1

2
|e(t )|2 + 1

2

(
di(t )

dt

)2

x̂2
4 ( ẑ (t )) ≥ |e(t )|di(t )

dt
x̂4( ẑ (t )).

(52)

The inequality related to |e(t )| and the fourth term of R.H.S.
of (49) is as follows,(

|e(t )| − i(t )
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

≥ 0,

1

2
|e(t )|2+ 1

2
i2(t )

(
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

≥ |e(t )|i(t )
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t ).

(53)

The inequality related to |e(t )| and the sixth term of R.H.S. of
(49) is given below,(

|e(t )| − i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

))2

≥ 0,

1

2
|e(t )|2 + 1

2
i2(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)2

≥ |e(t )|i(t )

×
(

1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
. (54)

From (50), (51), (52), (53), and (54), we get (55)

5

2
|e(t )|2 + 1

2
ẏ2(t ) + 1

2

(
∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

+ 1

2

(
di(t )

dt

)2

x̂2
4 ( ẑ (t )) + 1

2
i2(t )

(
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

+ 1

2
i2(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)2

≥
(
|e(t )|ẏ(t ) − |e(t )|∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )+|e(t )|di(t )

dt
x̂4( ẑ (t ))

+ |e(t )|i(t )
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

+|e(t )|i(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

))
. (55)

Multiplying (49) by |e(t )| and using (31) gives

|e(t )|ė(t ) ≤ |e(t )|ẏ(t ) − |e(t )|∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

+ |e(t )|di(t )

dt
x̂4( ẑ (t ))

+ |e(t )|i(t )
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t ) + |e(t )|i(t )

×
(

1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)
− (3 + i(t ))N (k(t ))|e(t )|e(t ), (56)

Now use (55) in (56) to get the following

|e(t )|ė(t ) ≤ 5

2
|e(t )|2 + 1

2
ẏ2(t ) + 1

2

(
∂ x̂1( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

+ 1

2

(
di(t )

dt

)2

x̂2
4 ( ẑ (t )) + 1

2
i2(t )

(
∂ x̂4( ẑ (t ))

∂ ẑ(t )
˙̂z(t )

)2

+ 1

2
i2(t )

(
1

Ĉts( ẑ (t ))
+ 1

Ĉt l ( ẑ (t ))

)2

− (3 + i(t ))N (k(t ))|e(t )|e(t ). (57)

Because d
dt ( 1

2 |e(t )|2) = |e(t )| d
dt |e(t )| = |e(t )| d

dt (
√

e2(t )) =
|e(t )|ė(t ), thus integrating (57) from t0 to t , using the defi-
nition |x| =

√
x2, and using (29) provides

1

2
e2(t ) ≤ 5

2
(k(t ) − k(t0)) + 1

2

∫ t

t0

ẏ2(τ )dτ

+ 1

2

∫ t

t0

(
∂ x̂1( ẑ (τ ))

∂ ẑ(τ )
˙̂z(τ )

)2

dτ

+ 1

2

∫ t

t0

(
di(τ )

dτ

)2

x̂2
4 ( ẑ (τ ))dτ
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+ 1

2

∫ t

t0

i2(τ )

(
∂ x̂4( ẑ (τ ))

∂ ẑ(τ )
˙̂z(τ )

)2

dτ

+ 1

2

∫ t

t0

i2(τ )

(
1

Ĉts( ẑ (τ ))
+ 1

Ĉt l ( ẑ (τ ))

)2

dτ

− 3
∫ t

t0

N (k(τ ))k̇(τ )dτ −
∫ t

t0

i(τ )N (k(τ ))k̇(τ )dτ.

(58)

Let k̃(t ) = k(t ) − k(t0). Dividing (58) by k̃(t ) and recogniz-

ing that ˙̂z(t ) = − i(t )

Cc
,
∫ t

t0
N (k(τ ))k̇(τ )dτ = ∫ k(t )

k(t0 ) N (k)dk and∫ t
t0

i(τ )N (k(τ ))k̇(τ )dτ = i(t )
∫ k(t )

k(t0 ) N (k)dk gives

e2(t )

2̃k(t )
≤ 5

2
+ 1

2̃k(t )

∫ t

t0

ẏ2(τ )dτ

+ 1

2̃k(t )

∫ t

t0

(
i(τ )

Cc

∂ x̂1( ẑ (τ ))

∂ ẑ(τ )

)2

dτ

+ 1

2̃k(t )

∫ t

t0

(
di(τ )

dτ

)2

x̂2
4 ( ẑ (τ ))dτ

+ 1

2̃k(t )

∫ t

t0

(
i2(τ )

Cc

∂ x̂4( ẑ (τ ))

∂ ẑ(τ )

)2

dτ

+ 1

2̃k(t )

∫ t

t0

i2(τ )

(
1

Ĉts( ẑ (τ ))
+ 1

Ĉt l ( ẑ (τ ))

)2

dτ

− 3

k̃(t )

∫ k(t )

k(t0 )
N (k)dk − i(t )

k̃(t )

∫ k(t )

k(t0 )
N (k)dk. (59)

Any battery can only be discharged for a certain inter-
val of time, say T ′ > t0. After time t > T ′, the following
occurs: i(t ) = 0, y(t ) = 0, z(t ) = 0, because all the charge
in the battery is exhausted. Therefore, as t → ∞, ẏ(t ) = 0,
and d (i)

dt = 0. Thus, from these facts, we can conclude that

the terms
∫ t

t0
ẏ2(τ )dτ ,

∫ t
t0

(
i(τ )
Cc

∂ x̂1( ẑ (τ ))
∂ ẑ(τ )

)2
dτ ,
∫ t

t0

(
di(τ )

dτ

)2
x̂2

4 ( ẑ (τ ))dτ ,∫ t
t0

(
i2(τ )
Cc

∂ x̂4( ẑ (τ ))
∂ ẑ(τ )

)2

dτ , and 1
2

∫ t
t0

i2(τ )
(

1
Ĉts ( ẑ (τ ))

− 1
Ĉt l ( ẑ (τ ))

)2

dτ are

bounded in (59) as t → ∞. Now suppose that k(t ) → ∞ as
t → ∞, then the above discussion lets us write as t → ∞ for
(59),

lim
t→∞

e2(t )

2̃k(t )
≤ 5

2
− 3

k̃(t )

∫ k(t )

k(t0 )
N (k)dk − i(t )

k̃(t )

∫ k(t )

k(t0 )
N (k)dk,

(60)

Now if k(t ) → ∞ as t → ∞ then by the definition of a
Nussbaum function in (13), the term + 1

k(t )−k(t0 )

∫ k(t )
k(t0 ) N (k)dk,

in (60) can take values approaching +∞, and therefore this
will violate the positiveness of the LHS of (60). By this con-
tradiction, the assumption that k(t ) → ∞ is false, therefore
k(t ) is bounded. However k̇(t ) is an increasing function by
definition and k(t ) is bounded, this implies that k(t ) → k∞ as
t → ∞ which further implies that k̇(t ) → 0 as t → ∞, i.e.
e2(t ) → 0 as t → ∞ or e(t ) → 0 as t → ∞, i.e. y(t ) → ŷ(t )

as t → ∞. The required result is achieved, thus completing
the proof. �

The following results shows that the estimated values of
Li-ion battery model parameters r̂n(t ) converge.

Lemma 2: Suppose λxn, λyn, rnu and rnl are positive real
numbers for n ∈ {1, 2, . . . , 21}\{3, 21}. If the conditions re-
quired for Theorem 1 to hold are satisfied, then r̂n(t ) con-
verges to some constant r∞ as t → ∞.

Proof: The solution of (32) with e2(t ) + λxn rnu + λyn rnl as
an input is as follows

r̂n(t ) = r̂n(t0)e−(λxn +λyn )t

+
(

(λxn rnu + λyn rnl ) ×
∫ t

t0

e−(λxn +λyn )τ dτ

)
+
∫ t

t0

e2(t − τ )e−(λxn +λyn )τ dτ (61)

Because e−(λxn +λyn )t → 0 as t → ∞, and from Theorem 1,
e(t ) → 0 as t → ∞. So e−(λxn +λyn )t and e2(t ) remain positive
and approach to zero as t → ∞. Thus, on the R.H.S. of (61),
the first term will go to zero, the second and third terms will be
bounded and approach to a constant term as t → ∞. Hence,
r̂n(t ) converges as t → ∞ for n ∈ {1, 2, . . . , 21}\{3, 21}. �

Now that the above result has shown that the estimated
parameters r̂n(t ) for n ∈ {1, 2, . . . , 21}\{3, 21}, converge as
t → ∞; the following result shows that the estimated param-
eters r̂n(t ) converge to their actual values rn. Note that rn are
constants. Define the following variables.

�x j (t ) = x̂ j (t ) − x j (t ), for j ∈ {1, 2, 3, 4} (62)

�rn(t ) = r̂n(t ) − rn, for n ∈ {1, 2, . . . , 21}\{3, 21} (63)

δ1 = − 1

r14
ln

(
r15

r13

)
(64)

δ2 = − 1

r17
ln

(
r18

r16

)
(65)

δ3(t ) = Cc

(
x2(t )

Cts(z(t ))
+ x3(t )

Ctl (z(t ))
+ x̂2

Ĉts(z(t ))

+ x̂3

Ĉt l (z(t ))

)
. (66)

Note also that the conditions r13 > r15 > 0, and r16 > r18 > 0
required in the result below are not artificial, but are a common
and natural consequence of the shape of the terminal volt-
age curve, and a battery’s electrical response time constants.
In fact based on the work in [1] (which provides rigorous
experimental verification), the authors in [24] have shown
that battery model parameter values maintain such an order
relation.

Theorem 2: Suppose the conditions required for Theorem
1 to hold are satisfied. Let ε be a positive real number,
and let t∗, T, z(t ) ∈ R such that t∗ < T , and z(t ) ∈ [0, 1].
Let r13 > r15 > 0, and r16 > r18 > 0. Suppose M > i(t ) > 0,
i(t ) → 0 as t → T , and let di(t )

dt be bounded for all t ≥ t0.
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Given any ε, if z(t ) > max{δ1, δ2, δ3(t )}, and there exists a
time instant t∗ such that for all t > t∗ we have |y(t ) − ŷ(t )| <

ε, then �x j (t ),�rn(t ) → 0 as t → ∞. Here j ∈ {1, 2, 3, 4},
n ∈ {1, 2, . . . , 21}\{3, 21}.

Proof: To prove the intended result we start by examining
the stability of the battery model states in (1)–(6) and the
observer states in (16)–(19). Consider the candidate Lyapunov
function as shown in (67).

V (z, x2, x3, x̂2, x̂3) = 1

2
z2 + 1

2
�

j=3
j=2

(
x2

j + x̂2
j

)
(67)

V (z, x2, x3, x̂2, x̂3) > 0 for all z, x2, x3, x̂2, x̂3 �= 0. Taking the
time derivative of V provides the following, where the argu-
ments of V are not written for brevity.

V̇ = zż + �
j=3
j=2

(
x j ẋ j + x̂ j ˙̂x j

)
(68)

Now, as per the assumptions, we know that the conditions
required for Theorem 1 to hold are satisfied. Therefore from
Theorem 1 we know that e(t ) → 0 as t → ∞. Which, by the
definition of e(t ) in (28) and from basic definitions related to
convergence [28], implies that there exists a time instant t∗
such that for all t > t∗ we have |y(t ) − ŷ(t )| < ε, for arbitrar-
ily small positive ε. So, for t > t∗ and considering the fact
that e(t ) → 0 as t → ∞ gives us u(t ) → 0 as t → ∞ based
on (29)–(31). Subsequently, using equations (1), (3), (4), (18),
and (19) with (68) considering t > t∗ results in,

V̇ = − z(t )
i(t )

Cc
− x2

2 (t )

Rts(z)Cts(z)
+ i(t )x2(t )

Cts(z)

− x2
3 (t )

Rtl (z)Ctl (z)
+ i(t )x3(t )

Ctl (z)
− x̂2

2 (t )

R̂ts( ẑ )Ĉts( ẑ )

+ i(t )̂x2

Ĉts( ẑ )
− x̂2

3 (t )

R̂t l ( ẑ )Ĉt l ( ẑ )
+ i(t )̂x3

Ĉt l ( ẑ )
(69)

Re-arranging (69) gives

V̇ = − x2
2 (t )

Rts(z)Cts(z)
− x2

3 (t )

Rtl (z)Ctl (z)
− x̂2

2 (t )

R̂ts( ẑ )Ĉts( ẑ )

− x̂2
3 (t )

R̂t l ( ẑ )Ĉt l ( ẑ )
+ i(t )

(
− z(t )

Cc
+ x2(t )

Cts(z)

+ x3(t )

Ctl (z)
+ x̂2

Ĉts( ẑ )
+ x̂3

Ĉt l ( ẑ )

)
(70)

Now notice that as mentioned below (12) the actual pa-
rameters values r1, r2 . . . , r21 are all positive numbers. Thus
from equations (8), (9), and knowing that the battery SoC
z(t ) ∈ [0, 1] we know that Rts(z(t )), Rtl (z(t )) > 0 for all time.
Also By definition in (23) and (24), because r̂n(t0) > 0 for
n ∈ {1, 2, . . . , 21}\{3, 21}, and ẑ(t ) = z(t ) by definition, and
z(t ) ∈ [0, 1]; so R̂ts( ẑ (t )) > 0, R̂t l ( ẑ (t )) > 0 for all t > t0.
Further, the assumptions of this theorem require Theorem 1
to hold, which in turn requires the assumptions of Lemma 1
to be satisfied. Therefore, by Lemma 1 we have Ĉts( ẑ (t )) >

0, Ĉt l ( ẑ (t )) > 0 for all t > t0. Now from the forms of
Cts(z),Ctl (z) as seen in (10), (11), and by the assumptions of

this theorem i.e. r13 > r15 > 0 and r16 > r18 > 0, so we can
see that

Cts(z) > 0, for z > − 1

r14
ln

(
r15

r13

)
, (71)

Ctl (z) > 0, for z > − 1

r17
ln

(
r18

r16

)
. (72)

Thus we can now say

V̇ < 0, for z(t ) > max {δ1, δ2, δ3(t )} , where (73)

δ1 = − 1

r14
ln

(
r15

r13

)
(74)

δ2 = − 1

r17
ln

(
r18

r16

)
(75)

δ3(t ) = Cc

(
x2(t )

Cts(z(t ))
+ x3(t )

Ctl (z(t ))
+ x̂2

Ĉts(z(t ))
+ x̂3

Ĉt l (z(t ))

)
(76)

Therefore from results in Lyapunov stability analysis, we
have that the dynamics of x2, x3, x̂2, x̂3 in (3), (4), (18), (19)
are asymptotically stable, and x2(t ), x3(t ), x̂2(t ), x̂3(t ) → 0,
as t → ∞, t > t∗, if z(t ) > max{δ1, δ2, δ3(t )}. Now let

X = [�x2 �x3]T (77)

ϕ(X ) = 1

2
X T X (78)

From the above discussion we know that all x j, x̂ j, j ∈ {2, 3}
are bounded for t → ∞, t > t∗, if z(t ) > max{δ1, δ2, δ3(t )}.
This implies from the definition of �x j,�rn in (62), (63) that
�x j are bounded for all j as t → ∞. This implies that there
exists a constant c1 < ∞ such that

lim
t→∞ ϕ(X ) → c1, if z(t ) > max {δ1, δ2, δ3(t )} . (79)

Now consider the first and second time derivatives of ϕ(X ).

ϕ̇(X ) = X T Ẋ (80)

ϕ̈(X ) = Ẋ T Ẋ + X T Ẍ , and (81)

Ẋ = [�̇x2 �̇x3]T (82)

Ẍ = [�̈x2 �̈x3]T . (83)

Now as mentioned earlier in this proof, we know that
Rts, Rtl , R̂ts, R̂t l > 0 and by Lemma 1 we have Ĉts, Ĉt l > 0 for
all t > t0. Further from (72), (73) we have that Cts,Ctl > 0 for
z(t ) > max{δ1, δ2}. Also we know that e(t ), u(t ) → 0 as t →
∞, t > t∗ and M > i(t ) > 0 for all t > t0. So, using the facts
in this paragraph and considering the fact that i(t ) is bounded
by assumption, and recalling that x2, x3, x̂2, x̂3 are bounded
due to the asymptotic stability results derived above. Then
from equations (2)–(5) and (17)–(20), it is trivial to see that
ẋ j, ˙̂x j and so by definition �̇x j are bounded for t ∈ [t0,∞) for
all j ∈ {2, 3}, if z(t ) > max{δ1, δ2, δ3(t )}. No consider ẍ2, ẍ3
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as given below.

ẍ2 = − ẋ2

RtsCts
− x2

d

dt

(
1

RtsCts

)
+ 1

Cts

di(t )

dt
+ i(t )

d

dt

1

Cts
(84)

ẍ3 = − ẋ3

RtlCtl
− x3

d

dt

(
1

RtlCtl

)
+ 1

Ctl

di(t )

dt
+ i(t )

d

dt

1

Ctl
(85)

Now further because e(t ), u(t ) → 0 as t → ∞, so consider
¨̂x2, ¨̂x3 as below.

¨̂x2 = −
˙̂x2

R̂tsĈts
− x̂2

d

dt

(
1

R̂tsĈts

)
+ 1

Ĉts

di(t )

dt
+ i(t )

d

dt

1

Ĉts
(86)

¨̂x3 = −
˙̂x3

R̂t lĈt l
− x̂3

d

dt

(
1

R̂t lĈt l

)
+ 1

Ĉt l

di(t )

dt
+ i(t )

d

dt

1

Ĉt l
(87)

Also, notice that

d

dt

1

Rts
= −r7r8e−r8z

R2
ts

(−i(t )

Cc

)
(88)

d

dt

1

Rtl
= −r10r11e−r11z

R2
t l

(−i(t )

Cc

)
(89)

d

dt

1

Cts
= r13r14e−r14z

C2
ts

(−i(t )

Cc

)
(90)

d

dt

1

Ctl
= r16r17e−r17z

C2
t l

(−i(t )

Cc

)
(91)

and,

d

dt

(
1

RtsCts

)
= d

dt

(
1

Rts

)
1

Cts
+ 1

Rts

d

dt

(
1

Cts

)
(92)

d

dt

(
1

RtlCtl

)
= d

dt

(
1

Rtl

)
1

Ctl
+ 1

Rtl

d

dt

(
1

Ctl

)
(93)

similarly we get

d

dt

1

R̂ts
= −r̂7r̂8e−r̂8z

R̂2
ts

(−i(t )

Cc

)
(94)

d

dt

1

R̂t l
= −r̂10r̂11e−r̂11z

R̂2
t l

(−i(t )

Cc

)
(95)

d

dt

1

Ĉts
= r̂13r̂14e−r̂14z

Ĉ2
ts

(−i(t )

Cc

)
(96)

d

dt

1

Ĉt l
= r̂16r̂17e−r̂17z

Ĉ2
t l

(−i(t )

Cc

)
(97)

and

d

dt

(
1

R̂tsĈts

)
= d

dt

(
1

R̂ts

)
1

Ĉts
+ 1

R̂ts

d

dt

(
1

Ĉts

)
(98)

d

dt

(
1

R̂t lĈt l

)
= d

dt

(
1

R̂t l

)
1

Ĉt l
+ 1

R̂t l

d

dt

(
1

Ĉt l

)
. (99)

Now as mentioned earlier in this proof, we know that
Rts, Rtl , R̂ts, R̂t l > 0 and by Lemma 1 we have Ĉts, Ĉt l > 0 for
all t > t0. Further from (71), (72) we have that Cts,Ctl > 0 for
z(t ) > max{δ1, δ2}. Also z ∈ [0, 1] and we are given that di(t )

dt
is bounded for all time. So, from (84)–(99), and because ẋ j, ˙̂x j

are bounded as discussed earlier, we see that ẍ j, ¨̂x j and so by
definition �̈x j are bounded for t ∈ [t0,∞) for all j ∈ {2, 3},
if z(t ) > max{δ1, δ2, δ3(t )}. Which also gives from (80) to
(83) that ϕ̈(X ) is uniformly bounded and therefore ϕ̇(X ) is
uniformly continuous. Now recalling from earlier that 0 ≤
limt→∞ ϕ(X ) ≤ c1 < ∞ and therefore invoking Barbalat’s
Lemma [29] we have that ϕ̇(X ) → 0 as t → ∞. Which gives
us

�x2�̇x2 + �x3�̇x3 → 0 as t → ∞, (100)

if z(t ) > max{δ1, δ2, δ3(t )}. Now because i(t ), u(t ) → 0, as
t → ∞ and all the actual and estimated resistances and capac-
itances are non-zero and positive if z(t ) > max{δ1, δ2, δ3(t )}
we can write for t → ∞

�x2�̇x2 = (x̂2 − x2)

( −x̂2

R̂tsĈts
+ x2

RtsCts

)
(101)

�x3�̇x3 = (x̂3 − x3)

( −x̂3

R̂t lĈt l
+ x3

RtlCtl

)
. (102)

Add and subtract
x2

R̂tsĈts
and

x3

R̂t lĈt l
into (101)–(102) respec-

tively and re-arrange to get

�x2�̇x2 = (x̂2 − x2)

(
x2 − x̂2

R̂tsĈts
+ x2

(
1

RtsCts
− 1

R̂tsĈts

))
(103)

�x3�̇x3 = (x̂3 − x3)

(
x3 − x̂3

R̂t lĈt l
+ x3

(
1

RtlCtl
− 1

R̂t lĈt l

))
.

(104)

Now as z(t ) > max{δ1, δ2, δ3(t )} so x2, x3 → 0 as t → ∞ so
the second term in the second parentheses in (103), (104)
vanishes giving us

�x2�̇x2 + x3�̇x3 = −
(

(x̂2 − x2)2

R̂tsĈts
+ (x̂3 − x3)2

R̂t lĈt l

)
(105)

So we see from (100) and (105) that x̂ j → x j for j ∈ {2, 3}
if z(t ) > max{δ1, δ2, δ3(t )}. Now using this with the fact that
e(t ) → 0 we can write the following using definitions of e, y
and ŷ. There exists a time t > t∗ such that

|x1 − x̂1 + i(x̂4 − x4)| < ε. (106)

Let t > T then we see that i(t ) → 0 as t → ∞, t > T > t∗
and from (106) we have x̂1 → x1.

At this point we proceed by contradiction. Let us sup-
pose that the estimated parameters r̂n and x̂4 do not converge
to rn, x4 respectively. Here n ∈ {1, 2, . . . , 21}\{3, 21}. This
means that the parameters r̂3, r̂21 which are calculated based
on these as in (33), (34), also do not converge. So this implies
from definitions that Ê0, R̂ts, R̂t l , Ĉts, Ĉt l do not converge to
E0, Rts, Rtl ,Cts,Ctl . Which further implies from equations
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(1)–(4), (7), and (16)–(19), (23) that that x̂ j do not converge to
x j for j ∈ {1, 2, 3}. This contradicts what we have from above,
so by this contradiction we have that the parameters involved
in the circuit elements (1)–(4), (7) and (16)–(19), (23) do
converge. Now let us also assume that x̂4 does not converge
to x4. Consider the fact that Theorem 1 holds, and does not
require i(t ) → 0 and gives e(t ) → 0 as t → ∞. Considering
this with the fact that we have shown x̂ j → x j for j ∈ {1, 2, 3}
we can use definitions of e, y and ŷ, to get by Theorem 1
that there exists a time t∗ such that for all t > t∗ we have
|i(x̂4 − x4)| < ε. This contradicts our assumption that x̂4 does
not converge to x4. Further let us assume that r̂19, r̂20 do not
converge to r19, r20 respectively and therefore neither does r̂21

which is calculated based on (34). If this is true, then this
means that R̂s does not converge to Rs. But by definition in
(27) and (12) we know that R̂s ≡ x̂4, Rs ≡ x4. And we know
from above that x̂4 converges to x4. This means that having R̂s

not converge to Rs causes a contradiction.
So by all of the above contradictions together we get the

required result, i.e. �x j (t ),�rn(t ) → 0 as t → ∞ if z(t ) >

max{δ1, δ2, δ3(t )}, or in other words the estimated states and
the parameters values converge to their actual values as long
as the battery SoC does not fall below a certain low level. Cal-
culation of the other two parameters r̂3, r̂21 require the states
and the other parameters values as per (33) and (34), which
having converged, provide the correct estimates for r̂3, r̂21.
As the parameters estimates converge to the ideal values, this
implies that the estimated values of the circuit elements also
converge to their actual values. �

V. VALIDATION AT THE CELL LEVEL
The proposed methodology for the convergence of estimated
values to their actual values, is verified by MATLAB sim-
ulation results. The accuracy of estimated circuit elements
and their parameters is validated in simulation, by comparing
the estimated values with the ones provided by Chen and
Mora [1] for a 4.1 V, 850 mAh Li-ion battery. For simulation
we consider a 4.1 V, 270 mAh Li-ion battery cell. Note that
the difference in mAh only changes the value of Cc but does
not affect the values of any other parameters. A lower value of
270 mAh is chosen so that the simulation time for a complete
discharge cycle is not too long. The results provide estimated
values of parameters close to those in [1].

The results form Chen and Mora’s (CM) work [1] are
considered as actual values for the case of 4.1 V cell. This
is because, the authors in [1] performed 40 experiments, ten
discharging curves each at 80, 160, 320, and 640 mA, to
extract equivalent circuit elements of a Li-ion battery. These
parameters are able to predict Li-ion battery voltage at any
load profile within a 30 mV maximum voltage estimation
error. Therefore, owing to high accuracy of the CM work and
its extensive utilization in many of the state-of-the-art research
studies, we refer to equivalent circuit parameters from the
CM work as actual values, and use these parameter values
as actual values for comparison purposes in this section. The

parameters adaptation process begins with the appropriate
choice of some constraints. These constraints include the
selection of steady-state upper and lower bounds and their
respective confidence levels for each parameter, described
in Table 1. The initial values for the observer states are
also selected as follows: x̂1(0) = Eo(0), x̂2(0) = 0, x̂3(0) = 0,
x̂4(0) = 0, and ŷ(0) = y(0). The proposed approach is run in
MATLAB for real-time parameters estimation of a Li-ion bat-
tery using a constant discharge current of 0.1 A. The estimated
values of the parameters are shown in Table 1. The results
in Table 1 show that the estimation error is less than 5% for
most of the estimated parameters. This level of accuracy is
achieved despite the selection of initial values of parameter
estimates being far off from their actual values. The estimated
parameters are then employed to analyze the variation of cir-
cuit elements values with SoC. The variation of the estimated
and actual circuit elements values E0, Rs, Rts, Rtl ,Cts and Ctl

versus SoC are shown in the left subplots of Fig. 3(a)–(f)
respectively. The right subplots of Fig. 3(a)–(f) show the re-
spective estimation errors. The Chen and Mora’s results are
used as actual values in these.

All the circuit elements converged within a 10% error
bound, except Rts which can be further improved by fixing
the upper and lower bounds appropriately. It can be no-
ticed that estimation error of circuit elements is higher when
SoC approaches zero. A Li-ion battery becomes unstable
when the SoC value becomes lower than a certain thresh-
old [24], which causes the estimated parameters to diverge
from their actual values. Therefore, in this work the battery
model parameters are estimated until the SoC is reduced to
7%, though the results in Fig. 3 are displayed until the SoC
reaches 1%.

Further, we construct and test two 4.1 V, 275 mAh Li-ion
battery models in simulation for validating the estimated pa-
rameters results against those obtained by Chen and Mora [1].
The first model contains the parameters estimated by the pro-
posed method, while the second one, set as a reference model,
uses Chen and Mora’s [1] parameters. Each battery model is
subjected to a random discharge current as shown in Fig. 4,
and their open circuit and terminal voltages are compared in
Fig. 5(a) and (c), respectively. While their respective estima-
tion errors are plotted in Fig. 5(b) and (d), respectively. The
low estimation error in both the open circuit and terminal
voltage profiles in Fig. 5(b) and (d) show the accuracy of the
proposed strategy.

Finally, the estimated parameters are used to determine the
SoC using the open circuit voltage via interpolation [2], with
the discharge current shown in Fig. 4. The estimated SoC and
the one obtained by conventional Coulomb counting method
are plotted in Fig. 5(e), while their difference is presented in
Fig. 5(f). Fig. 5(g) and (h) show zoomed views of Fig. 5(e)
and (f) for the SoC estimation. Since the error in Fig. 5(e) and
(f) is relatively high in the 20 to 30 minute interval, so this
range is zoomed in and shown in Fig. 5(g) and (h). It is still
worth noting that the maximum error is under 5 × 10−3.
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TABLE 1 Simulation Results of a 4.1 V, 270 mAh Li-Ion Battery Model Parameters Estimation Test at the Cell Level

VI. EXPERIMENTAL VALIDATION ON A 22.2 V, 6.6 AH
LITHIUM-POLYMER BATTERY PACK
This section demonstrates rigorous experimental verifica-
tion of the proposed online APE strategy on a 22.2 V,
6.6 Ah, 6 cell Li-ion battery, for sixteen different
discharging and sixteen constant current charging profiles.
The details of these charge and discharge profiles are in [2].
The batteries are discharged up to 7% of their rated capacity
in about 15 hours. The measured battery discharging current,
measured and estimated terminal voltage during the proposed
online APE strategy, are plotted in Fig. 6 subplots (a) and (b)
respectively.

The battery parameters, r̂1, . . . , r̂21 are estimated online us-
ing the proposed algorithm and recorded in 21 separate arrays.
The initial values, steady-state upper and lower bounds chosen
for the estimated parameters should satisfy the conditions
mentioned in Lemmas 1, 2. The battery terminal voltage is
estimated and compared with the actual voltage. The value
of the estimated parameters is picked and considered a good
estimate, when the terminal voltage estimation error gets be-
low the user defined error bound. The average value of such
good estimates of a particular parameter is finally considered
as the estimated parameter’s value, and the estimation process
is ended.

The sampling time of the discharging voltage and current
is set to 0.01 seconds, and the final values of the estimated
parameters are obtained in about two seconds when the battery
terminal voltage estimation error decreased to 0.1 × 10−5.
The results of estimated parameters obtained from the pro-
posed online APE strategy are provided in Table 2, and
are compared with the results of the reference offline APE

technique shared in [2]. In Table 2, we use the values from [2]
as benchmark for 22.2 V, 6.6 Ah Lithium-ion battery. The
authors in [2] perform 32 experiments, sixteen different dis-
charging and sixteen constant charging profiles. The average
error for a set of sixteen different discharging profiles is 0.1%,
and 1.7% for sixteen constant charging profiles. Therefore,
owing to high accuracy of parameters provided in [2], we use
them as reference in Table 2. Note that in Table 2, values
related to parameters r̂3 and r̂21 are shown by dashes. This
is because r̂3 and r̂21 disappear from the observer equations
used in the proposed online APE strategy. So, parameters r̂3

and r̂21 are not estimated adaptively, but are calculated using
equations (33)–(34).

For testing performance during discharging, sixteen dif-
ferent discharging load profiles as mentioned in [2] are
successively applied to 22.2 V, 6.6 Ah Li-ion battery packs
and the battery terminal voltage is estimated online using the
acquired battery model.

As a sample, the estimated and measured terminal voltages
along with the absolute voltage estimation error for two of
the sixteen discharging load profiles are shown in Figs. 7 and
8. The terminal voltage estimation error data, for all sixteen
discharging profiles, is stacked together to form a single large
‘error array’ of 2.75e7 samples. The mean value of the error
array for proposed and reference APE methods are 0.0211 V
and 0.0218 V, respectively. Whereas, the median value of
the error array for proposed and reference APE methods are
0.027 V and 0.0143 V, respectively. Similarly, the mode value
for proposed and reference APE methods are −0.4038 V and
−0.347 V, respectively. Likewise, the standard deviation value
for proposed and reference APE methods are found to be
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FIGURE 3. Comparison of actual and estimated circuit elements of a 4.1 V, 270 mAh Li-ion battery model at the cell level. (a) Open circuit voltage Eo VS
SoC. (b) Series resistance Rs VS SoC. (c) Short term resistance Rts VS SoC. (d) Long term resistance Rtl VS SoC. (e) Short term capacitance Cts VS SoC.
(f) Long term capacitance Ctl VS SoC.

0.5026 V and 0.5139 V, respectively. The Cumulative distri-
bution graph of this terminal voltage estimation error array is
shown in Fig. 10 respectively. Where, the red vertical lines in
Fig. 10 indicate the ±4.5% terminal voltage estimation error
limits, i.e. ± 1 V. Fig. 10 shows no significant difference

between the proposed online APE results compared to the
reference offline APE technique.

The estimated parameters obtained from the proposed
online APE strategy are further assessed against the re-
sults obtained using the reference offline APE technique for
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TABLE 2 Experimental Results of a 22 V, 6.6 Ah Li-Ion Battery Model Parameters Estimation Test at the Pack Level

FIGURE 4. Variable current drawn from Li-ion battery.

sixteen constant current charging protocols. The actual Lipo
battery is charged with a constant current of 2.5 amperes
using the Thunder-Power charger (TP820CD). As a sample,
the estimated and measured terminal voltages along with the
absolute voltage estimation error for a single charging test,
are shown in Fig. 9. The total number of samples collected
in the terminal voltage estimation ‘error array’ while charging
the batteries are 1.258e7, for both the proposed and reference
APE methods. The cumulative distribution graph of the error
array is shown Fig. 11, respectively, for both the proposed
and reference APE strategies. The mean value of the error
array for proposed and reference APE methods are −0.6518 V
and −0.7080 V, respectively. Whereas, the median value of
the error array for proposed and reference APE methods are
−0.6451 V and −0.7059 V, respectively. Similarly, the mode
value for proposed and reference APE methods are −2.1223 V
and −2.1470 V, respectively. Likewise, the standard deviation

value for proposed and reference APE methods are found to
be 0.2271 V and 0.2231 V, respectively. This shows that the
proposed online APE strategy produces results that are com-
parable to the reference offline APE technique while charging
a Li-po battery.

To further test the accuracy of the parameters values es-
timated, the open circuit voltage and the series resistance
variation vs. SoC is compared against measured values, for the
22.2 V, 6.6Ah battery pack. The results are shown in Figs. 12
and 13. The upper part of Fig. 12 shows the measured pack
level OCV for a 22.2 V 6.6Ah Li-ion battery pack with 6
cells, and also shows the OCV estimated using the parameters
estimated - as shown in Table 2. The lower part of Fig. 12
shows the error between the measured and estimated OCV. It
is thus observed that the average error is around 0.8538 V,
which is about a 3.85% error for a pack rated at 22.2 V.
Similarly, Fig. 13 compares the battery series resistance vs.
SoC curve estimated using the using the parameters estimated
- as shown in Table 2, and values available in the literature [2]
for the series resistance of the same battery pack used in this
work. It is worth noting that the values from [2] are used for
comparison as they have been verified by the authors in [2]
through many experimental efforts, and also the OCV and
series resistance parameters in [2] are not estimated using any
filtering/estimation methodology, but by simply curve fitting
using experimental data. From the lower part of Fig. 13 we
can see that for SoC above 0.1 the error is lower than 0.02

or around 7% compared to the desired value. The error in-
creases to about 10%, or 0.025 for values of SoC much
lesser than 0.1. So from this, and from the terminal voltage
estimation performance seen in Figs. 7–9 using the parameters
estimated and shown in Table 2, we see that the proposed
on-line adaptive parameters estimation method produces
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FIGURE 5. Validation of estimated OCV and terminal voltage of a Li-ion battery cell, and comparison of estimated SoC with Coulomb counting SoC when
the battery is subjected to variable load. Sub-figures (g) and (h) show zoomed in view of portions of sub-figures (e) and (f) respectively. (a) Actual and
estimated OCV. (b) Estimation error. (c) Actual and estimated terminal voltage. (d) Estimation error. (e) Coulomb counting and estimated SoC. (f) SoC
estimation error with respect to coulomb counting. (g) Coulomb counting and estimated SoC. (h) SoC estimation error with respect to coulomb counting.

FIGURE 6. 22.2 V, 6.6Ah Lithium-Polymer battery pack discharging current
and voltage profiles during adaptation process. (a) Discharging current.
(b) Discharging voltage.

sufficiently accurate parameters estimates online, and within
a single experimental run.

In the next section, the proposed online APE strategy is
employed for real-time parameters estimation of a 400 V,
6.6 Ah, Li-ion battery bank. The Li-ion battery bank is

FIGURE 7. Terminal voltage estimation and absolute error |e(t )|
comparison for resistive load of 11.11 � with 15 minutes ON and
15 minutes OFF times. For a 22.2 V, 6.6 Ah Li-ion battery pack.

utilized to power an indirect field-oriented control based
electric vehicle (EV) traction system prototype. The real-
time estimated parameters are also validated against the
offline results on a 400 V, 6.6 Ah Li-ion battery
bank.

VOLUME 1, 2022 283



MUKHOPADHYAY ET AL.: REAL TIME LI-ION BATTERY BANK PARAMETERS ESTIMATION VIA UNIVERSAL ADAPTIVE STABILIZATION

FIGURE 8. Terminal voltage estimation and absolute error |e(t )|
comparison for resistive load of 7.5 � with random time period. For a
22.2 V, 6.6 Ah Li-ion battery pack.

FIGURE 9. Terminal voltage estimation and absolute error |e(t )|
comparison while charging a 22.2 V, 6.6 Ah Li-Polymer battery pack.

FIGURE 10. Cumulative distribution of terminal voltage estimation error
for reference offline APE and proposed online APE under sixteen different
discharging profiles, tested on 22.2 V, 6.6 Ah Lithium-ion battery packs.
[No. of samples is in O(107).].

FIGURE 11. Cumulative distribution of terminal voltage estimation error
for reference offline APE and proposed online APE techniques while
charging sixteen individual 22.2 V, 6.6 Ah Lithium-ion battery packs with a
constant 2.5 A current. [No. of samples is in O(107).].

FIGURE 12. Comparison of measured and estimated open circuit voltage
for a 22.2 V, 6.6 Ah Lithium-ion battery pack.

FIGURE 13. Comparison of estimated series resistance for a 22.2 V, 6.6 Ah
Lithium-ion battery pack, with values available in the literature.
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FIGURE 14. Li-ion battery bank powered EV traction system prototype [25].

TABLE 3 Experimental Results of a 400 V, 6.6 Ah Li-Ion Battery Bank Model Parameters Estimation Test

VII. ONLINE PARAMETERS ESTIMATION OF A 400 V, 6.6
AH LITHIUM-POLYMER BATTERY BANK: POWERING A
PROTOTYPE ELECTRIC VEHICLE TRACTION SYSTEM
The picture of a complete prototype EV traction testbench
is shown in Fig. 14 [25]. The real-time adaptive parameters
estimation of a 400 V, 6.6 Ah Li-ion battery bank is performed
by running the proposed algorithm with all the required condi-
tions described in section IV. The Li-ion battery bank powers
an indirect field-oriented control based induction motor driven
prototype EV traction system. The no-load operation of an
induction motor draws around 0.2 amperes current and is used
as the discharge current for the battery bank. The estimated
Li-ion battery bank parameters using the proposed approach
are presented in Table 3. Note that in Table 3, certain values
related to parameters r̂3 and r̂21 are shown by dashes. This
is because r̂3 and r̂21 disappear from the observer equations
used in the proposed online APE strategy. However, these
parameters are calculated in real-time using equations (33)–
(34). The battery parameters estimated at no-load condition
can be employed for SoC and SoH estimation, open circuit

voltage and series resistance estimation, and fault detection
in a battery management system during any loading condi-
tion of the prototype EV traction system. The effectiveness
of the proposed online APE strategy is further quantified
by comparing estimated parameters with the ones obtained
through offline experimentation. For that purpose, the 400 V,
6.6 Ah Li-ion battery bank is discharged through a 384 ,
600 W resistive load. The battery bank discharge current and
voltage profiles along with the estimated terminal voltage
during the adaptation process are shown in Fig. 15, a zoomed
view of the actual and estimated terminal voltages during the
adaptation process, are shown in Fig. 16. The detailed proce-
dure of the proposed online APE strategy has been described
in Section III, and the results of estimated battery bank param-
eters are given in Table 3. The real-time estimated parameters
of a 400 V, 6.6 Ah Li-ion battery bank model are quantified
against the parameters obtained through offline mode. The
estimation error in Table 3 shows the accuracy of real-time
parameters. The accuracy of the online estimated parameters
is assessed by analyzing the estimated terminal voltage us-
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FIGURE 15. 400 V, 6.6 Ah Lithium-polymer battery bank discharging SoC,
current, and voltage profiles during adaptation process.

FIGURE 16. 400 V, 6.6 Ah Lithium-polymer battery bank discharging
voltage profiles during adaptation process - zoomed version of last
subplot in Fig. 15.

ing a fast periodic discharge profile through a resistive load
rated at 230 , 1000 W. The time period of the discharging
profile is two minutes with 50% duty cycle. The real mea-
sured and estimated terminal voltages, using the parameters
values estimated, is used to quantify the effectiveness of the
proposed approach at the bank level. These details along with
the terminal voltage estimation error are illustrated in Fig. 17.
The terminal voltage estimation error in Fig. 17 is around 1%
which proves the effectiveness of the proposed online APE
strategy.

It is worth noting that the terminal voltage estimation error
is seen to increase slightly towards the end in Fig. 17. This
is because batteries are known to enter an unstable region
when the battery SoC falls below a low value [24]. Further
details about battery stability, are available in Section VIII-A.
In this work there are limits to be satisfied by the SoC e.g. as
in Theorem 2, z(t ) > max{δ1, δ2, δ3(t )}, and there are limits

and conditions to be satisfied by the current. However, in our
tests we do not pick any particular current profile. We also
do not check that the battery SoC has not entered the unsta-
ble region [24] because this requires the parameters values -
which we do not have access to in the beginning. However, the
UAS based adaptive controller is able to handle such change
in stability, and is a reason we use a UAS based strategy this
work. This is also seen in all our results as the terminal voltage
estimation error only experiences very small changes towards
the end.

Also, please note that the UAS based technique used here
is an observer. It is not used to control or actuate any de-
vice in this work. So the problems related to high control
effort as a result of noise, which affect UAS, do not affect
us. Because the observer simply executes on a computer; so,
regardless of noise the algorithm can supply whatever control
signal it mathematically needs. This is observed in the results
presented as well, because no filtering is used with any of
the sensor readings used. Also, the only measurements are
current and voltage, and for the order of signals measured
(max. 400 V, and few amperes) it is not hard to get reasonably
priced high-quality sensors for current and voltage measure-
ment which are less susceptible to noise.

The statistical analysis of terminal voltage estimation error
is also performed. Note that the total number of samples
collected in the estimation error array during the discharg-
ing test are 73,529. The mean, median, mode, and standard
deviation of the error array for the proposed online APE strat-
egy are −2.7754 V,−2.7828 V,−6.1766 V, and 1.3199 V
respectively. Moreover, the histogram of the terminal voltage
estimation error is shown Fig. 18. The statistical analysis of
terminal voltage estimation error shows the effectiveness of
the proposed APE strategy for real-time parameters estimation
on the EV traction system prototype.

For further validation, we compare the bank level OCV
and series resistance estimated using parameters estimated at
the bank level as in Table 3, with the bank level OCV and
series resistance calculated using the parameters estimated at
the cell (Table 1) level. And also we compare the bank level
OCV and series resistance estimated using the parameters es-
timated at the bank level, with the bank level OCV and series
resistance computed based on measurements at the pack level.
This can be done because the battery pack rated at 22.2 V
is made of 6 cells in series, each rated at 3.7 V. However
upon fully charging, we have observed that the battery pack
achieves a voltage of around 24 V i.e. each cell achieves a
voltage of around 4 V. So multiplying the cell level voltage
6 times gives us the pack voltage. Further, the battery bank
is made of 16 packs in series so the bank level OCV and
series resistance can be computed by multiplying the cell
level OCV and series resistance each by 6 × 16. Similarly
the bank level OCV and series resistance can be computed
by multiplying the pack level OCV and series resistance each
by 6. The OCV comparison results are shown in Fig. 19. The
black dashed curve in the topmost subplot in Fig. 19 shows
the estimated bank OCV using parameters estimated at the
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FIGURE 17. Terminal voltage estimation using the estimated parameters for a 400 V 6.6Ah Li-ion battery bank, and absolute error |e(t )| comparison. A
resistive load of 230 �, 1000 W is supplied with the following switching times: 1 minutes ON and 1 minute OFF.

FIGURE 18. Histogram of terminal voltage estimation error for the
proposed online APE strategy with the discharge profile shown in Fig. 17,
on a 400 V, 6.6 Ah Li-ion battery bank.

bank level. The blue curve shows six times the measured OCV
of one battery pack. And the red dotted curve shows the 96
times the cell OCV calculated using the paramters estimated
at the cell level by [1], which were also rigorously verified
in [1] against measurements. The middle and bottom subplots
show the corresponding errors. As seen, the error in estimating
bank OCV compared to the one computed from a pack level
measurement is below 5 V (i.e. 1.3%) for 0.5 <SoC< 1. The
maximum error is observed for SoC under 0.1 which is around
15 V (i.e. 3.9%). Also the maximum peak-to-peak error in
estimating bank OCV compared to the one computed from a
cell level estimate is around 10 V (i.e. 2.6%).

Similar plots for series resistance comparisons and the re-
spective errors are shown in Fig. 20. As seen from the plots,
the estimated bank level series resistance constructed from the
pack level, has an error of only 1.157 compared to the series
resistance directly estimated at the bank level, for SoC > 0.1.
For SoC < 0.1 the error between the series resistance directly

FIGURE 19. Comparison of open circuit voltage estimation performance
for a 400 V 6.6Ah Li-ion battery bank.

FIGURE 20. Comparison of series resistance estimation performance for a
400 V 6.6Ah Li-ion battery bank.
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estimated at the bank level and the one computed from the
pack level, increases. This may be because only one pack level
estimate is considered and multiplied six times to get the bank
level estimate. However, there may be differences between
packs. In contrast, regardless of SoC, the the estimated bank
level series resistance constructed from the cell level has an
error of around 2 to 3 compared to the series resistance
directly estimated at the bank level. So even though there may
be cell level or pack level variability in series resistance, the
ability to estimate them online in-runtime at any level, still has
the ability to give sufficiently accurate results for SoC > 0.1.
And, having access to the estimates at the cell and pack level,
and having the ability to estimate them for any cell/pack may
help compensate for cell level and pack level variability in the
future - when creating bank level estimates.

VIII. DISCUSSION
A. LI-ION BATTERY STABILITY
It may be intuitive to think of stability for physical systems.
But stability of equilibrium points of a system of differential
equations - can be analyzed for any set of differential equa-
tions, regardless of whether such equations represent physical
objects/behavior or not. For example, a thermal runaway may
be attributed to a change in the stability of the differential
equations governing the thermal dynamics [30], [31].

While less obvious, the sudden and near instantaneous drop
in terminal voltage of a battery at the end of its runtime is
attributed to a change in stability of the equations governing
the electrical dynamics. This is shown, and used in [24], [32],
[33], [34]. This can be understood by considering the battery
terminal voltage equation in (6). The first term on the R.H.S.
of (6) is the open circuit EMF, which is non-zero and bounded
(even when the battery is at the end of its discharge cycle i.e.
runtime). The last term consists of a product of the discharge
current and the series resistance. Both of which are bounded
in reality, and the latter is very small. All the terms themselves
are positive, and x1 is nearly constant throughout the life of the
battery and diminishes marginally at the end of the runtime.
But the actual terminal voltage is obtained by subtracting the
voltage drops x2(t ), x3(t ), i(t )x4(t ) from the open circuit EMF
x1. Also, in reality, at the end of the runtime of a battery, the
current decreases because the battery is unable to maintain
the current supply. So, the only way for the terminal voltage
to drop to zero near instantaneously, without the current i(t )
increasing, is if the voltage drops x2, x3 increase very fast.
Physically, this can be thought of as the parasitic voltage drops
x2, x3 shown in figure 1 increasing very fast at the end of a
discharge cycle, thus causing the terminal voltage to drop to
zero very fast. The source of this can be traced back to the
equilibrium points of (3)–(4) going from stable to unstable,
as shown in [24], [32], [34]. This stability analysis (available
in [24], [32], [34]) uses the equations of the equivalent circuit
elements of the equivalent circuit model shown in figure 1,
which are based on the extensive and rigorous experimental
work in [1].

B. PERSISTENCE OF EXCITATION
When considering standard gradient based or least squares
regression based parameter estimation approaches, equations
of the form

y = Wa (107)

are common. Where y is a vector of outputs, W is a matrix of
signals/inputs, and a is a vector with parameters whose values
need to be estimated. It is obvious that (107) is linear in the
parameters a. For such parameters estimation problems as in
(107), as indicated in well established literature [35], [36], one
requires the input/signal matrix W to be persistently exciting.
Specifically as per [36], a matrix W is persistently exciting
if there exist positive constants α1 and τ such that the below
persistence of excitation (PE) condition is satisfied.∫ t+τ

t
W T W dr ≥ α1I, ∀τ ≥ 0 (108)

Here I is an appropriately sized identity matrix. An equivalent
but alternate statement of the PE condition [35] is, “the input
signal has as many sinusoids as there are unknown parame-
ters”.

In fact [36] states that in the case of linear systems m sinu-
soids in the input signal can guarantee the estimation of upto
2m parameters. It is also stated in [36] that for nonlinear sys-
tems, not only is the requirement of the PE condition unclear,
but also it is possible to estimate more than 2m parameters
with an input containing m sinusoids.

At this juncture we would like to draw attention to the
following facts. The output equation for terminal voltage (6),
which is used in this work is of the form,

y = f (W, a). (109)

Here y is the output terminal voltge, W represents the states
x1 through x4 and the discharge current, a represents all the
parameters which enter the state and output equations (1)–(6)
non-linearly. The observer for estimating these parameters uti-
lizes this exact same nonlinear structure in (16)–(21), and adds
an input u to the estimator equations (18)–(20). Further, as de-
fined in [23], and as seen in [26] the input used is a Nussbaum
function of Mittag-Leffler type. By definition of a Nussbaum
function in [23], such an input is required to oscillate rapidly,
and the frequency of oscillation must keep varying. So given
the varying frequency of the input Nussbaum function, and
recalling the equivalent statements of the PE condition; we
see that the requirement for having enough sinusoids injected
into the system is easy to fulfill. Not only that, but because our
parameters estimation problem is not-linear and of the type in
(109), as mentioned above it may be possible to estimate the
parameters with far fewer number of sinusoids being injected
into the system compared to the number of parameters. Thus
not imposing the PE condition explicitly, still allows us to
obtain satisfactory results as reported in the paper.

It is also worth noting that there exists work on parameters
estimation which does not explicitly impose the PE condi-
tion [37], and achieves reliable parameter estimates. And work
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related to using the UAS based approach for parameters esti-
mation exists, and has been rigorously verified in [2], [25],
[38], [39].

C. SELECTION OF BOUNDS, CONFIDENCE LEVELS, AND
INITIAL VALUES
1) FOR THE OPEN CIRCUIT EMF E0

The open circuit EMF has the following form, Eo(z) =
−r1e−r2z + r3 + r4z − r5z2 + r6z3. As the terminal voltage
curve of a Li-ion battery is mostly flat for the SoC z ∈ [0, 1]
so the constant term r3 is the most dominant one, and should
have an order of magnitude close to the rated voltage of the
battery. Also the exponential term only plays a noticeable role
when z ≤ 10%, it is observed that r2 is of the order of 10.
The other constants r1, r4, r5, r6, as observed from the current
work and [1], [2] are approximately one order of magnitude
smaller than that of r3. This provides a baseline for selecting
the respective upper and lower bounds.

2) FOR RESISTANCES Rts, Rtl , Rs

As reported in the literature, another characteristic of a Li-
ion battery is almost no memory effect, i.e. the transient
effects have some characteristic time constants. These are
modeled by circuit elements Rts,Cts and Rtl ,Ctl . The resis-
tances Rts, Rtl have the form ae−bz + c, with z ∈ [0, 1] being
the SoC and a, b, c > 0. As the resistances Rts, Rtl are only
used in combination with the capacitances Cts,Ctl to model
transient characteristics, so these resistances Rts, Rtl should
not load the battery. This immediately provides that the val-
ues of a, c must be small i.e. usually of the order of 0.1
or 0.01. Also, for SoC approximately ≥10% the values of
the resistances Rts, Rtl are constant at c and they increase a
little for SoC < 10%. This also gives that a > c, and b must
be large enough to make the effects of the exponent term
gradually disappear for z > 0.1. And the rate of change of
Rts, Rtl between c to a for SoC ≤ 10% is controlled by b.
Since these resistances model transient characteristics, and are
independent of whether the characteristics are for a battery
cell/pack/bank the range of values for a, b, c for Rts, Rtl are
the same for a battery cell/pack/bank. So either the above
discussion, or an established model of a Li-ion battery cell
from the literature [1] can be used and the upper and lower
bounds i.e. rnu, rnl of a, b, c can be selected by adding ±10%
to the values available in the literature. Similar considerations
also apply to the series resistance Rs. However if the value of
c for Rs for a single cell is of the order of 0.01 then for a 6S
pack using 6 such cells in series the value of c would now be
of the order of 6 × 0.01 for the pack. Similarly if now 16 such
battery packs were used in series to make a battery bank then
the order of c would now be 16 × 6 × 0.01 for the bank.

3) FOR CAPACITANCES Cts,Ctl

Similar characteristics are observed for Cts,Ctl too. The ca-
pacitances Cts,Ctl have the form −āe−b̄z + c̄, with z ∈ [0, 1]

being the SoC and ā, b̄, c̄ > 0. From the literature [1] it is ob-
served that ā, c̄ are usually of the order of 100 or 1000 with b̄
being of the order of 10. Also, for SoC approximately ≥ 10%
the values of the capacitances Cts,Ctl are constant at c̄ and
they decrease for SoC < 10%. The literature [34] also shows
that respective constants ā, b̄, c̄ for Cts,Ctl have an order rela-
tion. The discussion in this paragraph, or an established model
of a Li-ion battery cell from the literature [1] can be used and
the upper and lower bounds i.e. rnu, rnl of ā, b̄, c̄ can be se-
lected by adding ±10% to the values available in the literature.
However, for the case of capacitances, there are some con-
straints that need to be satisfied by the upper and lower bounds
i.e. rnu, rnl and their respective confidence levels λxn , λyn .
These constraints (linear inequalities in rnu, rnl , λxn , λyn ) are
mentioned in the statement of Lemma 1, and are required for
the convergence of the observer in this work. The constraints
are not hard to fulfill, one must simply check if the upper and
lower bounds and their respective confidence levels selected,
satisfy these inequality constraints. If they do not, one may
simply update the values of the upper/lower bounds/ their
respective confidence levels until the inequalities are satisfied.

4) THE CONFIDENCE LEVELS λxn , λyn

The role of the confidence levels λxn , λyn may be further un-
derstood by looking at (61). The quantities λxn , λyn control
the rate at which the estimated parameters values r̂n settle.
Very large values for λxn , λyn may result in quick settlement
but would not allow for the estimation error to influence the
value of r̂n. Very small values of λxn , λyn on the other hand
may allow the error to keep driving the value of r̂n so it does
not settle. This may allow effects of noise that shows up in the
measured terminal voltage and battery current to be reflected
in the estimation error e, and further affect the convergence of
r̂n. As observed in this work and in [2], values of λxn , λyn in
the order of 10 seems to provide good performance.

5) INITIAL GUESSES
Selecting initial guesses for the initial values of the param-
eters is also not challenging because the initial values can
simply be selected to be a number within the range of the
upper and lower bounds. The only conditions on initial con-
ditions, which are required to be satisfied for convergence,
are related to Cts,Ctl and are given in Corollary 1. The con-

ditions are that r̂13(t0) > r̂15(t0) > 0, r̂14(t0) ≥ −αe
ln(amin1 )

zmin

and r̂16(t0) > r̂18(t0) > 0, r̂17(t0) ≥ −αe
ln(amin2 )

zmin
. Although

these may look involved, they are not. This is because one can
easily select initial values such that r̂13(t0) > r̂15(t0) > 0 and
r̂16(t0) > r̂18(t0) > 0. Doing this makes the quantities within
the logarithms negative, as shown in the proof for Corollary 1.
Now α is any positive constant, and zmin is the minimum value
that the SoC is expected to reach. If one has no idea of zmin

one can pick the lowest allowable SoC e.g. 7% for zmin. Or as
obvious, simply picking very large numbers for r̂14(t0), r̂17(t0)
also results in satisfying the logarithm related constraints from
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Lemma 1. It is also observed from our experimentation, that
the proposed strategy is effectively able to estimate the param-
eters values even if all of the various conditions related to the
initial guesses, confidence levels, and bounds are not always
strictly met.

D. ITERATIVE REFINEMENT OF THE BOUNDS, CONFIDENCE
LEVELS, AND INITIAL VALUES.
Iterative methods using a combination of optimization along
with UAS-based approaches are available in the literature, to
tune the upper, lower bounds, respective confidence levels,
and initial values [4], [38]. This enables the setting of initial
guesses for the upper, lower bounds, respective confidence
levels, and initial values; based on which an optimization
routine determines the updated values of the upper, lower
bounds, respective confidence levels, and initial values for
the next iteration of parameters estimation. The goal can be
to minimize the terminal voltage estimation error as used
in [4], [38].

IX. CONCLUSION
An online UAS-based effective method for estimating Li-ion
battery model parameters has been presented in this paper.
The applicability of the developed method has been rigorously
verified at the battery cell, pack and bank levels. In contrast to
the reference offline UAS-based Li-ion battery parameters es-
timation; the proposed technique does not require prior offline
experimentation for open circuit voltage estimation, and also
eliminates post-processing for series resistance estimation.
Numerical simulations are performed at the cell level on a
4.1 V, 270 mAh Li-ion battery model. Experimental results
are provided on a 22.2 V, 6.6 Ah Li-ion battery pack. Fur-
thermore, the proposed online APE strategy is implemented
for real time, online parameters estimation of a 400 V, 6.6
Ah Li-ion battery bank; powering an indirect field-oriented
induction motor driven EV traction system prototype. The real
time results show parameters convergence within a few sec-
onds and are validated against an offline test and fast periodic
discharging battery bank voltage profile. The terminal voltage
estimation error is around 1%, which proves the accuracy of
the proposed online APE strategy for real time battery bank
parameters estimation of an EV traction system.

APPENDIX
A. CONVERGENCE SPEED OF THE PROPOSED UAS-BASED
METHOD
The parameter k(t ), adaptive gain N (k(t )), control input u(t ),
and voltage estimation error e(t ) are shown in Fig. 21 during
a 4.1 V Li-ion battery model parameters estimation process.
The adaptive gain N (k(t )) settles to a steady state value in less
than 150 samples, which implies k(t ) → k∞ by definition of
Nussbaum function from equation (29)–(31). From equation
(29), this further implies k̇(t ) → 0, or e(t ) → 0 as t → tc,
where tc denotes the convergence time. Since, the sampling
time of the proposed algorithm is set to 0.01 seconds, which

FIGURE 21. (a) Parameter k(t ), (b) adaptive gain N(k(t )), (c) control input
u(t ), and (d) voltage estimation error e(t ) during a 4.1 V Li-ion battery
model parameters estimation process.

indicates tc = 0.01 × 150 = 1.5 seconds. Therefore, irrespec-
tive of any traction system driving cycle/dynamic condition,
the proposed strategy does not need to run for the entire
driving cycle, rather it is run for a few seconds and enables
self-update of battery parameters in run-time for battery man-
agement systems (BMS) and real-time electric vehicle (EV)
applications.

In Fig. 22, the convergence of all battery parameters
r̂1, r̂2, . . . , r̂21 is shown during the adaptive estimation pro-
cess for a 4.1 V Li-ion battery. Note that the parameters
r̂1, r̂2, . . . , r̂21 are normalized in Fig. 22 for clearly observing
convergence. Many of the traces of the 21 battery parameters
overlap in Fig. 22, and show convergence in under 0.25 sec-
onds, but it can also be clearly seen that all the parameters
r̂1, r̂2, . . . , r̂21 achieve convergence in less than 150 samples
or 1.5 seconds.

Recently, a Trust Region Optimization (TRO) based Least-
Squares method has been introduced in [13] to address the
high computation time and slow convergence issues of the
conventional Least-Squares method for battery parameters
estimation. The work in [13] also presents the computation
time of TRO-based Least-Squares method under various ex-
periments, where the lowest computation time reported is
46 seconds. Emphasizing that the conventional Least-Squares
method has significantly higher computation time with poor
convergence compared to TRO-based Least-Squares method.
Further, in our previous work [4], we significantly reduced
the computation time of optimization-based methods by em-
ploying an adaptive strategy to fine-tune the search space
interval required by the optimization method. In Table 4,
we compare the computation/execution time of the proposed
UAS-based scheme with TRO-based Least-Squares method,
optimization-based methods, and two-stage adaptive scheme
& optimization-based methods.

It is worth noting that the computation time of TRO-
based Least-Squares method (an improved version of con-
ventional Least-Squares method) it almost 30 times more
than the proposed UAS-based approach for battery param-
eters estimation. The lower computation time shows the
suitability of the proposed UAS-based approach for real-time
battery parameters estimation in online or electric vehicle
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FIGURE 22. Parameters r̂1, r̂2, . . . , r̂21 convergence during the adaptive estimation process for a 4.1 V Li-ion battery.

TABLE 4 Computation Time Comparison of the Proposed UAS-Based
Scheme With TRO-Based Least-Squares Method, Optimization-Based
Methods, and Two-Stage Adaptive Scheme & Optimization-Based Methods

applications. The proposed strategy if run for a few seconds,
may enable self-update of the battery parameters in run-time
for battery management systems (BMSs), and may thus find
use in real-time / electric vehicle (EV) applications.

Compared to methods like the extended Kalman filter
(EKF) or the H-infinity filter which are shown to estimate
terminal voltage in around 25 s at the cell level [40], the
parameters and voltage estimation convergence time via the
proposed method is 1.5 s at the 4.1 V cell level, and 10 s at
the bank 400 V bank level. These are seen in Figs. 16, 21, and
22. A simple recursive least squares (RLS) procedure usually
also ignores state dynamics and is only used for estimating
the values of constants. It is also not robust to noise, and for
avoiding such problems, state estimators like the EKF are used
in the literature. As shown above the proposed approach can
converge faster than the EKF, with satisfactory results.

B. COMMON RESULTS FROM REAL ANALYSIS
Consider the following details from [28]. For any positive
integer n, let the metric space En represent the n-dimensional
Euclidean space.

Theorem 3: “Any closed bounded subset of En is compact.”
Proof: See [28, Chapter 3, Section 5]. �
Proposition 1: “Let f and g be real valued functions on a

metric space E . If f and g are continuous at a point p0 in E ,
then so are the functions f + g, f − g, f g, and f /g, the last
under the proviso that g(p0) �= 0”.

Proof: See [28, Chapter 4, Section 3]. �
Corollary 3: “A continuous real-valued function on a non-

empty compact metric space, attains a maximum at some
point and also attains a minimum at some point.”

Proof: See [28, Chapter 4, Section 4]. �
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