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ABSTRACT An innovative solution to the optimal motion planning problem is presented in this work.
A novel parametrized actor structure is proposed, which guarantees safe and convergent navigation by
construction. Concurrently, an efficient scheme for optimizing a mixed state and energy cost function is
formulated. The proposed method inherits the positive traits of continuous methods, while at the same time
providing sub-optimal –but close to optimal– results significantly faster and in more complex workspaces
than previous ones. The scheme is demonstrated to outperform established relevant methods, while at the
same time being competitive w.r.t. execution time. Extensive simulations to validate the effectiveness of the
method are presented, along with relevant technical proofs for safety and convergence.

INDEX TERMS Optimal motion planning, optimization and optimal control.

I. INTRODUCTION
The field of Robotics has been at the forefront of engineering
applications, from industrial ones, such as manufacturing and
logistics, to civil ones, such as transportation of goods, search
and rescue and research. Technological advances in both soft-
ware and hardware continue to widen the scope of robotic
applications, as real-world operation becomes the norm. In
this context, Motion Planning (MP) and path planning, remain
some of the most fundamental aspects of Robotics; the exe-
cution of almost any desired task in the real world requires
safe navigation through physical space. The “embodied intel-
ligence” aspect, present in any robotic platform, is a crucial
feature that distinguishes such systems from other engineering
disciplines [1].

It is thus evident why MP has been at the core of Robotics
research, since the infancy of the field. Many solutions
have been presented over the years, with two main classes
emerging: Sampling-Based Methods (SBMs) and Continuous

Methods (CMs). SBMs have been widely employed in in-
dustry and research, owing to their relative non-complexity
in implementation and effectiveness in providing fast asymp-
totically optimal solutions. On the contrary, CMs lack a
universally accepted and adopted treatment of Optimal MP
(OMP), in part due to tunability issues or due to computational
complexity issues.

This work builds upon previous works and aims at provid-
ing an efficient and competitive CM for tackling the OMP
problem in planar workspaces. Significant emphasis is placed
on providing provable guarantees of safety and convergence,
while at the same time overcoming the computationally in-
tensive solution of an optimal control problem in complex
geometries. The method is demonstrated to be competitive
w.r.t. both cost function performance and execution time,
while at the same time inheriting the advantages of state-
feedback control (e.g., robustness, convergence from any
initial condition, etc.).
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A. RELATED WORK
As discussed previously, SBMs [2] and discrete/graph-based
methods have been widely embraced by the community.
Notable examples are Djikstra’s algorithm [3], A� [4], D�,
D�-lite [5], Random Rapidly exploring Trees (RRT) [6], RRT�

[7], Probabilistic Road Maps (PRMs) [8], Fast Marching
Trees (FMT�) [9] and Visibility Graphs (VGs) [10]. Most im-
portantly, many of the aforementioned methods have been sig-
nificantly extended; for instance, RRT� extentions treat smart
re-planning [11], dynamic workspaces [12], control barrier
functions formulations [13], kino-dynamic planning [14] and
heuristics to improve efficiency, such as RRT�-SMART [15],
informed RRT� [16], etc. In treating optimality, Djikstra’s
Algorithm, A�, D� and RRT� produce minimum length quasi-
linear paths. More specifically, methods in the RRT� class,
provide provable asymptotic optimality.

In contrast to SBMs, CMs treat MP from a control-theoretic
perspective, through the design of continuous vector fields
for state-feedback. Most commonly, such fields are extracted
from real-valued potential functions defined over the robot’s
workspace. Seminal examples include Navigation Functions
(NFs) [17] and Artificial Potential Fields (APFs), which focus
on designing safe and convergent fields through appropriately
designed potentials. Artificial Harmonic Potential Fields (AH-
PFs) [18] were later introduced in order to nullify tunability
issues of seminal CMs, where the properties of harmonic
functions imbue such potentials with safety and convergence
by construction. Nevertheless, such methods are applied in
the context of disk-worlds, thus, extending AHPFs to arbi-
trary workspaces, requires homeomorphic maps of arbitrary
connected sets into such disk worlds [19], [20], [21]. More
recently, the need for such homeomorphisms has been nul-
lified through defining harmonic potentials over the physical
workspace directly [22], [23], [24].

However, continuous OMP lacks solutions as widely
adopted as SBMs, with only few works [25], [26], [27] that
require solving a hard, non-linear Partial Differential Equation
(PDE), or extensive parameter tuning. The authors have thus
far focused on a mixed approach based on Policy Iteration
(PI) [22], [28], [29], leveraging the properties of AHPFs, lim-
iting however the space of possible policies. Our most recent
works [30], [31], concentrate on a parameter-free solution,
asymptotically yielding a globally optimal solution and over-
coming the limitations of parametrizing the policy through
AHPFs. Thus, solutions were extended to more complex dy-
namics [30] and more crucially, the Topological Perplexity
(TP) [32] aspect of optimal control on multiply connected
sets, which is vital for optimality, was adressed in [33]. Never-
theless, while these methods are competitive w.r.t. path length
and cost function value they remain relatively computation-
ally complex; even though CMs result in an infinite number
of trajectories (solving the problem globally for any initial
position), we believe that there is room for improvement.

Finally, Machine Learning (ML) methods have also been
developed (an extensive review is provided in [34]), however

most such methods treat a single robotic configuration. For
example, solutions such as [35], [36], [37] require high-level
velocity commands, therefore, our class of methods is still
required, serving as the necessary high-level planner. Thus,
similar ML approaches differ in scope compared to this work,
where we aim at solving the kinematic OMP problem in its
general formulation.

B. MOTIVATION AND CONTRIBUTIONS
The proposed framework aims at leveraging the positive traits
of CMs, while providing an efficient scheme for OMP. These
positive traits become apparent when considering realistic ap-
plications; while SBMs are able to extract optimal paths (or
even time-parametrized paths, i.e., trajectories), these are usu-
ally in the form of open-loop quasi-linear waypoints. While
path-smoothing solutions have been developed [38] and even
in cases where dynamics are accounted for through extracting
kino-dynamically feasible paths [14], such solutions remain
open-loop. Therefore, when applying such methods in re-
alistic conditions, low-level planners are still required, and
robotic platforms will most likely deviate from the nominal
path.

In contrast, CMs, even in their simplest formulations,
provide smooth velocity commands, which are more suit-
able for state (position)-feedback control of robotic platforms
(e.g. [39]). Having a smooth velocity command for any
position within the workspace renders real-world planning
simpler, and opens up possibilities for reactive controllers for
unseen and uncertain obstacles using the information encoded
in the existing vector field.

Given the above context, special care is taken to pro-
vide provable guarantees of safety and convergence. Com-
pared to the authors’ previous works, the herein proposed
method can be understood as a mid-point between the
AHPF-parametrized fields [22], [23], [28], [29] and the non-
parametric solutions [30], [31], [33]. Furthermore, the pro-
posed scheme is computationally superior, while at the same
time providing good performance compared to the asymptoti-
cally globally optimal solution [31], [33].

The main contributions of this work are outlined below:
1) A novel parametrized velocity field (actor structure),

with provable guarantees of safety and convergent,
2) Incorporating the above actor structure into an efficient

PI scheme for extracting the optimal velocity field,
3) A novel, fast and efficient mesh-free PDE solver, serv-

ing as an alternative way of calculating the cost function
of a given policy in the context of the PI scheme.

II. NOTATION
The notation employed throughout the manuscript is as fol-
lows:
� Throughout the manuscript the matrix-notation is em-

ployed for defining vector valued functions and related
mathematical objects, as well as the operations be-
tween them. Sub-section IV-F is an exception, where
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the component-wise notation is employed. Hence opera-
tors (such as ∇) have their usual, multi-variate calculus
meaning.

� Sets are usually defined through calligraphic characters
(e.g., W) with the exception of T(·) which is a mapping.
The sets �,�A,�,�A do not follow this rule due to
lack of Greek calligraphic symbols. Numerical sets are
denoted through their classical symbols, i.e., R for the
set of real numbers. Notably, R+ denotes the set of real-
positive numbers. Constant matrices are denoted through
bold capital letters.

� Latin characters correspond to functions and constants
-vectors or scalars-. This is further clarified in context,
where each function is defined along with its argument
and mapping domains. Constants are defined through
their domain as well.

� Subscripts/superscripts are used in two ways: Either to
denote different components of vector-valued functions
(see �1,�2 for instance), or at times to denote depen-
dence on some other object (e.g., pu(·) is defined as
a function that implicitly depends on the input signal
u). This differentiates between the explicit domain of
some function and other implicit dependencies. This is
specifically clarified in text following the definition of
any relevant object.

� The superscript “T” is an exception, denoting the trans-
pose of a quantity.

� The symbol {·, ·} denotes a tuple.
� The parameters α (Greek letter) and a (Latin letter) are

different (see footnote 3).
More specifically, W, ∂W denote the workspace and its

boundary, p ∈ W denotes the robot’s position and pd ∈ W
denotes the desired final position. The field v denotes a refer-
ence velocity field with g(p; v) denoting a set of basis vectors
based on the reference field. Finally,� denotes a multi-valued
parametrized function.

III. PROBLEM FORMULATION
Consider a point robot,1 operating within a bounded and fully
connected workspace G ⊂ R

2 containing a number M ∈ N of
non-overlapping internal obstacles denoted by Om ⊂ G, m ∈
M, where M = {1, . . . ,M}. Thus, the feasible workspace
of the robot is denoted by W = G\⋃

m∈M Om ⊆ G, and its
boundary is denoted by ∂W. Finally, consider a desired, final
position pd ∈ int(W), where int(W) = W\∂W. In this work,
we adopt the single integrator model, i.e.:

ṗ = u(t ), p(0) = p̄, (1)

where p(t ) : R+ �→ W denotes the robot’s position, p̄ ∈ W,
denotes the robot’s initial position, and u(t ) : R+ �→ R

2 de-
notes the input (velocity) signal. The aim of this work is to find
the state feedback input signal u(t ) � u(p(t )) that minimizes

1A disk robot with radius R > 0 can also be considered though inflating
the workspace boundary by a distance equal to R.

the cost function:

Vu ( p̄) =
∫ ∞

0
P (pu (τ ; p̄) ; pd ) + R (u (τ )) dτ, (2)

where pu(t; p̄) denotes the solution of (1) under the control
input u starting from the initial position p̄. The state-related
cost term P and the input-related cost term R are defined as:

P (p; pd ) = α‖p − pd‖2, (3a)

R(u) = β‖u‖2, (3b)

where α, β ∈ R+ are design/specification parameters and
‖ · ‖ is the Euclidean norm. Effectively, (3a) minimizes set-
tling time, while (3b) minimizes energy expenditure.

In the context of the MP problem, the solution that mini-
mizes (2) should also respect safety constraints and asymp-
totic global convergence, i.e.:

pu(t; p̄) ∈ int (W) , ∀t > 0, ∀p̄ ∈ W (4a)

lim
t �→∞ (pu(t; p̄)) = pd , ∀p̄ ∈ W. (4b)

Thus, we define an admissible input as follows:
Definition 1 (Admissible Control): A control signal u ∈

UW, where UW denotes the set of admissible inputs for the
workspace W, is defined as the reactive input under which:

1) System (1) obeys (4),
2) The cost function (2) is continuous and finite for any

initial position p ∈ W.

IV. PROPOSED METHOD
In this section, the proposed method will be presented for
the case of simply-connected workspaces. In [33], we have
presented a methodology that transforms workspaces with
obstacles to ones without obstacles, while also providing close
to optimal results. Therefore, while workspaces with obstacles
will be presented in the results Section, we will not go into
further detail here, directing the reader to [33].

A. PROPOSED ACTOR STRUCTURE
In this work, we propose a novel parametrized actor struc-
ture (controller), based on safe and convergent velocity fields.
Consider the admissible velocity field v(p) ∈ UW over a
simply-connected workspace W. This field defines a curvilin-
ear coordinate transformation {τ, s} = T(p) : W �→ [0, 1] ×
S1 = D1. The inverse of the transformation is defined as:

p = T−1 ({τ, s}) =
∫ τ

0
v(p(t ))dt + ∂W(s), (5)

where ∂W(s) : S1 �→ ∂W is a parametrization of the Jordan
curve that consists the boundary of the workspace, through
the variable s. Eq. (5) can be understood as choosing the
initial point on the workspace’s boundary (through s) whose
trajectory at time τ intersects the point p. This transformation
can be shown to be a Homeomorphism [30], thus its inverse is
well-defined.

A parametric controller can be designed as:

u (p; v; θ ) = g(p; v)�(p; θ ) : W × UW ×� �→ R
2, (6)
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where θ ∈ � ⊆ R
m denotes a set of m actor parameters,

�(p; θ ) : W ×� �→ R
2 denotes a parametrization structure,

e.g., a Neural Network and g(p; v) : W × UW �→ R
2×2 de-

notes a vector basis:

g(p; v) = [
v̂(p), v̂⊥(p)

]
. (7)

where v̂(p) and v̂⊥(p) denote the co-linear vector to the veloc-
ity field v and a modified normal vector to the velocity field
v respectively. The vector basis (7) defines two directions,
which correspond to the radial and tangential ones of the
transformed coordinates {s, τ } (5).

B. SAFETY AND CONVERGENCE
The controller of Subsection IV.IV-A is employed to provide
a provably convergent and safe policy. We begin by providing
the form of the modified normal vector v̂⊥(p), which is given
by:

v̂⊥(p) = h(p) (Rv̂(p)) , (8)

where R =
[

0,−1

1, 0

]
denotes the 90◦ rotation matrix, and

h(p) =
⎧⎨
⎩1 − exp

(
−

(
d (p)

d (p)−a

)2
)
, d (p) ≤ a

1, d (p) > a
, (9)

with a ∈ R+2 while the function d : W �→ R+ computes the
distance of the robot to the boundary:

d (p) = min
z∈∂W

{‖p − z‖}. (10)

The bump function h(p) is equal to 1 in the interior of the
workspace at a distance-to-the-boundary larger than, or equal
to a, while for points with a distance less than a, the function
varies smoothly (but not analytically) from 1 to 0. Therefore,
(8) smoothly nullifies the normal vector to v̂(p), at a distance
to the boundary lesser than a. In order to render the actor (6)
safe, it suffices that:

u (p; v; θ ) ∝ v̂(p) ∀p ∈ ∂W, (11)

since the velocity field v ∈ UW is safe by definition. This is
a conservative approach –there exist safe policies that are
not aligned with v at the boundary–, however, this formu-
lation significantly simplifies the safety constraints imposed
on the actor structure. More specifically, denoting �(p; θ ) =
[�1(p; θ ),�2(p; θ )]T, �i(p; θ ) : W ×� �→ R, i = 1, 2, a
sufficient condition for safety is:�1(z; θ ) > 0,∀z ∈ ∂W. Ac-
cording to the above decomposition of �, the actor structure
becomes:

u(p; v; θ ) = g(p; v)�(p; θ ) = [
v̂(p), v̂⊥(p)

] [
�1(p; θ )

�2(p; θ )

]

= �1(p; θ )v̂(p) +�2(p; θ )v̂⊥(p), (12)

2The use of the English letter a in (9) is not to be mistaken for the Greek
letter α in (3a).

which is employed in the following propositions.
Proposition 1 (Actor Safety): The condition �1(z; θ ) >

0,∀z ∈ ∂W is sufficient to satisfy safety of the velocity field
(actor) (6).

Proof: A sufficient condition for safety is:

ṗTn̂(z) > 0, ∀z ∈ ∂W, (13)

where n̂(z) : ∂W �→ S1 denotes the inwards-pointing unitary
vector that is normal to the boundary at the point z. Combining
(1) and (13) yields:

uT (z; v; θ ) n̂(z) > 0
(6)⇐⇒

n̂T(z)g(z; v)�(z; θ ) > 0
(8),(12)=⇒

�1(z; θ )
(
n̂T(z)v̂(z)

)
> 0, ∀z ∈ ∂W, (14)

since v̂⊥(z) = h(z)(Rv̂(z)) = 0, ∀z ∈ ∂W. However, note
that v ∈ UW, hence (n̂T(z)v̂(z)) > 0 by definition, thus:

�1(z; θ ) > 0, ∀z ∈ ∂W, (15)

which concludes the proof. While in this proof, the condition
appears to be necessary and sufficient, the necessity stems
from Eq. (11). �

We conclude this subsection by providing the conditions for
Global Asymptotic Stability (GAS) of the actor:

Proposition 2 (Actor GAS): Assuming v ∈ UW in (6) is
a conservative vector field, i.e., v(p) = −∇�(p), � : W �→
R+, System (1) under the input (6) is GAS, if:

�1(p; θ ) > 0, ∀p ∈ W,
�2(p; θ ) is bounded , ∀p ∈ W. (16)

Proof: Given the field v ∈ UW, consider its associated po-
tential function �(p). This is a valid Lyapunov candidate
function, since �(p) ≥ 0, ∀p ∈ W, �(p) = 0 ↔ p = pd .
Consider now the derivative of �(p), for System (1), under
the input (6):

�̇(p) = ∇T�(p) ṗ = ∇T�(p)g(p; v)�(p; θ )
(12)=

�1(p; θ )
(∇T�(p)v̂(p)

) +�2(p; θ )
(∇T�(p)v̂⊥(p)

) (8)=
�1(p; θ )∇T�(p)v̂(p) + h(p)�2(p; θ )∇T�(p)Rv̂(p) =
−�1(p; θ )‖∇�(p)‖2 − h(p)�2(p; θ )∇T�(p)R∇�(p).

(17)

However, through the definition of R:

∇T�(p)R∇�(p) = −∂x�∂y�+ ∂x�∂y� = 0, (18)

and (17), assuming �2(p; θ ) is bounded, yields:

�̇(p) = −�1(p; θ )‖∇�(p)‖2. (19)

Hence, �1(p; θ ) ⇒ �̇(p) ≤ 0,∀p ∈ W, and �̇(p) = 0 ⇔
p = pd , and under this condition, System (1) is proven to be
GAS, concluding the proof. �

Finally, we note that in order to render the cost function (2)
continuous and finite, the solution to the ODE (1) under the
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input (6) should be well-defined. To ensure this, the function
�(p; θ ) should be Lipschitz continuous. In summary, if:

1) �(p; θ ) is Lipschitz continuous,
2) �1(p; θ ) > 0, ∀p ∈ W,
then the actor structure (6) is admissible as per Def, 1. Since

the function � is parametrized, the above conditions may be
enforced through appropriate constraints on the parameters
θ ∈ �. Thus, we denote as �A ⊆ � the set of admissible
parameters, and any θ ∈ �A will henceforth be called an
admissible parameter vector.

Remark 1 (Non-Conservative Actor): Note that, while the
reference velocity field is conservative, the resulting ac-
tor structure is necessarily not so. First, the conservative
term v̂(p) is multiplied by the scalar �1, yielding a non-
conservative term. Most importantly however, the normal
term v̂⊥, which results from rotating the conservative term by
π/2, results in imbuing the actor’s vector field with vorticity.
This is a crucial aspect of the proposed actor, which previous
works by the authors [22], [28], [29] lacked, and yields the
close-to-optimal results presented in this work.

C. POLICY ITERATION
Having formulated a provably safe and convergent actor struc-
ture, we present a PI scheme that enables optimizing the
parameters of the latter. The PI scheme is based upon admis-
sible policies, hence Propositions 1 and 2 should hold in order
to render the scheme implementable. Assuming admissibil-
ity, the cost function (2) assumes a differential form that is
employed to extract the following Hamiltonian [40]:

H (p, u,∇V ) = ∇TVu(p)u + P (p; pd ) + R(u). (20)

The minimum cost function is thus extracted through solving
the following problem:

min
u

{H (
p, u,∇V �

)} = 0, (21)

where V � denotes the optimal (minimum) cost function. By
applying the stationary condition to the Hamiltonian (20), the
optimal input is extracted:

u� = − 1

2β
∇V �(p). (22)

As discussed extensively in [31], [40], [41], [42], in order
to avoid solving the Hamilton Jacobi Bellman (HJB) Partial
Differential Equation (PDE), a PI scheme is employed to
successively improve the input, via the cost function approxi-
mation. Briefly, starting from a policy (input) u(i=0) ∈ UW, its
associated cost V (i=0) � Vu(i=0) is approximated. Afterwards,
the policy is updated as:

u(i+1)(p) = − 1

2β
∇V (i)(p). (23)

This scheme can be proven to converge asymptotically to the
optimal input/cost function pair, [17], [40], even in case of
safety constraints [31]. However, in our case we will employ

the actor structure instead of (23), inspired by actor-critic
schemes.

Consider a critic approximation structure, denoted by
C(p;ω) : W ×� �→ R+, where ω ∈ � ⊆ R

n denotes a set of
n critic parameters. Then, the associated cost function of an
input u(i) ∈ UW can be approximated as:

C(i)(p) � C
(
p;ω(i)) = V (i)(p) + ε(i)(p), p ∈ W (24)

where ε(i)(p) : W �→ R denotes the approximation error,
through the HJB equation:

H
(
p, u,∇C(i)(p)

) = 0 ⇒
∇TC(i)(p)u(i)(p) + P (p; pd ) + R

(
u(i)(p)

) = 0, (25)

which can be solved numerically as:

ω(i) = arg min
ω∈�

{‖∇TC(p;ω)u(i) + P + R‖2} , (26)

∀p ∈ W, where the dependence on p and u(i) was dropped for
brevity. Then, the actor structure (6) can be updated through
the following optimization problem:

θ (i+1) = arg min
θ∈�A

{∥∥∥∥u (p; v; θ ) + 1

2β
∇C

(
p;ω(i))∥∥∥∥

2
}
,

(27)

∀p ∈ W. Note that the parameters in (27) are restricted to the
set of admissible parameter vectors, which is crucial for the PI
scheme to be well-defined. The above scheme entails obtain-
ing an approximation for the current cost function through the
critic network, and afterwards optimizing the actor’s parame-
ters to “match” the best implementable policy, as encoded in
the latest cost function gradient. The scheme is then repeated
until convergence, i.e., ‖θ (i+1) − θ (i)‖ ≤ E , where E > 0.

Remark 2 (Differentiability of the Cost Function): In gen-
eral, the cost function (2), as a solution to the Hamilton-
Jacobi-Bellman equation might not be continuous, let alone
differentiable. Even in case of the single integrator dynamics
for instance, internal obstacles imply that the cost function
is continuous everywhere, but not differentiable in a lesser-
dimensional subset of the workspace. However, in our case,
the single integrator model along with simple connectivity
of the workspace, render (2) differentiable everywhere. We
direct the reader to [33] for a more detailed discussion on the
topological properties of AHPFs.

1) SINGLE-LAYERED PARAMETRIZATION STRUCTURES
The actor and critic parametrization structures in (27), (26)
can assume many forms. In practice, we have observed that
linear regressors through an appropriate basis function vector
selection –e.g. Radial Basis Functions (RBFs)– work quite
well, as problems (27), (26) become Constrained Quadratic
Optimization problems. There exist a plethora of methods for
solving the latter with bounded solution time [43]. At the
same time, the safety and convergence constraints for the actor
structures become linear constraints, as the set �A becomes a
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convex polytope. More specifically, for such linear regressors:

�(p; θ ) = φT(p)θ,

C(p;ω) = ψT(p)ω, (28)

where φ(p) : W �→ R
m, ψ (p) : W �→ R

n, the weight update
problems (26), (27) become:

ω(i) = arg min
ω∈�

{‖AT
Cω + BC‖2} , (26∗)

and

θ (i+1) = arg min
θ∈�A

{‖AT
a θ + Ba‖2} , (27∗)

where AC, Aa, BC, Ba are matrices that are computed by
sampling the expressions (26), (27) over the workspace. Con-
cerning safety, if RBFs are employed, positivity of �1 can be
sufficiently guaranteed through positivity of all of the param-
eters, i.e., the set �A becomes:

�A = {
θ |θ j > 0, ∀ j = {1, 2, . . . ,m}} , (29)

where θ = [θ1, θ2, . . . , θm]T, which renders (27*) a linearly
constrained optimization problem.

2) NEURAL NETWORK PARAMETRIZATIONS
In case of NNs, safety and convergence can be ensured
through appropriately choosing the final activation function
for�1, e.g., ReLu or softPLus, such that the former is positive
definite. Afterwards, Eqs. (27), (26) can be solved through
back-propagation. Additionaly, for the assumptions of Propo-
sition 1 to hold, the NN should be Lipschitz continuous, which
is, in general, not true. Nevertheless, a choice of smooth acti-
vation functions and the fact that the NN’s domain is bounded,
suffice to imply that the NN will be Lipschitz. Furthermore,
recently, imposing Lipschitz continuity explicitly has been
investigated [44], Hence, the set �A is arbitrary, according
to the NN’s parameters’ definition.

3) INITIAL POLICY
The presented PI scheme requires an initial policy, which
can be extracted through the actor structure (6). Consider (1)
under the velocity field v ∈ UW:

ṗ = v(p). (30)

The field v(p) can be extracted by methods such as in [22],
[23], [28], [29] as the gradient of an AHPF. This further
satisfies the assumption of Proposition 2, i.e., that the initial
velocity field is conservative. Note that Eq. (30) is equivalent
to the following actor structure:

u(0) � u
(
p; v; θ (0)) ,

such that: �
(
p; θ (0)) = [1, 0]T , (31)

which is identical to (30). Regardless of the choice for the
actor parametrization structure � (e.g., linear regressor or
NN), this can be trivially achieved by including a constant
term to the structure and fixing the relevant parameter, while
setting the rest of the parameters equal to zero.

D. CONTROL IMPROVEMENT
In this sub-section, the control improvement aspect of the
proposed scheme is investigated w.r.t. the approximation error
of the actor structure. In the best case, Eq. (22) holds exactly.
In practice however, approximation errors arise due to two
factors: 1) The approximation of the cost function is subject to
errors itself, 2) Due to the employed actor structure, the error
in (27) might be nonzero. Both effects are incorporated into a
single error function as:

u(i+1)(p) � u
(
p; v; θ (i+1)) = − 1

2β
∇V (i)(p) + ε(p), (32)

where ε(p) : W �→ R
2 is the error due to cost function ap-

proximation errors and actor-structure related errors. The
following proposition provides an error bound for the succes-
sive cost improvement of the scheme.

Proposition 3: Consider the approximation error for the
actor (6) as defined in (32), for the cost function (2). Then,
each iteration of the PI scheme results in improvement of the
cost function if:

‖ε‖ < 1

2

∣∣∣(2u(i+1))T(
u(i)−u(i+1))−(‖u(i+1)‖2−‖u(i)‖2)∣∣∣

‖u(i)−u(i+1)‖ .

Proof: The difference between the successive cost function
values V (i)(p),V (i+1)(p) between iterations will be computed
by integrating both functions’ time derivative along a trajec-
tory of System (1) under the input u(i+1). Note that, since
∇V (i),∇V (i+1) are conservative vector fields, the integrated
value between two points is independent of the path along
which the integral is taken (this process is similar to [45]).
Hence,

V (i+1)
u(i+1) ( p̄) − V (i)

u(i+1) ( p̄) =∫ ∞

0

[(
∇V (i+1)

u(i+1) (τ ; p̄) − ∇V (i)
u(i+1) (τ ; p̄)

)T
u(i+1)(τ )

]
dτ,

(33)

where the index is employed to denote the dependence of the
cost function gradient on each input –which implicitly defines
a specific trajectory of (1)–. Evaluating the Hamiltonian (20)
for the i-th and i + 1-th iterations, invoking (32) and after
some algebra, (33) becomes:

V (i+1)
u(i+1) ( p̄) − V (i)

u(i+1) ( p̄) = −
∫ ∞

0
B(τ )dτ, (34)

where

B = − 2β
(
u(i+1) − ε

)T (
u(i) − u(i+1))

+ β
(‖u(i+1)‖2 − ‖u(i)‖2)

= 2βεT (
u(i) − u(i+1)) − 2β

(
u(i+1))T (

u(i) − u(i+1))
+ β

(‖u(i+1)‖2 − ‖u(i)‖2) . (35)

The sum of the second and third terms of B can be shown
to be positive by invoking the mean value theorem. Hence, a
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sufficient condition for control improvement is:∣∣εT
(
u(i) − u(i+1)

)∣∣ < 1
2

∣∣∣(2˜u(i+1)
)T (

u(i) − u(i+1)
) −(‖u(i+1)‖2 − ‖u(i)‖2

)∣∣ ,
or:

‖ε‖ < 1

2

∣∣∣(2u(i+1))T(
u(i)−u(i+1))−(‖u(i+1)‖2−‖u(i)‖2)∣∣∣

‖u(i)−u(i+1)‖ , (36)

which concludes the proof, since for B > 0, then from (34):

V (i+1)
u(i+1) ( p̄) − V (i)

u(i+1) ( p̄) < 0 ⇔
V (i+1)( p̄) < V (i)( p̄), ∀p̄ ∈ W.

�

E. PI ALGORITHM
The aforementioned elements are combined in Algorithm 1,
which entails successively approximating the cost function
and updating the actor structure, over a set of pre-defined
collocation points within the workspace.

F. NOVEL COST FUNCTION PDE SOLVER
While the framework of Subsection IV-C is very effective in
simple workspaces, while overcoming some computationally
expensive aspects of previous works [30], [31], the solution
of Eq. (26) provides poor results as the complexity of the
workspace increases (the critic update step of Algorithm 1).
Hence, this step can be interchanged with a custom PDE
solver, which results in the cost function values at specific col-
location points. Additionally, the corresponding cost function
gradient can be extracted through numerical differentiation,
and the actor update step of Algorithm 1 can proceed as
previously.

In summary, a novel mesh-free method for the approxi-
mation of (2) is presented. Our method is inspired by Fast
Marching Methods (FFMs) [46] and Level-Set Methods [47]
for solving PDEs. Consider the differential cost form of (2),
written explicitly as:

∂V

∂x
ux + ∂V

∂y
uy = −r(p, u),

s.t. V (pd ) = 0, (37)

where p = [x, y]T ∈ W, u = [ux, uy]T ∈ UW and r(p, u) =
P(p; pd ) + R(u). This PDE can be solved through the method
of characteristics [48] through the following three ordinary
differential equations:

dx

ux (p)
= dy

uy(p)
= − dV

r(p, u)
= dt . (38)

The solution of (38) begins through the solution of the first
two terms, resulting in characteristic curves c(x, y) = t, t ∈
R+. Then, the final equation is solved across the trajectories
x(t ), y(t ) that yield the characteristic curves.

Consider now a set of collocation points P =
{p0, p1, p2, . . . , pN }, pi ∈ W, ∀i = {1, 2, . . . ,N}, contain-
ing the goal position p0 � pd , distributed over the workspace,
along with a corresponding graph GP = {P, E}, where P, E
denote the vertices and edges of the graph respectively.
The edges of GP are constructed according to a K-nearest
neighbour principle for each point, i.e., each vertex (point) is
connected to its nearest neighbours according to a maximum
distance d > 0. The collocation points are split into three
disjoint sets, “solved”, “boundary” and “far-away”, denoted
by PS ⊂ P, PB ⊂ P and PF ⊂ P respectively, such that
PS

⋃
PB

⋃
PF = P. The sets are initialized as PS = {p0},

PB = N(p0) and PF = P/(PB
⋃

PS ), where N(·) denotes
the set of neighbours of a vertex.

The solution of (37) through (38) is accomplished as fol-
lows: Consider a “boundary” point pk ∈ PB. According to
(38), the value of the cost function at this point is influenced
only by one or more points positioned “downstream” accord-
ing to the flow of the field u(p). Hence such points can be
identified through propagating the solution:

p̄k = pk +
∫ Tk

0
u(p(τ ))dτ, (39)

where Tk > 0. In practice, this can be approximated well
enough through Euler integration

p̄k = pk + Tku
(

pk
)
, (40)

where Tk is computed as Tk = d
‖u(pk )‖ . Thus, the correspond-

ing cost value is computed as:

Vk = 1
K

∑
k̄∈K

[
Vk̄ + r

(
pk̄, u

(
pk̄

))
Tk̄

]
, (41)

where Vk̄ denotes the computed cost of a point pk̄ , for pk̄ ∈
K ⊂ PS denoting the set of K-Nearest Neighbours of the point
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FIGURE 1. Depiction of the solution process of the proposed PDE solver,
the three sets are depicted through different colors, while the desired final
position is depicted through the green square.

p̄k . Eq. (41) essentially corresponds to solving the third ODE
in (38) backwards in time through Euler integration. Then, the
point pk is removed from the set PB and appended to the set
PS . Furthermore, the set PB is augmented with the “unsolved”
neighbours of pk , i.e., the set N(pk )

⋂
PF , which are removed

from the set PF .
A crucial aspect of the method rests on propagating the

“boundary” points appropriately in order to satisfy the HJB
optimality condition. This is achieved via setting a reference
value:

V = max
i∈I(PS )

{Vi} , (42)

where I(·) is a function that outputs the index set of a set.
Then, this reference value is kept constant, and only the points
pk ∈ PB such that Vk < V are added to the set PS . Once the
former set is empty, then the reference value is recomputed
and the scheme continues.

1) IMPLEMENTATION DETAILS
In practice, this method can be rendered extremely efficient
if programmed with similar principles as with FMMs. For
instance, if a uniformly distributed set of points is employed,
then finding the nearest neighbours at a specific distance, as
well as finding the set K for any point, necessitates only (inte-
ger) matrix index operations. Finally, the value V necessitates
some book-keeping, but can ultimately be computed in O(1)
operations, through a similar data structure to the min-heap
one [46] used in FMMs.

An example of the method is depicted in Fig. 1, where
all associated sets that were previously defined are depicted
during the cost PDE solution for a simple workspace. Fi-
nally, regarding the computational complexity of the method,
a graph of the execution time versus the number of solution
nodes is depicted in Fig. 2. The method is shown to scale lin-
early w.r.t. the number of nodes, while the slope of the curve is

FIGURE 2. The execution time of the PDE solver vs. the number of solution
points. Statistical data over a linear fit, along with the minimum maximum
and mean values for all data are depicted.

approximately 8.5[μs]/point. Concerning Fig. 2, 10 trials were
carried out for the workspace of Fig. 1, and the mean, min and
max curves are depicted.

Remark 3 (Optimality): It is shown in [31], that a policy
iteration scheme similar to the one presented here results
asymptotically in the globally optimal solution to the pro-
posed problem. However, owing to limiting the policy to a
very specific parametric structure –in contrast to [31] where
the policy stems from a functional space–, no such guarantees
can be made. Nevertheless, if the actor structure is able to
closely match the gradient of the approximated cost function
(23), then the cost improvement lemma in [31] will still apply.
We will show in the Results section how the proposed method
is effective in extracting close to the optimal policy, even in
complex cases. In summary, this method sacrifices provable
optimality for execution time and capacity to tackle complex
workspaces, through the proposed actor structure (6).

V. RESULTS
In this section, results for the proposed method and a plethora
of SBMs are presented. All simulations were carried out on
a PC with 50 Gb RAM and an Intel-i7 processor running
Ubuntu version 18.04LTS. The simulations for the proposed
method and RRT� were implemented in the environment of
MATLAB 2022a, while for the rest of the SBMs Python
implementations were used. In order to provide a fair com-
parison with the quasi-linear paths extracted from SBMs, the
asymptotically optimal paths are imbued with the closed-form
optimal velocity norm w.r.t. (2) [31]. Notably, this places
our method at a disadvantage, as implementing the optimal
velocity over discontinuous paths is in practice infeasible (as
the direction of the velocity is discontinuous). Nevertheless,
this results in effective benchmarking of our method w.r.t. the
globally optimal solution (as such SBMs provide asymptot-
ically optimal paths), also taking into account the execution
time.
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FIGURE 3. Execution times comparison between the proposed method, with the HJB framework and with the custom PDE solver framework, as well as
our previous method in [31]. It is evident that the newer method scales more favorably as the complexity of the workspace increases. The workspaces are
shown below each bar plot set, with each boundary depicted in black.

Concerning the proposed method, Gaussian RBF
parametrization structures were employed for the actor
and critic (where relevant) structures (see [31] for more
details), uniformly distributed over each workspace. In
practice, tuning the RBF structure entails starting from a
less dense placement of RBFs and increasing the density if
necessary. However, in the simulations carried out in this
work, the scheme did not require a lot of tuning to work
close to optimally. Furthermore, the shape parameters of the
RBFs were chosen such that there is an 80% overlap between
consecutive RBFs. The initial policy was similarly computed
through an AHPF as in [31].

A. PROPOSED METHOD RUN-TIME
We begin by comparing the run-time of the proposed com-
pared to our previous work [31] in Fig. 3. A series of
workspaces of similar size, with increasing boundary com-
plexity was investigated, and a feasible solution was found for
each one. In Fig. 3, it is shown how the proposed scheme,
both with the HJB formulation, as well as the PDE solver
one, outperform the previous method in computational time
as the complexity of the workspace increases. Notably, the
more complex the workspace, the largest the discrepancy be-
tween [31] and the herein proposed method. Nevertheless, this
is to the detriment of optimality, as [31] is shown to asymptot-
ically converge to the globally optimal solution, whereas no
such guarantee is provided here (see Remark 3).

B. WORKSPACE WITH OBSTACLES
In Fig. 4, comparative results between the proposed method
and a variety of SBMs are presented, namely an FMT, RRT�,
an RRT�-SMART and an Informed RRT� one, as well as with
our previous method [31]. The workspace, whose boundary is
depicted with black, contains various obstacles. This aspect
was tackled through the method in [33], we will thus not
go into further detail for the sake of brevity. The difference
between the cost of the proposed one and each one of the
rest of the methods are depicted through heat maps. Negative

values indicate that our method outperforms the latter. The
absolute difference in cost values varies from ∼ −5 to ∼1.5,
with the cost function attaining values from 0 at the goal
to ∼10. In most cases, with the exception of our previous
method [31], the proposed scheme is superior, as demon-
strated in the aforementioned figure. The RRT� method is the
best out of the SBMs, therefore subsequent comparisons focus
on the latter.

C. CURVED WORKSPACE
In Fig. 5, a workspace with a curved outer boundary is eval-
uated. We compare our method against RRT�, and present
several trajectories for both, as well as the resulting normal-
ized velocity vector field for our method. Trajectory lengths
and cost function values comparisons are presented in bar
plots. Ten trials for each starting point were carried out for
statistical significance, and minimum, mean and maximum
values for the RRT� case are presented (our method is de-
terministic and thus, no such statistical data are necessary).
It is evident that our method outperforms the RRT� one in all
tested cases.

D. WORKSPACE WITH NARROW PASSAGES
Similarly, in Fig. 6, we present results over a workspace with
several narrow passages, which are known to be problematic
for SBMs, owing to the low probability of sampling within
the slim regions, and thus obtaining safe trajectories, resulting
in long runtimes and/or low success rates. Twenty trials for
each starting point were carried out for statistical significance,
and minimum, mean and maximum values for the RRT� case
are presented (our method is deterministic and thus, no such
statistical data are necessary). Once again, our method outper-
forms the RRT� one in all tested cases.

E. COMPLEX WORKSPACE
Finally, we provide a comparative evaluation of both methods
in a very complex workspace in Fig. 7, where twenty trials
were carried out. Similarly to previous cases, our method
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FIGURE 4. Comparative results between the proposed method, and an FMT, RRT�, an RRT�-SMART and an Informed RRT� one, as well as with our
previous method [31]. The cost function differences for the entire workspace are depicted. The boundary of the workspace is depicted with black, while
the goal position is depicted in the right-bottom figure (red disk) along with the final, normalized velocity vector field. Negative values of the cost
difference plots indicate superior performance of our method.

proves to be superior, with a single exception for a point that
is in the line of sight of the goal position. Hence, reactive
planning is trivial in this case, as radial convergence is the op-
timal, state-feedback solution. Notably, in the last subfigure of
Fig. 7, the scale is logarithmic, hence the apparent differences
are in reality larger (this choice was made to render all bar plot
visible across different scales, which is an issue that arises due
to the size of the workspace).

F. EXECUTION TIME AND SUCCESS RATE
To conclude our evaluation, we present data over the execu-
tion times and success rate of our method versus the SBMs.
Note that each method was fine-tuned prior to extracting the
presented data, in order to provide a fair evaluation. We note
that comparing execution times for SBMs and continuous
methods is not straight-forward; continuous methods result
in a one-shot solution for the entire workspace, while SBMs
usually only provide a single starting-ending position pair.
Hence, while SBMs are faster over a single trajectory, if more
than one paths are required, their run-time increases (linearly
at worst, with a slower rate if re-planning over the exist-
ing structure is employed). Thus, different applications might
benefit from each class of methods differently. The results are
presented in Table 1. We note that the execution times for our
method also include the execution times for computing the
initial, AHPF-based policy.

Nevertheless, in order to gain insight on each method’s
complexity, for the case of Fig. 4, the whole workspace was

covered with a sufficiently dense number of starting positions,
and a single instance (the best one) for each sample was timed,
resulting in the provided times. Our method proves to be far
superior in obtaining a solution for the whole workspace, as
expected.

Furthermore, in more challenging cases, such as the ones in
Figs. 5, 6, 7, our method proves faster even when the entirety
of the workspace is not sufficiently covered. The best case
for RRT� is the curved-boundary case, where our method
presents an improvement of ∼35%, while for the complex
workspace of Fig. 7, our method presents an improvement
of ∼64%. Most notably, for the case of narrow passages,
where SBMs are known to struggle, the proposed method
presents an improvement in execution time of ∼90%. Note
that, even methods such as informed RRTs, which have been
employed in the past to counter such problematic cases, would
not improve the run-time for workspaces such as Fig. 6, as
the corresponding ellipse would necessarily cover almost the
entire workspace. Finally, while the SBM’s performance de-
teriorates as the corridor size decreases, our method remains
mostly unaffected, only necessitating making the solution grid
for the PDE solver denser. We underline that the number of
trajectories in these cases do not suffice to cover the entire
workspace. Doing so, would result in greater deterioration of
the aforementioned SBM performance.

We conclude this section with a discussion over the suc-
cess rate of RRT�, depicted in the final column of Table 1.
Our method, owing to the provable guarantees of the actor
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FIGURE 5. Comparison between our method and RRT� for a workspace with curved boundary. Trajectories from both methods are depicted in the top
figure (red for our method, magenta for RRT�), and the final, normalized velocity field is depicted in the second figure. The goal position is depicted
through a red disk. In the last two figures, comparative bar plots for path lengths and cost function values are depicted.

structure, as well as to the deterministic nature of the method,
is successful in 100% of trials. RRT� on the other hand,
presents similar performance in simple cases, however, as the
complexity increases, several trials start to present significant

deterioration. Note that in Table 1, cumulative success rates
are presented. That is, for the workspace of Fig. 7, the starting
positions farther to the goal presented a minimum success rate
of 55% (in two instances), while for the case of Fig. 6 the
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FIGURE 6. Comparison between our method and RRT� for a workspace with narrow passages. Trajectories from both methods are depicted in the top
figure (red for our method, magenta for RRT�), and the final, normalized velocity field is depicted in the second figure. The goal position is depicted
through a red disk. In the last two figures, comparative bar plots for path lengths and cost function values are depicted.
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FIGURE 7. Comparison between our method and RRT� for a complex workspace. Trajectories from both methods are depicted in the top figure (red for
our method, magenta for RRT�), and the final, cost function for our method is depicted in the second figure. The goal position is depicted through a red
disk. In the last two figures, comparative bar plots for path lengths and cost function values are depicted.

success rate fell as low as 15% and 20%. This demonstrates
a clear advantage of our method for safe and successful plan-
ning in known workspaces.

VI. LIMITATIONS
While the proposed method and the accompanying technical
results yield a useful tool for tackling OMP, some limitations
persist. First of all, while employing the single integrator dy-
namics model is useful in yielding minimum-length paths, our
method can not be directly implemented for more complex

dynamical systems. Nevertheless, methods such as Explicit
Reference Governors (ERGs) [49] necessitate such velocity
commands to drive more complex systems safely, hence our
method can be used therein. Additionally, High-Order Control
Barrier Function with Quadratic Programming (HOCBF-QP)
methods are also dependent on a reference control signal for
safe planning in dynamical systems [50], [51], where the pro-
posed method can also prove useful.

This limitation mainly stems from two factors: 1) The form
of the actor is tailored for the single integrator model, 2)
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TABLE 1. Execution times and success rates comparison.

as the number of dimensions of the state space increases,
along with changes in its topology, the scheme might suffer
both technically and in computational load. This is due to the
“curse of dimensionality” of such PI methods, while topologi-
cal considerations necessitate more careful construction of an
actor structure. Both of the above aspects can motivate future
research endeavors for extending this work.

Furthermore, lack of finite time convergence might be
critical for some applications. The adopted infinite-horizon
cost functional can only yield asymptotically converging
trajectories, hence finite-time convergence requires severe
modifications to the scheme. Nevertheless, this aspect can be
somewhat amended by altering the rate at which the robot
converges to the goal, through modifying the norm of the
velocity field as a post-processing step. More details can be
found in [31].

Additionally, while computing the admissible parameter
set �A might be easy in case of the proposed parametrized
structures, in general this might not be straightforward, espe-
cially considering future extensions to higher-order dynamical
systems. Finally, providing a constructive way to choose a
parametrized structure possibly based on the topology and the
dynamics of the workspace is an interesting research direc-
tion.

VII. CONCLUSION
In this article, a novel, PI scheme for continuous, state-
feedback optimal motion planning was presented. A novel
parametrized actor structure was proposed, such that safety
and convergence are guaranteed by construction. Addition-
ally, a novel PDE solver for the computation of the cost
function was presented, in order to enable tackling more
complex workspaces. Most crucially, our method was demon-
strated to provide a significantly more efficient solution to

previous continuous methods, while not sacrificing optimality
significantly, and was effective even in very complex environ-
ments. Compared to existing, proven methods, our method
is superior w.r.t. path length, cost function value as well as
success rate and execution times.

Finally, concerning future research efforts, the limitations
outlined in the previous section provide promising research
directions. For instance, the proposed actor structure will be
extended for more complex dynamics and environments, such
as mechanical systems and three-dimensional workspaces.
Additionally, the proposed scheme will be combined with [33]
in order to ameliorate the limitations of the latter, with the
intent to also tackle moving obstacles. These directions will
extend the applicability, flexibility and scope of the proposed
scheme paving the way for applications in realistic operating
conditions.
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