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ABSTRACT In this article, a discrete fractional order adaptive law (DFOAL) is designed based on the
Caputo fractional difference to perform parameter estimation of structured uncertainties. The paper provides
a rigorous stability analysis of the DFOAL parameter estimation method. The DFOAL is then modified
in order to improve parameter estimator performance to show that, under certain conditions, it provides
asymptotic convergence to the true parameter values even when the regressor is not persistently exciting. A
method to allow for practical implementation of the DFOAL and the modified DFOAL is developed. Finally,
the modified DFOAL is used to identify the plant parameters in an indirect adaptive control law for a class
of nonlinear discrete-time systems with structured uncertainty.

INDEX TERMS Adaptive control, discrete fractional calculus, discrete-time control system, parameter
estimation.

I. INTRODUCTION
Continuous time (CT) control systems have been extensively
studied in the literature [1]–[3]. At the same time, there are
many systems are best approached from a discrete time (DT)
framework. DT control systems may be achieved by discretiz-
ing the CT system, or the systems are naturally DT. The
integer index k will be used to denote these discrete points in
time, and the sampling time will be normalized to be 1 for con-
venience. For different reasons, uncertainties naturally occur
in control systems, where the robustness properties of adaptive
control have been extensively investigated [1], [4]–[7].

Parameter estimation can be shown to be convergent using
a stable adaptive control technique. A new adaptive con-
troller is proposed in [8] to treat the uncertainties in the plant
model and external disturbances. In their work, a finite-time
model of learning is incorporated into the L1-based verified
safe control to improve Simplex performance in unexpected
environments. A unique and robust direct adaptive control
mechanism has been designed and synthesized by the author
in [9]. The study investigates how chaos is suppressed and
synchronized in the chaotic nuclear spin generator system.
They demonstrate that the proposed technique performs well
when there are unknown model uncertainties and external
disturbances.

In essence, the fundamental problem, therefore, is to de-
sign control laws to handle system uncertainties. Adaptive
control techniques tune the controller’s parameters on-line
to achieve and improve closed-loop stability and robustness.
In this paper, parameter estimation (for purposes of function
approximation) and parametric adaptive control problems will
be handled using discrete fractional calculus (DFC).

Fractional order differential equations and, consequently,
difference equations can be used to model certain phenomena.
Some studies take into account systems that are modeled using
fractional order equations. The authors of [10] established
a conformable derivative-based first-state estimation scheme
for fractional-order systems. In this study, a variation of Bar-
balat’s lemma is used to verify the convergence of estimate
errors. The stability of the equilibrium point of the fractional
order differential equation based on the Caputo–Katugampola
definition is studied in [11]. The complexity of modern con-
trol systems has motivated researchers to apply fractional
techniques for modeling and controlling these systems. The
authors in [12] have studied and proven the stability of the
delta fractional order Caputo difference equation using a dis-
crete fractional Lyapunov direct method. In [13], the authors
proposed a Lyapunov direct method to study the stability of
nonlinear discrete fractional systems implemented based on
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backward difference. They provided conditions for asymptotic
stability. The stability proof is obtained in [12], [13] by apply-
ing the fractional difference to a Lyapunov candidate. In our
paper, the stability analysis is addressed based on the classical
integer order analysis. The author in [14] proposes a new algo-
rithm to identify SISO discrete fractional order linear dynamic
systems with error-in-variable. The author in [15] investigated
the design of fractional order discrete time controllers, where
the performance of the controller was studied based on the
Grünwald-Letnikov definition. Since the Grünwald-Letnikov
and Riemann-Liouville definitions are equivalent [16], one
can be substituted for the other [17].

However, to the best of our knowledge, and unlike the
research presented in this paper, there are no studies that use
discrete fractional order techniques for controlling classical
discrete systems that have already been modeled by integer
order difference equations. Here, fractional order calculus is
used to increase the degrees of freedom of control and thus
provide extra flexibility to the control designer and improve
performance. It is worth emphasizing that even though we
deal with the DT case, a DT FO derivative retains some of
the desirable properties of the CT FO derivatives with the
advantage that the DT FO derivatives are easier to implement.

In [18], the author designed a new algorithm for a least-
squares parameter estimator, where the learning rate is up-
dated every time step. However, the update law is in the
regression form, while our technique, as we will see, is free
from this restriction. The proposed adaptive law saves past
information in order to yield more design flexibility and im-
proved parameter convergence.

This paper deals with structured uncertainty, unlike un-
structured uncertainty, where other mechanics can be used,
such as neural networks, fuzzy methods, or further, as the au-
thors in [19] model the lumped uncertainties with Bernstein-
type operators.

This paper contributes to the control system community by
employing DFC for both stand-alone parameter estimation
(for function approximation) and indirect adaptive control
(IAC) for a class of nonlinear systems with structured un-
certainties. The use of Fractional Order (FO) integrals in
adaptation laws brings with it a memory of sorts to the
adaptive mechanism. The analysis in this paper is new and
useful because it shows that this memory provides interesting
stability and convergence properties to the adaptive element,
properties that are otherwise not found in traditional integer
order adaptation. The fractional order integrator has value
within the context of adaptive control, and this paper is a novel
attempt at demonstrating this value. The new discrete frac-
tional order adaptive law (DFOAL) is designed to estimate the
parameters of a structured uncertainty presented in an integer
order DT system. In the stability analysis, we use the integer
order backward difference equations to provide stability con-
ditions, which is an additional contribution to the area because
we do not require unrealistic fractional derivatives of the plant
itself. The final contribution to this paper is the additional
modification of the adaptive law to improve the parameter

estimator’s performance. Under some conditions, this modi-
fied DFOAL will be able to provide asymptotic convergence
to the true value of the uncertain parameters without the need
for persistency of excitation. It only requires sufficient excita-
tion.

The flow of the paper is divided into two parts: first, we
setup the problem of stand-alone function approximation; and
second, we extend this concept to adaptive control by estimat-
ing the parameters of the controller on-line. The parameter
estimation is performed using the gradient descent technique.
We use the DFC technique to generalize the integer-order
classical gradient descent law to a fractional order gradient de-
scent law. The paper is further subdivided into eight sections
that are organized as follows: After we present an overview
of DFC in Section II, we introduce the problem statement
and the classical Integer Order (IO) gradient descent adap-
tive law in Section III. Section IV gives an overview of the
IO gradient update of parameters. Section V introduces the
DFOAL, which is modified further in Section VI. Sections V
and VI also present a numerical example for each case. Sec-
tion VII extends the results to indirect adaptive control for
a class of DT systems with structured uncertainties. Finally,
Section VIII concludes the paper.

II. PRELIMINARIES
In this section, we introduce definitions and concepts of DFC
that are relevant to this paper.

Definition 1. [20]–[22]: For a function y(k), the forward
and backward difference operators Delta (�) and Nabla (∇),
respectively, are defined by

�my(k) = �(�m−1y(k)), (1)

∇my(k) = ∇(∇m−1y(k)), (2)

where �y(k) = y(k + 1) − y(k), ∇y(k) = y(k) − y(k − 1),
m = 1, 2, 3, . . . , and k ∈ Na = {a, a + 1, . . . }.

For convenience, here we choose the initial index to be
a = 0.Consider the rising factorial tm, with t ∈ R and m ∈ N,
defined by

tm = t (t + 1)(t + 2) . . . (t + m − 1).

It is also known as t to m rising and can be generalized to a
non-integer power.

Definition 2. [20], [21]: The generalization of the raising
factorial for non-integer real power ν is

tν = �(t + ν)

�(t )
, (3)

where �(·) is the Gamma function, t ∈ R − {. . . ,−2,−1, 0},
and ν ∈ R.

The fractional order sum introduced next is a generalization
of the integer order one.
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Definition 3. [13], [20], [21]: For f : Na → R, the back-
ward fractional sum (∇−ν) of order ν is defined by

∇−ν
a f (k) = 1

�(ν)

k∑
s=a

(k − s + 1)ν−1 f (s), (4)

where ν > 0, a is the initial index and k ∈ Na.
In contrast to the operator�−ν , which maps functions from

Na to Na+ν , the ∇−ν
a operator maps functions from Na to Na

[13], [20], [21]. This is the main reason behind choosing the
backward operator to represent the DFOAL in this paper. The
transformation between the nabla and the delta operators with
an integer order power (m = 1, 2, . . . ) can be done simply by
using the shift operator. However, for a non-integer order, the
transformation will also involve a change in the domain. More
details about this can be found in [23].

Similar to the two famous cases in continuous time
fractional calculus, for k ∈ N, m − 1 < ν < m, and m =
1, 2, . . . the nabla Riemann-Liouville fractional difference
can be obtained by taking the integer order difference of the
fractional sum of a discrete function f (k), i.e., ∇ν f (k) =
∇m(∇ν−m f )(k) while the opposite of it yields the Caputo
fractional difference, i.e., C∇ν f (k) = ∇ν−m∇m f (k) [13],
[20], [21], [24], [25].

Therefore, the backward Riemann-Liouville fractional dif-
ference for order ν, such that m − 1 < ν < m, is

∇ν
a f (k) = ∇m

�(m − v)

k∑
s=a

(k − s + 1)m−ν−1 f (s), (5)

and the backward Caputo fractional difference for order ν is

C∇ν
a f (k) = 1

�(m − ν)

k∑
s=a

(k − s + 1)m−ν−1∇m f (s). (6)

The relation between the fractional order difference in the
sense of Riemann-Liouville and Caputo is given in the fol-
lowing lemma.

Lemma 1: [26] For ν > 0, the following equality holds:

∇−ν∇ f (k) = ∇∇−ν f (k) − (k − a)ν

�(1 − ν)
f (a), k ∈ Na. (7)

III. PROBLEM STATEMENT
The problems of parameter estimation and IAC when dealing
with structured uncertainties will be tackled by using DT
fractional order techniques. In the following section, we in-
troduce the general background of the stand-alone parameter
estimation to get a full picture of the procedure. As mentioned,
in this study, structured uncertainty will be considered where
unknown ideal parameters are multiplied by a known accessi-
ble regressor to form the uncertainty.

A. STAND-ALONE PARAMETER ESTIMATION
For stand-alone parameter estimation for function approxi-
mation, we will consider the integer order (IO) discrete-time

system

F (k) = θ∗�η(x(k)), (8)

which is a linear parametric model [4], [27] in the form
of structured measurable uncertainty, and x,F ∈ R. The un-
known parameter vector θ∗ ∈ Rp will be estimated on-line,
and its estimate is denoted θ̂ (k) ∈ Rp. Moreover, η(x(k)) ∈
Rp is known and accessible regressor. We define the com-
putable approximation error

ψ (k) = F̂ (k) − F (k),

= θ̂�(k)η(x(k)) − θ∗�η(x(k)),

= θ̃�(k)η(x(k)), (9)

where θ̃ (k) = θ̂ (k) − θ∗ is the parameter error vector. In a
limited sense, successful function approximation can be said
to take place when the instantaneous approximation error
ψ (k) converges to zero. This instantaneous convergence, how-
ever, does not imply that θ̃ (k) converges to zero, which is
a broader definition of function approximation that implies
convergence of ψ (k) to zero. In this paper, we are interested
in this broader definition.

B. INDIRECT ADAPTIVE CONTROL
For the IAC problem, we will study an IO dynamic nonlinear
system transformed into canonical form. Consider the DT
system in feedback linearizable canonical form

x1(k + 1) = x2(k),

...

xn−1(k + 1) = xn(k),

xn(k + 1) = f (x(k)) + u(k),

y(k) = x1(k), (10)

where f (x(k)) are assumed Lipschitz continuous. The goal is
to design a controller u(k) ∈ R such that the output y(k) ∈ R
asymptotically tracks a known bounded reference sequence
r(k). We assume that the signals r(k), . . . , r(k + n) are avail-
able (computable using a reference model or delay). For
a bounded reference sequence, the system’s states will be
bounded if the error is forced to be bounded. The system error
will be represented using an error manifold, defined as

e(k) = k1(x1(k) − r(k)) + k2(x2(k) − r(k + 1)) + . . .

+ kn−1(xn−1(k) − r(k + n − 2))

+ xn(k) − r(k + n − 1). (11)

This means that

e(k + 1) = χ (k) + f (x(k)) + u(k), (12)

where

χ (k) = k1(x2(k) − r(k + 1))+k2(x3(k)−r(k + 2))+. . .
+ kn−1(xn(k) − r(k + n − 1)) − r(k + n). (13)
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Recall, from (10), y(k) = x1(k). Taking the z-transform of
both sides of (11), we have that

E (z) = k1(Y (z) − R(z)) + k2z(Y (k) − R(z)) + . . .

+ kn−1zn−1(Y (k) − R(z)) + zn(Y (k) − R(z)), (14)

which means

(Y (z) − R(z))

E (z)
= 1

zn−1 + kn−1zn−2 + · · · + k2z + k1
, (15)

where, given the discrete-time z-transform operator Z , Y (z) =
Z{y(k)}, R(z) = Z{r(k)}, and E (z) = Z{e(k)}. For stability
purposes, the real coefficients ki (i = 1, . . . n − 1) in (15) are
chosen according to the Jury stability criterion for placing the
poles of the transfer function (15) inside the unit circle. If the
controller u(k) is chosen as

u(k) = −χ (k) − f (x(k)) + κe(k), (16)

then (12) will become

e(k + 1) = κe(k). (17)

Hence, for |κ| < 1, the error sequence e(k) will converge
exponentially to 0. However, we assume that the plant is
subject to uncertainties in f (x(k)), and therefore (16) cannot
be implemented.

IV. INTEGER ORDER GRADIENT UPDATE LAW
In this paper, the normalized gradient descent adaptive law [4]
will be applied to update the estimated parameter vector on-
line. It is given by

θ̂ (k) = θ̂ (k − 1) − γ η(x(k − 1))ψ (k − 1)

α + ‖η(x(k − 1))‖2
, (18)

or, using backward difference operator (∇),

∇ θ̂ (k) = ∇1θ̂ (k) = −γ η(x(k − 1))ψ (k − 1)

α + ‖η(x(k − 1))‖2
, (19)

where α > 0 and the learning rate γ > 0. Let Am(k) =
η(x(k))η�(x(k))
α+‖η(x(k)‖2 . Notice that Am(k) is a p-by-p bounded symmet-

ric positive semi-definite matrix, and λmax(Am(k)) < 1 for all
k, where. in this paper, λmax(·) and λmin(·) are respectively
used to represent the maximum and minimum eigenvalues
operator. Therefore, from (18), the parameter error vector
dynamics can be written as

θ̃ (k) = θ̃ (k − 1) − γAm(k − 1)θ̃ (k − 1), (20)

or

θ̃ (k + 1) = θ̃ (k) − γAm(k)θ̃ (k),

= [Ip − γAm(k)]θ̃ (k), (21)

where Ip is the p-by-p identity matrix. The stability analysis
can be done by using either Lyapunov direct method or by
performing matrix convergence analysis. Due to space con-
straints, we only show the latter here.

Note that λmax(Am(k)) = λmax(ηη� )
α+‖η‖2 , and the matrix ηη� has

only one non-zero eigenvalue, which is shown in the next
Lemma.

Lemma 2: [28], [29] The positive semi-definite matrix A =
ηη�, where η is a p-by-1 non-zero vector, has only one non-
zero eigenvalue, given by

λ(A) = ‖η‖2.

Matrix [I − γAm(k)], whose eigenvalues are 1 −
γ λ(Am(k)), is a convergent matrix if |1 − γ λ(Am(k))| < 1,
or

−1 < 1 − γ λ(Am(k)) < 1,

0 < γλ(Am(k)) < 2,

0 < γ <
2

λmax(Am(k))
. (22)

It can be verified that (22) would be the same stability condi-
tion acquired if using Lyapunov analysis. Now, from Lemma

2 it follows that λmax(Am(k)) = ‖η(x(k))‖2

α+‖η(x(k))‖2 < 1 and subse-
quently, (22) can be (conservatively) simplified to 0 < γ < 2.
For a more robust (but expensive) result, the learning rate γ
could be updated every iteration since we have access to the
regressor η(x(k)) and can calculate λmax(Am(k)). Thus, it is
sufficient to make sure that, for each s ∈ Na,

0 < γ (s) < 2

(
α + ‖η(x(s))‖2

‖η(x(s))‖2

)
(23)

is satisfied for γ (s). Lastly, notice that (21) can be rewritten
as

θ̃ (k) = θ̃ (0) −
k−1∑
s=0

γ (s)Am(s)θ̃ (s). (24)

After we present the integer order gradient update law, we
transition to a more generalized adaptive law by exploiting
fractional calculus techniques.

V. STAND-ALONE PARAMETER ESTIMATION USING
DFOAL
Now, we go back to the classical difference (19). This ex-
pression can be generalized to a fractional order difference
equation of order 0 < ν ≤ 1. That is,

∇ν θ̂ (k) = h(k), (25)

where h(k) = − γ (k)η(x(k−1))ψ (k−1)
α+‖η(x(k−1))‖2 . Next, we present a useful

theorem on the nabla fractional order initial value problem
based on the Caputo definition.

Theorem 1: [21] Let h : Na+1 → R, ν > 0, and m = 	ν
,
where 	·
 is the ceiling function. Then, for 0 ≤ N ≤ m − 1,
the Caputo-based nabla fractional order initial value problem

C∇ν
a z(k) = h(k), k ∈ Na+1,

∇N z(a) = cN ,
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has the solution

z(k) =
m−1∑
N=0

(k − a)N

(N + 1)!
z(a) + ∇−ν

a h(k). (26)

Corollary 1: For h : N1 → R and 0 < ν ≤ 1, then, the
Caputo-based nabla fractional order initial value problem

C∇ν
0 z(k) = h(k), k ∈ N1,

z(0) = z0,

has the solution

z(k) = z0 + ∇−ν
0 h(k), k ∈ N1. (27)

It can be noticed that the initial conditions take on the same
form when dealing with an integer order difference equation,
which is similar to its CT counterpart.

Now we are ready to introduce our first main result.
Theorem 2: Consider the integer order discrete system (8).

The generalization of the integer order difference (∇ν=1) of
the normalized gradient descent adaptive law (19) to non-
integer (0 < ν ≤ 1) order guarantees that the approximation
error ψ (k) tends to zero asymptotically and the parameter
error vector θ̃ (k) is bounded.

Proof: By applying Corollary 1 to (25), we have the
DFOAL in explicit form,

θ̂ (k) = θ̂ (0) −
k−1∑
s=0

γ (s)βs1 (k, s)
η(x(s))

α + ‖η(x(s))‖2
ψ (s), (28)

where

βs1 (k, s) = 1

�(ν)

�(k − (s + 1) + ν)

�(k − (s + 1) + 1)
. (29)

It is clear that, if ν = 1, the kernel βs1 (k, s) = 1. That makes
the IO adaptive law a special case of FO one. The order ν is an
additional design parameter, and therefore, design flexibility
is increased, as will be later illustrated via examples. The
fractional order parameter error vector is

θ̃ (k) = θ̃ (0) −
k−1∑
s=0

γ (s)βs1 (k, s)Am(s)θ̃ (s), (30)

and since 0 < ν ≤ 1 and s ≤ k − 1, we have that 0 <
βs1 (k, s) ≤ 1. By comparing (24) with (30), the boundedness
condition for (30) can be deduced,

0 < γ (s) <
2

βs1 (k, s)λmax(Am(s))
. (31)

Since the kernel βs1 (k, s) is upper bounded by 1, notice that

0 < γ (s) <
2

λ(Am(s))
≤ 2

βs1 (k, s)λ(Am(s))
, (32)

and thus the DFOAL may expand the range of γ with respect
to the range of the IO case in (23). �

Note that, similar to the IO update law (19), all we can guar-
antee at this point is boundedness and convergence of ψ (k) to

zero, and boundedness of θ̃ (k), albeit with a greater degree
of freedom, as will be illustrated in Section V-B. Parameter
convergence can be obtained using the normalized discrete
fractional gradient descent (28) if the regressor is persistently
excited, as is well known in the literature [4]. However, as will
be shown in Section VI, a stronger result can be obtained via
a suitable modification of the DFOAL in (28).

Remark 1: The DFOAL in (28) keeps saving the past val-
ues of the regressor that is weighted with the kernel βs1 as the
time proceeds. The summation is carried out over time, unlike
integer-order techniques that use the integer-order integral or
sum, which merely update the past estimated values of the
parameters. Moreover, the general structure of the DFOAL is
similar to the solution of the LTV system, where it is divided
into two terms: one of them depends on the initial condition,
and the other depends on the input signal. However, the kernel
in the DFOAL, i.e., βs1 (k, s), which is expressed in terms of
the Gamma function, gives the advantage of keeping all the
past values recorded in the memory. Notice from (29) that

βs1 (k, s) = βs1 (k − 1, s)
k − s + ν − 2

k − s − 1
. (33)

Hence, computing the kernel βs1 (k, s) under the summation
in (28) means that it is not sufficient to know βs1 (k − 1, s), as
(33) shows that the second term to the right of the equality
depends on s. At each k step, the DFOAL will include all
k − 1 step in the memory in terms of s. The update approach
in DFOAL could be problematic regarding the size of the
memory. In the next section we will discuss and solve this
problem.

A. IMPLEMENTATION OF DFOAL
An advantage of DFOAL (28) is its ability to save and use
all the past values of the parameter vector θ̂ (k), therefore,
taking advantage of memory. However, implementing (28) in
practice may not be computationally possible for a large k.
That is, as k grows larger, saving all previous values of θ̂ (k)
becomes more computationally expensive. This problem can
be overcome using the following two methods.

Method 1: A desired tolerance ε of the absolute approxima-
tion error |ψ | can be chosen, i.e., |ψ | ≤ ε, for some positive
scalar ε, where the estimated parameters θ̂ (k) reach a certain
level of accuracy after which there is no need to save new val-
ues of θ̂ (k). Essentially, at the step time k when we stop adding
new values because |ψ | ≤ ε, the kernel βs1 (k, k − 1) = 1 and
will be fixed there, so that the DFOAL (28) becomes the
normalized gradient descent adaptive law (18). It should be
noted that switching between two or more algorithms may
necessitate reworking the overall stability analysis if the sta-
bility results when using either algorithms are different. Due
to space constraints, this is not elaborated upon in this paper.
Method 2: This method consists in running the DFOAL (28)
for a cycling M-length window, M > 0, when k > M. That
is, if k ≤ M, the DFOAL is implemented as defined by (28).
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FIGURE 1. Parameter estimation using DFOAL with ν = 0.8 for different
choices for M.

However, for k > M, it is changed to

θ̂ (k) = θ̂ (k − M ) −
k−1∑

s=k−M

γ (s)βs1 (k, s)
η(x(s))

α + ‖η(x(s))‖2
ψ (s).

(34)
Implementing (34) for k > M means that we only have to

save M instances (between k − 1 and k − M) of parameter
vectors θ̂ (k), learning rate γ (k), regressor η(x(k)), and ap-
proximation error ψ (k), as opposed to k instance of the same
entities if implementing (28) instead. Note that the size of
M could be chosen such that it is large enough to conform
with the available memory capability. In Lemma 3 below, we
address the stability and performance consequences of using
Method 2.

B. ILLUSTRATIVE EXAMPLE
Here, we test the performance of DFOAL parameter estima-
tion and compare the choice of fractional order (ν = 0.8) with
integer order (ν = 1) for the update law (28). When imple-
menting the DFOAL, we use Method 2 described above.

Consider the DT system described in (8), where the true

unknown parameter is θ∗ = [
1,− 3

4

]�
, and the regressor is

η(x(k)) = [sin(2x(k)), cos(2x(k))]�, where x(k) = πk/100
spans the interval [0, 2π ] and k = 0, 1, . . . 200. It can be no-
ticed that it is persistently exciting since

2∑
x=1

η(x)η�(x) =
[

1.0117 −0.7185

−0.7185 0.6004

]
≥ 0.0588I.

Fig. 1 shows the behavior of the estimated parameters us-
ing DFOAL with order ν = 0.8 for different choices for M
(50, 100, and 200).

Fig. 2 plots the true function and its estimate for a fixed
learning rate γ = 1.9 when using DFOAL with ν = 0.8 and
M = 200 and the IO adaptive law. For the same orders, Fig. 3
shows the behavior of the parameter estimates. The plot shows
that the use of the FO adaptive law improves the convergence
behavior. The most notable feature is that DFOAL keeps past
values of the parameters. On the other hand, the classical inte-
ger order adaptive law does not save past values, and instead it
performs an instantaneous update. Noticeably, the use of FO

FIGURE 2. Uncertainty estimation using IO (ν = 1) gradient descent
adaptive law and DFOAL (ν = 0.8).

FIGURE 3. Parameter estimation using IO (ν = 1) gradient descent
adaptive law and DFOAL (ν = 0.8).

adaptation law to estimate an IO system parameter exhibits
good behavior and faster parameter convergence.

However, the convergence to the true value is still restricted
by the need for persistence of excitation of the regressor. In
the next section, we will modify the FO adaptive law (28) to
obtain a new adaptive law that can help drive the estimated
parameters progressively closer to their true value even with-
out persistence of excitation, provided sufficient excitation is
present. This section presents the modified adaptive law, the
stability analysis, and a practical way to implement it, which
is the main intent of this paper.

VI. MODIFIED DFOAL
The DFOAL (28) at time-step k + 1 is

θ̂ (k + 1) = θ̂ (0)−
k∑

s=0

γ (s)βs1 (k + 1, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2
,

= θ̂ (0)−
k−1∑
s=0

γ (s)βs1 (k + 1, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2

− γ (k)βs1 (k + 1, k)
η(x(k))

α + ‖η(x(k))‖2
ψ (k),

= θ̂ (0)−
k−1∑
s=0

γ (s)βs1 (k + 1, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2

− γ (k)
η(x(k))ψ (k)

α + ‖η(x(k))‖2
. (35)
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From the gamma function’s property �(ν + 1) = ν�(ν), we
have

βs1 (k + 1, s) = �((k + 1) − (s + 1) + ν)

�(ν)�((k + 1) − (s + 1) + 1)
,

= �(k − (s + 1) + ν)

�(k − (s + 1) + 1)

+ (ν − 1)
�(k − (s + 1) + ν)

�(ν)�(k − (s + 1) + 2)
,

= βs1 (k, s) − νcβs2 (k, s),

with νc = 1 − ν and βs2 = �(k−(s+1)+ν )
�(ν )�(k−(s+1)+2) . Thus,

θ̂ (k + 1) = θ̂ (0) −
k−1∑
s=0

γ (s)
[
βs1 (k, s) − νcβs2 (k, s)

]

× η(x(s))

α + ‖η(x(s))ψ (s)‖2
− γ (k)

η(x(k))ψ (k)

α + ‖η(x(k))‖2
,

= θ̂ (0) −
k−1∑
s=0

γ (s)βs1 (k, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2

+
k−1∑
s=0

γ (s)νcβs2 (k, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2

− γ (k)
η(x(k))ψ (k)

α + ‖η(x(k))‖2
,

(36)

= θ̂ (k) − γ (k)
η(x(k))ψ (k)

α + ‖η(x(k))‖2

+ νc

k−1∑
s=0

γ (s)βs2 (k, s)
η(x(s))ψ (s)

α + ‖η(x(s))‖2
. (37)

From (37), the parameter error vector can be written as

θ̃ (k+1) = θ̃ (k) − γ (k)Am(k)θ̃ (k)

+ νc

k−1∑
s=0

γ (s)βs2 (k, s)Am(s)θ̃ (s),

= θ̃ (k) − γ (k)Am(k)θ̃ (k)

+ νc

k−1∑
s=0

γ (s)βs2 (k, s)Am(s)
[
θ̃ (k)− θ̃ (k)+ θ̃ (s)

]
,

= θ̃ (k) − γ (k)Am(k)θ̃ (k)

− νc

k−1∑
s=0

γ (s)βs2 (k, s)Am(s)θ̃ (k)

+ νc

k−1∑
s=0

γ (s)βs2 (k, s)Am(s)
[
θ̃ (k)+θ̃ (s)

]
. (38)

By modifying the DFOAL to be

θ̂ (k+1) = θ̂ (k) − γ (k)
η(x(k))ψ (k)

m(k)2

− γ (k)νc

k−1∑
s=0

γ (s)βs2 (k, s)
η(x(s))ψ (s)

m(s)2

− γ (k)νc

k−1∑
s=0

γ (s)βs2 (k, s)Am(s)[θ̂ (k) − θ̂ (s)],

(39)

where m2(·) = α + ‖η(x(·))‖2, the parameter error vector be-
comes

θ̃ (k + 1) = θ̃ (k) − γ (k)Am(k)θ̃ (k)

− γ (k)νc

k−1∑
s=0

γ (s)βs2 (k, s)
A(s)

m2
s
θ̃ (k). (40)

By letting L2(s, k) = γ (s)βs2 (s, k), we have

θ̃ (k + 1) = θ̃ (k) − γ (k)
A(k)

m2(k)
θ̃ (k)

− γ (k)νc

k−1∑
s=0

L(s, k)η(x(s))L(s, k)η�(x(s))

m2(s)
θ̃ (k).

(41)

Hence,

θ̃ (k + 1) = θ̃ (k)−γ (k)
A(k)

m2(k)
θ̃ (k)−γ (k)νc�(k)θ̃ (k),

=
(

I − γ (k)
A(k)

m2(k)
− γ (k)νc�(k)

)
θ̃ (k), (42)

where

�(k) =
k−1∑
s=0

L(s, k)η(x(s))L(s, k)η�(x(s))

m2(s)
= W W �, (43)

and W ∈ Rp×k is such that

W (k) =
[

L(0, k)η(x(0))

m2(0)
,

L(1, k)η(x(1))

m2(1)
,

. . . ,
L(k − 1, k)η(x(k − 1))

m2(k − 1)

]
. (44)

Notice that�(k) is at least positive semi-definite, i.e.,�(k) ≥
0. We designate matrix � as the Information Accumulation
Matrix (IAM). Since η ∈ Rp, � ∈ Rp×p. At the iteration
k = 1, the rank of the IAM is 1 since it results from the
multiplication of two vectors [29], and if the regressor η is
exciting enough, the IAM can become full rank at iteration
k = kp, for some kp ≥ p. Therefore, after the kth

p iteration, if
the IAM matrix is full rank, then λmin(�) > 0, which we call
full rank condition. Note that this condition is different from
the stronger requirement of persistent excitation. Instead, here
we only require η to be sufficiently exciting, until some index
kp at which � becomes full rank.
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It is worth noting that if ν = 1 in the modified DFOAL
(39), which implies that νc = 0, then it will be reduced to the
classical normalized gradient descent adaptive law (18).

Assumption 1: The regressor η(x(k)) is sufficiently excit-
ing so that there exists an index kp ≥ p at which the matrix
�(k) is full rank.

Theorem 3: The use of modified DFOAL (39) for estimat-
ing the parameters of the integer order discrete system (8)
guarantees that both the approximator and parameter errors
(ψ (k), θ̃ (k)) converge to zero if the Assumption 1 is satisfied.

Proof: The proof can be given in two ways: the Lya-
punov direct method or matrix convergence analysis. Here,
we present both analyses to highlight the fact that the matrix
convergence method yields a less conservative result.

First, by designing a positive definite, decrescent, radially
unbouded function

Vθ̃ (θ̃ (k)) = θ̃ (k)�θ̃ (k) = ‖θ̃ (k)‖2, (45)

the classical difference operator of (45) is

�Vθ̃ (θ̃ (k)) = θ̃ (k + 1)�θ̃ (k + 1) − θ̃ (k)�θ̃ (k),

= θ̃�(k)[I − γ (k)Am(k) − γ (k)νc�]2θ̃ (k)

− θ̃ (k)�θ̃ (k),

= θ̃�(k)[−2γAm(k) + γ 2A2
m(k)

+ 2γ 2νcAm(k)�(k) − 2γ νc�(k)

+ γ 2ν2
c�(k)2]θ̃ (k). (46)

In this case, we split the matrix

− 2γAm(k) + γ 2A2
m(k) + 2γ 2νcAm(k)�(k)

− 2γ νc�(k) + γ 2ν2
c�(k)2

into two matrices,

−2γAm(k) + γ 2A2
m(k)

and

−2γ νc�(k) + 2γ 2νcAm(k)�(k) + γ 2ν2
c�(k)2.

The first matrix would be positive semi-definite if we pick the
learning rate γ according to (22).

The second matrix,

[−2γ νc�(k) + 2γ 2νcAm(k)�(k) + γ 2ν2
c�(k)2]

= −2γ νc�(k)

[
I − γAm(k) − 1

2
γ νc�(k)

]
,

is strictly negative if

γAm(k) + γ
νc

2
�(k) < I,

or

γAm(k) + γ
νc

2
�(k)

< [γ λmax(Am(k)) + γ
νc

2
λmax(�(k))]I < I.

Thus, we arrive at the condition

γ λmax(Am(k)) + γ
νc

2
λmax(�(k)) < 1.

Hence, if we pick

0 < γ <
1

λmax(Am(k)) + νc
2 λmax(�(k))

,

= 2

2λmax(Am(k)) + νcλmax(�(k))
, (47)

then �Vθ̃ (θ̃ (k)) < 0. Given that �Vθ̃ = Vθ̃ (k + 1) − Vθ̃ (k) =
‖θ̃ (k + 1)‖2 − ‖θ̃ (k)‖2 and �Vθ̃ (θ̃ (k)) < 0 also means

‖θ̃ (k + 1)‖ < ‖θ̃ (k)‖, (48)

or, equivalently, limk→∞ ‖θ̃ (k)‖ = 0.
Second, the stability analysis may also be performed by

studying the matrix converge properties. Equation (42) can be
written as

θ̃ (k + 1) = [I − γ (k)Am(k) − γ (k)νc�]θ̃ (k). (49)

Now, recalling Theorem (4.3.1) (Weyl) in [29],

λmax(γ (k)Am(k) + γ (k)νc�)

≤ γ (k)λmax(Am(k)) + γ (k)νcλmax(�). (50)

The eigenvalues of the matrix [I − γ (k)Am(k) − γ (k)νc�]
are given by 1 − λ(γ (k)Am(k) + γ (k)νc�). Thus, we pick the
learning rate γ (k) such that the eigenvalues are located within
the unit circle, that is,∣∣∣∣1 − λ(γ (k)Am(k) + γ (k)νc�)

∣∣∣∣ < 1,

or

0 < λ(γ (k)Am(k) + γ (k)νc�) < 2. (51)

From (50), (51) results in

0 < γ (k) (λmax(Am(k)) + νcλmax(�)) < 2.

Hence,

0 < γ (k) <
2

λmax(Am(k)) + νcλmax(�)
. (52)

Notice that this condition is less conservative than (47). In the
end, from (49), if γ is chosen according to (52), then (51) is
verified and, consequently, (48) is also verified.

Therefore, picking γ such that (47) or (52) is satisfied,
when using the modified DFOAL, we have proven (48), which
means that ‖θ̃ (k)‖ is bounded and it asymptotically converges
to zero. �

The ultimate result of [18] is asymptotic stability of the
approximation error and boundedness of the parameter error.
Here, in the ideal case where all the past information can
be saved, the asymptotic stability of the origin e = 0, θ̃ = 0
follows. However, computational limit of memory in practice
imposes a restriction on the ideal results. In the next remark,
this problem is addressed and a practical solution is presented,
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similar to Section V-A, that recovers the ideal results and
yields practical stability of [e, θ̃�]�.

Remark 2: To remedy the computational limit problem,
in practice, the implementation of the modified DFOAL can
be done as described by Method 2 in Section V-A. That is,
the modified DFOAL is implemented for a cycling M-length
window. More specifically, if k ≤ M, the modified DFOAL,
as given by (39), should be used as is. However, for k > M, it
is then changed to

θ̂ (k+1) = θ̂ (k) − γ (k)
η(x(k))ψ (k)

m(k)2

− γ (k)νc

k−1∑
s=k−M

γ (s)βs2 (k, s)
η(x(s))ψ (s)

m(s)2

− γ (k)νc

k−1∑
s=k−M

γ (s)βs2 (k, s)Am(s)[θ̂ (k) − θ̂ (s)].

(53)

It is worth mentioning that the practical expression of the
modified DFOAL, i.e. (53), is obtained by using (34) and
following the same steps from (35) to (39).

The following lemma discusses the stability consequences
of using the practical implementation of the modified
DFOAL. It shows that the parameter error vector is bounded
and, furthermore, decreases and tends toward zero with every
iteration granted � is positive definite.

Lemma 3: Using the practical implementation of the mod-
ified DFOAL given by (53), ‖θ̃ (k)‖ remains bounded. Fur-
thermore, every time � is positive definite, the size of ‖θ̃ (k)‖
further shrinks, and θ̃ (k) asymptotically approaches zero until
the next cycling window.

Proof: From (53), the parameter error can be expressed as
(42), where, this time around,

�(k) =
k−1∑

s=k−M

L(s, k)η(x(s))L(s, k)η�(x(s))

m2(s)
= W W �,

(54)

and W ∈ Rp×M is such that

W (k) =
[

L(M − k, k)η(x(M − k))

m2(M − k)
,

. . . ,
L(k − 1, k)η(x(k − 1))

m2(k − 1)

]
. (55)

The matrix � = WW � may become positive definite within
the time frame k ≤ M, as long as, first, M ≥ p and, second, p
linearly independent regressors L(s,k)η(x(s))

m2(s)
, s = k − M, k −

M + 1, . . . , k − 1, can be found within this time frame. This
is because, as mentioned above, having p linearly independent
regressors in W makes W full row rank and, subsequently, �
positive definite.

For p ≤ k ≤ M, we have two cases: either � is positive
definite, i.e., � > 0, or � is only positive semi-definite, i.e.,

FIGURE 4. Parameter estimation using modified DFOAL with ν = 0.8 for
different choices for M.

� ≥ 0. If � > 0, then from (48),

‖θ̃ (k)‖ < ‖θ̃ (k − 1)‖ < ‖θ̃ (0)‖.
Otherwise, with � ≥ 0,

‖θ̃ (k)‖ ≤ ‖θ̃ (k − 1)‖ ≤ ‖θ̃ (0)‖.
For k > M, we have the previous two cases again. If � > 0,
then again from (48), ‖θ̃ (k)‖ < ‖θ̃ (k − 1)‖. However, if � ≥
0, then ‖θ̃ (k)‖ ≤ ‖θ̃ (k − 1)‖. �

A. MODIFIED DFOAL ILLUSTRATIVE EXAMPLE
The modified adaptive law (39) will be applied to the example
presented in [27],

F (k) = [θ∗
1 , θ

∗
2 ]

⎡
⎣ 1

exp

(
−

(
x(k)− π

2
2

)2
)⎤

⎦ , (56)

where [θ∗
1 , θ

∗
2 ]� = [−0.25, 10]� is a true unknown parameter

vector, x(k) ∈ [−2π, 2π ], where k = 1, 2, . . . , 1000.
Fig. 4 shows the behavior of the estimated parameters

θ̂ (k) using modified DFOAL with order ν = 0.8 for different
choices for M (200, 600), and the ideal case approximated by
M = 1000. It can be observed that, the larger M is, the faster
the convergence of the parameter estimates.

Fig. 5 shows the plot of the true function and its estimate us-
ing the modified DFOAL for M = 1000 and ν = 0.8, ν = 0.9,
and ν = 1. In this example, the regressor is not persistently
exciting. However, it is exciting for some period of time,
where the modified DFOAL is sufficiently stimulated and can
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FIGURE 5. Uncertainty estimation using modified DFOAL (ν = 0.8, 0.9)
and IO (ν = 1).

FIGURE 6. Parameter estimation using modified DFOAL (ν = 0.8, 0.9) and
IO (ν = 1).

therefore identify the unknown parameters. Fig. 6 shows the
behavior of the parameter estimates. The plot shows that the
estimated parameters using (53) converge to their true values,
in spite of the lack of persistency of excitation, whereas the
parameters do not converge when using the IO update law
(18).

The above analysis, results, and simulation for the function
approximation will now be extended and applied to the DT
control system. The modified DFOAL will be used to estimate
the parameters of the indirect adaptive controller in the next
section.

VII. INDIRECT ADAPTIVE CONTROL
In this section, we will approximate the unknown scalar plant
dynamic f (x(k)) in (10) and use their approximations to

construct the adaptive controller. Consider the following two
assumptions, show in (57).

Assumption 2: The function f (x(k)) is in the form of struc-
tured uncertainty, i.e., they are formed by the multiplication
of an unknown ideal parameter vector and a known accessible
regressor vector.

According to Assumption 2, there exist ideal but unknown
constant parameter vectors θ∗ ∈ Rp with p ≥ 1 and corre-
sponding measurable regressor vectors η(x(k)) ∈ R such that

f (x(k)) = θ∗�η(x(k)), (57)

By letting θ̂ (k) be the approximations of θ∗ then their corre-
sponding parameter error vectors are θ̃ = θ̂ − θ∗.

Based on the linear parametric models of f (x(k)) in (57)
its approximations is given as

f̂ (x(k)) = θ̂�(k)η(x(k)). (58)

Referring back to (16), we define the feedback indirect adap-
tive controller as

uI (k) = − χ (k) − f̂ (x(k)) + κe(k),

= − χ (k)−θ̂�(k)η(x(k))+ κe(k), (59)

where |κ| < 1. By replacing u(k) with uI (k) in (12), the ex-
pression e(k + 1) becomes

e(k + 1) = κe(k) − θ̃�(k)η(x(k)). (60)

Now, let

ψ (k) = θ̃�(k)η(x(k)). (61)

From (60) and (61), notice that

ψ (k) = κe(k) − e(k + 1), (62)

which means that

ψ (k − 1) = κe(k − 1) − e(k). (63)

It should be added that ψ (k − 1) is computable for all k ≥ 1
because we always have access to the error e(k).

Theorem 4: Consider the discrete-time feedback linearized
system (10) under Assumption 2. Under the full rank condi-
tion, the use of modified DFOAL (39) will guarantee that the
error manifold of the system e(k) (11) and the parameter error
θ̃ (k) converge to zero asymptotically.

Proof: The proof will be performed by using Lyapunov di-
rect method. By referring to [1], [30], consider the Lyapunov
function candidate

V (e, θ̃ ) = c1Ve(e) + c2Vθ̃ (θ̃ ), (64)

where c1, c2 are constants to be picked, and

Ve(e) = e2(k), (65)

Vθ̃ (θ̃ ) = θ̃ (k)�θ̃ (k). (66)
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Clearly, V is a positive definite, decrescent, and radially un-
bounded function. From (62) we have

e2(k + 1) − e2(k) = ψ2(k) − 2κψ (k)e(k) + (κ2 − 1)e2(k).
(67)

We know that for any a, b ∈ R, (a + b)2 ≥ 0, which leads
to −2a2 ± 2ab ≤ b2 − a2, thus we can bound e2(k + 1) −
e2(k) by

�Ve(e) = e2(k + 1) − e2(k),

≤ − 1 − κ2

2
e2(k) + c3ψ

2(k), (68)

where c3 = 1+κ2

1−κ2 > 1. For IAC we will use the modified
DFOAL for estimating the plant parameters. We repeat (45)
through (47) to suit (68), thus

�Vθ̃ (θ̃ (k)) = θ̃�(k)[−2γAm(k) + γ 2A2
m(k)]θ̃ (k)

+ θ̃�(k)
[
2γ 2νcAm(k)�(k) − 2γ νc�(k)

+γ 2ν2
c�(k)2] θ̃ (k),

≤ −
[

2 − η�(x(k))η(x(k))

m(k)2

]
γψ (k)2

m(k)2

− 2γ νcλmin(�(k))

[
1 − γ (λmax(Am(k)).

+νc

2
λmax(�(k))

) ]
θ̃�(k)θ̃ (k). (69)

Denote c4 = 2 − γ ‖η(k)‖2

m(k)2 and let

c5 =
[
1 − γ

(
λmax(Am(k)) + νc

2
λmax(�(k))

)]
. (70)

By picking

0 < γ <
2m(k)2

‖η(k)‖2
, (71)

we obtain 0 < c4 < 2. Note that, by using Lemma 2, (71) can
also be satisfied by using (22). The more restrictive condition
of the learning rate γ presented in (47) would force c5 to be
0 < c5 < 1.

From (64), (68), and (69),

�V (e, θ̃ ) = c1�Ve(e) + c2�Vθ̃ (θ̃ ),

≤ − c1
1 − κ2

2
e2 − c2c5γ νcλmin(�(k))θ̃�(k)θ̃ (k)

−
[

c2c4γ

m(k)2
− c1c3

]
ψ2(k). (72)

Let c6 = c2c4γ

m(k)2 − c1c3. If we choose c1, c2 to satisfy c2 ≥
c1c3
γ c4

m(k)2, then c6 > 0. Hence,

�V (e, θ̃ ) ≤ −c7V (e, θ̃ ), (73)

where c7 = max{ 1−κ2

2 , c5γ νcλmin(�(k))}. Hence, all signals
are bounded, and the tracking error converges to zero as k

tends to infinity. Moreover, if the IAM becomes full rank
at some index kp, then the error parameter vector will also
converge to zero, and consequently θ̂ (k) will asymptotically
converge to its true value θ∗. �

Remark 3: The procedure from Remark 2 applies to the
IAC case, as well as its corresponding parameter convergence
conclusions.

A. ILLUSTRATIVE NUMERICAL EXAMPLES
In this section, we will apply the IAC technique to a DT
system that is subjected to structured uncertainty.

Consider the DT system in canonical form,

x1(k + 1) = x2(k),

x2(k + 1) = x3(k),

x3(k + 1) = θ∗�η(x(k)) + u(k),

y(k) = x1(k), (74)

where θ∗ = [1,−1]� is considered as an unknown parameter
vector and η(x(k)) = [x1(k)2, x3(k)]�. The control law (59)
will be applied to the DT system (74) to drive the output y(x)
to track a reference sequence defined by

r(k) = exp

⎛
⎜⎝−1

4

(
k − k f

2

)2

k f

⎞
⎟⎠ , (75)

where k f is the final iteration. The modified DFOAL (39) is
utilized to approximate the controller parameters for different
orders, as is the classical integer order adaptive law, which, es-
sentially, is the DFOAL for ν = 1 for the sake of comparison.
The error manifold, in this example, is defined by

e(k)=k1(x1(k)−r(k))+k2(x2(k)−r(k+1))+x3−r(k + 2),
(76)

and consequently

χ (k)=k1(x2(k)−r(k+1))+k2(x3(k)−r(k+2))−r(k+3).
(77)

We choose κ = 0.3, k1 = 0.8 and k2 = −1.6 so that the roots
of the polynomial z2 + k2z + k1 are 0.8 ± i0.4, which are
located inside the unit circle. The initial vector state is x(0) =
[1, 1, 1]�.

Fig. 7 shows the plot of the output y(k) and the reference
sequences r(k) when using the modified DFOAL for orders
ν = 0.6, ν = 0.8, and ν = 1 where the structure is reduced to
the classical integer order adaptive law. Fig. 8 shows the be-
havior of the parameter convergence for θ̂1 and θ̂2 for the same
orders respectively. The plot shows that the estimated param-
eters converge to their true value when using the modified
DFOAL, but they do not converge when using the classical
IO adaptive law.

As expected from the stability proof, the classical inte-
ger order adaptive law updates the controller’s parameters
to bring the tracking error to zero and the parameters er-
ror remains bounded, while the modified DFOAL forces the
tracking error to zero and additionally brings the estimated
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FIGURE 7. Uncertainty estimation using modified DFOAL (ν = 0.6, 0.8)
and IO (ν = 1).

FIGURE 8. Parameter estimation using modified DFOAL (ν = 0.6, 0.8) and
IO (ν = 1).

parameters to their true values. However, the parameter iden-
tification is still governed by the full rank condition of the
IAM.

Remark 4: Compared to the concurrent learning technique
presented in [27], the regressor η in this technique is naturally
perturbed by the kernel βs2 , which could help with the excita-
tion level. Note that this technique does not select items that
are stored in the IAM. However, the concurrent learning tech-
nique picks the information such that the minimum eigenvalue
of the information matrix is maximized. Also, be aware that
neither technique guarantees parameters convergence unless
the full rank condition of the information matrix is satisfied.

VIII. CONCLUSION
We studied the stability inherent in using the classical gradient
descent adaptive law for estimating DT systems that are sub-
jected to structured uncertainty. We showed that the stability
condition can also be used if we generalize the difference

equation for the adaptive law to a fractional order difference
equation. Because it uses the past values of the regressor,
DFOAL provides a better parameter estimation performance
than the classical gradient descent algorithm. Conversely, the
classical gradient descent algorithm only performs an instan-
taneous update of the values of the parameters. This can
clearly be noticed from (37) and its subsequent comments. We
further modified the DFOAL to improve its performance, in
order to provide asymptotic parametric convergence in the pa-
rameter estimation problem without the need for persistency
of excitation. We presented a way to implement the DFOAL
and the modified DFOAL to remedy the computational limit
problem and make them practical, which yields asymptotic
parametric convergence over a cycling M-window, as long
as the regressor is sufficiently (not presciently) excited and
the IAM is positive definite within some cycling windows.
Furthermore, we used the modified DFOAL to identify the pa-
rameters of the control law for a class of nonlinear DT systems
as a means of achieving closed-loop stability. The modified
DFOAL saves past information in the IAM. The identification
of the true values of the unknown parameters depends on the
definiteness of the IAM, for which, convergence is restricted
by the full rank condition of the IAM.
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