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ABSTRACT The Hessian matrix conveys important information about the curvature, spectrum and partial
derivatives of a function, and is required in a variety of tasks. However, computing the exact Hessian is
prohibitively expensive for high-dimensional input spaces, and is just impossible in zeroth-order optimiza-
tion, where the objective function is a black-box of which only input-output pairs are known. In this work
we address this relevant problem by providing a rigorous analysis of an Hessian estimator available in the
literature, allowing it to be used as a provably accurate replacement of the true Hessian matrix. The Hessian
estimator is randomized and incremental, and its computation requires only point function evaluations. We
provide non-asymptotic convergence bounds on the estimation error and derive the minimum number of
function queries needed to achieve a desired accuracy with arbitrarily high probability. In the second part
of the paper we show a practical application of our results, introducing a novel optimization algorithm
suitable for non-convex and black-box federated learning. The algorithm only requires clients to evaluate
their local functions at certain input points, and builds a sufficiently accurate estimate of the global Hessian
matrix in a distributed way. The algorithm exploits inexact cubic regularization to escape saddle points and
guarantees convergence with optimal iteration complexity and high probability. Numerical results show
that the proposed algorithm outperforms the existing zeroth-order federated algorithms in both convex
and non-convex problems. Furthermore, we achieve similar performance to state-of-the-art algorithms for
federated convex optimization that use exact gradients and Hessian matrices.

INDEX TERMS Data privacy, estimation, federated learning, finite difference methods, optimization.

I. INTRODUCTION
Hessian estimation is a fundamental primitive with impor-
tant implications in several machine leaning and engineering
areas. For example, the Hessian matrix is a key ingredient
to design optimization algorithms that achieve superlinear
or quadratic convergence. These algorithms use the Hes-
sian to either reshape the gradient or build a local function
approximation, and this allows to reach the optimal solu-
tion of the optimization problem in few iterations. However,
computing the exact Hessian is onerous, and especially for
high-dimensional problems it is often necessary to fall back
on cheaper Hessian estimates. Moreover, in many relevant

cases such as black-box optimization and simulation-based
optimization, it is not even possible to explicitly compute the
Hessian matrix, as the objective function is accessible only
through point evaluations. In the literature, this scenario is
referred to as zeroth-order optimization, and it is assumed
that function queries are expensive and possibly constrained
in number.

The ideal Hessian estimator should possess all the follow-
ing desirable qualities: (i) To be compatible with black-box
functions, the estimator should not require exact gradients for
its computation, but only a limited number of function val-
ues. (ii) To be computationally efficient, the estimator should
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incorporate past estimates and not forget previously collected
information. (iii) To be employed by distributed optimization
algorithms, the estimator should be parallelizable.

The Hessian estimator analyzed in this work satisfies all the
above conditions, and in particular is well suited for federated
learning, a kind of distributed machine learning where clients
are connected to a central server in a star topology. Federated
learning has gained significant attention from both academia
and industry, as it allows to collaboratively train a shared
model over the data islands owned by the various participants,
while preserving the individual privacy. To satisfy the lat-
ter property, transmitting raw data samples is forbidden, and
the communications typically consist of model updates. Data
exchange between clients is costly and possibly limited or
unreliable, for example due to bandwidth restrictions or con-
nection instabilities. This calls for communication-efficient
algorithms that converge in few iterations, and the Hessian
estimator analyzed in this work is a useful building block to
design them.

A. PRELIMINARIES AND RELATED WORK
Below we provide an overview of the state of the art in some
research topics related to our work.

Zeroth-order optimization: Zeroth-order optimization al-
lows tackling learning problems where the derivatives of the
objective function are not available or difficult to compute.
Problems that fall inside this category include policy learning
for reinforcement learning, adversarial training and generating
explanations for black-box models [1]. Zeroth-order methods
can also replace backpropagation for neural networks that
are not entirely differentiable, and constitute an alternative
to the recent Forward-Forward algorithm [2]. Zeroth-order
optimization only requires to evaluate the objective at cer-
tain input points, and estimates function derivatives by means
of finite-differences. However, even function queries are as-
sumed to be expensive and possibly budgeted in number,
which calls for efficient algorithms that can get the most
out of them. Alternatives to zeroth-order optimization include
derivative-free optimization, Bayesian optimization and ge-
netic algorithms.

Zeroth-order federated learning: Since the in second half of
this work we present a novel zeroth-order federated learning,
we briefly introduce the main federated zeroth-order algo-
rithms available in the literature: (i) FedZO [3] replaces the
exact gradient in FedAvg with a stochastic gradient estimator
based on forward finite-differences. (ii) ZONE-S [4] activates
only one client per iteration, and minimizes an augmented
Lagrangian function at the server. (iii) ZooPFL [5] considers
the case where all clients own the same black-box model
that cannot be changed, and uses trainable local encoders and
linear projections to respectively remap the input and output
of the frozen model. (iv) FZooS [6] tackles the problem of
query inefficiency, but relies on the strong assumption that
every local function is sampled from a Gaussian process. (v)
BAFFLE [7] uses shared random seeds to sample common
query points at all clients, and estimates the global gradient

using Stein’s identity. (vi) FedZeN [8] estimates also the Hes-
sian of the global objective in an incremental fashion, and
applies a quasi-Newton method at the server to address convex
optimization problems. It is worth noting that FedZeN is the
only algorithm that takes advantage of second-order derivative
information, while the others rely only on gradient estimates.

Zeroth-order Hessian estimation: We quickly review the
main techniques to approximate a d × d Hessian matrix by
means of finite-differences. Reference [9] contains several
deterministic estimation schemes and stencils that approx-
imate the d (d + 1)/2 distinct entries of the Hessian once
at the time, resulting in O(d2) overall function queries. To
reduce the computational burden of the estimation process,
some works choose to approximate only some parts of the
matrix. For example, ZO-JADE [10] estimates only the main
diagonal of the Hessian by means of central-differences along
the canonical basis at the cost of 2d + 1 function evaluations.
Alternatively one can resort to stochastic estimation schemes,
where the perturbation vectors used to choose the query points
are randomly generated. While deterministic estimators usu-
ally provide the golden standard, randomized ones allow to
trade-off accuracy and computational complexity. For ex-
ample, [11] performs 4r2 function queries along orthogonal
directions sampled from the Stiefel manifold, where r is a
design parameter. Reference [12] proposes a set of estimators
based on second-order Stein’s identity to approximate the
Hessian of a Gaussian-smoothed objective function. Both [13]
and [14] propose randomized zeroth-order Hessian estimators
for functions defined over Riemannian manifolds. All the
above estimators start from scratch at each new estimation,
and miss out on the possibility of exploiting past information
to reduce the number of function queries. A zeroth-order ver-
sion of the popular BFGS method, that updates the previous
Hessian estimate according to the secant equation using only
gradient information, is presented in [15]. In [16] they propose
an incremental Hessian estimator whose squared error norm
converges linearly in expectation, but they do not take into
account the error due to zeroth-order estimation. Reference [8]
explains how to efficiently compute the last estimator in a
distributed way, and empirically shows its superiority with
respect to other Hessian approximation techniques. In the first
half of this paper we provide novel non-asymptotic bounds
for the incremental estimator in [16], where we properly take
into account the zeroth-order estimation error and derive the
minimum number of function queries needed to achieve a
given accuracy.

Hessian-based federated algorithms: The most effective
way to reach a function minimum in few iterations is to
leverage the curvature of the objective function, which is
described by the Hessian matrix. Below we list the main
second-order federated algorithms that take advantage of
the Hessian. (i) GIANT [17] addresses convex optimization
problems by averaging the local Newton directions of the
clients. This is equivalent to approximating the Hessian of the
global objective with the harmonic mean of the local Hessian
matrices. (ii) FedNL and its variants [18] are designed for
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convex optimization and make clients transmit to the server
compressed innovations of their local Hessian matrices and
the corresponding compression errors. (iii) In SHED [18]
clients compute the eigendecomposition of their local Hessian
only when required, and share some of the most relevant
eigenvalue-eigenvector pairs with the server to incrementally
update the Hessian approximation. (iv) FLECS [20] extends
FedNL to non-convex problems by changing the Hessian up-
date rule and the computation of the approximate Newton
direction.

We remark that all the above algorithm make use of exact
derivatives and require clients to compute their local Hessian
matrix. In particular, none of them allows approximate Hes-
sian matrices, which makes impossible to directly implement
them as zeroth-order algorithms. The only Hessian-aware fed-
erated algorithm which is also zeroth-order is FedZeN [8], but
it is limited to convex problems.

B. CONTRIBUTION AND ORGANIZATION
The contribution of this paper is twofold:

1) We provide a number of novel results regarding the
properties of the incremental Hessian estimator pro-
posed in [16]. Our analysis is profoundly different and
more in-depth with respect to the original paper. First,
we focus on a practical zeroth-order implementation
of the estimator suitable for black-box optimization.
We take into account the approximation error on the
directional curvature due to finite-differences, which is
neglected in [16]. Second, to fully exploit the advan-
tage of incremental estimation, we consider the case
of a time-varying Hessian to be tracked. Finally, we
derive non-asymptotic bounds on the convergence of
the estimation error and on the minimum number of
function queries needed to achieve a given accuracy
with the desired probability. The above analysis is non-
trivial and involves mathematical tools that are not
present in [16]. Moreover, we empirically show that
O(d ) function queries are sufficient to obtain an useful
estimate of a d × d Hessian, whereas standard entry-
wise estimators necessarily require O(d2) queries. Our
bounds make the incremental Hessian estimator actu-
ally reliable, allowing it to be used whenever a cheap
but sufficiently accurate approximation of a Hessian is
needed.

2) We present a novel optimization algorithm as a prac-
tical application of the incremental Hessian estimator
discussed at item 1). The algorithm, named FedZCR,
is the first zeroth-order algorithm for non-convex fed-
erated optimization to estimate and exploit the Hessian
of the objective. The Hessian estimator is built in the
federated setting following the distributed approach
of [8]. In particular, our algorithm can be seen as an
extension of [8] to the non-convex setting, and further
improves over [8] by replacing a simplifying assump-
tion with rigorous conditions. The Hessian estimate
is combined with cubic regularization at the server

to escape saddle points and converge with arbitrarily
high probability and accuracy. More specifically, the
algorithm is guaranteed to converge to a second-order
(τ,

√
τ )-optimal point in O(τ−3/2) iterations with high

probability, which is currently the best iteration com-
plexity for non-convex problems. We also propose the
adaptive version FedZACR, and the use of subsampling
to decrease the total computational cost and accommo-
date client heterogeneity. Our numerical results show
that FedZACR outperforms the existing zeroth-order
federated methods, and is comparable to second-order
methods for convex optimization that use the exact
derivatives.

The organization of this work reflects the duality of our
contributions: in the first half of the paper (Section II) we
derive theoretical bounds for the Hessian estimator, while
in the second half (Section III) we present a novel algo-
rithm for non-convex zeroth-order federated learning. Finally,
Section IV is dedicated to numerical simulations.

II. INCREMENTAL HESSIAN ESTIMATION
The first part of this work is dedicated to the analysis an Hes-
sian estimator, that can be used to relieve the computational
burden of computing exact Hessian matrices. We consider an
estimator that can be employed also when the target function
is only accessible by means of point evaluations, and that
can be easily adapted to perform distributed estimation. Our
goal is to derive two kind of bounds: (i) upper bounds on
the approximation error with respect to the computational
cost, measured by the number of function queries, and (ii)
lower bounds on the number of function evaluations needed to
achieve a given accuracy. These bounds are especially relevant
in zeroth-order optimization, where the common assumption
is that function evaluations are expensive, possibly budgeted
in number, and come with a significant computational cost.
Choosing an estimator that is parsimonious with function
queries and does not represent a bottleneck is therefore crucial
to the efficiency of the application that uses it. With the above
premise, one cannot resort to standard entry-wise estimators
based on finite-differences along the canonical basis, that in-
volve O(d2) queries to estimate an Hessian ∈ Rd×d [19].

Notation: We denote with Id and 0d the d-dimensional
identity matrix and the d × d matrix of all zeros, respectively.
We use the concise notation [n] to indicate the set of integers
{1, . . . , n}. We use U (S) to denote the uniform distribution on
the unit sphere Sd−1 = {z ∈ Rd s.t. ‖z‖ = 1}. The third order
derivative tensor of a function f evaluated at x is denoted
by (D3 f )(x). Given a matrix, ‖ · ‖ is the spectral norm while
‖ · ‖F is the Frobenius norm.

A. BOUNDS FOR THE HESSIAN ESTIMATOR
We start by introducing the Hessian estimator proposed
in [16], based on the update

H j = H j−1 +
(

uT
j (∇2 f (x) − H j−1)u j

)
(u ju

T
j ), (1)
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where the vector u j ∈ Rd is sampled from the uniform distri-
bution on the unit sphere. If H j−1 is a symmetric matrix, then
H j is also symmetric. In [16] it is proved that repeatedly ap-
plying (1) one converges asymptotically to the exact Hessian
almost surely, and that at each iteration the estimator satisfies

E
[
e
(
H j)2] ≤

(
1 − 2

d (d + 2)

)
e
(
H j−1)2 (2)

where e(�) := ‖ � −∇2 f (x)‖F is the Frobenius norm of the
estimation error. Since the exact second-order directional
derivatives are not available, we approximate them using
central-differences as also done in [8]. Given a small positive
scalar μ and u ∼ U (S), the zeroth-order counterpart of (1) can
be defined as

Ĥ j = Ĥ j−1 +
(

f (x + μu j ) − 2 f (x) + f (x − μu j )

μ2

− uT
j Ĥ j−1u j

)
(u ju

T
j ). (3)

This makes the incremental estimation formula imple-
mentable also when the objective function is a black-box, i.e.
only input-output pairs are available. It is empirically shown
in [8] that the update (3) provides significantly better perfor-
mance with respect to other randomized zeroth-order Hessian
approximations, including estimators based on averages along
orthonormal directions or on the second-order Stein’s identity.
However, no theoretical guarantees are currently available for
(3), limiting its applicability and preventing rigorous conver-
gence analyses. In this section we address this problem, pro-
viding non-asymptotic bounds and practically implementable
conditions on the number of search directions required to
attain a given accuracy. All the proofs are contained in Ap-
pendix A.

To analyse the estimator we first need to characterize the
objective function with the following assumption.

Assumption 1 (Smoothness): Let the global cost f be three
times continuously differentiable with Lipschitz continuous
derivatives, i.e. there exist positive constants L0, L1, L2, L3

such that ∀x, y ∈ Rd

‖ f (x) − f (y)‖ ≤ L0 ‖x − y‖ ,

‖∇ f (x) − ∇ f (y)‖ ≤ L1 ‖x − y‖ ,∥∥∇2 f (x) − ∇2 f (y)
∥∥ ≤ L2 ‖x − y‖ ,∥∥(D3 f

)
(x) − (D3 f

)
(y)
∥∥ ≤ L3 ‖x − y‖ .

We recall that if ∂ p f (x) is Lp-smooth, then ‖∂ p+1 f (x)‖ ≤
Lp ∀x ∈ Rd . For example, Assumption 1 implies that
‖∇2 f (x)‖ ≤ L1 ∀x ∈ Rd .

We begin by bounding the expected improvement in ac-
curacy provided by the exact update (1). Since the Hessian
estimator is incremental, to follow its evolution we need a
convergence rate that can be applied recursively. The conver-
gence rate provided in [16] considers the squared norm of
the approximation error, while here we look for a bound on

the non-squared norm, that is needed for subsequent analysis.
This bound can be obtained by choosing S = ∇2 f (x) − H j−1

in the following Lemma 1.
Lemma 1 (Convergence rate of the update (1)): Let S ∈

Rd×d be a symmetric matrix and u ∼ U (S). Then we have

E
[∥∥S − (uT Su)uuT

∥∥
F

] ≤ η ‖S‖F , η =
√

1 − 3

d (d + 2)
.

Remark 1 (Alternative convergence rate): The proof of
Lemma 1 is quite involved, but it is possible to obtain a
convergence rate slightly worse than the one above in a much
simpler way. Indeed, applying moment monotonicity to (2) we
get

E
[∥∥S − (uT Su)uuT

∥∥
F

] ≤
(
E
[∥∥S − (uT Su)uuT

∥∥2
F

])1/2

≤
((

1 − 2

d (d + 2)

)
‖S‖2

F

)1/2

=
(

1 − 2

d (d + 2)

)1/2

‖S‖F .

We now address the error due to the zeroth-order approx-
imation, which is neglected in [16] and not quantified in [8],
that affects the convergence rate as shown below.

Lemma 2 (Zeroth-order error of the update (3)): Consider
the updates (1) and (3) with u ∼ U (S) and fix H j−1 = Ĥ j−1.
Then for both the spectral and the Frobenius norm it holds

E
[∥∥H j − Ĥ j

∥∥] ≤ μ2L3

12 d
.

As a consequence, the convergence rate of (3) towards the
exact Hessian is

E
[∥∥∇2 f (x) − Ĥ j

∥∥
F

] ≤ η
∥∥∇2 f (x) − Ĥ j−1

∥∥
F + μ2L3

12 d
.

We denote with Ĥ r the matrix obtained applying r times
the incremental formula (3) starting from an arbitrary sym-
metric Ĥ0 ∈ Rd×d . We aim to bound the approximation error
‖∇2 f (x) − Ĥ r‖ as a function of the design parameter r, which
determines the number of function evaluations required to
build Ĥ r , namely 2r + 1. Due to the randomized nature of
the estimator, it is not possible to get a deterministic bound
on the error or a certain convergence rate. The best we can
obtain is a bound guaranteed to hold with high probability, that
can be provided by e.g. Markov’s or Chebyshev’s inequalities.
In our case we resort to Markov’s inequality, stating that the
probability that a non-negative random variable z ∈ R+ is
larger than an arbitrary scalar ε is

P(z ≥ ε) ≤ E[z]

ε
∀ε > 0. (4)

In our case z = ‖∇2 f (x) − Ĥ r‖, and building on the previ-
ous two lemmas we derive a bound on the expected value of
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this quantity. Since the bound takes into account the history of
the estimator, it depends on the initialization of the latter.

Lemma 3 (Convergence of the zeroth-order Hessian esti-
mator (3)): The expected convergence rate of the estimation
error of Ĥ r , obtained updating an initial symmetric Ĥ0 ∈
Rd×d according to (3), is

E
[

e
(
Ĥ r)∣∣ Ĥ0] ≤ ηre

(
Ĥ0)+ μ2L3

12 d

r−1∑
i=0

ηi.

Remark 2 (Design parameters μ and r): The bound of
Lemma 3 tells us that the approximation error of the Hessian
estimator can be made arbitrarily small by tuning the design
parameters μ and r. In particular, by increasing the number
of search directions, the first term in the right-hand side goes
to zero exponentially fast while the second term grows. How-
ever, since μ can be chosen arbitrarily small up to machine
precision, one can make also the second term negligible.

We are now in a position to apply Markov’s inequality,
that provides sufficient conditions for the norm of the es-
timation error to be arbitrarily small with high probability.
This requires to choose the maximum tolerable error ε and
the maximum probability δ that the bound does not hold.
Once these parameters are fixed, the dependent variable is the
number of updates r, which in turn determines the number of
required function evaluations.

Our analysis addresses the general case in which the
decision vector x and the corresponding Hessian to be approx-
imated can change over time. In particular, from now on we
use the subscript k ≥ 1 to denote the value of a variable at the
k-th iteration of a generic optimization algorithm. Moreover,
we allow for a different number of search directions r(k) at
each iteration.

Theorem 1 (Sufficient number of random directions): Con-
sider a sequence of Hessian matrices of a function f (x)
satisfying Assumption 1. Let Ĥ r(k)

k be the estimator of the k-th
Hessian, obtained updating Ĥ0

k along r(k) directions accord-
ing to (3). Arbitrarily choose an accuracy ε > 0 and a failure
probability δ ∈ (0, 1).

• (Memory-less case) Let Ĥ0
k be the matrix of all zeros and

μ ≤
√

12 d (1 − η)

L3
min
{
εδ,

√
dL1

}
,

r(k) ≥ logη

(
εδ(1 − η) − μ2L3

12 d√
dL1(1 − η) − μ2L3

12 d

)
,

then

P
(∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

≥ ε

∣∣∣ Ĥ0
k = 0

)
≤ δ.

Recall that η, defined in Lemma 1, is a function of d . The
asymptotic behaviour of μ and r(k) for d → ∞ as a function
of only d, ε, δ is the following: the upper bound on μ is
O(εδ/

√
d ), the lower bound on r is O(d2 log(

√
d/εδ)).

• (Warm-start case) Arbitrarily choose an initial point x1

and an initial symmetric Hessian estimator Ĥ0
1 . Let Ĥ r(k)

k be

the Hessian estimator obtained setting Ĥ0
i = Ĥ r(i−1)

i−1 ∀i > 1,
and updating Ĥ0

i along r(i) directions according to (3) ∀i ∈
[k]. If

μ ≤
√

12 dεδ(1 − η)

L3
, r(k) ≥ logη

⎛
⎝εδ − 1

1−η
μ2L3
12 d

ck

⎞
⎠ ,

ck = μ2L3

12 d

⎡
⎣k−1∑

j=1

(
η
∑k−1

z= j+1 r(z) 1 − ηr( j)

1 − η

)
− 1

1 − η

⎤
⎦

+
√

dL2

k∑
j=2

(
η
∑k−1

z= j r(z) ∥∥x j − x j−1
∥∥)

+ η
∑k−1

j=1 r( j) ∥∥∇2 f (x1) − Ĥ0
1

∥∥
F ,

then

P
(∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

≥ ε

∣∣∣ Ĥ0
1

)
≤ δ.

Remark 3: The update Ĥ0
k = Ĥ r(k−1)

k−1 can be extremely ad-
vantageous when the Hessian matrix is slowly changing, e.g.
when the algorithm is making small steps or is approaching
the minimum. When the Hessian is known to be constant,
as it happens for linear least squares and ridge regression
problems, one can also refer to the memory-less case and
estimate the Hessian only once.

The asymptotic scaling r ≥ O(d2 log(
√

d/εδ)) shows that
the number of search directions prescribed by Theorem 1 may
grow very large for high-dimensional problems or small val-
ues of the product εδ. However, this is not a concern because
of the following two reasons. First, the lower bound on r con-
siders the worst case scenario and results from conservative
approximations and Taylor expansions. In particular, the term
log(

√
d ) comes from initializing the Hessian estimator with

the zero matrix, while typically one chooses a better initial
guess. For example, when tracking a time-varying Hessian it
is natural to warm-start the estimator starting from the esti-
mate obtained at the previous time step. The second and most
important argument is that the incremental Hessian estimator
is meant to be used while keeping r � d2, as building Ĥ r

involves 2r + 1 function values. In fact, the purpose of (3)
is not to achieve the lowest possible approximation error, but
to provide a cheap Hessian estimate in cases where obtaining
O(d2) function values is infeasible, which often happens in
practice. Indeed, if O(d2) function evaluations could be af-
forded one could simply employ a deterministic entry-wise
estimator, which typically also provides better estimates for
the same number of function queries. Our experiments in
Section IV show that setting r = O(d ), r ≥ d (for example,
we use r = d in the numerical experiment in Fig. 6) is suffi-
cient to obtain very good results.

Remark 4: The incremental randomized procedure allows
an arbitrary small number of function queries, provides an
improved estimate at each update and can be stopped at any
moment. Moreover, it allows to track a time-varying Hessian

VOLUME 3, 2024 177



MARITAN ET AL.: NOVEL BOUNDS FOR INCREMENTAL HESSIAN ESTIMATION WITH APPLICATION TO ZEROTH-ORDER FEDERATED LEARNING

FIGURE 1. Visual representation of the bound provided by Lemma 3,
setting Ĥ0 = 0d , L3 = 0.05, μ = 10−4. The Hessian matrices are random
matrices whose elements are i.i.d. ∼ N (0, 1).

FIGURE 2. Plot of the upper bound on μ and the lower bound on r for
various values of d , according to the memory-less case of Theorem 1. The
blue lines have been obtained setting ε = 0.5, δ = 0.01, L1 = L3 = 0.05,
and the bound on r in (b) is computed using the realistic value μ = 10−4.
The red lines show the asymptotic behaviour for large values of d .

using the previous estimate as starting point. In comparison,
deterministic entry-wise estimators always start from scratch
and necessarily require O(d2) function evaluations to approxi-
mate the d (d + 1)/2 distinct entries of the Hessian. A possible
alternative to keep the number of function queries linear in
d is given by the Jacobi estimator employed in [10], that
estimates only the diagonal of the Hessian by means of finite-
differences along the canonical basis. However, neglecting the

off-diagonal entries of the Hessian leads to high approxima-
tion errors in case of skewed objectives.

B. GRADIENT ESTIMATION AND IMPROVED HESSIAN
ESTIMATION VIA ORTHONORMAL SEARCH DIRECTIONS
The incremental Hessian estimator requires to uniformly sam-
ple a set of vectors from the unit sphere. This is commonly
done by normalizing random vectors ∼ N (0, Id ), possibly
leading to a set directions not evenly distributed over the
search space [8]. Intuitively, a simple way to efficiently span
the neighborhood of the decision vector and minimize re-
dundancy is to choose orthogonal search directions. Since
r ≥ d , we can only ask for partial orthogonality, where each
direction is orthogonal to at most other d − 1 directions. In
practice, we generate r/d� orthonormal bases of Rd , merge
them and select the first r vectors. As noted in [8], empirically
this approach provides concrete advantages over using totally
random directions, allowing to achieve a given accuracy with
a smaller number of search directions. In Appendix B we
provide two methods to easily generate orthonormal vectors
whose marginal distribution is U (S). These methods can be
used to build the r/d� bases of Rd from which to sample the
r search directions for the Hessian estimator.

Picking the search directions from the union of multiple or-
thonormal bases can improve also gradient estimation. Indeed,
it opens up the possibility to use the gradient estimator

ĝ =
d∑

j=1

f (x + μu j ) − f (x − μu j )

2μ
u j, (5)

where {u1, . . . , ud } is an orthonormal basis, which can be
thought as a rotated version of the standard entry-wise es-
timator that computes finite-differences along the canonical
basis. Numerical simulations show that typically the Hes-
sian estimator (3) needs r ≥ d search directions to provide
an acceptable estimate. This is common to most randomized
Hessian estimators, see for example [11] and [12]. Therefore,
by picking an orthonormal set {u1, . . . , ud } from the r ≥ d
directions used to build the Hessian estimator, no additional
function queries are needed and the gradient estimate is ob-
tained for free. As shown in [8] of this estimator satisfies the
deterministic bound

‖∇ f (x) − ĝ‖ ≤ dL2μ
2

6
, (6)

which implies that for sufficiently small values of μ the es-
timate is almost perfect. In practice (5) is very reliable, and
outperforms other randomized gradient estimators even for
r � d . This is in agreement with [20], who claims that ran-
domized gradient estimators offer no theoretical or practical
advantage over the standard ones when r ≥ d .

III. APPLICATION TO FEDERATED LEARNING
In this second part of the paper we propose a concrete ap-
plication of the bounds developed so far. We first show how
the incremental Hessian estimator can be efficiently built in
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a distributed way, and then we describe a novel zeroth-order
algorithm for non-convex federated optimization of black-box
functions. While in what follows we focus on zeroth-order
federated learning, we remark that the bounds in Section II
can be used whenever an Hessian estimate with bounded
approximation error is needed, i.e. also in centralized or fully-
distributed optimization settings.

A. PROBLEM FORMULATION
We address the horizontal federated learning setting, where a
set of clients are connected to a central server in a star topol-
ogy. The objective is to collaboratively train a shared model to
achieve higher accuracy and generalization capabilities, while
preserving the individual privacy. Clients own disjoint sets of
private data samples belonging to the same feature space, and
the distribution of the local data can vary across participants.
We consider the empirical risk minimization problem

f (x�) = min
x∈Rd

{
f (x) := 1

n

n∑
i=1

fi(x)

}
. (7)

where fi(x) is the loss function of participant i. The local
functions take the form

fi(x) = 1

mi

mi∑
j=1

fi j (x). (8)

where fi j (x) is the loss of the j-th data sample stored by client
i, who owns mi data samples. We denote the total number of
samples available for training with m =∑n

i=1 mi. The exact
function derivatives may be not available or be prohibitively
expensive to compute, and any function may be accessible
only through point evaluations. Also function queries are as-
sumed to be costly and time-consuming, and their number
should be limited as much as possible.

To devise an algorithm that can work with limited commu-
nication bandwidth, we require that all the devices that take
part to the training are equipped with a pseudo-random num-
ber generator (PRNG). This requirement is reasonable and
barely restrictive, and can be found also in [7], [8] and [20].

Assumption 2 (PRNGs): All the clients and the central
server have access to a pseudo-random number generator,
whose output sequence is repeatable and is uniquely deter-
mined by the internal seed.

B. FEDERATED GRADIENT AND HESSIAN ESTIMATION
The zeroth-order gradient and Hessian estimators presented in
Section II can be built in a distributed way by following the
procedure described in [8]. Consider the federated scenario
introduced in the previous section, namely a set of clients
connected to a central server according to a star topology. The
key idea is to leverage Assumption 2 to generate a common set
of search direction at all nodes, removing the communication
cost associated with broadcasting the directions. Below we
summarize the distributed estimation procedure, as it will be
employed also by the federated algorithm proposed in the next
subsection.

During the initialization phase, the central server sends to
all the clients the same seed, possibly using a private trans-
mission channel, and the clients use it to synchronize their
pseudo-random number generator. Suppose that we want to
estimate the global gradient and Hessian at the current de-
cision vector xk using (3) and (5). To do so, the clients and
the server agree on a sampling procedure (one of the two
described in Appendix B) and execute it r/d� times, using
the synchronized PRNG whenever it is needed to generate
random quantities. As a result, they all get the same r/d�
bases of Rd , each composed of orthonormal vectors whose
marginal distribution is U (S). Selecting the first r vectors from
the union of these bases ensures that all nodes come up with
the same set of search directions {u1, . . . , ur}. Each client i
evaluates his local function at the points xk and {xk ± μu j},
j ∈ [r] to compute the d gradient coefficients

ci j = fi(xk + μu j ) − fi(xk − μu j )

2μ
≈ ∇ fi(xk )T u j, (9)

and the r directional curvatures

bi j = fi(xk + μu j ) − 2 fi(xk ) + fi(xk − μu j )

μ2
. (10)

The server receives these scalars and computes the average
over the set of clients. Since the search directions are the
same for all nodes, the central server can build the gradient
estimator and update the current Hessian estimate Ĥ0

k .

gk =
d∑

j=1

(
1

n

n∑
i=1

ci j

)
u j, (11)

H j
k = H j−1

k +
(

1

n

n∑
i=1

bi j − uT
j H j−1

k u j

)
u ju

T
j , j ∈ [r].

Remark 5: This distributed estimation of the Hessian is
advantageous also in case of non-zeroth-order federated op-
timization to build an Hessian estimate at the server in a
communication-efficient way. Indeed, if clients are able com-
pute the exact Hessian of their local function, they can simply
send to the server the exact directional curvatures, i.e. bi j =
uT

j ∇2 fi(xk )u j . If clients transmitted to the server all distinct
entries of the exact Hessian, this would result in sending
d (d + 1)/2 scalars. Instead, with this procedure each client
transmits to the server only r scalars, where r is a tunable
parameter.

As noted in [8], the above procedure has two properties that
are relevant for federated learning. First, since it estimates
the derivative of global objective, it allows for clients with
heterogeneous data distributions. Second, if in the initializa-
tion phase the seed is shared through a private channel, then
the procedure conceals the estimated derivatives from external
eavesdroppers, who can only obtain the coefficients {bi j, ci j}
which by themselves do not leak any information.

In case of Big Data applications it may not be feasible to
compute the derivative estimators using all the data samples.
To address these scenarios, in Appendix C we generalize the
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bounds on the estimation error to include the cases where
subsampling is used.

Remark 6: The aforementioned procedure was first in-
troduced by [8], that proposes the federated zeroth-order
algorithm for convex optimization FedZeN. In the theoretical
analysis of the latter, the approximation error the Hessian
estimator is bounded using a simplifying assumption that in-
volves unknown quantities. Using the bounds developed in
Section II, it is possible to remove that assumption and get
a lower bound on the number of search directions needed by
FedZeN to achieve local quadratic convergence.

C. CUBIC-REGULARIZED FEDERATED LEARNING
We now show how our analysis regarding the incremental
Hessian estimator can be applied to design provably con-
vergent algorithms for non-convex federated optimization.
Building over the previous sections, we design a novel fed-
erated algorithm that can be applied to non-convex functions
whose exact derivatives are not available. The algorithm arises
from the union of the following three elements. First, the
procedure described in Section III-B is used to estimate the
derivatives of the global objective at the central server. Sec-
ond, the bounds derived in Section II are used to tune the
number of search directions and make the Hessian estima-
tor sufficiently accurate. Finally, the estimated derivatives are
used to solve a cubic-regularized subproblem, allowing to
optimize non-convex objectives with solid convergence guar-
antees.

1) CENTRALIZED CUBIC-REGULARIZED NEWTON
Non-convex optimization problems are typically character-
ized by multiple local minima and saddle points, which
require additional care. For this reason, in our algorithm
we employ the cubic-regularized Newton method introduced
by [21], that for general non-convex optimization problems
ensures fast convergence to approximate second-order station-
ary points, i.e. approximate local minima, defined below.

Definition 1 ((εg, εH )-optimality): Given εg > 0 and εH <

1, x is an (εg, εH )-optimal point of the function f if

‖∇ f (x)‖ ≤ εg, λmin(∇2 f (x)) ≥ −εH ,

where the operator λmin(�) returns the smallest eigenvalue of
a matrix argument.

More specifically, under the assumption of L2-Lipschitz
Hessian, the cubic-regularized Newton method provides
monotone convergence to an (τ,

√
τ )-optimal point in

O(τ−3/2) iterations, which is the best known worst-case it-
eration complexity.

The key feature of this method is the capability of escaping
saddle points that are non-degenerate, i.e. for which the Hes-
sian is full-rank. As argued in [22], in general most critical
points are saddles, and statistically the number of saddles
grows exponentially with the size of the problem. Therefore,
cubic-regularized Newton provides possibly better solutions
compared to other optimization algorithms such as stochastic

gradient descent, that may get stuck in saddle points and make
the loss function plateau [22].

Remark 7: In alternative to cubic-regularized Newton
method, one can use Approximate saddle-free Newton
method [22], that takes the absolute value of the eigenvalues
of the Hessian to avoid getting trapped in saddle points.

At each iteration the method updates the decision vector
using xk+1 = xk + sk , where sk is the step that minimizes the
model below, composed by the second-order Taylor expansion
of the objective plus a cubic regularization term with coeffi-
cient M > 0:

sk =argmins∈Rd f (xk )+∇ f (xk )T s+ 1

2
sT ∇2 f (xk )s+ M

6
‖s‖3.

The purpose of the cubic term is to ensure that the selected
step is not too big, since the second-order Taylor approxi-
mation is only locally accurate. Minimizing the above cubic
model is equivalent to solving a constrained one-dimensional
problem [21], and several specialized solvers are available in
the literature, for example [23] and [24].

To use our Hessian estimator, we resort to a version of the
cubic-regularized Newton method that allows for approximate
function derivatives, minimizing the cubic model

mk (s) = f (xk ) + gT
k s + 1

2
sT Hr(k)

k s + Mk

6
‖s‖3 . (12)

2) THE NOVEL FEDZCR AND FEDZACR
Combining the federated derivative estimation described in
Section III-B with cubic regularization, we obtain a novel
algorithm for non-convex federated optimization, that we call
FedZCR (Federated Zeroth-order Cubic Regularization). The
first part of Algorithm 1 implements the federated estimation
procedure, which builds the gradient and Hessian estimators
at the central server. In the second part of the pseudocode the
server updates the model parameters by solving the subprob-
lem (12).

Remark 8: Cubic-regularized Newton methods are advan-
tageous also for convex optimization problems, since (i)
compared to standard Newton methods they provide global
convergence guarantees, and (ii) they do not require the Hes-
sian to be positive-definite. This allows us to directly use the
incremental Hessian estimator (1), that is not guaranteed to be
positive-definite. In comparison, in FedZeN [8] it is needed to
either add a regularization term or to clip the eigenvalues of
the estimated Hessian.

We also introduce the variant FedZACR, where A stands
for adaptive, that updates the coefficient M at each iteration
according to the performance of the algorithm. Our approach
is similar to the one of [23], that treats M as the reciprocal of
a trust-region radius. Trust-region algorithms set a maximum
value for the norm of the step, which results in a constrained
minimization problem. Cubic regularization replaces the hard
constraint with the cubic penalty term, that allows a smooth
trade-off between model minimization and algorithmic wari-
ness. In particular, [23] defines the performance indicator ρ as
the ratio between the actual function value improvement and
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Algorithm 1: FedZCR and FedZACR.

expected one. Given two threshold parameters 0 < t1 < t2 <

1, if t1 ≤ ρ ≤ t2 the iteration is marked as successful, and the
current value of M is regarded as appropriate. If ρ > t2 the
iteration is considered very successful and the penalty coeffi-
cient is lowered to allow for bigger steps. If instead ρ < t1 the
iteration is deemed unsuccessful and the step is rejected. This
implies that the model in (12) is not sufficiently accurate, and
therefore M should be increased to reduce the size of the next
step. Typical values for the threshold parameters are t1 = 0.1,
t2 = 0.9.

3) CONVERGENCE ANALYSIS OF FEDZCR
Below we exploit the bounds regarding the Hessian estimator
to derive the values of μ and r for which the non-adaptive
version of the algorithm converges to a second-order sta-
tionary point with optimal iteration complexity and arbitrary
precision.

In order to preserve the appealing features of the orig-
inal cubic-regularized Newton method while using inexact

gradient and Hessian, the estimators in (12) must satisfy
certain accuracy requirements. Many choices are available
in the literature for these requirements, which correspond to
different convergence results. In particular, it is shown in [25]
that the convergence properties of the exact cubic-regularized
Newton method can be retained provided that at all iterations∥∥∥Hr(k)

k − ∇2 f (xk )
∥∥∥ ≤ α

∥∥sk−1
∥∥ , (13)

‖gk − ∇ f (xk )‖ ≤ β
∥∥sk−1

∥∥2
, Mk ≥ 2

3
L2 + 8α + 8β,

where α, β ∈ R are positive constants. It should be noted that
the above conditions are implementable in practice, as they
involve the step sk−1 computed in the previous iteration. In
comparison, most other works similar to [25] end up losing the
saddle-avoidance property, converging to first-order stationary
points, or require the knowledge of the step sk before it is even
computed (e.g. [26]).

The following Theorem 2 provides sufficient conditions
for which FedZCR encounters a (τ,

√
τ )-optimal point in

O(τ−3/2) iterations with high probability.
Theorem 2: Let the objective function satisfy the smooth-

ness properties in Assumption 1. Fix two positive constants
α, β ∈ R. At each iteration k of FedZCR, choose δk ∈ (0, 1),
set

εk ≤ α
∥∥sk−1

∥∥ , Mk ≥ 2

3
L2 + 8α + 8β,

μk ≤ min

{√
6β

dL2

∥∥sk−1
∥∥ ,

√
12 dεkδk (1 − η)

L3

}
,

and choose r(k) greater or equal than the minimum number
of search directions prescribed by Theorem 1. Then, after τ

iterations, with probability at least
∏τ

i=1(1 − δi ) the sequence
{xi | i ∈ [τ ]} generated by FedZCR contains a point x̃ such that

‖∇ f (x̃)‖ ≤ C1

(τ − 1)2/3
, λmin(∇2 f (x̃)) ≥ − C2

(τ − 1)1/3

where C1 and C2 are universal constants.
Proof: The proof is a straightforward application of (6) and

Theorem 1 to the requirements in (13). Imposing the condition

‖∇ f (x) − ĝ‖ ≤ dL2μ
2

6
≤ β
∥∥sk−1

∥∥2

leads to μk ≤ √
6β/(dL2)‖sk−1‖. The definition of εk and

μk is a consequence of invoking the warm-start case of
Theorem 1. The condition on Mk and the values of C1 and
C2 can be found in [25]. �

IV. NUMERICAL RESULTS
We now present a set of numerical simulations that showcases
the performance of the algorithm proposed in Section III-C2.
We focus on the adaptive version FedZACR, that can be di-
rectly applied to any problem as it does not require tuning the
parameter Mk . We use the standard thresholds t1 = 0.1, t2 =
0.9 and set γ1 = 5, γ2 = 20, that work well for all our experi-
ments. We consider both convex and non-convex optimization
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problems and compare FedZACR with other state-of-the-art
federated algorithms, including both zeroth-order methods
and methods for convex optimization that use the exact deriva-
tives. We use f � to denote the minimum value of the loss
function to be optimized.

A. CONVEX COST FUNCTIONS
Our first experiments concern logistic regression, that is the
most common benchmark function for convex optimization.
We consider the same convex optimization problem of [8],
namely binary classification via logistic regression using two
classes of the dataset Covertype [27]. The feature size is d =
55 and the data points are evenly split across n = 100 clients,
so that each participant has 500 samples.

1) COMPARISON WITH ZEROTH-ORDER METHODS
We compare FedZACR with the following zeroth-order feder-
ated methods:
� FedZO [3], that is the zeroth-order counterpart of Fe-

dAvg, setting learning rate η = 0.1, H = 5 local epochs
and b2 = d perturbation directions.

� ZONE-S [4], where at each iteration only one client
is updated and the server minimizes an augmented
Lagrangian function. In our implementation we use
Nesterov accelerated gradient to solve the Lagrangian
subproblem.

� A federated version of ZO-JADE [10], which is a fully-
distributed algorithm for convex optimization that allows
for general network topologies. ZO-JADE estimates only
the diagonal of the Hessian matrix to use it as a precon-
ditioner.

� FedZeN [8], from which our algorithm inherits the dis-
tributed estimation procedure. FedZeN is specifically
designed for strongly-convex optimization and enforces
the estimated Hessian to be positive-definite applying
either regularization or eigenvalue clipping. Since we
replicate the test performed in [8], we tune the param-
eters of FedZeN as described there.

Differently from [8], which keeps the number of search
directions fixed for all iterations in the simulations, we try
some heuristics for r(k). We compare increasing, constant
and decreasing schedules, and we observe how they affect
the convergence rate, the total communication cost and the
overall number of function queries. The approach that works
best in our tests is an increasing schedule of the form r(k) =
min{rmax, �νkr(1)�}, ν > 1, where the number of search di-
rections grows exponentially up to a budget threshold rmax.
Empirically, in the first iterations it suffices to move in an
approximately correct direction to obtain substantial improve-
ments, so we decide not to aim for perfection and settle for
a cheap Hessian estimate. Indeed, in the first iterations the
decision vector and consequently the optimization landscape
typically evolve rapidly, so it is not worth spending many
function queries at this stage. On the contrary, as we get closer
to the optimum it becomes increasingly more important to

FIGURE 3. Training loss of zeroth-order logistic regression. The
competitors of FedZACR are other federated zeroth-order algorithms.

make precise updates, which requires an accurate estimate
of the Hessian. For this reason, our schedule progressively
increases the amount of function queries to allow convergence
in few iterations. In our tests, sparing function queries in
the early iterations and performing a few computationally
expensive final iterations achieves the best trade-off between
number of iterations and total number of function evalua-
tions needed for convergence, and is a better choice than just
keeping a constant r(k). For a fair comparison in our test we
apply this heuristics to both FedZACR and FedZeN, setting
r(1) = 2 d , rmax = 8 d and ν = 1.03.

Fig. 3 shows that FedZACR outperforms all the other algo-
rithms including FedZeN [8], that is based on the same dis-
tributed derivative estimation procedure. Moreover, FedZeN
has an unfair advantage in knowing that the problem is con-
vex, which allows it to “cheat” and tweak the Hessian estimate
to be positive-definite. In comparison, FedZACR is not aware
of convexity and makes up for Hessian uncertainty by using
the cubic penalty to limit the stepsize. The training loss is
plotted against the number of function queries, which are
assumed to be the most expensive computations and represent
the main evaluation metric in the zeroth-order optimization
field.

2) COMPARISON WITH NON-ZEROTH-ORDER METHODS
We now consider the scenario where clients are able to
directly compute the exact derivatives of their local func-
tions. We compare the zeroth-order FedZACR (with the same
parameters as in the previous test) with the following competi-
tors that make use of the exact derivatives:
� GIANT [17], that computes an approximate Newton di-

rection by replacing the arithmetic mean of the local
Hessian matrices with the harmonic mean. To prevent
algorithmic divergence we use a fixed stepsize equal
to 0.2, which is the largest stepsize the algorithm can
handle in our experiment.
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FIGURE 4. Training loss of standard logistic regression: unfair comparison
between the zeroth-order FedZACR versus other federated algorithms that
make use of the exact derivatives. While FedZACR is clearly disadvantaged,
its performance is comparable to second-order state-of-the-art algorithms.

� FedNL and FedNL-CR [18], where clients send to the
server compressed Hessian innovations and the corre-
sponding compression errors. The vanilla FedNL ap-
plies a Newton-type step, while FedNL-CR assumes
the knowledge of the Lipschitz constant of the Hes-
sian to apply cubic-regularized Newton method. In our
implementation we use stepsize α = 1 and the rank-3
compression operator based on singular value decompo-
sition.

� FLECS [20], that starts from FedNL and proposes al-
ternative ways to update the Hessian estimate at the
server and compute the quasi-Newton step. We consider
FLECS with “direct update” and “truncated inverse Hes-
sian approximation”, which are respectively Algorithms
2 and 3 in [20].

� FedAvg [28], that is the equivalent of stochastic gradi-
ent descent for federated learning. While FedAvg is a
first-order method and cannot compete with the above
second-order algorithms, we still include it as it repre-
sents the baseline for federated learning. We set learning
rate η = 0.1, E = 10 local epochs and batchsize B = 50.

Fig. 4 shows that while being a zeroth-order algorithm,
FedZACR can compete with state-of-the-art second-order
methods that have access to the exact derivatives. The two

FIGURE 5. Function value suboptimality of zeroth-order linear regression
using a non-convex loss. We compare FedZACR to other federated
zeroth-order algorithms.

variants of FedNL achieve the best performance, but together
with GIANT they can be applied only when the objective
function is strongly-convex. We remark that all the second-
order competitors require the computation of the local Hessian
matrices, and do not support black-box objectives or approxi-
mate derivatives.

B. NON-CONVEX COST FUNCTIONS
The following experiments highlight the distinguishing fea-
tures of FedZACR: our algorithm allows tackling non-convex
federated learning problems, does not require the objective
function to be differentiable, and exploits the second-order
derivative to achieve faster convergence.

1) NON-CONVEX ROBUST LINEAR REGRESSION
In this test the Bike Sharing dataset [29] is evenly partitioned
over n = 100 clients. The task is to predict the number of
rented bikes using robust linear regression, that is less sen-
sitive to the presence of outlier data samples. Each client i
owns a matrix Ai ∈ Rmi×d , whose rows are data samples, and a
response vector bi ∈ Rmi . We adopt the loss function proposed
in [30], that uses two parameters (α, c) to generalize several
standard loss functions. In particular, we choose α = −0.5
and c = 3, that correspond to the non-convex loss

fi(ri ) = |α − 2|
α

((
(ri/c)2

|α − 2| + 1

)α/2

− 1

)
, (14)

where in our case ri = Aix − bi is the residual error of linear
regression at client i. The results of this test are shown in
Fig. 5.

2) BLACK-BOX NEURAL NETWORK FINETUNING
The test consists in fine-tuning a black-box convolutional
neural network on a classification task. The network is an
off-the-shelf model composed of a convolutional layer, two
fully-connected layers and ReLU activation functions. The
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FIGURE 6. Training accuracy achieved while fine-tuning a black-box neural
network on a classification task. FedZACR is compared with other
federated zeroth-order algorithms for non-convex optimization.

first two layers are frozen and treated as a black-box opaque
to the optimizer. The last layer is trained from scratch, and
the total amount of learnable parameters is d = 410. We use
the standard MNIST dataset [31] and split it over a pool of
n = 100 clients. We generate a non-i.i.d. data distribution with
the following procedure: sort the data samples according to
their label, partition them in n shards, and assign a different
shard to each client. As a result, all participants have the same
amount of data samples, but the local data distributions are
different.

Since the objective function is non-convex and non-
differentiable, we can compare FedZACR only with the
zeroth-order methods FedZO and ZONE-S. The hyperparam-
eters are the same as in the previous test (Section IV-A),
with the only difference that for FedZACR we set a con-
stant r(k) = d at all iterations. To reduce the computational
complexity all algorithms employ subsampling, discussed in
Appendix C: each client trains on a batch containing 10% of
its data samples, randomly chosen at each local iteration.

Fig. 6 shows that FedZACR trains the network faster and
more efficiently compared to its contenders, requiring fewer
iterations and function queries to achieve the same training
accuracy.

V. CONCLUSION
We have addressed two different but related topics. The com-
mon thread is a randomised estimator of the Hessian matrix

suitable for zeroth-order optimization, where functions are
black boxes accessible only through input-output pairs and
function derivatives are not available. Moreover the estimator
is incremental, meaning that it is built iteratively updating the
last estimate as new data comes.

In the first part of the paper we have analyzed the con-
vergence properties of the estimator, bounding the estimation
error after a finite number of iterations and deriving the min-
imum number of search directions needed to achieve a given
accuracy with high probability.

In the second part we have proposed a novel algorithm
for federated optimization of non-convex black-box functions.
The algorithm estimates the Hessian matrix of the global
objective function and runs an approximate cubic-regularized
Newton method. Applying our results regarding the Hessian
estimator we have proved convergence to a second-order
optimal point with high probability and optimal iteration
complexity. We have validated the theory with numerical
results, showing that our algorithm outperforms several state-
of-the-art methods in multiple types of federated optimization
problems.

APPENDIX A
PROOFS OF SECTION II
1) PROOF OF LEMMA 1
Proof: Since S is symmetric, its singular value decomposition
is S = V �V T and its singular values are equal to the absolute
value of the eigenvalues, i.e. σi = |λi|, i ∈ [d]. Since V is
an orthonormal basis of Rd , we can write the generic vector
u ∼ U (S) as u = V α for suited α ∈ Rd . Since the uniform
spherical distribution is invariant with respect to orthogonal
transformations (rotational invariance) and V is orthonormal,
α = V T u ∼ U (S). Then we have

∥∥S − (uT Su)uuT
∥∥

F

= ∥∥V �V T − (αT V T V �V T V α)V ααT V T
∥∥

F

= ‖V ‖F

∥∥� − (αT �α)ααT
∥∥

F

∥∥V T
∥∥

F ,

where ‖V ‖F = 1, i.e. we can prove the statement of Lemma 1
using the diagonal matrix � instead of the general symmetric
S. Using the definition of Frobenius norm, namely ‖A‖2

F =
Tr(AT A) =∑d

i=1 σ 2
i , and the invariance of the trace under

circular shifts, namely Tr(�ααT ) = Tr(αT �α) = αT �α and
Tr(ααT ) = αT α = ‖α‖2 = 1, we have

∥∥� − (αT �α)ααT
∥∥2

F

= Tr[(� − (αT �α)ααT )T (� − (αT �α)ααT )]

= Tr(�T �) + (αT �α)2Tr(ααT ααT )

− 2(αT �α)Tr(�ααT )

= ‖�‖2
F + (αT �α)2 − 2(αT �α)2
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= ‖�‖2
F −
(

d∑
i=1

α2
i σi

)2

≤ ‖�‖2
F −

d∑
i=1

(
α2

i σi
)2

,

and by monotonicity of the square root

∥∥� − (αT �α)ααT
∥∥

F ≤
√√√√‖�‖2

F −
d∑

i=1

(
α2

i σi
)2

.

We now take the expectation and apply Jensen’s inequality,
recalling that the square root is a concave operator:

E
[∥∥� − (αT �α)ααT

∥∥
F

] ≤
√√√√‖�‖2

F −
d∑

i=1

σ 2
i E
[
α4

i

]
Being α ∼ U (S), each component of α is identically dis-

tributed and

α2
i ∼ Beta

(
1

2
,

d − 1

2

)
i ∈ [d].

The mean and variance of each α2
i are respectively

E[α2
i ] = 1

d
, var[α2

i ] = 2(d − 1)

d2(d + 2)
.

Using basic probability, we have

E[α4
i ] = E[α2

i ]2 + var[α2
i ] = 3

d (d + 2)
.

Using this result, we finally get

E
[∥∥� − (αT �α)ααT

∥∥
F

] =
√√√√‖�‖2

F −
(

d∑
i=1

σ 2
i

)
E
[
α4

1

]

=
√

‖�‖2
F − ‖�‖2

F
3

d (d + 2)

and recalling that ‖�‖ = ‖S‖ the proof is concluded. �

2) PROOF OF LEMMA 2
Proof: For simplicity of notation we drop the subscript of
the search direction u j . Below we use Taylor expansion with
integral remainder, the Lipschitz properties of the function and
the fact that ‖u‖ = 1.

E
[∥∥∥H j − Ĥ j

∥∥∥] = E

[∥∥∥∥
(

uT ∇2 f (x)u

− f (x + μu) − 2 f (x) + f (x − μu)

μ2

)
uuT

∥∥∥∥
]

= E

[∥∥∥∥− μ

2
uuT
∫ 1

0
(1 − t )2〈(D3 f )(x + tμu)

− (D3 f )(x − tμu), u, u, u〉 dt

∥∥∥∥
]

≤ E

[∥∥∥∥−μ

2
uuT
∫ 1

0
(1 − t )2L3 ‖u‖3 ‖2tμu‖ dt

∥∥∥∥
]

= E

[∥∥∥∥−μ2

12
L3 uuT

∥∥∥∥
]

= μ2L3

12 d
E
[∥∥uuT

∥∥] .
If we consider the spectral norm, then the largest singular
value of the rank-one matrix uuT is 1. If instead we take
the Frobenius norm, then ‖uuT ‖F =

√
Tr(uuT ) =

√
uT u =

‖u‖ = 1.
To obtain the convergence rate of (3) towards the exact Hes-

sian we use the triangular inequality and Lemma 1 choosing
S = ∇2 f (x) − H j−1.

E
[∥∥∇2 f (x) − Ĥ j

∥∥
F

] ≤
≤ E
[∥∥∇2 f (x) − H j

∥∥
F + ∥∥H j − Ĥ j

∥∥
F

]
≤ η
∥∥∇2 f (x) − H j−1

∥∥
F + μ2L3

12 d
.

The statement follows recalling that by assumption H j−1 =
Ĥ j−1. �

3) PROOF OF LEMMA 3
Proof: We consider the whole trajectory of the estimator,
applying multiple times Lemma 2 together with the tower
property of conditional expectation.

E
[∥∥∇2 f (x) − Ĥ r

∥∥
F

∣∣ Ĥ0]
= EĤr−1

[
EĤr

[∥∥∇2 f (x) − Ĥ r
∥∥

F

∣∣ Ĥ0, Ĥ r−1]]
≤ EĤr−1

[
η
∥∥∇2 f (x) − Ĥ r−1

∥∥
F + μ2L3

12 d

∣∣∣∣ Ĥ0
]

= μ2L3

12 d
+EĤr−2

[
EĤr−1

[
η
∥∥∇2 f (x)−Ĥ r−1

∥∥
F

∣∣ Ĥ0, Ĥ r−2]]

≤ μ2L3

12 d

1∑
i=0

ηi + EĤr−2

[
η2
∥∥∇2 f (x) − Ĥ r−2

∥∥
F

∣∣ Ĥ0]

≤ μ2L3

12 d

r−2∑
i=0

ηi + EĤ1

[
ηr−1

∥∥∇2 f (x) − Ĥ1
∥∥

F

∣∣ Ĥ0]

≤ μ2L3

12 d

r−1∑
i=0

ηi + ηr
∥∥∇2 f (x) − Ĥ0

∥∥
F

�

4) PROOF OF THEOREM 1
Proof. (Memory-less case): If Ĥ0

k is the zero matrix, using the
fact that for a matrix A with rank p it holds ‖A‖F ≤ √

p‖A‖,
we get ∥∥∇2 f (xk ) − Ĥ0

k

∥∥
F ≤

√
d
∥∥∇2 f (xk )

∥∥ ≤
√

dL1.
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Using Markov’s inequality and plugging the above inequality
in Lemma 3, ∀ε > 0 and ∀k ≥ 1

P
(∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

≥ ε

∣∣∣ Ĥ0
k = 0

)

≤ 1

ε
E
[∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

∣∣∣ Ĥ0
k = 0

]

≤ 1

ε

⎛
⎝ηr(k)

√
dL1 + μ2L3

12 d

r(k)−1∑
i=0

ηi

⎞
⎠ ≤ δ

where in the last step we ask the probability to be smaller
than an arbitrary δ > 0. The last inequality is equivalent to the
following ones.

ηr(k)
√

dL1 + μ2L3

12 d

1 − ηr(k)

1 − η
≤ εδ,

ηr(k)
√

dL1(1 − η) + μ2L3

12 d
(1 − ηr(k) ) ≤ εδ(1 − η),

ηr(k)
(√

dL1(1 − η) − μ2L3

12 d

)
≤ εδ(1 − η) − μ2L3

12 d
.

Solving for r(k) one gets the following conditions, where the
upper bound on μ ensures that the logarithm is well defined.

μ ≤
√

12 d (1 − η)

L3
min
{
εδ,

√
dL1

}
,

r(k) ≥ logη

(
εδ(1 − η) − μ2L3

12 d√
dL1(1 − η) − μ2L3

12 d

)
.

To deduce the limiting behaviour for large values of d we use
the definition of η and the following Taylor expansions:

η =
√

1 − 3

d (d + 2)
,

√
1 − x = 1 − x

2
+ o(x2) for |x| < 1,

log(1 − x) = −x − x2

2
+ o(x3) for |x| < 1.

Indeed, for d → ∞ and εδ ≤ √
dL1 we obtain

μ ≤
√

12 d (1 − η)

L3
min
{
εδ,

√
dL1

}

∝
√√√√d

(
1 −
√

1 − 3

d (d + 2)

)
εδ

=
√

d

(
1 −
(

1 − 3

2d (d + 2)
+ o

(
1

d4

)))
εδ

∝
√

d
3

2 d2
εδ = O

(
εδ√

d

)
.

Using also the bound on μ and the change of basis rule for the
logarithm, the asymptotic scaling of r(k) is

r(k) ≥ logη

(
εδ(1 − η) − μ2L3

12 d√
dL1(1 − η) − μ2L3

12 d

)
∝ logη

(
εδ√
dL1

)

∝ log

(
εδ√

d

)
/ log

(
1 − 3

2d (d + 2)

)

= log

(
εδ√

d

)
/

(
− 1

d2
+ o

(
1

d4

))
= O

(
d2 log

(√
d

εδ

))
.

(Warm-start case): In this case we use the assumption Ĥ0
i =

Ĥ r(i−1)
i−1 ∀i > 1, and the following relation between spectral

norm and Frobenius norm:∥∥∇2 f (x) − ∇2 f (y)
∥∥

F ≤
√

d
∥∥∇2 f (x) − ∇2 f (y)

∥∥
≤

√
dL2 ‖x − y‖ ∀x, y ∈ Rd .

The next steps are contained in (15) shown at the bottom of
the next page, where we repeatedly apply the tower property
of conditional expectation and Lemma 3. In the last passage
we also highlight the variable of interest r(k). For the sake
of notation, we will denote the term inside the curly brackets
with ck . Plugging (15) in Markov’s inequality, ∀ε > 0

P
(∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

≥ ε

∣∣∣ Ĥ0
1

)

≤ 1

ε
E
[∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

∣∣∣ Ĥ0
1

]

≤ 1

ε

(
ηr(k)ck + 1

1 − η

μ2L3

12 d

)
≤ δ.

Similarly to the previous case, we have imposed that the above
probability is less than an arbitrary δ > 0. By solving for r(k)
the proof is concluded. Also in this case the upper bound on
μ follows by requiring that the logarithm is well defined. �

APPENDIX B
METHODS TO SAMPLE ORTHONORMAL VECTORS FROM
U (S)
A first procedure to generate orthonormal vectors ∼ U (S)
is proposed in [32]: given a matrix X ∈ Rd×k with k ≤ d

and entries Xi j
i.i.d.∼ N (0, 1), the matrix U = X (X T X )−1/2 is

uniformly sampled from the Stiefel manifold Vk,d = {U ∈
Rd×k such that U T U = Id }. As remarked in [11], that baptizes
this procedure Stiefel sampling, the marginal distribution of
the columns of U is U (S). Intuitively, when k = 1, X ∈ Rd

is a random vector ∼ N (0, Id ) and U = X/‖X‖ is simply the
normalized vector.

A second way to obtain orthogonal vectors ∼ U (S) follows
from observing that Vd,d is the orthogonal group O(d ), and
therefore uniformly sampling O(d ) is equivalent to uniformly
sampling the Stiefel manifold. A method to generate a matrix
in O(d ) distributed with Haar measure, which is the analogue
of the uniform distribution, is described in [33]: take a matrix
X ∈ Rd×d whose entries are standard complex normal random
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variables, compute its QR decomposition X = QR and the
matrix

� =

⎡
⎢⎢⎣

R11
|R11|

. . .
Rdd
|Rdd |

⎤
⎥⎥⎦ ,

then the matrix U = Q� is distributed in O(d ) with Haar
measure.

APPENDIX C
IMPROVED EFFICIENCY USING SUBSAMPLING
To keep a reasonable computational complexity in case of
huge datasets, it is possible to incorporate subsampling in
the procedure described in Section III-B. At each iteration
the function value is evaluated using only a random subset
of the data samples. We denote the function computed on
the data subset S = {(i, j), i ⊆ [n], j ⊆ [mi]} with fS (x). The
next assumption extends Assumption 1 to the loss functions

corresponding to the individual data samples, and is needed to
deal with the subsampled case.

Assumption 3 (Smoothness): For each data subset S, all the
loss functions fi j (x), (i, j) ∈ S satisfy Assumption 1.

We now provide lower bounds on the minimum number of
data samples required by the zeroth-order derivative estima-
tors to attain a target accuracy with high probability. In the
following the subscripts do not refer to the iteration number,
but rather to the data samples. For example, Ĥ r

i j denotes the
Hessian estimator corresponding to the loss function fi j (x),
associated with the j-th data sample of client i.

Proposition 1: Suppose that at each iteration the Hes-
sian estimator of the function fi j is initialized as Ĥ0

i j = 0d ,
∀(i, j) ∈ S. Then the approximation error of the global Hes-
sian estimator at the server

Ĥ r
S = 1

|S|
∑

(i, j)∈S

m

nmi
Ĥr

i j

E
[∥∥∥∇2 f (xk ) − Ĥ r(k)

k

∥∥∥
F

∣∣∣ Ĥ0
1

]
= EĤ0

k

[
E

Ĥr(k)
k

[∥∥∥∇2 f (xk ) − Ĥ r(k)
k

∥∥∥
F

∣∣∣ Ĥ0
1 , Ĥ0

k

]]

≤ EĤ0
k

⎡
⎣ηr(k)

∥∥∇2 f (xk ) − Ĥ0
k

∥∥
F + μ2L3

12 d

r(k)−1∑
i=0

ηi

∣∣∣∣∣∣ Ĥ0
1

⎤
⎦

= μ2L3

12 d

r(k)−1∑
i=0

ηi + ηr(k)E
Ĥr(k−1)

k−1

[∥∥∥∇2 f (xk ) − Ĥ r(k−1)
k−1

∥∥∥
F

∣∣∣ Ĥ0
1

]

≤ μ2L3

12 d

r(k)−1∑
i=0

ηi + ηr(k)E
Ĥr(k−1)

k−1

[∥∥∇2 f (xk ) − ∇2 f (xk−1)
∥∥

F +
∥∥∥∇2 f (xk−1) − Ĥ r(k−1)

k−1

∥∥∥
F

∣∣∣ Ĥ0
1

]

≤ μ2L3

12 d

r(k)−1∑
i=0

ηi + ηr(k)
√

dL2
∥∥xk − xk−1

∥∥+ ηr(k)EĤ0
k−1

[
E

Ĥr(k−1)
k−1

[∥∥∥∇2 f (xk−1) − Ĥ r(k−1)
k−1

∥∥∥
F

∣∣∣ Ĥ0
1 , Ĥ0

k−1

]]

≤ μ2L3

12 d

⎛
⎝r(k)−1∑

i=0

ηi + ηr(k)
r(k−1)−1∑

i=0

ηi

⎞
⎠+ ηr(k)

√
dL2
∥∥xk − xk−1

∥∥+ ηr(k)+r(k−1)EĤ0
k−1

[∥∥∇2 f (xk−1) − Ĥ0
k−1

∥∥
F

∣∣ Ĥ0
1

]

≤ μ2L3

12 d

k∑
j=k−1

⎛
⎝η
∑k

z= j+1 r(z)
r( j)−1∑

i=0

ηi

⎞
⎠+

√
dL2

k∑
j=k−1

(
η
∑k

z= j r(z) ∥∥x j − x j−1
∥∥)

+ η
∑k

j=k−1 r( j)E
Ĥr(k−2)

k−2

[∥∥∥∇2 f (xk−2) − Ĥ r(k−2)
k−2

∥∥∥
F

∣∣∣ Ĥ0
1

]

≤ μ2L3

12 d

k∑
j=1

(
η
∑k

z= j+1 r(z) 1 − ηr( j)

1 − η

)
+

√
dL2

k∑
j=2

(
η
∑k

z= j r(z) ∥∥x j − x j−1
∥∥)+ η

∑k
j=1 r( j) ∥∥∇2 f (x1) − Ĥ0

1

∥∥
F

≤ ηr(k)
{

μ2L3

12 d

⎡
⎣k−1∑

j=1

(
η
∑k−1

z= j+1 r(z) 1 − ηr( j)

1 − η

)
− 1

1 − η

⎤
⎦+

√
dL2

k∑
j=2

(
η
∑k−1

z= j r(z) ∥∥x j − x j−1
∥∥)

+ η
∑k−1

j=1 r( j) ∥∥∇2 f (x1) − Ĥ0
1

∥∥
F

}
+ 1

1 − η

μ2L3

12 d
. (15)
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is bounded with probability (1 − δS )(1 − δμ,r ) by∥∥∇2 f (x) − Ĥ r
S

∥∥ ≤ ∥∥∇2 f (x) − ∇2 fS (x)
∥∥

+ ∥∥∇2 fS (x) − Ĥ r
S

∥∥
≤ 4L1

√
log (2 d/δS )

|S| + εμ,r,

where εμ,r and δμ,r can be made arbitrarily small by choosing
μ and r according to.

Proof: The scaling coefficient in the definition of Ĥ r
S is

needed to reweight the addends. After using triangular in-
equality, we apply the memory-less case of Theorem 1
together with the fact that the spectral norm is smaller than the
Frobenius norm, and we bound the error due to subsampling
using Lemma 8 in [26], based on Bernstein’s inequality. �

Proposition 2: The approximation error of the global gra-
dient estimator at the server

ĝS = 1

|S|
∑

(i, j)∈S

m

nmi
ĝi j

is bounded with probability (1 − δS ) by

‖∇ f (x) − ĝS‖ ≤ ‖∇ f (x) − ∇ fS (x)‖ + ‖∇ fS (x) − ĝS‖

≤ 4
√

2L0

√
log (2 d/δS ) + 1/4

|S| + dL2μ
2

6
.

Proof: The proof is similar to the previous one, but in this
case we use Lemma 6 in [26] and the bound (6). �

Remark 9: The approximation error due to subsampling is
governed by the cardinality of S, i.e. by the overall number of
data samples considered by all clients. This implies that indi-
vidual participants can use different percentages of their local
data, as long as the total amount of samples considered by the
union of the client is sufficiently big. This allows to implement
load balancing strategies, where the number of data samples
processed by each client is proportional to its computational
power. By assigning the number of function queries according
to the individual capabilities one can address the problem of
client heterogeneity and prevent stragglers from slowing down
the training process.
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