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ABSTRACT Mechanical ventilators facilitate breathing for patients who cannot breathe (sufficiently) on their
own. The aim of this paper is to estimate relevant lung parameters and the spontaneous breathing effort of a
ventilated patient that help keeping track of the patient’s clinical condition. A key challenge is that estimation
using the available sensors for typical model structures results in a non-identifiable parametrization. A
sparse optimization algorithm to estimate the lung parameters and the patient effort, without interfering
with the patient’s treatment, using an £;-regularization approach is presented. It is confirmed that accurate
estimates of the lung parameters and the patient effort can be retrieved through a simulation case study and

an experimental case study.

INDEX TERMS ¢-regularization, mechanical ventilation, parameter estimation, respiratory systems, system

identification.

I. INTRODUCTION

Mechanical ventilation is a life-saving therapy used in Inten-
sive Care Units (ICUs) to assist patients who need support to
breathe sufficiently. The main goals of mechanical ventilation
are to ensure oxygenation and carbon dioxide elimination [1].
Especially during the flu season or a world-wide pandemic
such as the COVID-19 pandemic [2], mechanical ventilation
is a life saver for many patients around the world.

Accurately tracking the patient’s clinical condition is essen-
tial to optimize the patient’s treatment. A lung model, e.g., a
linear one-compartmental lung model [3, pp. 37-60], can be
estimated to retrieve valuable information about the patient’s
clinical condition. These estimates give an indication of the
lung compliance, i.e., the inverse of the lung stiffness, and the
resistance of the patient’s airway. In [4] and [5], such parame-
ters have been estimated during ventilation of fully sedated
patients using recursive least squares algorithms. However,
during the weaning process the assistance delivered by the
ventilator is reduced gradually and the patient is breathing

spontaneously as well. This breathing effort causes the esti-
mated patient models to be inaccurate and practically useless
if this effort is not taken into account. Furthermore, if the
breathing effort is not considered in the treatment it might re-
sult in critical volutrauma and thus severely harm the patient.
Also, an accurate estimate of the patient effort can be used to
detect, and eventually prevent, patient-ventilator asynchrony.
According to [6], this patient-ventilator asynchrony is associ-
ated to increased mortality. Therefore, accurate estimates of
this effort and the patient parameters are relevant to determine
the patient’s clinical condition and improve the patient’s treat-
ment.

Two distinct types of methods can be distinguished to
obtain the desired patient information in case of sponta-
neously breathing patients. First, methods that are employing
additional sensing equipment are available. The required
additional sensors makes these methods less attractive for
widespread use in all ICUs, because placing additional sen-
sors is error-prone and it demands more time of the ICU
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personnel. This is undesired because the ICUs are already
understaffed [7], [8]. Second, algorithms that use the already
available data in ventilation are available. Typically, these
methods impose an extra maneuver, i.e., an additional change
in pressure, or some assumption on the patient effort. Next,
both such approaches are investigated in detail.

The first class of methods, requiring additional sensing, are
error-prone and costly in terms of personnel time. Next, meth-
ods requiring additional sensing are presented. In Neurally
Adjusted Ventilatory Assist (NAVA), [9]-[11], an invasive
esophagus catheter is used to measure diaphragm activity.
Using an esophagus catheter is both invasive and error-
prone [12]. Therefore, it is not suitable for many patients.
In [13], non-invasive surface electromyography (EMG) mea-
surements are used to estimate the patient’s breathing effort.
The presented methods all require additional, possibly inva-
sive, sensing. This is undesired because it costs valuable time
of the ICU personnel and is error-prone.

The second class of methods do not require additional
sensing, yet are highly challenging from an estimation per-
spective, typically imposing unrealistic restrictions on the
patients breathing effort. In [14] and [15], a method is pre-
sented to estimate the patient parameters and effort during
ventilation. These methods assume that the change in patient
effort over successive breaths is insignificant and require an
extra maneuver, interfering with the treatment. Therefore, they
are not preferred in practice. In [16]-[19], a method that
estimates the lung impedance of a spontaneously breathing
patient by superimposing a multi-sine to the pressure target is
developed. To extract the patient effort from the actual signal,
the patient is requested to breathe with a specific frequency.
In critically ill patients, it is typically not possible to demand
this from a patient. Another disadvantage of this method is
that it interferes with the treatment. Besides critically ill pa-
tients, this Forced Oscillation Technique (FOT) method has
also been applied to COPD patient’s to distinguish different
types of COPD in [20]. In [21], a method to estimate the
lung elastance of spontaneously breathing patients is pro-
posed. This method makes a reconstruction of the measured
airway pressure, as if no patient breathing effort is present.
This reconstructed pressure is used to estimate the elastance.
It clearly shows an improved elastance estimate. However,
no realistic time-varying patient effort is obtained. In [22],
strictly negative b-spline basis functions are used to model the
patient effort. Using these basis functions, the patient’s effort,
lung elastance, and lung resistance are estimated. This method
shows good results of the estimated effort. A drawback of this
method is that the distribution of the basis functions does not
allow for breathing effort at the end of the ventilator-induced
breath. In [23], it is assumed that the patient effort first mono-
tonically increases and thereafter monotonically decreases to
zero. We believe that this limitation on the patient effort is too
stringent in practice. In [24], several different methods to es-
timate lung dynamics of sedated and spontaneously breathing
patients are compared. It is shown to be challenging to obtain
constant estimates in case of spontaneous breathing effort.
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In conclusion, the presented methods are able to retrieve
valuable information about the patient’s lung parameters and
the patient effort. However, they restrict the estimated patient
effort and interfere with the treatment.

Although several estimation algorithms have been devel-
oped that improve the estimation of patient effort and a patient
model, these all require either more data, an extra maneu-
ver, or use rather stringent assumptions on the patient effort.
Indeed, in [25] and [26], it is concluded that there is no
consensus on how patient effort should be modeled. However,
from a practical point of view it is valid to assume that the ef-
fort is not changing arbitrarily within a particular breath. More
specifically, the patient effort has some smoothness properties
and does not arbitrarily change slope or contain large steps.
Note that the patient effort can change significantly over suc-
cessive breaths. The smoothness property of the patient effort
can be ensured by assuming that the second time derivative of
the effort is sparse, i.e., it contains only a few non-zero ele-
ments. Therefore, in this paper estimation methods of sparse
signals are considered as a possible solution to the estima-
tion problem at hand. In particular, £o-regularization and its
convex relaxation ¢1-regularization are considered in this pa-
per. Such ¢;-regularization is used in for example the Least
Absolute Shrinkage and Selection Operator (lasso) [27] and
fused lasso [28]. These methods are used to compute sparse
feedforward control signals [29] and to enhance sparsity in
system identification [30], [31].

The main contribution of this paper is an estimation frame-
work, using sparse optimization, that enables estimation of
the patient effort and the patient’s lung model of a mechani-
cally ventilated patient with spontaneous breathing effort. The
presented approach meets the following requirements: 1) it
only uses commonly available data; 2) it does not use an extra
ventilation maneuver; and 3) it leaves freedom regarding the
shape of the patient effort. As subcontributions, the perfor-
mance of this algorithm is investigated through a simulation
case study and through an experimental setup with an actual
ventilator and a mechanical lung.

The outline of this paper is as follows. In Section II,
the considered patient model is presented. In Section III,
the estimation goal and challenge are described in detail.
Then, In Section IV, the proposed sparse estimation method
is explained in detail. Thereafter, in Section V, a simu-
lation case study is presented to analyze the performance
of the algorithm. Then, in Section VI, an experimental
case study is used to show the performance of the pro-
posed algorithm in practice. Finally, in Section VII, the
main conclusions and recommendations for future work are
presented.

II. PATIENT AND BREATHING EFFORT MODELING

In this section, a description of the considered patient model is
presented. In Section II-A, the considered patient model and
its relevant parameters are presented. Thereafter, in Section II-
B, the considered patient breathing effort model is presented.
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FIGURE 1. Schematic representation of the patient’s respiratory system,
with the relevant patient parameters and signals. The signals pg, and Qpat
are typically measured during mechanical ventilation.

A. PATIENT MODEL

The model considered in this paper is a linear one-
compartmental lung model, which is extensively described
in [3, pp. 37-60]. An advantage of this model description is its
ease of interpretation for clinicians and engineers. The linear
one-compartment lung model has sufficient accuracy for our
purpose, i.e., exposing clinically valuable information about
the patient’s state of health; hence a more complex model
is not justified. In addition, this allows for parameters that
are easy to interpret since the linear one-compartment lung
model consists of two physical parameters, namely, the airway
resistance and lung compliance.

Fig. 1 shows a schematic representation of the patient’s
respiratory system with the parameters and signals relevant for
estimation. The patient model without patient effort consists
of two components that are modeled; namely, the airway and
the lungs. The airway model describes the relation between
the pressure drop over the airway and the flow in and out of
the patient’s lungs. The lung model gives the relation between
the flow in and out of the lungs and the pressure inside the
lungs.

The airway is modeled by means of a linear resistance
Rjung. This linear resistance gives the relation between the
airway pressure, the lung pressure, and the patient flow:

Paw (1) — plung(t)
Rlung

Qpat )= s (D
where pg, is the airway pressure, the pressure near the pa-
tients mouth, and py,,,,¢ is the lung pressure, the pressure inside
the lungs.

The lung model describes the relation between the patient
volume V), i.e., the volume inside the lungs, and the lung
pressure pyue. This relation is described by a linear lung
compliance Cj,,g. The pressure inside the lungs is expressed
as

1

Clung

t
plung(t) = / Qpat(r)dt +plung(tO) + pmus(t)v (2)
fo

————
Vpar (1)

where integration of the flow over time gives the patient
volume Vg and pruyg(fo) is the initial lung pressure at time
to. Furthermore, p,,,s describes the pressure fluctuation that
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is caused by the patient’s spontaneous breathing effort, i.e.,
by contraction and relaxation of its respiratory muscles. This
patient effort is modeled as an additive disturbance to the lung
pressure. More details on the patient effort are presented in
Section II-B.

Combining (1) and (2), and rewriting to a discrete-time
equation gives the following expression for the airway pres-
SUre Pay:

Paw(k) =

Vpat (k) + Rlunngat (k)
lung

+ Prung(1) + Pimus (k), 3)

where k denotes the discrete sample number and py,g(1)
denotes the initial lung pressure. Eventually, (3) is used in
the cost function of the estimation algorithm in Section IV.
The considered patient effort model is investigated in the next
section.

B. PATIENT EFFORT MODEL

Patient effort enables a person, i.e., healthy person or sick
patient, to inhale and exhale air by themselves. In this sec-
tion, the most important properties of the patient effort are
presented. Further, it is explained how these properties are
translated to a model of the patient’s spontaneous breathing
effort. This model is a time-series describing the exogenous
pressure disturbance py,s(¢) on the lung pressure pjyug(t).
Physically, the patient effort can be seen as a change in lung
pressure caused by contractions and relaxation of the respira-
tion muscles, e.g., the diaphragm. For example, contraction
of the diaphragm results in a downward motion of the di-
aphragm. This motion results in a pressure drop in the lungs.
Various other approaches are currently being used to model
the patient effort. For example using a time-varying lung elas-
tance in [32], [33], we believe that the method adopted in this
paper is the most intuitive. Based on physical properties of
respiration, two assumptions on the shape of patient effort are
made in this section. Furthermore, a commonly used patient
effort model is briefly presented.

Firstly, the assumption is made that the modeled patient
effort p,,,s(t) is non-positive. In [22], this same assumption
is adopted and it is shown that this can give realistic estimates
in a large group of patients. Typically inspiration is an active
process, where the diaphragm is contracted. This results in
a decrease in lung pressure. This decrease in lung pressure
is modeled by a negative patient effort p,,,s(t). Expiration is
typically a passive process, where the respiration muscles are
relaxing and the elasticity of the lungs result in a negative air-
flow. Expiration is modeled by increasing the negative patient
effort until it is zero again. Because expiration is typically
passive, Assumption 1 is adopted throughout this paper.

Assumption 1: The patient effort p,,,s(t) is a non-positive
signal, i.e.,

Pmus(t) <0,vr > 0. 4)
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FIGURE 2. Example of a model for the patient effort ppmys(t) and its first
and second time derivatives. A sinusoidal half-wave (—) and a
piecewise linear (- - .) patient effort model are shown.

Secondly, it is assumed that the shape of the modeled
patient effort p,,,s(t) cannot change arbitrarily within one
breath. However, the patient effort is allowed to change ar-
bitrarily over successive breaths. According to [26], it is
common to use a sinusoidal half-wave for the patient effort.
An example of the sinusoidal half-wave and a piecewise linear
version of the effort, and their first and second time derivatives
are depicted in Fig. 2. It is shown that a piecewise linear
effort gives a fairly accurate representation of the sinusoidal
half-wave. Furthermore, it is observed that the second time-
derivative of the piecewise linear p,,,s(t) is sparse, i.e., it only
contains a few non-zero elements. This sparsity property of
Pmus(t) s used as prior knowledge in the estimation algo-
rithm, without fixing the exact timing and height of the signal.
Using the presented patient models, the estimation goal and
the main challenge are presented in the next section.

1il. ESTIMATION GOAL

In this section, the estimation goal is presented. Then, the
practical estimation setting with its limitations and constraints
is presented. Finally, the main challenge is presented.

The estimation goal is to retrieve accurate estimates of
the patient’s breathing effort, p;,,(¢), the lung compliance
Clung,» and the patient’s resistance Rj,,,. Accurate estimates
of these parameters can be used to follow the patient’s clin-
ical condition and adjust the treatment accordingly. From
discussions with experts in the field it is concluded that an
accuracy of about 15% of the compliance and resistance es-
timates is practically useful and therefore desired. Therefore,
the requirement for estimation accuracy of the lung parame-
ters is 15%. The estimation goal must be achieved by using
the typically measured signals, i.e., airway pressure pgy, (),
the patient flow Qpq(¢), and the patient volume V), (¢) =

Ji Qpar (D).
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FIGURE 3. Schematic example of PC-ASV. The figure shows the target
pressure (—), the measured airway pressure pg, (—) and patient flow
Qpat (——), and the patient effort pmus (—).

The considered estimation setting is a particular ventilation
mode, namely, Pressure Controlled - Assist Control Ventila-
tion (PC-ACV), schematically depicted in Fig. 3. The figure
shows the airway pressure py, patient flow Q,,, and patient
effort p,,,s during one breath of triggered ventilation. The
ventilator is detecting the start of the patient effort to syn-
chronize the machine with the patient. Typically the start of
inspiration is detected by detecting an increase in the patient
flow. This patient flow is caused by the patient’s inspiration
effort. When the start of the patient’s effort is detected, a
breath cycle of the mechanical ventilator is started to assist
the patient. This a breath cycle is induced by increasing the
patient’s airway pressure pgy, to the Inspiratory Positive Air-
way Pressure (IPAP) level. The pressure level generated by
the mechanical ventilator is lowered after a preset time to
the Positive End-Expiratory Pressure (PEEP) level to allow
the air to leave the patient’s lungs in the expiration phase.
Note that the application of the algorithm developed in this
paper is not limited to this single ventilation mode and can be
used in combination with a variety of ventilation modes. The
main constraint is that the ventilation modes where it can be
applied require a significant known external excitation by the
ventilator, i.e., in its current form the algorithm does not work
for Continuous Positive Airway Pressure (CPAP) ventilation.
Examples of modes that contain such known external excita-
tion by the ventilator are: Assist Control Ventilation (ACV),
Continuous Mandatory Ventilation (CMV), and Continuous
Spontaneous Ventilation (CSV).

Next, an assumption on the breathing effort and a restric-
tion on the target pressure are presented. First, it is assumed
that the patient effort can significantly change from breath to
breath. It might change in breath depth, i.e., amplitude, as
well as in shape such as timing, rise times, and length. This
means that the estimation algorithm should be able to deal
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with such changes. Second, it is desired not to interfere with
the treatment. Therefore, it is undesired to change the target
pressure to obtain estimates of the patient parameters, i.e., it
is not allowed to add an extra maneuver to the ventilator.

The main challenge in estimating physically interpretable
parameters is the non-identifiability of the estimation prob-
lem. More specifically, the relation between the airway
pressure, patient flow, and patient volume, given by (3) has
infinitely many solutions, i.e., infinitely many combinations
of the estimates, C’l,mg, Iélung, Diung(1), and ppys(k) with k €
[1, N], describe the relation between the measured signals.
This can be seen by writing (3) as follows:

Y =X8, (5)
where
- -
Clung
[ paw(1) Riung
Paw(2) plung(l)
Y=1 . |[:B=] pums(D) |, and
) Pmus(2)
_paw(N) cee
| PisN) |
Vo) Q) 1 1.0 ... 0
Voar2)  Qpar2) 1 0 1 ... 0
XZ . . . . . . .
| Voar(N)  Qpau(N) 1 0 0 ... 1

Thus, in (5), Y reflects the measured airway pressure sam-
pled at discrete time instants, X reflects, a.o., the measured
patient volume and flow, and B represents the quantities
to be estimated. Using this representation it can be shown
that XTX is not invertible, hence, there exists an infinite
number of solutions for B, B is not identifiable. This can
also be understood intuitively; by considering the following
simulation-error based least-squares cost function:

k=N

J =) (pawk) = paw(k))? (©)

k=0

with k the sample index of the discrete signals, N the length
of the signals in samples, and p,,, (k) defined as:

1 N
ﬁaw(k) = A_Vpat (k) + Rlunngat (k)
Clung

+ ﬁlung(l) + ﬁmus(k)~ (7)

It is observed that independent of the choice of C’,ung, I?l,mg,
and prung(k) choosing s (k) = paw (k) = (F=Vpa (k) +
RlungQﬂat (k) + ﬁlung(l)) results in ﬁaw (k) = paw(k)v Vk > 0.
Therewith, the cost function (6) is zero.

Because the relation between the measured signals is non-
unique, prior knowledge enables obtaining sensible estimates
of the desired parameters and the patient effort. In literature,
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extra sensing ([9]-[11], [13]), maneuvers ([14]-[17]), or strin-
gent assumptions on the shape of the effort ([14], [15], [23])
are used to solve this challenge. However, from the earlier
defined estimation setting, it is clear that this is practically
undesired. More explicitly, using stringent constraints in the
estimation algorithm could prevent the estimation algorithm
from estimating the actual patient effort. Therefore, in the
following section an estimation method is presented that does
not require additional sensing or maneuvers and does not use
unrealistically stringent constraints on the estimated patient
effort. Note that we are not considering the effect noise in this
estimation problem, so in fact it is a realization problem.

IV. SPARSE ESTIMATION

In the previous section, the main estimation challenge is pre-
sented, namely, the relation between the measured signals
and the estimated parameters and signal is underdetermined.
In this section, a simulation-error based estimation algorithm
is presented that uses the properties of the patient effort in
Section II-B to overcome the identifiability challenge of Sec-
tion III.

In Section II-B, it is argued that the patient effort p,,, (k)
does not change arbitrarily. More specifically, at the end of
Section II-B it has been argued and shown that the sec-
ond time-derivative of the sinusoidal half-wave patient effort
model, i.e., p,us(k), can be accurately modeled as a sparse
signal. Furthermore, in many cases the patient effort can be
modeled to be non-positive, as also proposed Assumption
1. Embedding these two assumptions on the shape of pjs
in an optimization problem enables us to use the following
constrained optimization problem:

k=N

i N 2

., min > Pawk) = paw(k))
Clxmnglungvplung(l);pmu.v k=0

||13mus||0 <v

Pmus(k) = OVk,  (8)

subject to

where || pousllo represents the cardinality function of p,s
which denotes the number of non-zero elements in ﬁmus and
v gives the upper limit on the number of non-zero elements
in ﬁmus, i.e., the first inequality constraint in (8) enforces the
sparsity property.

However, inclusion of such sparsity constraint in the
optimization problem leads to a non-convex optimization
problem, which is NP-hard [34]. To solve this problem, the
cost-function should be minimized with all possible com-
binations of nonzero elements in p;,. This renders the
optimization problem not appealing from a computational
point of view. The £; norm || - |1 is a convex relaxation of
the cardinality function || - ||o, making it much more attractive
from a computational point of view. The ¢; norm of Dmus»
denoted by || ﬁmus Il1, is defined as the sum of absolute values
of Ppus. From [29] and [35], it is well known that inclusion
of this £; norm also enhances sparsity of pus. Applying
this relaxation and rewriting it with the Lagrange multiplier
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A gives the following regularized optimization problem:

k=N

. ~ 2

. min > " (Paw k) = paw(k))
Clungslezgaplung(l)apmus k=0

+)‘”lgmus”1

subject to Pmus(k) < OVk, (9)
where A is a weighting parameter.

Note that in case the patient does actively exhale and the
non-positivity constraint is violated, the estimates will be bi-
ased to compensate for this. In future research, after clinical
validation of the current algorithm, the algorithm could be
extended to handle non-positive p,,,s values, e.g., by adding a
cost penalizing positive values of pj;s.

Furthermore, the regularized optimization problem in (9)
results in biased estimates, in literature this is referred to as
shrinkage [36]. More specifically, when estimating the patient
model and breathing effort perfectly the regularization term
will result in a cost unequal to zero. Therefore, this regu-
larization term will introduce some bias in the estimates. To
reduce this bias, the retrieved values for ﬁmm can be used to
select the set of non-zero elements in p,,,. This subset can
be used in a re-estimation procedure to retrieve an estimate
with a reduced bias. More specifically, the bias caused by
shrinkage can be eliminated. This re-estimation method is also
used in [29] to eliminate the bias in the estimated feedforward
control signals when using sparse iterative learning control.
The shrinkage of the parameters in this paper is limited, and
therefore we have decided not to describe re-estimation tech-
nically. It can in some cases improve the estimates in view of
(6) if the shrinkage is large. Because shrinkage is insignificant
in the current case-study we left this re-estimation method
as a recommendation which can be used to further improve
estimation quality in future work or in other applications. The
main motivation for using the £; norm is that it provides a
convex relaxation of the £p norm. The question whether the
right sparse vector is retrieved using (9) remains. In [37],
a sufficient condition that relies on the restricted isometry
property is provided. However, these conditions are violated
in many practical cases. Nonetheless, the £; norm provides an
effective way to ensure sparsity.

To solve the optimization problem in (9), CVX has been
used. CVX is a package for specifying and solving convex
programs [38] and [39]. More specifically, to eventually solve
the problem, CVX embedded the semi-definite programming
solver SDPT3, which uses infeasible path-following algo-
rithms to solve (9).

V. SIMULATION CASE STUDY

In this section, the presented approach is validated using
simulations and it is compared to a least-squares estimator
assuming zero patient effort. In Section V-A, the considered
use-cases are briefly explained. Thereafter, the estimation re-
sults are presented and analyzed in Section V-B.
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FIGURE 4. The true and estimated effort for every patient in simulations.
From top to bottom the figures show the patients with a breath depth of 0,
5, and 10 mbar, respectively. The figures show the patient effort (—), the
patient effort considered by the algorithm assuming ppmys = 0 (—), and
the estimated effort using the presented approach ( )-

A. SIMULATION CASE DESCRIPTION

In the simulations, a single-hose ventilation setup is consid-
ered, as in [40]. A single-hose ventilation system is considered
because it simplifies modeling, since no expiration valve is
used. Moreover, the developed algorithm only uses the pres-
sures and flows measured near the patient, the algorithm’s
performance should be independent of the system that gen-
erates these signals. The inspiration time by the ventilator
imposed breath is 2 seconds and the values for PEEP and IPAP
are 5 and 20 mbar, respectively. The imposed breath cycle of
the mechanical ventilator is triggered by the patient effort. In
this simulation case study, it is assumed that the inspiration
start of the ventilator and the patient are exactly synchronized.
The data used for the optimization is sampled at 50 Hz.

In this simulation case study, four different patients and
three different depths of patient effort are considered. The
resistances Ry, of 5 and 10 mbar/l/s, and compliances Cyg
of 20 and 50 ml/mbar are considered. The four considered
patient models are obtained by all four possible combinations
of these resistances and compliances. These patient types are
based on the ISO standards for ventilation systems, which are
obtain from Table 201.104 in NEN-EN-ISO 80601-2-12:2011
(NEN, Delft, The Netherlands). Furthermore, every patient is
simulated without effort, i.e., p;us(k) = 0, Vk, with a maxi-
mum effort of 5 mbar, i.e., min(p,,,s) = —5 mbar, and with a
maximum effort of 10 mbar, i.e., min(p;;,s) = —10 mbar. The
patient effort for all cases is shown in Fig. 4.

For these use cases, the presented approach of Section IV,
described by the optimization problem in (9) is compared to a
traditional least squares optimization algorithm assuming zero
effort which is currently implemented in many ventilation
systems. For the optimization problem in (9), A = 2.5 x 1073
is used. This value for XA is retrieved by tuning such that
sufficient performance is achieved for a variety of use-cases.
In the traditional least squares optimization approach, it is
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FIGURE 5. The normalized values of the estimated parameters I'i,,,,,g and
f,,,,,g for the different patients against the breath depths in simulations.
The figures show the true normalized parameters (—), the 15% accuracy
interval (= - .), the estimated parameters neglecting the patient effort in
red, and the estimated parameters using the presented approach in green.
Four different patient types are considered namely: R5C20 (0), R10C20 (x),
R5C50 (*), and R10C50 (+).

assumed that the patient effort is zero, i.e., pys = OVk, in the
optimization problem given in (9).

We would like to stress that the considered model for the
patient effort itself, i.e., the sinusoidal halfwave, does not
completely satisfy the sparsity assumption in Section II-B.
More specifically, the effort is retrieved by combining sine
waves, of which the derivatives are by definition not sparse.
Therefore, the simulation study in this section shows that
the algorithm is able to retrieve valuable estimates in case
the sparsity property for the patient effort is not completely
satisfied.

B. SIMULATION RESULTS

The two main results are the improved estimation of the pa-
tient parameters and the estimation of patient effort compared
to the traditional algorithm assuming zero patient effort. These
main results are visualized in Figs. 4 and 5. In the remain-
der of this section, the results for the estimated parameters
and the estimated patient effort are investigated separately.
Then, a Monte Carlo study is performed to show that the
proposed algorithm obtains accurate estimates for a wide
variety of parameters and ventilation settings. Finally, in Sec-
tion V-C the algorithm is used to estimate the patient effort
of asynchronous breathing. It is shown that even in case of
patient-ventilator asynchrony the algorithm is able to retrieve
accurate estimates.

The first results is the improved estimation of the patient
parameters as shown in Fig. 5. The solid blue line in this figure
represents the normalized true parameter and the dashed lines
represent a 15% accuracy interval. The red markers in Fig. 5
show the estimated parameters for every patient using the
least-squares estimator assuming zero patient effort, the green
markers show the estimated parameters for every patient using
the proposed algorithm. Furthermore, on the horizontal axis
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the depth of the patient effort is given, corresponding to the
plots in Fig. 4. Note that for the case of no patient effort the
red markers are exactly underneath the green markers. It is
clearly seen that when there is no effort, i.e., breath depth
is 0 mbar, all estimates are close to the true parameter. For
an increasing breath depth, the estimates of the least square
estimator assuming zero patient effort deviate from the true
parameters and are clearly outside the desired 15% accuracy
interval. The effect of the breath depth on the estimated pa-
rameters is much smaller when using the proposed algorithm
in (9). The parameters are slightly diverging, caused by the
bias due to the regularization term, but remain very close to
the true parameters. In conclusion, the proposed algorithm
significantly outperforms the least-squares estimator assum-
ing zero patient efforts.

The second result is the estimation of the patient effort as
shown in Fig. 4. This figure shows the true effort for every
experiment in blue, the assumed effort for the estimator as-
suming zero effort in red, and the estimated effort for the
proposed algorithm in green. It is clearly seen in case of no
effort, i.e., the top plot, the proposed method retrieves the true
effort and the assumption by the benchmark algorithm is cor-
rect as well. When increasing the patient effort, the zero effort
assumption in the least-squares estimator is clearly wrong.
Note that one might propose the following, rather naive,
approach to estimate the patient effort. Use the estimated
values of Cjg and Ry, which are obtained using the least-
squares estimator under the assumption p,,,s(k) = OVk > 0.
Then, compute the patient’s breathing effort using the resid-

ual estimation error, i.e., pyus(k) = paw (k) — (ﬁvpat(k) +
ung

Iélunngat (k) + Prung(1)). However, the estimated parameters
already aim to capture this patient effort. Therefore, extensive
testing has shown that p,,,;(k) = 0 is a significantly better
estimate of the actual effort. Furthermore, it is observed that
the proposed algorithm estimates the patient effort almost
perfectly in these simulations. Only a small bias is introduced
by the regularization term in (9).

This bias in the parameter and the patient effort estimates
can be reduced by applying re-estimation, as explained in
Section IV. This re-estimation method is omitted for brevity
and clarity of this paper.

Finally, to analyze the performance of the proposed algo-
rithm over a wide variety of patients and ventilator settings
Monte Carlo simulations have been conducted. In this anal-
ysis, the following parameters are sampled from a uniformly
distributed set as indicated:

® Ciung € [10, 60] ml/mbar;

® Riung € [5, 20] mbar/l/s;

® min(puus(k)) € [0, 10] mbar;

e [PAP € [15, 30] mbar.

The results of this Monte Carlo study are visualized in
Fig. 6. The figure shows the normalized compliance and re-
sistance estimates for both algorithms. It clearly shows that
the proposed algorithm with ¢;-regularization outperforms
the least-squares estimator. Furthermore, it shows that the
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FIGURE 6. Normalized estimates of the Monte Carlo study showing the
results of the least-squares estimator assuming zero effort (x) and the
estimates of the proposed algorithm with ¢, -regularization (x). The figure
clearly shows that the proposed algorithm acurately estimates the true
parameters over a wide variety of scenarios.
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FIGURE 7. The true and estimated effort for every patient in simulations
with asynchronous breathing. Every figure shows the true breathing effort
(——), the estimated effort using the presented approach (——), and a
scaled version of the target pressure (—) to indicate the asynchrony.

algorithm obtains accurate estimates for a wide variety of
scenarios.

In conclusion, these simulation results show that the pro-
posed algorithm retrieves useful estimates of the patient
parameters and the patient effort. In contrast, the parameter
estimates of the method assuming zero patient effort diverge
significantly when patient effort is present, rendering these
estimates inaccurate.

C. SIMULATION RESULTS ASYNCRHONY

Patient-ventilator asynchrony typically renders such estima-
tion problems highly challenging. Therefore, a simulation
study is carried out to show that the proposed estimation
algorithm is robust against these asynchronies. The results of
this study are shown in Fig. 7. The top plot shows the syn-
chronized use-cases from the previous section and the middle
and bottom plot show the estimation results for asynchronous
breathing. These results show that the proposed algorithm
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FIGURE 8. The experimental setup showing the main components: the
patient emulator, respiratory module, ventilation hose, dSpace module,
and power supply.

retrieves accurate estimates of the patient effort in this sim-
ulation study of patient-ventilator asynchrony.

VI. EXPERIMENTAL CASE STUDY

In this section, the proposed algorithm is validated through an
experimental study. First of all, in Section VI-A, the used ex-
perimental setup and use-cases are described. Thereafter, the
estimation results are presented and analyzed in Section VI-B.

A. EXPERIMENTAL SETUP DESCRIPTION

The main components of the experimental setup used in
this case study are depicted in Fig. 8. The figure shows
the blower-driven mechanical ventilation module of Demcon
macawi respiratory systems [41]. The airway pressure pg,, is
measured using the sensor tube and a gauge pressure sensor
inside the respiratory module. The patient flow Q. is es-
timated based on the measured airway pressure and a leak
model obtained through a calibration routine. The ventilator
is attached to a dSPACE system (dSPACE GmbH, Pader-
born, Germany), where the controls are implemented using
MATLAB Simulink (MathWorks, Natick, MA) running at a
sampling frequency of 500 Hz. Note that data sampling for
estimation is done at 50 Hz, similar to the simulations. This
is done to reduce the required memory, which is limited on a
typical ventilation system.

Furthermore, the ASL 5000™ Breathing Simulator (Ing-
Mar Medical, Pittsburgh, PA) represents the patient. This lung
simulator can be used to emulate a wide variety of patients
with a linear resistance and compliance. Furthermore, it is able
to simulate predefined breathing effort.

Exactly the same settings as in the simulation case study in
Section V are used. More specifically, the breathing simulator
is set to emulate the same patients and patient effort that
are considered in the simulations case-study. Furthermore,
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FIGURE 10. The normalized values of the estimated parameters k,,,,,g and
f.',u,,g for the different patients against the breath depths in experiments.
The figures show the true normalized parameters (—), the 15% accuracy
interval (= - .), the estimated parameters neglecting the patient effort in
red, and the estimated parameters using the presented approach in green.
Four different patient types are considered namely: R5C20 (0), R10C20 (x),
R5C50 (*), and R10C50 (+).

the ventilator generates a PEEP and IPAP of 5 and 20 mbar,
respectively. The ventilator’s inspiration is triggered by a flow
trigger induced by the patient effort. Then, after two seconds
the ventilator cycles off to PEEP.

An example of the measured raw data is depicted in Fig. 9,
this figure shows the measured data of a patient with resistance
of 5 mbar/l/s and a compliance of 20 ml/mbar, with a breath
depth of 5 mbar. The figure shows the airway pressure pgy,,
the patient flow O, , and the patient volume V).

B. EXPERIMENTAL RESULTS

The main results of the experiments are shown in Fig. 10
and 11. Next, the results for the estimated parameters and the
estimated patient effort are analyzed separately.
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FIGURE 11. The true and estimated effort for every patient in experiments.
From top to bottom the figures show the patients with a breath depth of 0,
5, and 10 mbar, respectively. The figures show the patient effort (—), the
patient effort considered by the algorithm assuming ppmys = 0 (- - -), and
the estimated effort using the presented approach (. )-

First, the results of the estimated parameters are investi-
gated. Fig. 10 shows the normalized estimated parameter. In
general it shows similar results to the simulation results in
Fig. 5. The parameters obtained with the least-squares estima-
tor assuming zero patient effort are diverging when increasing
the patient effort and the estimates with the proposed method
remain significantly more accurate.

The main difference with the simulations is that the resis-
tance estimate without effort shows a significant offset from
the “true” value, also in case of a least-squares estimation
where pp,,s = 0, i.e., the true effort. This is caused by tub-
ing between the sensors of the module, which are used for
estimation, and the sensors of the ASL 5000, which are used
internally by the ASL 5000 to emulate the desired behavior.
This additional tubing results in a slightly increased resis-
tance.

Second, results of the estimated patient effort are analyzed.
Fig. 11 shows the true effort for every experiment in blue,
the assumed effort for the traditional least-squares estimator
in red, and the estimated effort for the proposed algorithm in
green. It is clearly seen in case of no effort, i.e., the top plot,
the estimates using the algorithm in (9) retrieves effort close to
zero. However, there is some slight deviation. When increas-
ing the effort, the proposed algorithm retrieves an accurate
estimate of the true effort, which is highly useful in practice.
It seems that the regularization term in (9) introduces bias in
the estimates. Furthermore, at about 2 seconds, a slight spike
in the estimated effort is observed. This happens at the start
of the expiration of the ventilator. It is likely that this spike
is caused by the ASL 5000. It is seen that it takes some time
for the ASL 5000 to respond to the pressure change that is
introduced by the ventilator-induced expiration. This artifact
is clearly visible in the circle of the measured airway pressure
in Fig. 9.
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FIGURE 12. The second time derivative of the patient effort p,,,s for the
R5C20 patient with a breath depth of 20 mbar. With two different scales
on the vertical axis to clearly show the sparsity property. Showing the true
value (—), the value considered by the algorithm assuming pyus = 0
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Finally the sparsity of the estimated effort is analyzed in
Fig. 12. This figure shows the second time derivative of the
estimated patient effort p,,,s in one particular use-case, with
two different scales on the vertical axis. The figure clearly
shows that a sparse estimate is retrieved, since many values are
zero. Furthermore, it shows that the spike caused by the ASL
5000 causes significant spikes in p,,,s. This spike is quickly
compensated by another spike. Therefore, the effect on the
estimate patient effort ﬁmm is not as significant.

Concluding, this experimental case study shows that the
proposed algorithm retrieves estimates of the patient param-
eters and the patient effort that are significantly more accurate
than the parameters obtained by the traditional least-squares
estimator. Therefore, the retrieved parameters and patient
effort can be used by a clinician to improve the patient’s
treatment.

VII. CONCLUSIONS AND RECOMMENDATIONS

In this paper, an estimation framework is presented that can
help to identify a ventilated patient’s clinical condition. This is
achieved by a sparse parameter estimation method to retrieve
estimates of relevant patient parameters and the patient effort
of a spontaneously breathing mechanically ventilated patient.

The estimation problem, with the available sensors, is non-
identifiable. This had to be overcome without interfering with
the patient’s regular treatment. This is achieved by embedding
prior knowledge of the patient effort in the estimation prob-
lem. More specifically, that the patient effort cannot change
arbitrarily, i.e., its second time derivative is sparse. Embed-
ding this sparsity property in the optimization problem by
means of an ¢;-regularization term results in a convex opti-
mization problem that retrieves realistic estimates.

The proposed method is validated by means of simulation
and experimental case studies. Through these case studies, it
is shown that the presented algorithm retrieves realistic and
useful estimates of the patient parameters and patient effort
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in a specific mode of triggered ventilation. The retrieved es-
timates can be used by clinicians to determine the patient’s
clinical condition and optimize the treatment.

Several recommendations are considered relevant for future
extensions. First, to validate that the algorithm gives clini-
cally useful and realistic estimates in a practical setting, the
algorithm should be tested on actual patient data. Second,
the algorithm outcome should be compared to existing meth-
ods that give an indication about the patient effort, such as,
the PO.1 test. Third, the current algorithm does not work in
all modes of ventilation, e.g., Continuous Positive Airway
Pressure (CPAP) ventilation. Therefore, more research is re-
quired to develop an algorithm that works in other modes
of ventilation. Fourth, methods such as re-estimation [29] or
reweighting [35] could be considered to improve estimation
quality further in future work. Fifth, the algorithm should be
further developed to improve estimation when deviating from
the nominal cases presented in this paper. For example, the
algorithm’s estimation performance should be improved in
case of an active expiration. Finally, using clinical data of
ventilated patients with an esophageal pressure measurement,
a method to optimally choose the regularization parameter A
should be developed.
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