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ABSTRACT In this work, we analyze the finite sample complexity bounds for offline reinforcement learning
with general state, general function space and state-dependent action sets. The algorithm analyzed does not
require the knowledge of the data-collection policy as compared to earlier works. We show that one can
compute an ε-optimal Q function (state-action value function) using O(1/ε4) i.i.d. samples of state-action-
reward-next state tuples.

INDEX TERMS Machine learning, reinforcement learning, statistical learning.

I. INTRODUCTION
Reinforcement learning (RL) has attracted significant interest
by the research community in the last decade, inspired by
the early successes of deep reinforcement learning [1], [2].
However, online RL algorithms require access to the real
environment throughout training and require large datasets,
which are generated through interactions with the environ-
ment. This either requires a high fidelity simulator that mimics
the environment, or requires the cost of interactions with the
environment to be low. These are not practical for many real
world problems. Building a high fidelity simulator for phys-
ical systems is very expensive [3], [4]. Many simulators also
suffer from generalization issues due to the gap between the
simulation and the real environment [5], [6]. Similarly, the
cost of interactions with the environment in tasks related to
healthcare and autonomous driving are very expensive and
sometimes impractical [7]. Moreover, in such safety critical
applications, it is not safe to deploy semi-trained policies in
the real environments making online RL difficult to deploy
for learning optimal policies. This has been a major hindrance
to the adoption of reinforcement learning algorithms for de-
ployment in sequential decision making problems [7]. One
solution to this is to learn the policy from logged data and
is often called as Batch Reinforcement learning or Offline
Reinforcement learning (ORL) [7], [8].

Fitted value iteration is a class of approximate dynamic
programming algorithms that approximate the value func-
tion [9], [10], [11], [12], [13] using a finite set of data and
a suitable function approximating class. The finite dataset
typically comprises state, action, next state and reward ob-
tained over long periods of time. Fitted Q Iteration is a
special case where the function approximated is the state-
action value function, or the Q function. Several studies have
been conducted on analyzing the finite sample properties of
the fitted value iteration under various settings [10], [11],
[14], [15], [16]. For Fitted Value Iteration in [11], the authors
assume availability for multiple data points at a given state
(or state-action pair if using for ORL) enabling sufficient data
coverage. However, this is a strong assumption in practical of-
fline RL setup where the data coverage may not be sufficient.
More recently [17] provided a simpler method to compute
the finite sample analysis for ORL and a min-max variant
algorithm, and provided sharp convergence guarantees by us-
ing specialized concentration inequalities. Moreover, [17] do
not assume availability of multiple samples as in [11]. How-
ever, [17] analysis only holds for the case when the function
space is finite dimensional. Reference [14] also studies the
min-max variant algorithm for general function space and
single sample path case, but assume that the data collection
policy is known (which is not always possible in real world
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examples). Reference [18] and [19] studied sharp convergence
guarantees of Fitted Q Iteration for general function space.

In the aforementioned analyses, the action space is assumed
to be unconstrained by the state the agent is in. This does
not hold true in several real world problems where there are
physical or safety constraints that govern the permissible ac-
tions in any given state. These constraints are common place
in robotics, economics, e-commerce, inventory management,
[20], [21], [22], [23], [24], etc. Recent work by [25] addresses
this by studying the asymptotic analysis of fitted Q itera-
tion with multiple samples per state-action pair and under
the state-dependent action set constraints by assuming some
smoothness properties on the function approximation space
and the MDP. In this work, we further generalize the work and
derive the sample complexity guarantees for min-max variant
of Fitted Q Iteration for general function space. We assume
the availability of an i.i.d. dataset about state, action, reward,
and next state, no knowledge of the policy used to collect the
dataset, and some other mild assumptions on the MDP with
denumerable state and action spaces.

A. EXAMPLES OF STATE-CONSTRAINED MDPS
We provide here four practical applications where state and
action spaces are denumerable and the permissble actions are
dependent on the state of the system.

1) ECO-DRIVING IN CONNECTED AND AUTOMATED
VEHICLES (CAVS)
Consider an automated vehicle which can receive future sig-
nal phase and timing information and traffic information via
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communication respectively. Using this information, the CAV
can optimize the vehicle speed and battery state-of-charge,
which are the states of the optimal control problem aimed
at minimizing the energy consumption [26], [27]. The con-
trol actions are the engine and electric motor torques which
are generally computed from the non-linear engine and mo-
tor torque-speed curves respectively. Both engine and motor
speed eventually depend on the vehicle speed as formulated
in [28] and [29]. In this application, the set of actions is
constrained by the current state of the system, the policy used
for collecting data is generally not available due to complex
interactions among the subsystems, and a huge amount of
offline data is available.

2) VEHICLE REBALANCING IN RIDEHAILING SYSTEMS
Consider a vehicle rebalancing problem, where vehicles are
relocated to meet customer’s demands. In [30], each vehicle
is modeled as an agent and the state of each vehicle consists
of (i) vehicle state (empty, hasPassengers, full) (ii) presence of
current active requests. The action set is {pickUp, rebalance,
doNothing} and it is state-dependent. E.g., pickup action can
only be executed when last passenger is dropped off or the re-
location destination is reached. Offline reinforcement learning

with state-dependent action constraint can be used to derive
the optimal rebalancing policies for the vehicles [31].

3) ROBOTICS
Robotic vehicles and manipulators in industrial settings have
to navigate tight spaces and meet safety regulations. Recent
works have focused on robotic safety constraints in reinforce-
ment learning, where the agent uses some constraint barrier
functions or is constrained to explore within a safe set of
policies [20], [21], [22], [23], among several others. Typically,
these safety constraints appear as constraints on actions (and
future states) and are dependent on the current state.

4) ONLINE ADVERTISEMENTS
Consider the problem of search based online advertising [32].
Here, a search platform displays ads relevant to queries en-
tered by a user by allowing advertisers to bid on each query.
An auto-bidding agent is an automated algorithm that de-
termines a bid (dollar value) depending on the relevance of
the user query to the advertiser’s choice of bidded keywords.
Whenever an ad is clicked by a user, the advertiser pays
some amount to the search platform that is determined by
the auction mechanism. The goal of the agent is to maximize
the number of ad clicks on a given day where the spending is
constrained by a fixed daily budget. The agent must therefore
balance between aggressively bidding for the current search
query and saving budget for future search queries. We studied
this problem recently in the offline RL setting where the auto-
bidding agent is trained from past data of the bids [33]. The
auto-bidding agent has information about the past spend (on
that particular day) along with several other features about the
query and the likelihood of a click. The past spend is used to
determine the budget remaining for the day which is a key
factor in determining the bid amount for future queries on
that day. The auto-bidding agent can not bid more than the
daily budget and the participation of the auto-bidding agent
stops when the daily budget is depleted. In this setting, the
admissible actions are constrained by the current state.

B. NOTATION
Let X be a measurable space. We use �(X ) to denote the set
of all probability measures on the space X . Let f : X → R be
a measurable function and μ ∈ �(X ). We denote the (p, μ)
norm of the function f as

‖ f ‖p,μ = p

√∫
| f (x)|pdμ.

Let X be a random variable taking values in X with distri-
bution μ ∈ �(X ). Let f : X → R. Define V as the variance

Vx∼μ[ f (X )] =
∫

( f (x) − E[ f (X )])2 dμ (1)

The set of all continuous and bounded functions f : X → R
is denoted by Cb(X ) and measurable functions f : X → R is
denoted by M(X ).

VOLUME 1, 2022 153



REGATTI AND GUPTA: FINITE SAMPLE ANALYSIS OF MINMAX VARIANT OF OFFLINE REINFORCEMENT LEARNING

II. PROBLEM FORMULATION
Let the MDP be defined by the tuple (S,A, R, P, γ ), where
S is the state space (which can be finite or continuous), A
be the action space (finite or continuous). Let ηinit be the
distribution of the starting state. At a state s ∈ S , the set of
feasible actions is given by �(s) ⊆ A. We use B to denote the
feasible state-action pairs: B = {(s, a) ∈ S × A | a ∈ �(s)}.
The reward function is denoted by R : B → [0, Rmax]. This
is common since in most practical applications, the reward is
bounded. The transition kernel of the MDP which determines
the state dynamics is denoted by P : B → �(S ), where �(S )
denotes the set of all probability distributions over S . We use
γ to denote the discount factor.

Let V π : S → R denote the value function defined by

V π (s) = E

[ ∞∑
h=1

γ h−1R(sh, ah)
∣∣∣s1 = s, ah ∼ π (·|sh)

]
The goal is to learn a stationary policy π : S → �(A) that
maximizes vπ := Es∼ηinit [V

π (s)]. Let Qπ : B → R denotes
the state-action value function (also called Q function) as

Qπ (s, a) = E

⎡⎣ ∞∑
h=1

γ h−1R(sh, ah)|s1 = s,

a1 = a, ah ∼ π (·|sh), h ≥ 2

⎤⎦
It is clear that since the reward is bounded by Rmax and due
to the discount factor, we have ‖V π‖∞ ≤ Vmax = Rmax

1−γ
and

‖Qπ‖∞ ≤ Vmax. We make the following assumptions for our
analysis.

Assumption 1: The following holds:
1) The set B is a compact subset of a Euclidean space.
2) The reward function R is continuous.
3) The correspondence � : S → A is upper hemicontinu-

ous.
4) The state transition kernel P is weakly continuous when

�(S ) is endowed with the usual weak topology.
It is a common assumption to make when the state space

and action spaces are denumerable; see, for example, As-
sumption 3.3.3 in [34], p. 28]. Under these assumptions,
there exists an optimal policy π∗ (see Chapter 4 [34] for
more details). Let V ∗, Q∗ denote the corresponding value and
state-action value functions. Denote by v∗ = Es∼ηinit [V

∗(s)].
For a function f ∈ Cb(B), let Vf (s′) = maxa′∈�(s′ ) f (s′, a′).

We define the Bellman operator T : M(B) → M(B) as

(T f )(s, a) := R(s, a) + γ Es′∼P(s,a)[Vf (s′)].

The optimal Q function satisfies Q∗ = T Q∗. The goal of the
agent is to design an algorithm to compute Q∗ that reduces the
Bellman error to 0, that is, satisfies ‖Q∗ − T Q∗‖2,μ = 0.

A. DATA COLLECTION POLICY AND ORL PROBLEM
The offline dataset is constructed by using a stationary pol-
icy πb : S → �(A) with the environment. We refer to this

the data collection policy or the behaviour policy. The past
interactions with the environment using the behavior policy
are logged as the dataset D1:n := (si, ai, ri, s′

i )
n
i=1, which we

assume is independent and identically distributed. We use
μ ∈ �(B) to denote the stationary distribution (occupation
measure of state-action pair) of the MDP under the stationary
policy πb. Therefore, it follows that (si, ai ) is drawn i.i.d from
μ for i ∈ [n]. Note that since in practical settings the behavior
policy is not known, here we do not assume the knowledge
of πb.

Consider two function approximating classes F ,G ⊂ { f :
B → [0,Vmax] : f ∈ Cb(B)}. These function classes could be
neural networks, RKHS, non-parametric function approxi-
mator, etc. The ORL problem is learn a state-action value
function f ∈ F using dataset D such that the Bellman resid-
ual ‖ f − T f ‖2,μ is minimized. Fitted Q iteration attempts to
solve the ORL problem by using a rich function approximat-
ing class and iterative use of Bellman residual minimization
on the empirical risk

LD
(

f , f ′) = 1

n

n∑
i=1

(
f (si, ai ) − ri − γVf ′

(
s′

i

))2
.

We now define the operator T̂G : F → G such that

T̂G f = arg min
g∈G

LD(g, f ), where f ∈ F . (2)

Fitted Q Iteration (FQI) using the function approximating
class F involves iteratively applying the operator T̂F , i.e.,

ft+1 = T̂F ft .

Remark 1: In some cases, the dataset D1:n may be very
large. In this case, at iteration t , techniques can be used to
create a smaller dataset D′

t ⊂ D1:n, which is used for evaluat-
ing the operator in (2). We do not analyze this setting in this
paper.

B. KEY DIFFICULTIES AND SOLUTION APPROACH
Unlike supervised learning problems, Bellman residual mini-
mization can not be solved using empirical risk minimization.
In other words, the expectation of the empirical risk does not
equal to ‖ f − T f ‖2

2,μ – it over-estimates the Bellman error
by a variance term as has been demonstrated in [14], [17].
To see this, let us define Lμ( f ; f ′) = E[LD( f , f ′)] where the
expectation is taken with respect to the draw of the dataset
D1:n, i.e., (s, a) ∼ μ, s′ ∼ P(s, a). For completeness, we show
in Appendix C that

Lμ( f ; f ) = ‖ f − T f ‖2
2,μ + E(s,a)∼μ

[
Vs′∼P(s,a)[Vf (s′)]

]
.

One approach to addressing this is to draw two uncorrelated
samples in computation of LD( f , f ) [14], i.e., for every state
action pair, two next states should be sampled according
to P(s, a). However, this assumption is not practical in the
continuous-state continuous-action ORL setting since we can
not guarantee that multiple next states can be sampled for a
given state-action pair or that the same state-action pair is
visited twice while collecting the dataset.
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TABLE 1 A Summary of Prior Works on the Analysis of the Min-Max
Variant.

Another approach followed is to estimate the variance and
subtract it from the empirical objective, and this approach
results in the following min-max formulation of the offline
RL algorithm [17]

f̂ := arg inf
f ∈F

sup
g∈G

LD( f ; f ) − LD(g; f ) (3)

where G ⊂ {g : B → [0,Vmax]|g ∈ Cb(B)} is another rich
function class that is continuous in the actions. In this work,
we study the finite sample complexity of this algorithm in the
general state space and general function space setting.

Reference [17] study this algorithm under the finite state
space, finite action space and when the function space is finite.
The finite function space assumption allows them to use a sim-
ple union bound argument along with the Bernstein inequality
to get the sharp sample complexity. In this paper, we assume
a general function space and use a covering number argument
to achieve the sample complexity bound. Reference [14] study
a similar algorithm, however, the algorithm there requires the
knowledge of the behavior policy (another difference being
that they study the case where the data is generated from a
single sample path and for finite action space). In particular,
their objective is

arg inf
f ∈F

sup
g∈G

1

n

n∑
i=1

1

πb(ai|si )

[(
f (si, ai ) − ri − γVf ′

(
s′

i

))2

− (
g (si, ai ) − ri − γVf ′

(
s′

i

))2
]

where πb is the behavior policy used to collect the single sam-
ple path data. In contrast, here we analyze the algorithm when
such knowledge of the data collection policy is unknown.
For a general state space and general action space, estimating
the data collection policy from the finite data leads to high
variance estimates, subsequently affecting the fitted learning
objective. The results of previous works studying the min-max
objective are presented in Table 1.

C. PRELIMINARIES
We now introduce the following two quantities that capture
the strength of the function approximation spaces F and G:

εF = inf
f ∈F

‖ f − T f ‖2
2,μ , εF,G = sup

f ∈F
inf
g∈G

‖g − T f ‖2
2,μ .

If Q∗ is realizable in F , i.e., Q∗ ∈ F , then εF = 0. When F =
G, εF,G is called the inherent Bellman error. We provide the

finite sample guarantees based on εF and εF,G , therefore it is
inherently assumed that these quantities are small in order to
control the bounds.

A distribution ν ∈ �(B) is admissible in MDP, if there
exists h ≥ 1, and a potentially non-stationary and stochastic
policy π := (π1, π2, . . .) such that

ν(ds, da) = P [sh ∈ ds, at ∈ da|s1 ∼ ηinit, at ∼ πt (·|st )]

We denote s′ ∼ P(ν) as a shorthand for (s, a) ∼ ν, s′ ∼
P(s, a). Also, we define π f , f ′ (s) as

π f , f ′ (s) = arg max
a∈�(s)

max
{

f (s, a), f ′(s, a)
}
. (4)

For every given f ∈ F , denote g∗
f = arg ming∈G ‖g − T f ‖2,μ

and observe that ‖g∗
f − T f ‖2

2,μ ≤ εF,G .
Definition 1: Define the class of functions ZF = {Z f : B ×

R × S → R | f ∈ F} such that

Z f
(
s, a, r, s′)

:=(
f (s, a)−r−γVf

(
s′))2−(

(T f ) (s, a) − r − γVf
(
s′))2

(5)

Definition 2: Define a function class XF : {Xg, f ,g∗
f

: B ×
R × S → R | f , g ∈ F} where

Xg, f ,g∗
f

(
s, a, r, s′)

:=(
g(s, a) − r − γVf

(
s′))2−

(
g∗

f (s, a) − r − γVf
(
s′))2

.

(6)

Definition 3: Define the function class YF,G : {Yg, f : B ×
R × S → R | g ∈ G, f ∈ F} such that

Yg, f
(
s, a, r, s′)

=(
g(s, a)−r−γVf

(
s′))2−(

(T f ) (s, a)−r−γVf
(
s′))2

.

(7)

We use dXF , dZF and dYF,G to be the pseudo-dimension
of the function classes described above. These notations are
introduced in Definition 7 (Appendix B).

III. ASSUMPTIONS AND MAIN RESULTS
Our main assumption on the MDP is that we assume the
existence of finite concentrability coefficient from [17] (for
the case of finite state and finite action space). We now state
the assumption adapted to the current setup of state dependent
action sets.

Assumption 2 (Concentrability coefficient): For all
admissible ν ∈ �(B), we assume that C < ∞ such that
‖ dν

dμ
‖∞ ≤ C.

The above assumption implies that the transitions are suf-
ficiently stochastic and ν(·, ·) ≤ Cμ(·, ·), ∀ (s, a) ∈ B. Note
that this assumption is much stronger than the usual dis-
counted average concentrability of future states [11].

We next assume that the finiteness of the capacity of the
function approximation class since our sample complexity
bounds depend on the function class capacity.
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Assumption 3 (Finite capacity of function classes): The
pseudo-dimensions dXF , dZF and dYF,G are all assumed to be
finite.

Remark 2: A sufficient condition that ensures that the func-
tion classes have finite capacity is discussed in [25], [35].
In [35], the author shows that the optimal value/ Q function
(under state dependent action constraints) is Lipschitz contin-
uous under the following assumptions: the transition function
is Lipschitz continuous in (s, a), the reward function is Lips-
chitz in (s, a), the correspondence � is Lipschitz continuous
under the Hausdorff metric, and the Bellman operator is a
contraction. In addition, if we assume F and G are Lipschitz
continuous function classes and � is Lipschitz continuous
correspondence, then it can be shown that ZF , XF ,YF,G are
also Lipschitz continuous using Lemma 3.2 in [35]. The finite
capacity of the Lipschitz and uniformly bounded function
class follows from Theorem 2.7.1 and 2.7.11 of [36].

We now state the finite sample analysis result of the offline
RL algorithm (3).

Theorem 1 (Error bound for min-max): Suppose Assump-
tions 1, 2, and 3 hold. Given a dataset D = {(si, ai, ri, s′

i )}n
i=1,

two classes of bounded functions F , G and ε, δ > 0, then with
probability at least 1 − δ, the output policy of (3), π f̂ satisfies

v∗ − v
π f̂ ≤ 2

√
C

(1 − γ )2

(√
ε + εF + εF,G

)
(8)

when

n ≥ K1V 4
max

ε2

[
log

16e

δ

+ log

(
2(dXF + 1)

(
K2eV 2

max

ε

)dXF

+ (dYF,G + 1)

(
K2eV 2

max

ε

)dYF,G

+ (dZF + 1)

(
K2eV 2

max

ε

)dZF
)]

,

where dXF ,dYF,G ,dZF are the pseudo-dimensions of the
spaces XF ,YF,G, ZF respectively, and K1 = 64 × 128 × 36
and K2 = 6 × 64.

Remark 3: The sample complexity does not get affected
by arbitrary re-scaling of the reward function as long as ε is
scaled by the square of the scaling factor for the reward, and
each function in the function class F and G also get rescaled
by the same factor. Observe that when we rescale the reward
function R by p > 0 and ε by p2, (i) Vmax, v∗, and v

π f̂ also

get rescaled by p, (ii) V 2
max
ε

does not get rescaled, and (iii) the
εF and εF,G terms get rescaled as by p2. Thus, if we scale ε

to p2ε, then scaling term appears on sides of the inequality in
(8) and the lower bound on n remains the same. Consequently,
the sample complexity result remains unchanged.

1) DEPENDENCE ON FUNCTION CLASS
We can observe that, the error depends on εF , εF,G . When
the function class considered is sufficiently rich (such as a
neural network class or RKHS), we can assume that Q∗ ∈ F
and T f ∈ F , which results in εF = 0 and εF,G = 0.

When F = G, observe that the function classes ZF and
YF,G are the same, i.e. (dZF = dYF,G ). In addition, when the
function class is sufficiently rich where εF,G = 0, then g∗

f =
T f which implies that the function class XF is equal to ZF and
YF,G . The result then is simplified as follows: The following
holds with probability at least 1 − δ,

v∗ − v
π f̂ ≤ 2

√
C

(1 − γ )2

(√
ε
)

when

n ≥ K1V 4
max

ε2

[
log

64e(dXF + 1)

δ
+ dXF

(
K2eV 2

max

ε

))]
.

2) DEPENDENCE ON ε

Ignoring log terms in the sample complexity bound, we ob-
serve that

v∗ − v
π f̂ ≤ O(

√
ε)

when n ≥ O
(

1
ε2

)
. This shows that, we can achieve an error

of ε by using approximately O( 1
ε4 ) data samples. This result

is consistent with the earlier results [14].

IV. PROOF OF THEOREM 1
In this section, we prove the main result of the paper. We
follow the analysis of [17], however, unlike [17] the focus
is not to obtain fast rates of convergence ( 1

ε2 dependence

instead of 1
ε4 ), but to obtain convergence rates for the general

state space and state dependent action space setting. Although
challenging, with some additional effort, it may be possible to
obtain the fast rates such as those in [17], [18] using special-
ized concentration inequalities (see Section V).

A. PROOF OUTLINE
It is evident that v∗ − v

π f̂ is related to Lμ( f̂ ; f̂ ) −
Lμ(T f̂ ; f̂ ). Thus, we need to bound Lμ( f̂ ; f̂ ) − Lμ(T f̂ ; f̂ )
in terms of its empirical counterpart LD( f̂ ; f̂ ) − LD(T f̂ ; f̂ )
using concentration inequalities. Accordingly, we first de-
rive a decomposition of the empirical term LD( f̂ ; f̂ ) −
LD(T f̂ ; f̂ ) into three terms I, II, III and bound each of these
terms separately. We state the decomposition lemma below.

Lemma 1 (Decomposition Lemma): For f ∗ ∈ F s.t, ‖ f ∗ −
T f ∗‖2

2,μ ≤ εF , we have

LD( f̂ ; f̂ ) − LD(T f̂ , f̂ )

≤ LD( f ∗; f ∗) − LD(T f ∗, f ∗)︸ ︷︷ ︸
I

+ |LD(T f̂ , f̂ ) − LD(T̂G f̂ , f̂ )|︸ ︷︷ ︸
II
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+ |LD(T f ∗, f ∗) − LD(T̂G f ∗; f ∗)|︸ ︷︷ ︸
III

(9)

Proof: This result is established in Appendix A. �
In what follows, we divide the proof of Theorem 1 into

three steps. We derive an upper bound on v∗ − v
π f̂ as a

function of Lμ( f̂ ; f̂ ) − Lμ(T f̂ ; f̂ ) in Subsection IV-B. We
then bound the three terms noted in Subsection IV-D using
the concentration of measures results derived in Subsection
IV-C. Finally, we prove Theorem 1 in Subsection IV-E.

B. RELATION BETWEEN v∗ − V πf̂ AND Lμ(̂f;̂f ) − Lμ(T̂f;̂f )
We shall first show the relation between, v∗ − v

π f̂ and
Lμ( f̂ ; f̂ ) − Lμ(T f̂ ; f̂ ), that will be used to prove the main
theorem.

Lemma 2: The following hold true,
1) Let ν be any admissible distribution. Then ∀ f : S ×

A → R,

‖ f ‖2,ν ≤
√

C ‖ f ‖2,μ .

2) We denote ηπ
h := P [sh = s|s1 ∼ η1, π ], and π f as the

policy greedy with respect to the state-action value func-
tion f : B → R, i.e., π f (s) := arg maxa∈�(s) f (s, a).
Then we have

v∗ − vπ f ≤
∞∑

h=1

γ h−1
(∥∥Q∗ − f

∥∥
2,η

π f
h ×π∗

+ ∥∥Q∗ − f
∥∥

2,η
π f
h ×π f

)
.

3) Let f , f ′ : B → R. Then we have ∀ ν ∈ �(B),∥∥Vf − Vf ′
∥∥

2,P(ν ) ≤ ∥∥ f − f ′∥∥
2,P(ν )×π f , f ′

.

4) For an exploratory distribution μ ∈ �(B), any distribu-
tion ν ∈ �(B), policy π , and f , f ′ : B → R, we have∥∥ f − Q∗∥∥

2,ν
≤

√
C

1 − γ
‖ f − T f ‖2,μ .

Proof: The results can be adapted directly from [17] to the
general state space setting in this paper using Assumptions 1
and 2. �

Lemma 3: For f , g ∈ F , we have ‖g − T f ‖2
2,μ =

Lμ(g; f ) − Lμ(T f ; f ).
Proof: From the definitions in Lμ and LD, we have

Lμ(g; f ) − Lμ(T f ; f ) = E
[
LD(g, f ) − LD(T f ; f )

]
= E

(s,a)∼μ,

s′∼P(s,a)

[
(g(s, a) − r − γVf (s′))2

−(T f (s, a) − r − γVf (s′))2]
= E

(s,a)∼μ,

s′∼P(s,a)

[
(g(s, a)2 − T f (s, a)2)

+2(r + γVf (s′))(T f (s, a) − g(s, a))
]

i= E
(s,a)∼μ

[
(g(s, a)2 − T f (s, a)2)

+2T f (s, a)(T f (s, a) − g(s, a))
]

= E
(s,a)∼μ,

[
(g(s, a) − T f (s, a))2]

= ‖g − T f ‖2
2,μ

where (i) follows from the definition of the operator T . The
proof is complete. �

Lemma 4:

v∗ − v
π f̂ ≤ 2

√
C

(1 − γ )2

(√
Lμ

(
f̂ ; f̂

) − Lμ

(
T f̂ , f̂

))
.

(10)

Proof: Substituting f = f̂ in the result of Lemma 4, we get

∥∥ f̂ − Q∗∥∥
2,ν

≤
√

C

1 − γ

∥∥ f̂ − T f̂
∥∥

2,μ
.

The proof then follows by applying Lemmas 2 and 3 to the
above equation. �

From the above Lemma, we observe that it is sufficient to
bound Lμ( f̂ , f̂ ) − Lμ(T f̂ , f̂ ) to prove the main theorem.

C. USING CONCENTRATION INEQUALITY
Recall the definition of ZF from Definition 1. It is straight
forward that the class of functions ZF is bounded, and using
the bounds on R(·, ·) and F , we can observe that ∀ f ∈ F ,
|Z f (·, ·, ·, ·)| ≤ 3V 2

max. For f ∈ F and (si, ai, ri, s′
i ) ∈ D, we

can denote an i.i.d random variable Zi
f := Z f (si, ai, ri, s′

i ).
Now, we can observe from Lemma 3 that

1

n

n∑
i=1

Zi
f̂

= LD
(

f̂ ; f̂
) − LD

(
T f̂ , f̂

) ;

E
[
Z1

f̂

]
= Lμ

(
f̂ ; f̂

) − Lμ

(
T f̂ ; f̂

) = ∥∥ f̂ − T f̂
∥∥2

2,μ
.

Reference [17] assume a finite function space F and
proceed to bound E[Z1

f̂
] − 1

n

∑n
i=1 Zi

f̂
using Bernstein’s in-

equality and apply a union bound over the function space
F (consequently the bound depends on |F |). However, we
can not do this for a general function space. Instead, we use
the Pollard’s concentration inequality (Lemma 11) to bound
E[Z1

f̂
] − 1

n

∑n
i=1 Zi

f̂
.

Lemma 5: With probability at least 1 − δ1, we have

E
[
Z1

f̂

]
≤ 1

n

n∑
i=1

Zi
f̂
+ ε/8,

where δ1 = 8E[N1( ε
64 , ZF , D1:n)] exp

(
−nε2

64×128×36V 4
max

)
.

Proof: We can directly apply Lemma 11 (along with Re-
mark 4) on the class of functions ZF with B = 6V 2

max and ε/8
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instead of ε. We get

P

{
sup
f ∈F

(
E[Z1

f ] − 1

n

n∑
i=1

Zi
f

)
> ε/8

}

≤ 8E[N1(ε/64, ZF , D1:n)] exp

( −nε2

64 × 128 × 36V 4
max

)
Since the above inequality holds for all f ∈ F , it certainly
holds for a given f̂ ∈ F . Note that, every Z f ∈ ZF is defined
by a f ∈ F . The result follows by taking the value of δ1 equal
to the right hand side of the above equation. �

We now bounded Lμ( f̂ , f̂ ) − Lμ(T f̂ , f̂ ) in terms of
LD( f̂ ; f̂ ) − LD(T f̂ , f̂ ) by using Pollard’s concentration in-
equality. In the next subsections, we will continue to bound
LD( f̂ ; f̂ ) − LD(T f̂ , f̂ ) using the Lemma 1 and repeated use
of the Pollard’s concentration inequality.

D. BOUNDING TERMS I, II, III
In this section, we bound the terms in Lemma 1.

Lemma 6 (Term I in (9)): With probability at least 1 − δ1,
we have

LD( f ∗; f ∗) − LD(T f ∗; f ∗) = 1

n

n∑
i=1

Zi
f ∗ ≤ ε

8
+ εF (11)

where δ1 = 8N1( ε
64 , ZF , D1:n) exp( −nε2

64×128×36V 4
max

).

Proof: From Lemma 3, E[Z1
f ∗] = Lμ( f ∗; f ∗) −

Lμ(T f ∗; f ∗) = ‖ f ∗ − T f ∗‖2
2,μ ≤ εF . Therefore, applying

Lemma 11 (along with Remark 4) and since E[Z1
f ∗] ≤ εF ,

P

{
1

n

n∑
i=1

Zi
f ∗ >

ε

8
+ εF

}

≤ 8E
[
N1

( ε

64
, ZF , D1:n

)]
exp

( −nε2

64 × 128 × 36V 4
max

)
.

The result follows similarly by taking the value of δ1 as the
right hand side of the above equation. This bounds term (I )
in (9). �

We are left to compute bounds on the terms II, III . Ob-
serve that both the terms II, III in Lemma 1 are of the form
|LD(T f , f ) − LD(T̂G f ; f )| where term II considers f̂ and
term III considers f ∗. Therefore, in the following Lemma,
we want to bound for any f ∈ F ,

|LD (T f , f ) − LD
(
T̂G f ; f

) |.
This can then be used to bound each of the terms II and III .
Before stating the Lemma, we first discuss about the function
classes XF and YF,G .

Recall the definition of XF from Definition 2. Sim-
ilar to ZF , we can show that XF is a bounded class
of functions, and ∀ f , g ∈ F , |Xg, f ,g∗

f
(·, ·, ·, ·)| ≤ 3V 2

max. For

each (si, ai, ri, s′
i ) ∈ D, we denote an i.i.d random variable

X i
g, f ,g∗

f
:= Xg, f ,g∗

f
(si, ai, ri, s′

i ). Now, from the definition of

LD and Lμ,

1

n

n∑
i

X i
g, f ,g∗

f
= LD(g; f ) − LD(g∗

f , f );

E
[
X 1

g, f ,g∗
f

]
= Lμ(g; f ) − Lμ

(
g∗

f , f
)

.

Recall the definition of YF,G from Definition 3. Similarly,
we can again show that YF,G is a bounded class of func-
tions, and ∀ f ∈ F , g ∈ G, |Yg, f (·, ·, ·, ·)| ≤ 3V 2

max. For each
(si, ai, ri, s′

i ) ∈ D, we denote an i.i.d random variable Y i
g, f :=

Yg, f (si, ai, ri, s′
i ). Now, from the definition of LD and Lμ,

1

n

n∑
i

Y i
g, f = LD(g; f ) − LD(T f , f );

E[Y 1
g, f ] = Lμ(g; f ) − Lμ(T f , f ).

We are now ready for the next Lemma.
Lemma 7 (Terms II, III in (9)): With probability at least

1 − 2δ2 − δ3, we have

|LD(T f ; f ) − LD(T̂G f ; f )| ≤ εF,G + 3ε

8

where δ2 = 8E[N1
(

ε
64 , XF , D1:n

)
)] exp

(
−nε2

64×128×36V 4
max

)
and

δ3 = 8E[N1
(

ε
64 ,YF,G, D1:n

)
)] exp

(
−nε2

64×128×36V 4
max

)
.

Proof: Observe that

|LD(T f ; f ) − LD(T̂G f ; f )|

=
∣∣∣1

n

n∑
i=1

(
X i
T̂G f , f ,g∗

f
+ Y i

g∗
f , f

) ∣∣∣
≤
∣∣∣1

n

n∑
i=1

X i
T̂G f , f ,g∗

f

∣∣∣ + ∣∣∣ n∑
i=1

Y i
g∗

f , f

∣∣∣ (12)

Using Lemma 11 for the function space XF with B = 6V 2
max

and ε/8 instead of ε, we get

P

{
sup

f ,g∈F

∣∣∣1

n

n∑
i=1

X i
T̂G f , f ,g∗

f
− E[X 1

T̂G f , f ,g∗
f
]
∣∣∣ >

ε

8

}

≤8E[N1(ε/64, XF , D1:n))] exp

( −nε2

64 × 128 × 36V 4
max

)
.

Observe that for a, b ∈ R, |a| − |b| ≤ |a − b|. From this (and
using the same argument as in Remark 4), we get with proba-
bility greater than 1 − δ2,∣∣∣1

n

n∑
i=1

X i
T̂G f , f ,g∗

f

∣∣∣ ≤
∣∣∣E[X 1

T̂G f , f ,g∗
f
]
∣∣∣ + ε

8
(13)

where δ2 = 8E[N1
(

ε
64 , XF , D1:n

)
)] exp

(
−nε2

64×128×36V 4
max

)
.

Now, observe that 1
n

∑n
i=1 X i

T̂G f , f ,g∗
f
≤ 0, since

1
n

∑n
i=1 X i

T̂G f , f ,g∗
f
= LD(T̂G f , f ) − LD(g∗

f , f ) ≤ 0 where

the inequality follows due to the optimality of T̂G f given
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dataset D. Therefore, applying Lemma 11 to the function
space XF again we get,∣∣∣∣E [

X 1
T̂G f , f ,g∗

f

]∣∣∣∣ ≤ ε

8
(14)

with probability at least 1 − δ2.
Now by combining (13) and (14), we have with probability

at least 1 − 2δ2, ∣∣∣∣∣1

n

n∑
i=1

X i
T̂G f , f ,g∗

f

∣∣∣∣∣ ≤ ε/4

where δ2 = 8E[N1( ε
64 , XF , D1:n))] exp

(
−nε2

64×128×36V 4
max

)
.

Now, we bound the second term
∣∣∣ 1

n

∑n
i=1 Y i

g∗
f , f

∣∣∣ in (12). We

have, E[Y i
g∗

f , f ] = ‖g∗
f − T f ‖2

2,μ ≤ εF,G .

Applying Lemma 11 to the function space YF,G similarly as
above, we have with probability at least 1 − δ3,∣∣∣∣∣1

n

n∑
i=1

Y i
g∗

f , f

∣∣∣∣∣ ≤ E
[
Y 1

g∗
f , f

]
+ ε

8
≤ εF,G + ε

8

for δ3 = 8E[N1( ε
64 ,YF,G, D1:n))] exp( −nε2

64×128×36V 4
max

). The re-

sult follows by combining the bounds on | 1
n

∑n
i=1 X i

T̂G f , f ,g∗
f
|

and |∑n
i=1 Y i

g∗
f , f |. �

Lemma 8: With probability atleast 1 − δ1 − 4δ2 − 2δ3,

LD
(

f̂ ; f̂
) − LD

(
T f̂ , f̂

) ≤ εF + εF,G + 7ε

8
(15)

where δ1 is as defined in Lemma 6; δ2 and δ3 are defined as in
Lemma 7.

Proof: Let us recall that, both the terms II and III can
be bounded using Lemma 7. The result follows from Lem-
mas 1, 6 and 7. Note that we apply Lemma 7 twice, therefore
the coefficients of δ2 and δ3 are multiplied by 2.

E. PROOF OF THEOREM 1
We now have all the intermediate results to prove the main
theorem. From Lemmas 1, 5, and 8, with probability atleast
1 − 2δ1 − 4δ2 − 2δ3,

E
[
Z1

f̂

]
≤ εF + εF,G + ε.

Substituting this result in (10), with K1 = 64 × 128 × 36 ,
we get

P

{
v∗ − v

π f̂ >
2
√

C

(1 − γ )2

√
εF + εF,G + ε

}

≤ exp

( −nε2

K1V 4
max

) (
16E[N1(ε/64, ZF , D1:n)]

+ 32E[N1(ε/64, XF , D1:n)]

+16E[N1(ε/64,YF,G, D1:n)]
)
.

We then apply Lemma 10 in the Appendix and let K2 =
6 × 64, we get

P

{
v∗ − v

π f̂ >
2
√

C

(1 − γ )2

√
εF + εF,G + ε

}

≤ exp

( −nε2

K1V 4
max

)(
16e(dZF + 1)

(
K2 eV 2

max

ε

)dZF

+ 32e(dXF + 1)

(
K2 eV 2

max

ε

)dXF

+ 16e(dYF,G + 1)

(
K2 eV 2

max

ε

)dYF,G
)

.

Now consider the right hand side term to be δ, applying
log and rearranging the terms, we get with probability at least
1 − δ,

v∗ − v
π f̂ ≤ 2

√
C

(1 − γ )2

(√
ε + εF + εF,G

)
when

n ≥ K1V 4
max

ε2

[
log

16e

δ
+ log

(
2(dXF + 1)

(
K2eV 2

max

ε

)dXF

+ (dYF,G + 1)

(
K2eV 2

max

ε

)dYF,G

+ (dZF + 1)

(
K2eV 2

max

ε

)dZF
)]

.

The proof is complete.

V. DISCUSSION
A. EXPERIMENTAL RESULTS
In this section, we perform numerical simulations to study
how the sample complexity materializes in practice. We adopt
the optimal charging schedule for a battery pack example
from [25]. Here, the battery pack is used to serve some ran-
dom user demands and is charged using a random renewable
source. The maximum capacity of a battery pack is given
by a real value B ∈ R+. The state of charge of the battery
pack is denoted by Gt ∈ [0, 1] which is the fraction of charge
as compared to the maximum capacity. We represent the net
generation at time t (renewable generation minus demand) as
Gt . We assume that Gt is a bounded random variable, that
is uniformly distributed between [Gmax, Gmin]. The state of
the system is given by st = [SoCt , Gt−1]T , and the action
is given by at , which determines what fraction of the net
demand (generation) is served. At every time step, the state
[SoCt , Gt−1 is observed and an action at is taken. When
Gt−1 > 0, since there is net generation, the battery charge
is increased by at Gt−1. When Gt−1 ≤ 0, since there is net
demand, the battery charge decreases by at Gt−1. Note that,
even when Gt−1 > 0, at need not be very high, since the bat-
tery can get damaged due to overheating. At every time step,
the battery also self discharges determined by some parameter
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β ∈ [0, 1]. The state update equation is given by,

SoCt+1 := min

{
βSoCt + at

Gt−1

B
, 1

}
.

For every action taken, the reward is specified by

r(st , at ) = at

(
tanh (ξGt−1)

(r2 − r1)

2
+ (r1 + r2)

2

)
,

where ξ > 0 is a scale parameter, r1 is the reward of using
renewable energy, r2 is the utility of serving the user demand
and 0 ≤ r1 < r2. Also, observe that the action space is con-
strained by the current state. Here, it depends on the current
state of charge, i.e., at needs to be chosen such that SoCt ≥ 0
since more charge can not be extracted from the battery than
what is present. Formally,

�(st ) =
{

at ∈ [0, 1] : βSoCt + at
Gt−1

B
≥ 0

}
.

The goal of the RL problem is to maximize the reward until
the battery doesn’t run out of charge.

1) OFFLINE DATASET
Here, we outline the method used to collect the offline dataset
for this environment. We train a policy in the online setting
using the TD3 algorithm [37]. We used the following pa-
rameters of the environment: Gt ∼ Unif(−10, 10), B = 10,
ξ = 0.01, r1 = 5, r2 = 15, β = 0.97. For online training, we
used γ = 0.9 and used the same parameters as the original
TD3 paper. We used the same function approximation class
for F and G: we used a neural network with two hidden layers
each of width 4 and ReLU activation functions.

We use the output of the above algorithm and deploy it in
the environment and log the interactions (s, a, r, s′). We now,
use the logged dataset to solve (3).

2) ALGORITHM
To solve the min max optimization in (3), we perform a bilevel
optimization routine by alternating the updates on f , g.

This is written as

gt = arg min
g∈G

LD(g, ft−1)

ft = arg min
f ∈F

LD( f , f ) − LD(gt , f )

At each iteration t , we sample a mini-batch of size 256 from
the offline dataset D. We then use the samples to update the
neural network weights (of gt and ft ) using Stochastic Gra-
dient Descent (SGD) algorithm with a learning rate of 1e-5.
We iterate until t = 105.

3) RESULTS
To show the impact of the dataset size, we take different
dataset sizes ∈ [100, 1000, 10000] and train three different
algorithms using these datasets. The loss trajectory for the
n=10000 case is presented in Fig. 1. Since we do not have
the true V ∗, it is difficult to compute v∗ for this environment.

FIGURE 1. We plot the loss LD(ft ; ft ) − LD(gt ; ft ) at every iteration t of
the bi-level optimization algorithm.

TABLE 2 Comparison of Sub-Optimality With the Number of Data Points n.
Note That πb is Fixed for All Three Cases.

Therefore, instead of measuring v∗ − v
π f̂ , we simply measure

v
π f̂ where π f̂ is the policy greedy with respect to the output

of (3). To compute v
π f̂ , we used the initial state distribu-

tion, where Gt ∼ Unif(−10, 10) and SoC0 = 1.0. We present
the results of the algorithm in Table 2. We can observe that
v∗ − v

π f̂ reduces as the number of data points in the offline
dataset increases which is inline with the theoretical results.

B. SHARP CONCENTRATION RESULTS
While earlier works [11], [14] obtain a dependence on the
number of samples as O( 1

ε4 ), recent works were able to im-

prove on the sample complexity to O( 1
ε2 ) [17], [18], [19]. The

key result that leads to an improvement in the sample com-
plexity is the sharper concentration inequality (stated below)
as compared to using the Pollard’s concentration inequality
(Lemma 11).

Lemma 9 (Lemma 11.6 [38]): Let B ≥ 1 and let G be a
set of functions g : Rd → [0, B]. Let Z, Z1, . . . , Zn be i.i.d Rd

valued random variables. Assume ε > 0, 0 < α < 1 and n ≥
1. Then

P

{
sup
g∈G

1
n

∑n
i=1 g(Zi ) − E[g(Z )]

ε + 1
n

∑n
i=1 g(Zi ) + E[g(Z )]

> α

}

≤ 4E
[
N1

(αε

5
,G, Zn

1

)]
exp

(
−3εα2n

40B

)
.

Reference [18], [19] decompose the error v∗ − v
π f̂ in a

way that exploits this sharp concentration result (notice the
exponent of ε in exp term as compared to Pollard’s theorem
reviewed in Theorem 11), thereby deriving a sharper sample
complexity. Decomposing the error for the min-max variant
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studied in this paper to apply this result is challenging and we
leave it as future work.

C. SINGLE SAMPLE PATH
In this work, we assumed that the offline data available with
the agent is sampled independently from a distribution μ ∈
�(S × A). This assumption can be practical in several appli-
cations where the agent is highly scalable and deployed in a
large number of environments to collect data. For example, in
e-commerce/web-applications, millions of users may query in
parallel independent of one another and the deployed agent
also responds independently of the other queries. However,
there are several applications where a single controller/agent
collects a single (long) trajectory of data in applications
such as building energy management. Here the deployed
agent is highly customized to the particular environment (e.g.,
building, factory) because each environment has different dy-
namics than the others. In these situations, one needs to deal
with a long trajectory of data where the (s, a) pairs are no
longer independent. [14] studies such a setting by assuming
some mixing properties on the process. The sample complex-
ity itself remains the same, however the bound includes an
additional term dependent on the mixing coefficient of the
process.

D. REMOVING CONCENTRABILITY ASSUMPTION
In this work, we consider the stricter condition (Assump-
tion 2) of concentrability where every admissible ν ∈ �(B) is
absolutely continuous with respect to μ. A more general con-
dition is the discounted concentrability of future state-action
distributions where the distribution of future state-action pairs
is assumed to be absolutely continuous with respect to μ. Let
Pπ be an operator acting on f : B → R s.t. (Pπ f )(s, a) =∫
B f (s′, π (s′))P(ds′|s, a). For m ≥ 0, and any arbitrary se-

quence of stationary policies {π1, . . . , πm}

Cμ(m) = sup
π1,...,πm

∥∥∥∥d (ηinitPπ1 Pπ2 · · · Pπm )

dμ

∥∥∥∥∞
.

The discounted concentrability assumption requires Cμ =
(1 − γ 2)

∑
m≥1 mγ m−1Cμ(m) < ∞. The sample complexity

analysis under discounted concentrability assumption requires
substantially different arguments, and thus is left as a future
work.

VI. CONCLUSION
In this work, we studied the finite sample analysis of the min-
max formulation of the ORL algorithm for general state and
function spaces under the state dependent action constraints.
The sample complexity of the algorithm depends as O(1/ε4).

More sophisticated concentration inequalities can be uti-
lized to further sharpen the sample complexity and will be
considered as future work. The data is assumed to be drawn
according to a distribution μ, however in some practical sce-
narios, the data is available as a single trajectory. Another
direction of this work can be to extend the analysis to the

single sample path case by using the β−mixing properties of
the data distribution.

APPENDIX A
PROOF OF LEMMA 1
By the optimality of f̂ , we can write

LD( f̂ ; f̂ ) − LD(T̂G f̂ , f̂ ) ≤ LD( f ∗; f ∗) − LD(T̂G f ∗; f ∗)

Adding and subtracting LD(T f̂ , f̂ ) on LHS and
LD(T f ∗, f ∗) on RHS, we get

LD( f̂ ; f̂ ) − LD(T f̂ , f̂ ) + LD(T f̂ , f̂ ) − LD(T̂G f̂ , f̂ )

≤ LD( f ∗; f ∗) − LD(T f ∗, f ∗)

+ LD(T f ∗, f ∗) − LD(T̂G f ∗; f ∗)

The result is obtained by rearranging the terms.

APPENDIX B
CAPACITY OF FUNCTION CLASSES AND RESULTS FROM
EMPIRICAL PROCESS THEORY
Definition 4 (Covering Number):Let (M, d ) be a pseudo-
metric space, and let ε > 0. Let M1, . . . , Mk be balls of radius
ε > 0 in M. We say that {Mi}k

i=1 is a covering of (M, d ) if
M ⊆ ∪k

i=1Mi. The covering number N (ε,M, d ) is defined as
the smallest k such that the set of ε balls {M}k

1 is a covering
of (M, d ). If no such finite k exists, then the covering number
is ∞.

Definition 5 (Empirical Covering Number): Let H be
a class of functions with domain R, and let points
R1:n := (R1, . . . , Rn) be points in R. The empirical cover-
ing number is defined with respect to the pseudo metric
lR1:N ( f , g) = 1

N

∑N
i=1 | f (Ri ) − g(Ri )|; g ∈ F and denoted

by N1(ε,F , R1:N ).
Definition 6 (VC dimension [39]): Let H denote a class of

functions from X → {0, 1}. The growth function is defined
as, for any non-negative m,

s(H, m) := max
x1,...,xm∈X

|{(h(x1), . . . , h(xm)) : h ∈ H}|.

If for any {x1, . . . , xm}, |{(h(x1), . . . , h(xm)) : h ∈ H}| = 2m,
we say H shatters the set {x1, . . . , xm}. The VC dimension
of H is defined as the largest number of points m that it can
shatter, i.e.,

VC-dim(H) := sup{m ∈ N : s(H, m) = 2m}.
For a real valued function class, the capacity is defined in

terms of the pseudo-dimension.
Definition 7 (pseudo-dimension [39]): Let F : { f : X →

R}. The pseudo-dimension dF is defined as the largest integer
m for which there exists (x1, . . . , xm, y1, . . . , ym) ∈ Xm × Rm

such that for any (b1, . . . , bm) ∈ {0, 1}m there exists f ∈ F
such that ∀i : f (xi ) > yi ⇐⇒ bi = 1. For cases where the
function class F is generated by a neural network with a fixed
architecture and activation function, we can also write dF =
VC-dim(sign(F )), where sign(F ) = {sign( f ) : f ∈ F} and
sign(x) = 1 if x ≥ 0 and sign(x) = 1 if x < 0.
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The following lemma relates the pseudo dimension of a
function class to the empirical covering number.

Lemma 10 (see [40]): Consider a set Z and a class F ⊂
{ f : Z → [0, C̄]} of functions on Z with pseudo-dimension
dF < ∞. For any points z1:n ∈ Zn and ε > 0,

N1
(
ε,F , z1:n) ≤ e (dF + 1)

(
2eC̄

ε

)dF
.

Lemma 11 (Pollard’s tail inequality: Theorem 9.1 [38]):
Let H be a class of functions that map R into [−B/2, B/2],
and let μ be a probability measure on R. Let R1, . . . , Rn are
i.i.d with distribution μ. For every ε > 0,

P

{
sup
h∈H

∣∣∣∣∣1

n

n∑
i=1

h(Ri ) − E[h(R)]

∣∣∣∣∣ > ε

}

≤ 8E
[
N1

(
ε/8,H, R1:n)] exp

(
− nε2

128B2

)
where N1(·,H, R1:n) is the empirical covering number of H
given data points R1:n.

Remark 4: Note that, during the proofs, we often consider

P

{
sup
h∈H

(
1

n

n∑
i=1

h(Ri ) − E[h(R)]

)
> ε

}
instead of the absolute value. Observe that,

sup
h∈H

(
n∑

i=1

h(Ri ) − E[h(R)]

n

)
≤ sup

h∈H

∣∣∣ n∑
i=1

h(Ri ) − E[h(R)]

n

∣∣∣
and this shows that{

sup
h∈H

(
1

n

n∑
i=1

h(Ri ) − E[h(R)]

)
> ε

}

⊆
{

sup
h∈H

∣∣∣1

n

n∑
i=1

h(Ri ) − E[h(R)]
∣∣∣ > ε

}
.

Therefore, we simply use

P

{
sup
h∈H

(
1

n

n∑
i=1

h(Ri ) − E[h(R)]

)
> ε

}

≤ 8E
[
N1(ε/8,H, R1:n)

]
exp

(
− nε2

128B2

)
.

APPENDIX C
DIFFERENCE BETWEEN Lμ(f ; f ) AND ‖f − T f‖2

2,μ

In this section, we show that Lμ( f ; f ) overestimates ‖ f −
T f ‖2

2,μ by a variance term. First, we have

Lμ( f , f ) = E[LD( f , f )]

= E
[

f (s, a) − R(s, a) − γVf (s′)
]2

= E
[
( f (s, a) − R(s, a))2 + γ 2V 2

f (s′)

−2γ f (s, a)Vf (s′) + 2γ R(s, a)Vf (s′)
]

= Eμ

[
( f (s, a) − R(s, a))2] + γ 2E[V 2

f (s′)]

− 2γ E[ f (s, a)Vf (s′)] + 2γ E[R(s, a)Vf (s′)].

Further, we note that ‖ f − T f ‖2
2,μ is expanded as

‖ f − T f ‖2
2,μ

=
∫ (

f (s, a) − R(s, a) − γ Es′∼P(s,a)[Vf (s′)]
)2

dμ

=
∫

( f (s, a) − R(s, a))2dμ

+ γ 2
∫ (

Es′∼P(s,a)[Vf (s′)]
)2

dμ

− 2γ

∫
f (s, a) Es′∼P(s,a)[Vf (s′)] dμ

+ 2γ

∫
R(s, a) Es′∼P(s,a)[Vf (s′)]dμ

=
∫

( f (s, a) − R(s, a))2dμ

+ γ 2
∫ (

Es′∼P(s,a)[Vf (s′)]
)2

dμ

− 2γ E[ f (s, a)Vf (s′)] + 2γ E[R(s, a)Vf (s′)].

The two equations above yield the desired results.
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