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ABSTRACT We propose an algorithm based on online convex optimization for controlling discrete-time
linear dynamical systems. The algorithm is data-driven, i.e., does not require a model of the system, and
is able to handle a priori unknown and time-varying cost functions. To this end, we make use of a single
persistently exciting input-output sequence of the system and results from behavioral systems theory which
enable it to handle unknown linear time-invariant systems. Moreover, we consider noisy output feedback
instead of full state measurements and allow general economic cost functions. Our analysis of the closed
loop reveals that the algorithm is able to achieve sublinear regret, where the measurement noise only adds an
additional constant term to the regret upper bound. In order to do so, we derive a data-driven characterization
of the steady-state manifold of an unknown system. Moreover, our algorithm is able to asymptotically exactly
estimate the measurement noise. The effectiveness and applicational aspects of the proposed method are
illustrated by means of a detailed simulation example in thermal control.

INDEX TERMS Data-driven control, linear systems, online optimization, optimal control.

I. INTRODUCTION
This paper considers the problem of controlling an unknown
linear time-invariant (LTI) system subject to time-varying and
a priori unknown convex cost functions. In particular, we aim
to minimize the accumulated cost obtained by our proposed
algorithm in closed loop with the unknown system. The main
difficulty arises from the fact that the cost functions are time-
varying and a priori unknown, i.e., the cost function Lt at
time t is only revealed to us at time step t + 1. These kind
of problems commonly arise in practice, e.g., in power grids
due to a priori unknown renewable energy generation and
unknown energy consumption [1], in data center cooling [2],
or in robotics [3]. Our approach is inspired by online convex
optimization (OCO) [4], [5], an online variant of classical
numerical optimization. Whereas the classical OCO literature
does not consider underlying dynamical systems, it has gained
significant interest recently for solving optimal control tasks.
Its main advantages include its ability to handle a priori un-
known and time-varying cost functions, low computational
complexity, and its ability to take constraints on the state and
the input of the system into account. OCO-based algorithms
have been proposed to control linear dynamical systems [6],

[7] subject to process noise [8], [9], constraints [10], [11], or
output feedback [12].

Most of the existing OCO-based algorithms in the literature
discussed above depend crucially on model knowledge of the
system. However, obtaining such a model can be difficult
or expensive in certain applications. Hence, in recent years,
direct data-based control approaches have received a consider-
able amount of attention, compare, e.g., [13]. In this work, we
employ a result from behavioral systems theory. The so-called
fundamental lemma shows that a Hankel matrix consisting of
a single persistently exciting input-output trajectory spans the
whole vector space of all possible input-output trajectories
of an LTI system [14]. This result has recently drawn sig-
nificant attention and has been applied to solve a variety of
control problems, e.g., model predictive control (MPC) [15],
[16], state- and output-feedback design [17], [18], [19], [20],
[21], and output matching [22]. We combine the fundamental
lemma with OCO in order to control dynamical systems sub-
ject to time-varying cost functions, where neither the system
nor the cost functions are known to the algorithm.

Another closely related line of research is so-called optimal
steady-state (OSS) control. Therein, a system is controlled to
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the solution of a (possibly time-varying) optimization problem
by applying gradient-based feedback and, typically, asymp-
totic guarantees in the form of stability of the overall system
are derived [23], [24]. Again, the main focus in the litera-
ture is on model-based control with process noise and output
feedback [3], [25], [26]. In [27], a data-driven method for
regulating the output of a general nonlinear system, subject
to a constant disturbance, to the optimal steady state of a
constant cost function is proposed. In particular, the authors
leverage a result from zeroth order optimization in order to
avoid requiring model knowledge of the controlled system.
However, performance is only analyzed in terms of the second
moments of the gradients of a smooth approximation of the
cost function. Most relevant to this work is [28], where output
feedback and unknown systems subject to disturbances are
treated by application of the fundamental lemma. To this end,
a steady-state map between the input to and the output of
the unknown system is estimated using only measured data.
However, the cost functions are assumed to be constant and
time-variability of the optimization problem is only intro-
duced via time-varying process noise. Moreover, analysis of
the closed loop’s transient behavior is limited to analysis of
contraction with respect to the optimal steady state, but does
not consider the transient cost in terms of regret analysis.

The contribution of this work is fivefold. First, we consider
an unknown system by leveraging results from data-driven
control. Compared to alternative approaches in the literature,
we thereby remove the need of a (set-based) model description
and of an online estimation process. Second, we extend our
previous results from OCO-based control [6], [10] to the case
of output feedback instead of full state measurements, which
requires considerable adjustments in algorithm design and
analysis techniques. Third, we consider noise in the measure-
ment process. In the relevant literature, e.g., [9], [11], [28], the
main research focus is on systems subject to process noise,
which is typically handled by estimating the process noise
using exact measurements and model knowledge. We instead
consider only noisy measurements in our theoretical work
and leave the combination of both, process and measurement
noise, as an interesting topic for future research. We do, how-
ever, consider both types of noise in our simulation example.
Fourth, we generalize previous work [6], [10] by considering
the practically relevant case of economic cost functions, i.e.,
the minimum of the cost functions at each time step need
not be a steady state of the system. Finally, we derive a new
data-driven characterization of the steady-state manifold of an
LTI system by leveraging the fundamental lemma. As a main
result, our analysis reveals that our proposed algorithm enjoys
sublinear regret without access to a system model or exact
measurements.

This paper is organized as follows. In Section II, we present
the basic notions necessary in our work and discuss the
problem of interest. Section III introduces and illustrates our
proposed algorithm. In Section IV, we discuss our theoretical
findings, in particular a regret analysis of the closed loop and
asymptotic convergence of the measurement error estimates.

A numerical simulation example, namely a thermal control
problem, illustrates the closed-loop performance and appli-
cational aspects of our algorithm in Section V. Section VI
concludes the paper.

We close this section by noting that a preliminary version
of parts of this paper was presented at the 2021 60th IEEE
Conference on Decision and Control (CDC) [29]. This work
extends the previously presented results in three directions.
First, we consider measurement noise in this work and study
its effect on the derived regret bound, which requires adap-
tations in both algorithm design and theoretical analysis. We
show that measurement noise only leads to an additional con-
stant term in the regret bound compared to our previous work.
Second, we generalize our work to consider economic cost
functions, as discussed above. Third, we remove restrictive
assumptions on the steady-state manifold, compare [29, As-
sumption 1], in order to be able to control a wider class of
systems. Moreover, we include a detailed simulation example
to illustrate the applicability of our proposed algorithm.

Notation: We denote the set of integer numbers in the in-
terval [a, b] and the set of integer numbers greater than or
equal to zero by I[a,b] and I≥0, respectively. For a vector
x ∈ Rn, ‖x‖ is the euclidean norm and for a matrix A ∈ Rn×m

the corresponding induced matrix 2-norm is ‖A‖, whereas its
Moore-Penrose-Pseudoinverse is denoted by A†. The identity
matrix of size n × n is given by In, 1n ∈ Rn denotes the vector
of all ones, and 0n ∈ Rn is the vector of all zeros. A sequence
{zk}N−1

k=0 , zk ∈ Rn, induces the Hankel matrix of depth L

HL(z) =

⎡
⎢⎢⎢⎢⎣

z0 z1 . . . zN−L

z1 z2 . . . zN−L+1
...

...
. . .

...

zL−1 zL . . . zN−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

H1
L (z)

H2
L (z)
...

HL
L (z)

⎤
⎥⎥⎥⎥⎦ .

We denote a matrix containing a subset of block rows of HL (z)
by

Ha:b
L (z) =

⎡
⎢⎢⎣

Ha
L (z)
...

Hb
L (z)

⎤
⎥⎥⎦ .

With a slight abuse of notation, we write z for the sequence
itself as well as for the stacked vector of all its components.
We denote by z[a:b] = [

z�
a . . . z�

b

]�
the stacked vector of a

subset of its components. The shift operator σ is defined by
σ z = [

z�
1 . . . z�

N−1

]�
. For matrices A and B, A ⊗ B denotes

the Kronecker product.

II. SETTING
We consider linear time-invariant (LTI) systems of the form

xt+1 = Axt + But

yt = Cxt + Dut

ỹt = yt + et (1)
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where xt ∈ Rn is the system state, ut ∈ Rm is the system input,
yt ∈ Rp is the true system output, ỹt ∈ Rp is the measured sys-
tem output, and et ∈ Rp denotes measurement noise at time
instance t . We denote by zt = [

u�
t y�

t

]�
the stacked input-

output pair at time t . The system matrices (A, B,C, D) as well
as the noise et are unknown and only measurements of ut and
ỹt are available to us. We do not impose any assumptions on
the measurement noise e. We make the following assumptions
on system (1).

Assumption 1: The matrix A is Schur stable, the pair (A, B)
is controllable, and the pair (A,C) is observable.

Controllability and Observability are standard assumptions
in the literature [28]. Compared to [29], we only consider
stable systems because of the additional measurement noise.
In this setting, we can estimate the measurement error asymp-
totically exactly, if the system is stable (compare Lemma 3
below). If the system is not stable, data-based techniques
from, e.g., [19], [20] can be used to stabilize the (unknown)
system. Our algorithm can then be applied to the prestabilized
system. However, some of our theoretical guarantees deterio-
rate for this approach, compare Remark 2 for more details.

Our goal is to solve the optimal control problem

min
u

T∑
t=0

Lt (ut , yt ) s.t. (1), (2)

here the main difficulty arises from the fact that the time-
varying cost functions Lt : Rm × Rp → R are a priori un-
known. Specifically, we want to find a controller that com-
putes an input ut at every time instance t which is applied
to system (1) and yields performance close to the solution
of (2). Only after ut is applied to system (1), the cost function
Lt is revealed, i.e., ut is computed by the algorithm without
knowledge of the current cost function. Then, we measure the
noisy output ỹt and move to the next time step. As standard
in OCO, we do not attempt to solve (2) directly at each time
step [4], [5]. Since the cost functions are a priori unknown,
optimization would have to be carried out based on the last
known cost function Lt−1. Then, open-loop optimization will
in general not improve the closed-loop performance, due to
the time-varying nature of the cost functions. Therefore, we
aim to design a computationally efficient algorithm, instead
of solving a (potentially large-scale) optimization problem at
each step. We denote the solution to (2) in hindsight, i.e., the
solution when knowing all cost functions, by u∗ = {u∗

t }T
t=0

and the corresponding system output by y∗ = {y∗
t }T

t=0. As
common in OCO, we consider smooth convex cost functions
as specified in Assumption 2.

Assumption 2: The cost functions Lt (z) are
� αz-strongly convex, i.e., there exists αz > 0 such that

Lt (z1) ≥ Lt (z2) + ∇Lt (z2)�(z1 − z2) + αz

2
‖z1 − z2‖2 ,

� lz-smooth, i.e., there exists lz > 0 such that

Lt (z1) ≤ Lt (z2) + ∇Lt (z2)�(z1 − z2) + lz
2

‖z1 − z2‖2 ,

� and Lipschitz continuous with Lipschitz constant Lz, i.e.,
there exists Lz > 0 such that

‖Lt (z1) − Lt (z2)‖ ≤ Lz ‖z1 − z2‖ ,

for all t ∈ I≥0 and any two points z1, z2 ∈ Rm+p.
Remark 1: We assume Lipschitz continuity for clarity of

exposition of our results, even though lz-smoothness and Lip-
schitz continuity cannot be satisfied globally simultaneously.
However, if ut and yt remain within bounded sets for all
time, Assumption 2 is satisfied on this bounded set. Moreover,
techniques from [6] can be used to avoid assuming Lipschitz
continuity. In this case, all triangle inequalities in the proof of
Theorem 2 are replaced by Jensen’s inequality which entails
additional assumptions on the step size and the condition
number lz/αz of the cost functions. Moreover, changing the
regret definition below to R = ∑T

t=0 ‖(ut , yt ) − (ηt , θt )‖ also
removes the necessity to assume Lipschitz continuity of the
cost functions. �

Characterizing the solution to (2), i.e., u∗ and y∗, for gen-
eral time-varying cost functions Lt requires optimization or
verifying certain dissipativity conditions [30], [31], [32] and
is thus computationally expensive. For a priori unknown cost
functions as considered in this work, computing u∗ and y∗
online is impossible altogether. Instead, we adopt a strategy
of tracking the a priori unknown time-varying optimal states
given by

(ηt , θt ) =

⎧⎪⎨
⎪⎩

arg minu,y Lt (u, y)

s.t. x = Ax + Bu

y = Cx + Du

,

where we define ζt = [
η�

t θ�
t

]�
, ηt ∈ Rm is the optimal

steady-state input, and θt ∈ Rp is the optimal steady-state
output of system (1) at time t . In case of constant convex
cost functions L, steady-state operation is optimal [33]; hence,
we expect that the proposed strategy yields good performance
in many practical applications, in particular in case the cost
functions Lt do not change too frequently. Note that the set-
ting considered here includes as a special case our previous
works [6], [10], [29], where only strongly convex, smooth
cost functions were considered that are each positive definite
with respect to some (time-varying) steady state (ηt , θt ) of the
system. Here, we consider more general convex cost func-
tions that do not need to satisfy this requirement. Such cost
functions often occur in practice related to some economic
considerations, such as minimization of energy cost (compare
the example in Section V), which is why such cost functions
have been termed economic in the context of model predictive
control (see, e.g., [34], [35], [36]).

As common in OCO, we analyze our controller’s closed-
loop performance in terms of regret. In light of our strategy
of tracking a priori unknown and time-varying optimal steady
states of system (1), we define the regret R as

R :=
T∑

t=0

Lt (ut , yt ) − Lt (ηt , θt ), (3)
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i.e., the accumulated difference between the closed-loop cost
of our controller and the optimal steady-state cost in hindsight.
The regret R is a measure of the performance lost due to
not knowing the cost functions Lt a priori. In the literature,
commonly the goal is to achieve sublinear regret1, i.e.,

lim sup
T →∞

R/T = lim sup
T →∞

1

T

T∑
t=0

Lt (ut , yt ) − Lt (ηt , θt ) ≤ 0.

Hence, if the proposed algorithm achieves sublinear regret,
then the closed-loop cost is asymptotically on average no
worse than the optimal steady-state cost. Such a performance
result is typically also considered in the context of economic
model predictive control (MPC), compare, e.g., [33], [35].

Since we do not assume knowledge of the system matrices
(A, B,C, D), we assume that we have access to measure-
ment data in the form of a prerecorded input-output sequence
{ud

k , yd
k }N−1

k=0 and an upper bound on the system order n. Note
that we require the true system output as data instead of the
(noisy) measured system output. Such data can be obtained
in practice when, e.g., the prior data is recorded in a labora-
tory setting using more accurate measuring instruments than
during online operation.

Assumption 3: The output data yd = {yd
k }N−1

k=0 is noise free.
Moreover, we assume that the data sequence is persistently

exciting as defined in Definition 1.
Definition 1: A signal {uk}N−1

k=0 , uk ∈ Rm, is called persis-
tently exciting of order L if rank(HL(u)) = mL.

This definition allows to characterize all possible system
trajectories of (1) using only Hankel matrices of the data
sequence. This result was first published in the context of
behavioral system theory [14] and can be formulated in the
classical state space setting as follows.

Theorem 1 [37, Theorem 3]: Suppose {ud
k , yd

k }N−1
k=0 is a tra-

jectory of system (1), where ud is persistently exciting of order
L + n and let Assumption 3 be satisfied. Then, {ūk, ȳk}L−1

k=0 is
a trajectory of (1) if and only if there exists α ∈ RN−L+1 such
that [

HL(ud )

HL (yd )

]
α =

[
ū

ȳ

]
.

As discussed above, we aim to track a series of a priori un-
known steady states without access to a model of the system.
Therefore, a data-driven definition of steady states is given in
Definition 2.

Definition 2: An input-output pair (us, ys) is an equilibrium
of (1), if the sequence {uk, yk}n

k=0 with (uk, yk ) = (us, ys) for
all k ∈ I[0,n] is a trajectory of (1).

Definition 2 states that an input-output pair (us, ys) is an
equilibrium of system (1) if and only if a sequence consist-
ing of (us, ys) for at least n + 1 consecutive time steps is a
trajectory of the system. We make use of Definition 2 and

1In contrast to the classical OCO literature, we need to take the lim sup
instead of lim here due to the economic cost function (compare, e.g., [36])

the prerecorded data sequence to characterize the steady-state
manifold of system (1) in Lemma 1.

Lemma 1: Let Assumption 3 be satisfied. Assume that the
sequence ud is persistently exciting of order 2n + 1. Then, the
input-output pair (us, ys) is an equilibrium of (1) if and only if

Szs =
[
Su Sy

] [
us

ys

]
= 0,

where S = (Hn+1H†
n+1 − I(m+p)(n+1))

[
Îm 0

0 Îp

]
, Hn+1 =[

Hn+1(ud )

Hn+1(yd )

]
, Îm = 1n+1 ⊗ Im, and Îp = 1n+1 ⊗ Ip.

Proof: By Definition 2 and Theorem 1, (us, ys) is a steady
state of (1) if and only if there exists ν ∈ RN−n such that

Hn+1ν =
[

Hn+1(ud )

Hn+1(yd )

]
ν =

[
Îmus

Îpys

]
. (4)

The general solution to this equation is given by

ν = H†
n+1

[
Îmus

Îpys

]
+ (IN−n + H†

n+1Hn+1)ν,′

where ν′ ∈ RN−n can be chosen arbitrary. Since the second
term on the right-hand side of the above expression is in the
nullspace of Hn+1, inserting ν back into (4) yields

(
Hn+1H†

n+1 − I(m+p)(n+1)

) [
Îm 0

0 Îp

]
zs = 0(m+p)(n+1),

which proves the result. �
Lemma 1 explicitly defines the steady-state manifold of

system (1) only in terms of Hankel matrices of the prerecorded
data sequence.

III. ALGORITHM
In this section, we introduce our algorithm. For nota-
tional convenience, we define U = H2n+μ+1(ud ) and Y =
H2n+μ+1(yd ), i.e., the Hankel matrices associated with the
system input and output, respectively. In addition, we denote

Hα =

⎡
⎢⎣ U 1:n

U n+1:2n+μ+1

Y 1:n

⎤
⎥⎦ , and Hβ =

⎡
⎢⎢⎢⎣

U 1:n

U n+μ+1:2n+μ+1

Y 1:n

Y n+μ+1:2n+μ

⎤
⎥⎥⎥⎦ .

The proposed data-driven OCO scheme is given in Algo-
rithm 1. In the framework described above, at every time
instance t , Algorithm 1

1) computes an input ut via (5)–(11) and applies it to sys-
tem (1),

2) measures the output ỹt and receives the cost function Lt ,
3) moves to time step t + 1.
Roughly speaking, Algorithm 1 estimates the measurement

noise by relying on its own predictions, applies online gra-
dient descent (OGD) to estimate the optimal equilibrium of
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Algorithm 1: Data-Driven Output Feedback.
Given step size γ , prediction horizon μ, initialization
û−1 ∈ Rm(μ+1), zs

−1 ∈ Rm+p, u[−n:−1],
ỹ[−n:−1] − ê[−n:−1], and data (ud , yd ). At each time t :

if t = 0, go to (6)

êt−1 = ỹt−1 − Y n+1(αt−1 + βt−1) (5)

Choose αt such that

Hααt =

⎡
⎢⎢⎢⎣

u[t−n:t−1]

σ ût−1

1n+1 ⊗ us
t−1

ỹ[t−n:t−1] − ê[t−n:t−1]

⎤
⎥⎥⎥⎦ (6)

ẑμ
t =

[
us

t−1

Y n+μ+1αt

]
(7)

zs
t =

[
us

t

ys
t

]
= (

Im+p − S†S
) (

ẑμ
t − γ∇Lt−1

(
ẑμ
t

))
(8)

βt=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arg minβ ‖Qβ‖

s.t. Hββ =

⎡
⎢⎢⎢⎣

0mn

1n+1⊗us
t −U n+μ+1:2n+μ+1αt

0pn

1n⊗ys
t − Y n+μ+1:2n+μαt

⎤
⎥⎥⎥⎦ (9)

ût = U n+1:n+μ+1(αt + βt ) (10)

ut = U n+1(αt + βt ) (11)

Measure ỹt and receive Lt

Set t = t + 1 and go to (5)

system (1), and calculates an input sequence that reaches
the estimated optimal steady state. The whole procedure is
illustrated in Fig. 1.

In more detail, an estimate of the measurement noise is
computed in (5) by comparing the measured output ỹt−1 to the
output predicted at the previous time step Y n+1(αt−1 + βt−1).
The estimated measurement noise is then used in combination
with the last n inputs u[t−n:t−1] and outputs ỹ[t−n:t−1] in (6) to
initialize a prediction step. As an input for prediction, we take
the shifted previously predicted input sequence σ ût−1 and
append it with the previously estimated optimal steady-state
input us

t−1. Thus, αt in (6) encodes the prediction at time t .
In (7), the previously estimated steady-state input us

t−1 and the
μ-step ahead prediction Y n+μ+1αt are collected in preparation
for the projected OGD step in (8), where the parameter μ can
be interpreted as the prediction horizon of Algorithm 1. As
common in OGD, we perform one gradient descent step in (8)
based on the previous cost function Lt−1, since we do not have
access to the current cost function Lt yet. Note that multipli-
cation by Im+p − S†S is equivalent to orthogonal projection
onto the null space of S, which corresponds to the steady-state

FIGURE 1. Schematic illustration of Algorithm 1. The previous cost
function is depicted by its level sets (dotted) together with the steady-state
manifold (red, dotted). Algorithm 1 predicts the output µ-steps ahead (a),
performs one projected online gradient descent step (blue, dashed),
updates the input sequence (b), and applies the first part of the updated
sequence to the system (green).

manifold by Lemma 1. Thus, in (8), we perform one online
gradient descent step and project it onto the steady-state man-
ifold of system (1). The resulting input-output pair zs

t can be
regarded as an estimate for the optimal steady state. In (9),
we compute an input sequence which, if applied in addition
to the input sequence used for prediction (i.e., Uαt ), reaches
the estimated optimal steady state zs

t in μ steps and remains at
zs
t for another n + 1 steps in order to ensure that the unknown

internal states xt of system (1) reach the desired steady state.
In order to be able to reach the estimated optimal steady state
zs
t in μ time steps, we require the prediction horizon μ to be

sufficiently long.
Assumption 4: The prediction horizon satisfies μ ≥ μ∗,

where μ∗ is the controllability index of system (1), i.e.,

rank([B AB . . . Aμ∗−1B]) = n.

Note that n ≥ μ∗ always holds. Since we require an upper
bound of the system order to be available, it is therefore
possible to satisfy Assumption 4 without knowing μ∗. How-
ever, simulations suggest that a shorter prediction horizon
can sometimes be beneficial for the algorithm’s performance,
since decreasing the prediction horizon forces the algorithm to
reach the desired steady state zs in less steps in (9), resulting
in a more aggressive controller. Finally, we update the pre-
dicted input sequence ût in (10). Note that U n+1:n+μ+1αt =[
σ ût−1

us
t−1

]
. Thus, the predicted input sequence is updated by

shifting it, appending us
t−1, and adding the input sequence

encoded in βt , which steers the system to the new estimate of
the optimal steady state zs

t . Last, the first part of ût is applied
in (11) to system (1). Then, we measure the new (noisy)
system output ỹt , receive the cost function Lt , and move to
the next time step t + 1.

The matrix Q in the cost function of (9) can be tuned to
achieve satisfactory performance, e.g., Q = I minimizes the
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norm of β and can be beneficial if there is process noise af-
fecting the system (1), Q = U minimizes the input difference
needed to steer the system to zs

t (instead of zs
t−1), and Q = Y

similarly minimizes the deviation of the system’s output from
the predicted output. Moreover, weighted combinations are
possible by stacking the matrices I , U , and Y in Q (compare
Section V).

Since we compute input-output sequences of length 2n +
μ + 1 in Algorithm 1 (n steps for initialization, μ steps for
prediction, and n + 1 steps as a terminal constraint ensuring
steady-state operation), by Theorem 1 we need persistency of
excitation of order 3n + μ + 1.

Assumption 5: The input ud of the data sequence is persis-
tently exciting of order 3n + μ + 1.

Note that persistency of excitation of order 3n + μ + 1
requires a data sequence of length

N ≥ (m + 1)(3n + μ + 1) − 1.

Finally, we derive explicit formulas to solve (6) and (9) in
Algorithm 1. In order to do so, we need to ensure that (6)
and (9) always have a feasible solution, which is guaranteed
if their respective right-hand sides describe (parts of) valid
input-output sequences of system (1) by Theorem 1.

Lemma 2: Let Assumptions 1, 3–5 be satisfied and assume
that the initialization u[−n:−1], ỹ[−n,−1] − ê[−n,−1] is an in-
put/output sequence of system (1). Then, (6) and (9) have a
feasible solution for all t ∈ I≥0.

Proof: Assume that at time step t , u[t−n:t−1] and
ỹ[t−n:t−1] − ê[t−n:t−1] are a valid n-step trajectory of sys-
tem (1). Then, αt can be chosen according to (6), com-
pare [22]. Moreover, there exists β ′

t such that

Hββ ′
t =

⎡
⎢⎢⎢⎣

0mn

1n+1 ⊗ us
t

0pn

1n ⊗ ys
t

⎤
⎥⎥⎥⎦

by Assumption 4, since system (1) can be steered from 0 to
any steady state in μ steps by controllability, and β ′′

t such that

Hββ ′′
t =

⎡
⎢⎢⎢⎣

0mn

U n+μ+1:2n+μ+1αt

0pn

Y n+μ+1:2n+μαt

⎤
⎥⎥⎥⎦

by Assumption 4 and because αt encodes a valid input-output
sequence. Since sums of input-output sequences of a linear
time-invariant system are input-output sequences of the same
system, there exists a solution to (9) at time step t given by
βt = β ′

t − β ′′
t . Then, at time step t + 1, the right-hand side of

(6) is a valid input-output sequence because of Theorem 1 and

U 2:n+1(αt + βt )
(6),(11)= u[t−n+1:t]

Y 2:n+1(αt + βt )
(5)= ỹ[t−n+1:t] − ê[t−n+1:t].

Thus, (6) and (9) always have a solution by induction if the
algorithm is initialized with a valid input-output sequence
u[−n:−1] and ỹ[−n,−1] − ê[−n,−1]. �

Lemma 2 states that we need a feasible initialization
u[−n:−1], ỹ[−n:−1] − ê[−n:−1]. Thus, in the following, we as-
sume that Algorithm 1 is initialized correctly. This can
be ensured, e.g., by choosing u[−n:−1] = 0 and ê[−n:−1] =
ỹ[−n:−1] or by solving

(α0, ê[−n:−1]) =

arg min
α,ê

∥∥Y 1:nα − (ỹ[−n:−1] − ê[−n:−1])
∥∥+λ

∥∥∥∥∥
[
α

ê

]∥∥∥∥∥
s.t. Uα =

⎡
⎢⎣ u[−n:−1]

σ û−1

1n+1 ⊗ us
t−1

⎤
⎥⎦ ,

where λ ∈ R≥0 is a weighting factor, for some initialization
û−1, us

−1, instead of solving (5) - (6) at time step t = 0.
Note that one solution to (6) is given by the pseudo-inverse

αt = H†
α

⎡
⎢⎢⎢⎣

u[t−n:t−1]

σ ût−1

1n+1 ⊗ us
t−1

ỹ[t−n:t−1] − ê[t−n:t−1]

⎤
⎥⎥⎥⎦ . (12)

Moreover, if Q�Q  0, i.e., Q�Q is positive definite, then
the unique solution to (9) is given by the weighted pseudo-
inverse [38]

βt =
(

IN−2n−μ −
(

Q
(

IN−2n−μ − H†
β

Hβ

))†
Q

)
H†

β
gt ,

(13)
where gt is the right-hand side of (9)

gt =

⎡
⎢⎢⎢⎣

0mn

1n+1⊗us
t −U n+μ+1:2n+μ+1αt

0pn

1n⊗ys
t − Y n+μ+1:2n+μαt

⎤
⎥⎥⎥⎦ . (14)

If Q�Q � 0 is only positive semidefinite, then the solution
to (9) is not unique and (13) is only one possible solution. In
the following, we assume that (9) is solved using (13) in both
cases. Thus, the necessary online computations in Algorithm 1
reduce to one gradient evaluation and multiple matrix-vector
multiplications.

IV. THEORETICAL RESULTS
In this section, we discuss theoretical guarantees for Algo-
rithm 1, in particular a bound on the regret R. In order to
derive such a bound, we first analyze the error estimates ê.
Lemma 3 states that the measurement error estimates ê con-
verge to the true measurement error e. Thus, Algorithm 1
is able to (asymptotically) exactly recover the measurement
error e and control the true system output yt , even though only
noisy measurements ỹt are available at each time step.
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Lemma 3: Let Assumptions 1, 3-5 be satisfied and assume
that the initialization u[−n:−1], ỹ[−n,−1] − ê[−n,−1] is an in-
put/output sequence of system (1). Then, the error of the
measurement noise estimates ê − e follows the unforced sys-
tem dynamics, i.e., ê − e is an output of (1) with u ≡ 0 and

lim
t→∞ êt − et = 0.

Proof: For every t ≥ 0, let

α∗
t = H†

α

⎡
⎢⎢⎢⎣

u[t−n:t−1]

σ ût−1

1n+1 ⊗ us
t−1

y[t−n:t−1]

⎤
⎥⎥⎥⎦ ,

i.e., the prediction with the real outputs y[t−n:t−1], com-
pare (6), and

εt = αt − α∗
t . (15)

Note that αt is well-defined at all times due to Lemma 2. Then,
we have Uεt = 0 by definition of εt and

Y 1:nεt
(6)= ỹ[t−n:t−1] − ê[t−n:t−1] − y[t−n:t−1]

(1)= e[t−n:t−1] − ê[t−n:t−1]. (16)

Moreover, yt−1 = Y n+1(α∗
t−1 + βt−1) by Theorem 1, i.e.,

the coefficients α∗
t−1 + βt−1 encode the true initialization

(u[t−n−1:t−2], y[t−n−1:t−2]) and input U n+1(α∗
t−1 + βt−1) =

U n+1(αt−1 + βt−1)
(11)= ut−1 and, therefore, predict the output

yt−1 correctly. Combining this fact with (16) yields

Y nεt = ỹt−1 − êt−1 − yt−1

(5)= Y n+1(αt−1 + βt−1) − yt−1

= Y n+1(αt−1 − α∗
t−1) = Y n+1εt−1,

which implies

Y 1:nεt
(16)= Y 2:n+1εt−1. (17)

Combining the above results Uεt = 0 and (17), we conclude
that the error sequence et − êt follows the unforced system
dynamics. In more detail, at each time step t the sequence
generated by Y εt by (17) is initialized by the endpiece of the
initialization of Y εt−1 (i.e., Y 2:nεt−1) appended with the one
step ahead prediction at time t − 1 (i.e., Y n+1εt−1). Therefore,
we have by Theorem 1 and Uεt = 0 for all t that et − êt is the
output of a trajectory of the unforced system for all t . Since
the unforced system dynamics are stable by Assumption 1, we
obtain the result limt→∞ et − êt = 0. �

Next, we are able to derive an upper bound on the regret R
as stated in Theorem 2.

Theorem 2: Let Assumptions 1–5 be satisfied and choose
0 < γ ≤ 2

αz+lz
. Moreover, assume that the initialization

u[−n:−1], ỹ[−n,−1] − ê[−n,−1] is an input/output sequence of

system (1). Then, the regret (3) can be upper bounded by

R ≤ Cμ + Cζ

T∑
t=0

‖ζt − ζt−1‖ + CeE0,

where E0 = ‖e[−n:−1] − ê[−n:−1]‖ and Cμ,Cζ ,Ce < ∞ are
constants independent of T and ζ−1 = zs

−1.
The proof is given in the appendix. The upper bound

on the regret depends on constants, which in turn depend
on system and problem parameters,

∑T
t=0 ‖ζt − ζt−1‖, and

E0 = ‖e[−n:−1] − ê[−n:−1]‖, i.e., the initialization error of the
measurement error estimates. The quantity

∑T
t=0 ‖ζt − ζt−1‖,

commonly termed path length in the literature [39], can be
regarded as a measure of the variation of the cost functions.
A bound which depends on the variation of the cost functions
is to be expected, since in our framework, the cost function Lt

is only available to the algorithm at time step t + 1, i.e., there
is a one-step delay between the cost function becoming active
and being used to control the system. Thus, it is impossible
to achieve low regret if the cost functions vary too frequently.
A bound which depends linearly on

∑T
t=0 ‖ζt − ζt−1‖ is well

aligned with other results on dynamic regret in the literature,
compare, e.g., [7], [10]. A sublinear regret can therefore be
achieved if the path length is sublinear in T . Moreover, in-
troduction of measurement noise to the control problem only
introduces an additional constant term CeE0 in the regret up-
per bound compared to [29]. This is due to the convergence of
ê to e as shown in Lemma 3.

Finally, consider the case where the optimal steady state is
constant, i.e., ζt = ζt ′ for some t ′ ∈ I≥0 and all t ≥ t ′. Follow-
ing the proof of Theorem 2, it can be shown that

T∑
t=0

‖zt − ζt‖ ≤ C′
μ + C′

ζ

T∑
t=0

‖ζt − ζt−1‖ + CeE0,

where Cμ,′ C′
ζ < ∞ are again constants independent of T .

Thus,

T∑
t=t ′+1

‖zt − ζt‖ ≤ C′
μ + CeE0,

which implies that, in the case that the optimal steady state
is constant, the closed loop with Algorithm 1 asymptotically
converges to the optimal steady state.

Remark 2: (Unstable systems) Suppose that Assumption 1
is not satisfied because the system is not Schur stable. In this
case, it is possible to design a linear stabilizing feedback [19],
[20] and apply Algorithm 1 to the stabilized system, as dis-
cussed above. In particular, at each time step t , ut + vt is
applied to the system, where ut is the input computed in (11)
and

vt = v
y
t + ve

t = K

[
v[t−n:t−1]

ỹ[t−n:t−1]

]

= K

[
v

y
[t−n:t−1]

y[t−n:t−1]

]
+ K

[
ve

[t−n:t−1]

e[t−n:t−1]

]
,
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where K is the stabilizing controller. In order to do so, every
Hankel matrix of the open-loop system in Algorithm 1 has
to be replaced by Hankel matrices of the stabilized system.
Moreover, a mapping V (ys) can be computed that maps a
steady-state output ys of the system to a steady-state input of
the stabilizing controller. Finally, the cost functions have to be
reformulated to Lt (u + V (y), y) to account for the stabilizing
input when determining the optimal steady state. Then, it is
still possible to derive a regret upper bound for the prestabi-
lized system, but the theoretical guarantees deteriorate in two
ways:

1) The estimates of the measurement error do not asymp-
totically exactly converge to the true measurement error
as stated in Lemma 3, because the stabilized system is
only practically (and not asymptotically) stable due to
the measurement noise. Instead, the estimates ê inherit
their stability properties from the stabilized system. For
example, assume that the stabilizing feedback stabilizes
some robust positive invariant (RPI) set. In this case, the
estimates ê converge to the same RPI set around the true
measurement error e.

2) The regret bound is increased by additional terms
‖Y n+μ+1H†

α‖(Csl T vmax + Cscvmax ), where the con-
stants Csl and Csc only depend on system parameters
A, B,C, D, n, and the prediction horizon μ, and vmax is
an upper bound on the error feedback ‖ve

t ‖ ≤ vmax for
all t . Thus, the regret upper bound for the prestabilized
system becomes linear in T , which is to be expected
since the stabilizing controller feeds back the measure-
ment error et at every time step, thereby preventing
us from staying at the optimal steady state. In this re-
gard, the feedback of the measurement error ve

t can
also be interpreted as process noise acting on a stable
system. �

V. APPLICATION EXAMPLE - THERMAL CONTROL
A. SETTING
In this section, we test our OCO-based control scheme on a
thermal control problem. Specifically, we consider a Heating
Ventilation and Air Conditioning (HVAC) system which con-
trols the temperature of five nonuniform zones. The HVAC
system is equipped with a sensor in zone 1, 4, and 5, and
actuators adjusting the supply air rate in every zone. The
zones are depicted in Fig. 2. We consider the linear thermal
dynamics model proposed in [11], [40] given by

CiṪi = T o − Ti

Ri
+

∑
j∈N (i)

Tj − Ti

Ri j
+ ui,t + qi,t ,

where Ci is the thermal capacitance of zone i, Ti is the zone
temperature of zone i, T o is the outdoor temperature, Ri is the
thermal resistance between the i-th zone and outside, Ri j is
the thermal resistance between zones i and j, N (i) denotes
the set of zones neighboring zone i, ui,t is the control input
at time t associated with zone i, and qi,t denotes (unknown)
process noise, caused, e.g., by additional heat sources in zone

FIGURE 2. Schematic illustration of the 5 zones controlled by an HVAC
system. Measured zones are indicated by circles.

i. For zone 3, we set R3 = ∞ in our simulation since it is
surrounded by other zones and, therefore, not directly in-
fluenced by the outdoor temperature. Note that we do not
consider process noise in our theoretical work, but do consider
it in the simulation as an additional difficulty. We define the

system states as xt =
[
x1,t x2,t x3,t x4,t x5,t

]� ∈ R5,

where xi,t = �Ti = Ti − T o denotes the difference between
the temperature of the i-th zone and the outside temperature
at time t . Since there are sensors only in zones 1, 4, and 5, but
an actuator in every zone, we set

C =

⎡
⎢⎣1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎦ , B = In=5, D = 0.

Then, we discretize the thermal dynamics with sample time
ts = 60 s. The cost function consists of a term penalizing the
deviation from a desired temperature T set

t and a term mini-
mizing control cost

Lt (u, y) = 1

2
(y − �T set

t )�t (y − �T set
t ) + λt pt

2
‖u‖2 ,

where �T set
t = T set

t − T o, t ∈ R3×3 λt ,∈ R are a priori
unknown time-varying parameters, and pt denotes the a priori
unknown energy cost. In particular, λt and t are weighting
factors, trading off user comfort and control cost. We set
T o = 15 ◦C, λt = 10, t = Ip. However, we change t to
t = 0.1Ip between 0 am and 6 am, in order to save energy
during the night. The normalized energy cost pt is shown
in Fig. 3. We choose T set

t = 18◦ C · 1p but switch it, a pri-
ori unbeknown to the algorithm, at 9 am to T set

t = 21◦ C ·
1p. In Algorithm 1, we choose Q =

[
IN−2n−μ U�

]�
, μ ∈

{10, 30}, and γ = 0.15, which satisfies γ ≤ 2
lz+αz

. At t = n =
5, we initialize the algorithm with û4 = 0μ+1, zs

4 = 0m+p,
u[0:4] = 0mn, and ê[0:4] = ỹ[0:4], while the real (unknown) ini-
tial condition is x0 + T o = 17 ◦C for each zone. Note that
Algorithm 1 does not control the system for the first n = 5
time steps. Finally, we sample qt,i uniformly from the interval
[−0.1, 0.1].
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FIGURE 3. Energy prices pt over one day.

FIGURE 4. Real and estimated measurement error in zone 5.

B. PREDICTION HORIZON AND ROBUSTNESS TO
MEASUREMENT NOISE
First, we simulate the proposed Algorithm 1 with different
prediction horizons and assess its robustness with respect to
measurement noise. To this end, we sample the measurement
error et uniformly from the interval [−1, 1]. Moreover, we
increase the measurement error of the sensor in the fifth zone
e3,t between 10 am and 2 pm as shown in Fig. 4 to simulate a
failing sensor.

The results are illustrated in Figs. 4 and 5. Fig. 4 shows the
measurement error in the fifth zone e3,t and the corresponding
estimate of Algorithm 1 ê3,t for the first 15 hours. Initially, the
estimate is off by 2 ◦C because of the wrong initialization, but
then converges to the true measurement error in accordance
with Lemma 3. Note that a slight mismatch persists due to
process noise.

Fig. 5 shows the true closed-loop temperatures and inputs
of zones 2 and 5, only one of which can be measured, together
with the optimal steady state (η, θ ) for both zones. Even
though the temperature in zone 2 cannot be measured and the
algorithm has to cope with process and measurement noise,
the closed loop closely tracks the optimal steady state. This is
true for sudden changes, i.e., the change of t at 6 am and the
change in T set at 9 am, as well as for gradual changes due to
the fluctuation of the energy prices pt . Note that the increase
in measurement noise around 12 am has no influence on the
control performance. The noise in the true temperatures is due
to process noise.

FIGURE 5. Optimal steady state (blue, dashed), closed-loop real
temperatures and inputs for µ = 10 (red) and µ = 30 (yellow). From top to
bottom: Temperatures in zone 2; Control inputs in zone 2; Temperatures in
zone 5; Control inputs in zone 5.

Comparing the different values for the prediction horizon
μ ∈ {10, 30}, Fig. 5 indicates that a shorter prediction horizon
yields a more aggressive controller. The accumulated cost
over the whole day are approximately 7165 for μ = 10 and
7247 for μ = 30 for the same noise realization. Thus, a shorter
prediction horizon yields (slightly) superior performance in
this example.

C. COMPARISON TO RELATED WORK
In a second experiment, we compare Algorithm 1 to the
method proposed in [28] for a similar setting (compare the
discussion in the Introduction). In order to achieve satisfac-
tory performance for both algorithms, we have to reduce the
measurement error and sample it uniformly from the interval
[−0.1, 0.1]. For Algorithm 1, we choose the same parame-
ters and initialization as before and choose μ = 10. For the
algorithm proposed in [28], we set the step size η to 0.005.
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FIGURE 6. Optimal steady state (blue, dashed), closed-loop real
temperatures and inputs for Algorithm 1 (red) and the algorithm proposed
in [28] (yellow). From top to bottom: Temperatures in zone 2; Control
inputs in zone 2.

The results are illustrated in Fig. 6. It can be seen that both
algorithms are able to track the time-varying optimal steady
state closely. Moreover, for these parameters, both algorithms
achieve almost the same closed-loop cost. However, the algo-
rithm proposed in [28] does so with a higher overshoot, more
oscillations, and larger control inputs.

VI. CONCLUSION
In this paper, we proposed a data-driven OCO-based scheme
for controlling linear dynamical systems subject to measure-
ment noise. We only use a single persistently exciting data
trajectory instead of a model of the system and output feed-
back to derive the control algorithm. The control scheme
achieves a similar sublinear regret bound as comparable algo-
rithms from the literature, despite only having access to noisy
measurements. In particular, we show that adding measure-
ment noise to the control problem only leads to an additional
constant term in the regret bound. Compared to previous
work, the proposed algorithm is able to handle the more gen-
eral and practically important case of economic cost functions
and additionally allows to relax previous assumptions on the
steady-state manifold of the system.

Future work includes obtaining theoretical guarantees for
the case of both process and measurement noise, as well as
considering noisy a priori data. Furthermore, enabling the pro-
posed algorithm to handle state and input constraints, which
has already been achieved in a model-based setting, is an
interesting direction of future research.

APPENDIX
A. PROOF OF THEOREM 2
Before we prove the regret bound, we first derive some auxil-
iary results. Note that αt and βt in (6) and (9) always have a

solution by Lemma 2. Then, by (6), we have

[
U 1:n

Y 1:n

]
αt =

⎡
⎢⎢⎢⎣

U 2:nαt−1

ut−1

Y 2:nαt−1

ỹt−1 − êt−1

⎤
⎥⎥⎥⎦ (9)=

⎡
⎢⎢⎢⎣

U 2:n(αt−1 + βt−1)

ut−1

Y 2:n(αt−1 + βt−1)

ỹt−1 − êt−1

⎤
⎥⎥⎥⎦

(5),(11)=
[

U 2:n+1

Y 2:n+1

]
(αt−1 + βt−1). (18)

Moreover, the input sequence generated by αt is given by

U n+1:2n+μαt
(6)=

[
σ ût−1

1n ⊗ us
t−1

]

(10)=
[
σ (U n+1:n+μ+1(αt−1 + βt−1))

1n ⊗ us
t−1

]

(9)= U n+2:2n+μ+1(αt−1 + βt−1). (19)

Hence, αt and αt−1 + βt−1 give rise to the same initialization
(18) and the same input sequence (19) and, therefore, must
produce the same output trajectory [22]

Y n+1:2n+μαt = Y n+2:2n+μ+1(αt−1 + βt−1). (20)

Note that

Y n+μ+1:2n+μ(αt + βt )
(9)= 1n ⊗ ys

t ,

U n+μ+1:2n+μ+1(αt + βt )
(9)= 1n+1 ⊗ us

t ,

which implies that the predicted system is at the equilibrium
(us

t , ys
t ) for n time steps and at the (n + 1)-th time step, us

t is
applied again. Hence, the system remains at the same equilib-
rium and we have

Y n+μ+1:2n+μ+1(αt + βt ) = 1n+1 ⊗ ys
t . (21)

Moreover, we need the following key result on the conver-
gence rate of projected gradient descent from [41, Theo-
rem 2.2.14]. Let L(z) be an αz-strongly convex and lz-smooth
function to be minimized. Then, one projected gradient de-
scent step z1 = �Z (z0 − γ∇L(z0)), where �Z (·) denotes
projection onto the set Z and γ ≤ 2

αz+lz
is the step size, sat-

isfies

‖z1 − z0‖ ≤ κ
∥∥z0 − z∗∥∥ , (22)

where z∗ = arg minz∈Z L(z) and κ = 1 − αzγ .
Now, we are ready to bound the regret R of Algorithm 1.

By definition of the regret and Lipschitz continuity of the cost
functions, we have

R (3)=
T∑

t=0

Lt (zt ) − Lt (ζt ) = Cμ +
T∑

t=μ

Lt (zt ) − Lt (ζt )

≤ Cμ + Lz

T −μ∑
t=0

∥∥zt+μ − ζt+μ

∥∥
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where Cμ = ∑μ−1
t=0 Lt (zt ) − Lt (ζt ) is a constant which is in-

dependent of T . Applying the triangle inequality yields

R ≤ Cμ + Lz

T −μ∑
t=0

∥∥zt+μ − ẑμ
t

∥∥ + Lz

T −μ∑
t=0

∥∥ẑμ
t − ζt−1

∥∥

+Lz

T −μ∑
t=0

∥∥ζt+μ − ζt−1
∥∥ .

Again applying the triangle inequality, we get

T −μ∑
t=0

∥∥ζt+μ − ζt−1
∥∥ =

T −μ∑
t=0

∥∥∥∥∥
μ∑

i=0

ζt+i − ζt+i−1

∥∥∥∥∥
≤

T −μ∑
t=0

μ∑
i=0

‖ζt+i − ζt+i−1‖ ≤ (μ + 1)
T∑

t=0

‖ζt − ζt−1‖ ,

which implies

R ≤ Cμ + Lz

T −μ∑
t=0

∥∥zt+μ − ẑμ
t

∥∥ + Lz

T −μ∑
t=0

∥∥ẑμ
t − ζt−1

∥∥

+Lz(μ + 1)
T∑

t=0

‖ζt − ζt−1‖ . (23)

Next, we will establish bounds for the first two sums in (23)
separately. First, we bound the predicted regret

∑T −μ
t=0 ‖ẑμ

t −
ζt−1‖. We note that ζt is only defined for t ∈ I[0,T ]. Therefore,
we are free to choose ζ−1 = zs

−1. Thus, we have for each τ ∈
I[0,T ]

τ∑
t=0

∥∥ẑμ
t − ζt−1

∥∥ (7)=
τ∑

t=0

∥∥∥∥∥
[

us
t−1

Y n+μ+1αt

]
− ζt−1

∥∥∥∥∥
(20)=

τ∑
t=0

∥∥∥∥∥
[

us
t−1

Y n+μ+2(αt−1 + βt−1)

]
− ζt−1

∥∥∥∥∥
(9)=

τ∑
t=0

∥∥∥∥∥
[

us
t−1

ys
t−1

]
− ζt−1

∥∥∥∥∥
≤

τ−1∑
t=0

∥∥zs
t − ζt−1

∥∥ +
τ−1∑
t=0

‖ζt − ζt−1‖

(8),(22)≤ κ

τ∑
t=0

∥∥ẑμ
t − ζt−1

∥∥ +
τ−1∑
t=0

‖ζt − ζt−1‖ .

Since κ < 1, rearranging yields

τ∑
t=0

∥∥ẑμ
t − ζt−1

∥∥ ≤ 1

1 − κ

τ−1∑
t=0

‖ζt − ζt−1‖ . (24)

Having established a bound on the second sum in (23),
we proceed to bound the accumulated prediction error∑T −μ

t=0 ‖zt+μ − ẑμ
t ‖. In order to do so, we first need a bound

on
∑T

t=0 ‖gt‖, where gt is defined in (14). First, note that

T∑
t=0

∥∥zs
t − ζt−1

∥∥ (8),(22)≤ κ

T∑
t=0

∥∥ẑμ
t − ζt−1

∥∥
(24)≤ ˜

κ

1 − κ

T −1∑
t=0

‖ζt − ζt−1‖ , (25)

where we used (24) with τ = T in the last line. Therefore,

T∑
t=0

∥∥zs
t − zs

t−1

∥∥ ≤
T∑

t=0

∥∥zs
t − ζt−1

∥∥ +
T∑

t=0

∥∥zs
t−1 − ζt−1

∥∥

≤ 2
T∑

t=0

∥∥zs
t − ζt−1

∥∥ +
T −1∑
t=0

‖ζt − ζt−1‖

(25)≤ 1 + κ

1 − κ

T −1∑
t=0

‖ζt − ζt−1‖ , (26)

where we used ζ−1 = zs
−1, positivity of the norm and the

triangle inequality in the second inequality. Then, we have

T∑
t=0

‖gt‖ (14)=
T∑

t=0

∥∥∥∥∥
[

1n+1 ⊗ us
t − U n+μ+1:2n+μ+1αt

1n ⊗ ys
t − Y n+μ+1:2n+μαt

]∥∥∥∥∥
(6),(20),(21)=

T∑
t=0

∥∥∥∥∥
[

1n+1 ⊗ (us
t − us

t−1)

1n ⊗ (ys
t − ys

t−1)

]∥∥∥∥∥
Rearranging the vector on the right-hand side yields

T∑
t=0

‖gt‖ ≤
T∑

t=0

∥∥∥∥∥1n+1 ⊗
[

us
t − us

t−1

ys
t − ys

t−1

]∥∥∥∥∥
≤ √

n + 1
T∑

t=0

∥∥zs
t − zs

t−1

∥∥
(26)≤ √

n + 1
1 + κ

1 − κ

T −1∑
t=0

‖ζt − ζt−1‖ . (27)

Let Q̃ = (IN−2n−μ − (Q(IN−2n−μ − H†
β

Hβ ))†Q)H†
β

, then we

have βt = Q̃gt by (13). Hence,

T∑
t=0

‖βt‖
(27)≤ Cβ

T −1∑
t=0

‖ζt − ζt−1‖ , (28)

where Cβ = ‖Q̃‖√n + 1 1+κ
1−κ

.

Having established a bound on
∑T

t=0 ‖βt‖, we proceed to
first bound the output prediction error

∑T −μ
t=0 ‖Y n+μ+1αt −

yt+μ‖, and then the full prediction error
∑T −μ

t=0 ‖zt+μ − ẑμ
t ‖.

To this extent, we first bound the error of the measurement
noise estimates in (5). Let

SO =
[
C� (CA)� . . . (CAn−1)�

]�

be the system’s observability matrix and recall the definition

of εt
(15)= αt − α∗

t in the proof of Lemma 3. Since Uεt = 0,
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Y 1:nεt describes a trajectory of the unforced system by The-
orem 1. Thus, by observability there exists a unique internal
state xε

t such that

Y 1:nεt = SOxε
t−n

holds for all t . Hence,

xε
t−n = S†

OY 1:nεt .

Recalling that the error trajectory follows the unforced system
dynamics by Lemma 3, we can conclude

Y 1:nεt = SOxε
t−n = SOAxε

t−n−1

= SOAS†
OY 1:nεt−1.

Using these arguments repeatedly, we get

T −μ∑
t=0

∥∥e[t−n:t−1] − ê[t−n:t−1]
∥∥ (16)=

T −μ∑
t=0

∥∥Y 1:nεt
∥∥

=
T −μ∑
t=0

∥∥∥SOAS†
OY 1:nεt−1

∥∥∥ =
T −μ∑
t=0

∥∥∥SOAt S†
OY 1:nε0

∥∥∥

≤ ‖SO‖
∥∥∥S†

O

∥∥∥ T −μ∑
t=0

∥∥At
∥∥ ∥∥e[−n:−1] − ê[−n:−1]

∥∥ .

Note that ‖SO‖‖S†
O‖ = σmax (SO )

σmin(SO ) where σmax (SO), σmin(SO) de-
note the largest and smallest singular value of SO, respectively.
Moreover, since A is Schur stable by Assumption 1, there exist
constants c > 0 and λ ∈ (0, 1) such that ‖At‖ ≤ cλt . Thus,

T −μ∑
t=0

∥∥e[t−n:t−1] − ê[t−n:t−1]
∥∥ ≤ σmax (SO)

σmin(SO)
E0c

T −μ∑
t=0

λt

≤ σmax (SO)

σmin(SO)

c

1 − λ
E0. (29)

Next, let

ᾱ∗
t = H†

α

⎡
⎢⎣u[t−n:t+μ]

1n ⊗ us
t−1

y[t−n:t−1]

⎤
⎥⎦ . (30)

Then, we have yt+μ = Y n+μ+1ᾱ∗
t . Moreover, we have that

ut+ j
(11)= U n+1(αt+ j + βt+ j )

(6),(10)= U n+2(αt+ j−1 + βt+ j−1) + U n+1βt+ j .

Applying (6) and (10) repeatedly, we get

ut+ j = U n+ j+1αt +
j∑

i=0

U n+i+1βt+ j−i (31)

for 0 ≤ j ≤ μ − 1 and

ut+μ = us
t−1 +

μ∑
i=0

U n+i+1βt+μ−i. (32)

Define C1 = ‖Y n+μ+1H†
α‖. Combining the above results,

we are now ready to bound the output prediction error∑T −μ
t=0 ‖Y n+μ+1αt − yt+μ‖. By Theorem 1, any αt satisfying

(6) results in the same output Y n+μ+1αt since the vector on the
right-hand side of (6) uniquely specifies the input sequence
and initial condition (compare [22]). Hence, in the following
we assume without loss of generality that αt is chosen accord-
ing to (12).

T −μ∑
t=0

∥∥Y n+μ+1αt − yt+μ

∥∥ =
T −μ∑
t=0

∥∥Y n+μ+1(αt − ᾱ∗
t )

∥∥

(12),(30)≤ C1

T −μ∑
t=0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u[t−n:t−1] − u[t−n:t−1]

U n+1αt − ut
...

U n+μ+1αt − ut+μ

1n ⊗ (us
t−1 − us

t−1)

ỹ[t−n:t−1] − ê[t−n:t−1] + y[t−n:t−1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(31),(32)≤ C1

T −μ∑
t=0

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

U n+1βt∑1
i=0 ˜U n+i+1βt+1−i

...∑μ
i=0 U n+i+1βt+μ−i

e[t−n:t−1] − ê[t−n:t−1]

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
Define Ce = C1

σmax (SO )
σmin(SO )

c
1−λ

. Then, we get

T −μ∑
t=0

∥∥Y n+μ+1αt − yt+μ

∥∥

≤ C1

T −μ∑
t=0

μ∑
i=0

∥∥U n+1:n+1+iβt+μ−i
∥∥

+ C1

T −μ∑
t=0

∥∥e[t−n:t−1] − ê[t−n:t−1]
∥∥

(29)≤ C1

T −μ∑
t=0

μ∑
i=0

∥∥U n+1:n+μ+1
∥∥ ∥∥βt+μ−i

∥∥ + CeE0

≤ C1
∥∥U n+1:n+μ+1

∥∥ (μ + 1)
T∑

t=0

‖βt‖ + CeE0

(28)≤ C2

T −1∑
t=0

‖ζt − ζt−1‖ + CeE0, (33)

where C2 = C1‖U n+1:n+μ+1‖(μ + 1)Cβ .
Next, we are finally ready to bound the prediction error∑T −μ
t=0 ‖ẑμ

t − zt+μ‖:

T −μ∑
t=0

∥∥ẑμ
t − zt+μ

∥∥ (7)=
T −μ∑
t=0

∥∥∥∥∥
[

us
t−1 − ut+μ

Y n+μ+1αt − yt+μ

]∥∥∥∥∥
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(32)≤
T −μ∑
t=0

∥∥∥∥∥
μ∑

i=0

U n+i+1βt+μ−i

∥∥∥∥∥ +
T −μ∑
t=0

∥∥Y n+μ+1αt − yt+μ

∥∥
Positivity of the norm and inserting (33) yields

T −μ∑
t=0

∥∥ẑμ
t − zt+μ

∥∥ ≤ ∥∥U n+1:n+μ+1
∥∥ T −μ∑

t=0

μ∑
i=0

∥∥βt+μ−i
∥∥

+ C2

T −1∑
t=0

‖ζt − ζt−1‖ + CeE0

≤ ∥∥U n+1:n+μ+1
∥∥ (μ + 1)

T∑
t=0

‖βt‖

+ C2

T −1∑
t=0

‖ζt − ζt−1‖ + CeE0

(28)≤ ∥∥U n+1:n+μ+1
∥∥ (μ + 1)Cβ

T −1∑
t=0

‖ζt − ζt−1‖

+ C2

T −1∑
t=0

‖ζt − ζt−1‖ + CeE0. (34)

The result then follows from inserting (24) with τ = T − μ

and (34) into (23). �
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