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ABSTRACT We study the nonstationary stochastic Multi-Armed Bandit (MAB) problem in which the
distributions of rewards associated with arms are assumed to be time-varying and the total variation in the
expected rewards is subject to a variation budget. The regret of a policy is defined by the difference in
the expected cumulative reward obtained using the policy and using an oracle that selects the arm with
the maximum mean reward at each time. We characterize the performance of the proposed policies in
terms of the worst-case regret, which is the supremum of the regret over the set of reward distribution
sequences satisfying the variation budget. We design Upper-Confidence Bound (UCB)-based policies with
three different approaches, namely, periodic resetting, sliding observation window, and discount factor, and
show that they are order-optimal with respect to the minimax regret, i.e., the minimum worst-case regret
achieved by any policy. We also relax the sub-Gaussian assumption on reward distributions and develop
robust versions of the proposed policies that can handle heavy-tailed reward distributions and maintain their
performance guarantees.

INDEX TERMS Heavy-tailed distributions, minimax regret, nonstationary multiarmed bandit, upper-confi-
dence bound, variation budget.

I. INTRODUCTION
Uncertainty and nonstationarity of the environment are two of
the major barriers to decision-making problems across scien-
tific disciplines, including engineering, economics, social sci-
ence, neuroscience, and ecology. An efficient strategy in such
environments requires balancing several tradeoffs, including
exploration-versus-exploitation, i.e., choosing between the
most informative and the empirically most rewarding alter-
natives, and remembering-versus-forgetting, i.e., using more
but possibly outdated information or using less but recent
information.

The stochastic MAB problem is a canonical formulation
of the exploration-versus-exploitation tradeoff. In an MAB
problem, an agent selects one from K options at each time
and receives a reward associated with it. The reward sequence
at each option is assumed to be an unknown i.i.d random
process. The MAB formulation has been applied in many
scientific and technological areas. For example, it is used for
opportunistic spectrum access in communication networks,

wherein the arm models the availability of a channel [1],
[2]. In MAB formulation of online learning for demand re-
sponse [3], [4], an aggregator calls upon a subset of users
(arms) who have an unknown response to the request to reduce
their loads. MAB formulation has also been used in robotic
foraging and surveillance [5], [6], [7], [8] and acoustic re-
lay positioning for underwater communication [9], wherein
the information gain at different sites is modeled as rewards
from arms. Besides, contextual bandits are widely used in
recommender systems [10], [11], wherein the acceptance of a
recommendation corresponds to the rewards from an arm. The
stationarity assumption in classic MAB problems limits their
utility in these applications since channel usage, the robot’s
working environment, and individual preferences are inher-
ently uncertain and evolving. In this paper, we relax this as-
sumption and study nonstationary stochastic MAB problems.

Robbins [12] formulated the objective of the stochastic
MAB problem as minimizing the regret, that is, the loss in ex-
pected cumulative rewards caused by failing to select the best
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arm every time. In their seminal work, Lai and Robbins [13],
followed by Burnetas and Katehakis [14], established a log-
arithm problem-dependent asymptotic lower bound on the
regret achieved by any policy, which has a leading constant
determined by the underlying reward distributions. A general
method of constructing UCB rules for parametric families of
reward distributions is also presented in [13], and the asso-
ciated policy is shown to attain the logarithm lower bound.
Several subsequent UCB-based algorithms [15], [16] with
efficient finite time performance have been proposed.

The adversarial MAB [17] is a paradigmatic nonstationary
problem. In this model, the bounded reward sequence at each
arm is arbitrary without any probabilistic model. The perfor-
mance of a policy is evaluated using the weak regret, which is
the difference in the cumulated reward of a policy compared
to the best single action policy. A �(

√
KT )1 lower bound on

the weak regret and a near-optimal policy Exp3 is also pre-
sented in [17]. While being able to capture nonstationarity, the
generality of the reward model in adversarial MAB makes the
investigation of globally optimal policies very challenging.

The nonstationary stochastic MAB can be viewed as a
compromise between stationary stochastic MAB and adver-
sarial MAB. It maintains the stochastic nature of the reward
sequence while allowing some degree of nonstationarity in
reward distributions. Instead of the weak regret analyzed in
adversarial MAB, a strong notion of regret defined regarding
the best arm at each time step is studied in these problems.
A broadly studied nonstationary problem is piecewise sta-
tionary MAB, wherein the reward distributions are piecewise
stationary. To deal with the remembering-versus-forgetting
tradeoff, it is proposed to use a discount factor in the com-
putation of UCB in [19]. Garivier and Moulines [20] present
and analyze Discounted UCB (D-UCB) and sliding window
UCB (SW-UCB), in which they compute the UCB using
discounted sampling history and recent sampling history, re-
spectively. They pointed out that if the number of change
points NT is available, both algorithms can be tuned to achieve
regret close to the �(

√
KNT T ) regret lower bound. These

approaches have been employed to design payment routing
policies to maximize the transaction success rate [21]. In our
earlier work [22], the near-optimal regret is achieved using
deterministic sequencing of explore and exploit with limited
memory. Other works address the change of reward distribu-
tions adaptively with change point detection [23], [24], [25],
[26], [27], which has been extended to handle nonstationary
representations in linear bandits [28].

In another line of nonstationary bandit research, the ex-
pected rewards are assumed to vary according to stochastic
processes such as Brownian motion [29] and stochastic lin-
ear dynamical system [30]. A more general nonstationary
problem is studied in [31], wherein the cumulative maximum

1We use Bachmann–Landau asymptotic notation [18] �(·) and O(·) to
highlight the dominating term of the lower and upper bounds, respectively.

variation in mean rewards is subject to a variation budget VT .
Additionally, the authors in [31] establish a �((KVT )

1
3 T

2
3 )

minimax regret lower bound and propose the Rexp3 pol-
icy. In their subsequent work [32], they tune Exp3.S policy
from [17] to achieve near-optimal worst-case regret. Dis-
counted Thomson Sampling (DTS) [33] has also been shown
to have good experimental performance within this general
framework. However, we are not aware of any analytic regret
bounds for the DTS algorithm.

Most nonstationary MAB algorithms require information
about the nonstationarity of the environment to tune their
parameters such as the sliding window size or discounting
factor. This is also the case for this work since we assume
the variation density VT /T in the general nonstationary envi-
ronment is known. More recently, parameter-free algorithms
that adaptively tune parameters by actively detecting the non-
stationarity of the environment have been proposed. In [34],
ADSWITCH randomly assigns the change detection tasks at
different arms to update the estimate of NT . Once a change in
mean reward is detected, ADSWITCH initializes a new episode
and runs the algorithm with the new estimate of NT . In [35],
a similar approach is applied to the contextual bandit problem
in the general nonstationary setting with a variation budget.
Cheung et al. [36] adopt an alternative approach in which
several copies of SW-UCB with different window sizes are
computed, and a master bandit algorithm is used to manage
these copies. Though the parameter-free problem is appealing,
it remains unknown whether the minimax regret lower bound
�((KVT )

1
3 T

2
3 ) retains its tightness without the information on

environment nonstationarity.
In this paper, we adopt the variation budget formulation of

nonstationary stochastic MAB problem [31] and design UCB-
based policies that achieve efficient performance. Besides
the commonly studied environments with sub-Gaussian re-
wards, we extend our algorithms to handle environments with
heavy-tailed rewards. Such heavy-tailed rewards are common
in many domains such as social networks [37] and financial
markets [38]. Our UCB-based policies relax the assumption of
the bounded reward in the Exp3-type policies in the literature
and incur smaller variance in the cumulative reward [17].
Especially in the heavy-tailed reward environment, Exp3-type
policies, in general, fail to maintain consistent performance.
We show that by using a robust mean estimator, the UCB-
based policies for light-tailed rewards can be modified to
handle heavy-tailed rewards.

Our algorithms are inspired by the ideas of periodic re-
setting [31], sliding window, and discounting factor [20] but
feature some key differences in algorithm design and analysis.
Our algorithms leverage the MOSS algorithm [39] that has
been designed for stationary environments. For stationary en-
vironments, in contrast to algorithms such as UCB1, the upper
bound on the minimax regret for the MOSS algorithm does
not feature any extraneous logarithmic term compared with
the associated lower bound. In this work, we establish similar
results for nonstationary environments. The major contribu-
tions of this work are the following:
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� We establish that for a known variation density VT /T ,
the order-optimal O((KVT )

1
3 T

2
3 ) minimax regret for the

nonstationary stochastic MAB problems can be achieved
by UCB policies. The algorithms are designed by ex-
tending MOSS [39] to Resetting MOSS (R-MOSS) and
Sliding Window MOSS (SW-MOSS).

� We show that D-UCB, which is more memory-efficient
than R-MOSS and SW-MOSS, can be tuned to achieve
a near-optimal worst-case regret O(ln(T )(KVT )

1
3 T

2
3 ).

Based on the regret analysis of D-UCB, we qualitatively
explain why the factor ln(T ) cannot be removed.

� We relax the bounded support or sub-Gaussian assump-
tion on the rewards required in existing works [20], [31],
[32] and design robust UCB policies that can handle
heavy-tailed reward distributions. We demonstrate that
our robust policies achieve the same order-optimal min-
imax regret as the light-tailed reward setup.

� We numerically compare the proposed algorithms with
several state-of-the-art algorithms. For light-tailed re-
ward distributions and a certain class of environments,
we show that R-MOSS and SW-MOSS perform the best.
For heavy-tailed rewards, we show that our robust poli-
cies yield regrets with smaller mean and variance.

The remainder of the paper is organized as follows. We for-
mulate nonstationary stochastic MAB with variation budget
in Section II and review some preliminaries in Section III.
In Section IV, we present and analyze three UCB policies:
R-MOSS, SW-MOSS, and D-UCB. We present and analyze
algorithms for nonstationary heavy-tailed bandit in Section V.
We complement the theoretical results with numerical illustra-
tions in Section VI and conclude this work in Section VII.

II. PROBLEM FORMULATION
We consider a nonstationary stochastic MAB problem with K
arms and a horizon length T . Let K := {1, . . . ,K} be the set of
arms and T := {1, . . . ,T } be the sequence of time slots. The
reward sequence {X k

t }t∈T for each arm k ∈ K is composed of
independent samples from potentially time-varying probabil-
ity distribution function sequence f k

T := { f k
t (x)}t∈T . The set

of reward distribution sequences at all arms FK
T = { f k

T | k ∈
K} is referred to as environment. Let μk

t = E[X k
t ]. We define

the total variation of FK
T as

v
(
FK

T

)
:=

T −1∑
t=1

max
k∈K

∣∣∣μk
t+1 − μk

t

∣∣∣ , (1)

which captures the non-stationarity of the environment. We
focus on the class of nonstationary environments with total
variation subjecting to a variation budget VT ≥ 0:

E (VT ,T,K ) :=
{
FK

T | v
(
FK

T

)
≤ VT

}
.

At each time slot t ∈ T , a decision-making agent selects
an arm ϕt ∈ K and receives an associated random reward
Xϕt

t . The objective is to maximize the expected value of the
cumulative reward ST := ∑T

t=1 Xϕt
t . We assume that ϕt is

selected based upon past observations {Xϕs
s , ϕs}t−1

s=1 following
some policy ρ. Specifically, ρ determines the conditional dis-
tribution

P
ρ
(
ϕt = k | {Xϕs

s , ϕs}t−1
s=1

)
at each time t ∈ {1, . . . ,T − 1}. If Pρ (·) takes binary values,
ρ is called deterministic; otherwise, it is called stochastic.

Let the expected reward from the best arm at time t be
μ∗

t = maxk∈K μk
t . Then, the objective of maximizing the ex-

pected cumulative reward is equivalent to minimizing the
regret defined by

RρT :=
T∑

t=1

μ∗
t − E

ρ[ST ] = E
ρ

[
T∑

t=1

μ∗
t − μ

ϕt
t

]
,

where the expectation is with respect to different realizations
of ϕt that depend on obtained rewards through policy ρ.

Note that the performance of a policy ρ differs with differ-
ent FK

T ∈ E (VT ,T,K ). For a fixed variation budget VT and a
policy ρ, the worst-case regret is the regret with respect to the
worst possible choice of environment, i.e.,

Rρworst(VT ,T,K ) = sup
FK

T ∈E (VT ,T,K )

RρT .

In this paper, we aim to design policies to minimize the
worst-case regret. The optimal worst-case regret achieved by
any policy is called the minimax regret and is defined by

inf
ρ

sup
FK

T ∈E (VT ,T,K )

RρT .

We will study the nonstationary bandit problem under the
following two setups concerning reward distributions. In the
first setup, we follow [20], [32] to assume rewards to be
sub-Gaussian with bounded expected value.

Assumption 1 (Sub-Gaussian reward): For any k ∈ K and
any t ∈ T , distribution f k

t (x) is 1/2 sub-Gaussian, i.e.,

∀λ ∈ R : E
[
exp(λ(X k

t − μk
t ))
]

≤ exp

(
λ2

8

)
.

Moreover, for any arm k ∈ K and any time t ∈ T , E[X k
t ] ∈

[a, a + b], where a ∈ R and b > 0.
The second setup adheres to the heavy-tailed reward as-

sumption in [40]. It is a relaxation of Assumption 1.2

Assumption 2 (Heavy-tailed reward): For any arm k ∈ K
and any time t ∈ T , E[(X k

t )2] ≤ 1.

III. PRELIMINARIES
In this section, we review existing minimax regret lower
bounds and minimax policies from the literature. These results
apply to both sub-Gaussian and heavy-tailed rewards. The dis-
cussion is made first for the stationary environment (VT = 0).
Then, we show how the minimax regret lower bound for

2A zero-mean random variable X is sub-Gaussian iff there exists a constant
θ > 0 such that E[X 2n] ≤ θ2n(2n)!/2nn! for all n ∈ N [41, Th. 2.6]. Assump-
tion 2 only require E[X 2n] is bounded when n = 1.
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stationary stochastic bandit can be extended to establish the
minimax regret lower bound for the nonstationary setup where
VT > 0. Furthermore, we review two UCB policies for the
stationary stochastic MAB problem: UCB1 and MOSS. In the
later sections, they are extended to design a variety of policies
to match with the minimax regret lower bound for VT > 0.

A. LOWER BOUND ON MINIMAX REGRET WHEN VT = 0
In the setting of VT = 0, for each arm k ∈ K, μk

t is identical
for all t ∈ T . In stationary stochastic MAB problems, the
rewards from each arm k ∈ K are independent and identically
distributed, so they belong to the environment set E (0,T,K ).
According to [42], if VT = 0, the minimax regret is no smaller
than 1/20

√
KT . This result is closely related to the standard

logarithmic lower bound on the regret for stationary stochastic
MAB problems as discussed below. Consider a scenario in
which there is a unique best arm and all other arms have
identical mean rewards such that the gap between optimal
and suboptimal mean rewards is �. From [43], for such a
stationary stochastic MAB problem

RρT ≥ C1
K

�
ln

(
T�2

K

)
+ C2

K

�
, (2)

for any policy ρ, where C1 and C2 are some positive constants.
It needs to be noted that for � = √

K/T , the above lower
bound becomes C2

√
KT , which matches with the lower bound

1/20
√

KT .

B. LOWER BOUND ON MINIMAX REGRET WHEN VT > 0
In the setting of VT > 0, we recall here the minimax regret
lower bound for nonstationary stochastic MAB problems.

Lemma 1 (Minimax Lower Bound. VT > 0 [31]): For the
nonstationary MAB problem with K arms, time horizon T and
variation budget VT ∈ [1/K,T/K],

inf
ρ

sup
FK

T ∈E (VT ,T,K )

RρT ≥ C(KVT )
1
3 T

2
3 ,

for some constant C > 0.
In [31], the lower bound is derived assuming bounded re-

wards, so it holds under both Assumption 1 andAssumption 2.
To understand this lower bound, consider the following non-
stationary environment. We partition T into epochs of length

τ =
⌈

K
1
3 (T/VT )

2
3

⌉
. In each epoch, the reward distribution

sequences are stationary and all the arms have identical mean
rewards except for the unique best arm. Let the gap in the
mean be� = √

K/τ . The index of the best arm switches at the
end of each epoch following some unknown rule. So, the total
variation is no greater than�T/τ , which satisfies the variation
budget VT . Besides, for any policy ρ, we know from (2)
that worst-case regret in each epoch is no less than C2

√
Kτ .

Summing up the regret over all the epochs, minimax regret
is lower bounded by T/τ × C2

√
Kτ , which is consistent with

Lemma 1.

C. UCB POLICIES IN STATIONARY ENVIRONMENTS
The family of UCB policies uses the principle of optimism
in the face of uncertainty. In these policies, at each time slot,
a UCB index which is a statistical index composed of both
mean reward estimate and the associated uncertainty measure
is computed at each arm, and the arm with the maximum
UCB is picked. Within the family of UCB policies, two state-
of-the-art algorithms for stationary stochastic MAB problems
are UCB1 [15] and MOSS [39]. Let nk (t ) be the number of
times arm k is sampled until time t − 1, and μ̂k,nk (t ) be the
associated empirical mean. Then, UCB1 computes the UCB
index for each arm k at time t as

gUCB1
k,t = μ̂k,nk (t ) +

√
2 ln t

nk (t )
.

It has been proved in [15] that, for the stationary stochastic
MAB problem, UCB1 satisfies

RUCB1
T ≤ 8

∑
k:�k>0

ln T

�k
+
(

1 + π2

3

) K∑
k=1

�k,

where �k is the difference in the mean rewards from arm k
and the best arm. In [39], a simple variant of this result is
given by selecting values for�k to maximize the upper bound,
resulting in

sup
FK

T ∈E (0,T,K )

RUCB1
T ≤ 10

√
(K − 1)T (ln T ).

Comparing this result with the lower bound on the minimax
regret discussed in Section III-A, there exists an extra factor√

ln T . This issue has been resolved by the MOSS algorithm.
With prior knowledge of horizon length T , the UCB index for
MOSS is expressed as

gMOSS
k,t = μ̂k,nk (t ) +

√√√√max
(

ln
(

T
Knk (t )

)
, 0
)

nk (t )
. (3)

We now recall the worst-case regret upper bound for MOSS.
Lemma 2 (Worst-case regret upper bound for MOSS [39]):

For the stationary stochastic MAB problem (VT = 0), the
worst-case regret of the MOSS algorithm satisfies

sup
FK

T ∈E (0,T,K )

RMOSS
T ≤ 49

√
KT .

IV. UCB ALGORITHMS FOR SUB-GAUSSIAN
NONSTATIONARY STOCHASTIC MAB PROBLEMS
In this section, we extend UCB1 and MOSS to design non-
stationary UCB algorithms for scenarios with VT > 0. Three
different techniques are employed, namely periodic reset-
ting, sliding observation window, and discount factor, to deal
with the remembering-forgetting tradeoff. The proposed algo-
rithms are analyzed to provide guarantees on the worst-case
regret. We show their performances match closely with the
lower bound in Lemma 1.

The following notations are used in later discussions. Let
| · | represent the cardinality of a set when applied to a set,
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Algorithm 1: R-MOSS.

and denote the absolute value when applied to a real number.
Let τ ∈ {1, . . . ,T } be a design parameter and set N = �T/τ	.
We denote the indicator function as 1{·}. Let {T1, . . . , TN } be a
partition T , where each epoch Ti has length τ except possibly
TN , i.e., for i ∈ {1, . . . ,N},

Ti = {1 + (i − 1)τ , . . . , min (iτ,T )} . (4)

Let the maximum mean reward within Ti be achieved at
time τi ∈ Ti by arm κi, i.e., μκi

τi = maxt∈Ti μ
∗
t . We define the

variation within Ti as

vi :=
∑
t∈Ti

sup
k∈K

∣∣∣μk
t+1 − μk

t

∣∣∣ , (5)

where we trivially assign μk
T +1 = μk

T for all k ∈ K.

A. RESETTING MOSS ALGORITHM
Periodic resetting is an effective technique to preserve the
freshness and authenticity of the information history. It has
been employed in [31] and [44] to design policies for nonsta-
tionary stochastic MAB problems. We extend this approach to
MOSS and propose a nonstationary policy Resetting MOSS

(R-MOSS). In R-MOSS, after every τ =
⌈

K
1
3 (T/VT )

2
3

⌉
time

slots, the sampling history is erased and MOSS is restarted.
The pseudo-code is provided in Algorithm 1. In the following
theorem, we show R-MOSS enjoys order-optimal worst-case
regret matching with the lower bound in Lemma 1.

Theorem 1: For the nonstationary MAB problem with K
arms, horizon T , and variation budget VT > 0, if Assump-
tion 1 is true, the worst case regret of R-MOSS satisfies,

sup
FK

T ∈E (VT ,T,K )

RR-MOSS
T = O

(
(KVT )

1
3 T

2
3

)
.

Sketch of the proof: Note that one run of MOSS takes place
in each epoch. For epoch Ti, define the set of bad arms for
R-MOSS by

BR
i :=

{
k ∈ K | μκi

τi
− μk

τi
≥ 2vi

}
. (6)

Notice that for any t1, t2 ∈ Ti,∣∣∣μk
t1 − μk

t2

∣∣∣ ≤ vi, ∀k ∈ K. (7)

Therefore, for any t ∈ Ti, we have

μ∗
t − μ

ϕt
t ≤ μκi

τi
− μ

ϕt
t ≤ μκi

τi
− μϕt

τi
+ vi.

Then, the regret from Ti can be bounded as the following,

E

⎡
⎣∑

t∈Ti

μ∗
t − μ

ϕt
t

⎤
⎦ ≤ |Ti| vi + E

⎡
⎣∑

t∈Ti

μκi
τi

− μϕt
τi

⎤
⎦

≤ 3 |Ti| vi + Si, (8)

where Si = E

[∑
t∈Ti

∑
k∈BR

i

1{ϕt = k}(μκi
τi

− μϕt
τi

− 2vi )

]
.

Now, we have decoupled the problem, enabling us to gen-
eralize the analysis of MOSS in stationary environment [39]
to bound Si. We will only specify the generalization steps and
skip the details for brevity.

First notice inequality (7) indicates that for any k ∈ BR
i and

any t ∈ Ti,

μ
κi
t ≥ μκi

τi
− vi and μk

t ≤ μk
τi

+ vi.

So, at any t ∈ Ti, μ̂κi,nκi (t ) concentrate around a value no
smaller than μκi

τi − vi, and μ̂k,nk (t ) concentrate around a value
no greater than μk

τi
+ vi for any k ∈ BR

i . Also μ
κi
τi − vi ≥

μk
τi

+ vi due to the definition in (6).
In the analysis of MOSS in stationary environment [39],

the UCB of each suboptimal arm is compared with the best
arm and each selection of suboptimal arm k contributes �k to
the regret. Here, we can apply a similar analysis by comparing
the UCB of each arm k ∈ BR

i with κi and each selection of arm
k ∈ BR

i contributes (μκi
τi − vi ) − (μk

τi
+ vi ) in Si. Accordingly,

we borrow the upper bound in Lemma 2 to get Si ≤ 49
√

K|Ti|.
Substituting the upper bound on Si into (8) and summariz-

ing over all the epochs, we conclude that

sup
FK

T ∈E (VT ,T,K )

RR-MOSS
T ≤ 3τVT +

N∑
i=1

49
√

Kτ ,

which implies the theorem. �

B. SLIDING WINDOW MOSS ALGORITHM
We have shown that periodic resetting coarsely adapts the
stationary policy to a nonstationary setting. However, it is
inefficient to entirely remove the sampling history at the
restarting points and the regret accumulates quickly close to
these points. To address the MAB problem with piece-wise
stationary mean rewards, a sliding observation window is used
to erase outdated information smoothly and more efficiently
utilize the information history [20]. We show that a similar
approach can also deal with the general nonstationary environ-
ment with a variation budget. In contrast to [20], we integrate
the sliding window technique with MOSS instead of UCB1
and achieve the order-optimal worst-case regret.

Let the sliding observation window at time t be Wt :=
{min(1, t − τ ), . . . , t − 1}, where τ =

⌈
K

1
3 (T/VT )

2
3

⌉
. Then,

132 VOLUME 3, 2024



Algorithm 2: SW-MOSS.

the associated mean estimator is given by

μ̂k
nk (t ) =

1

nk (t )

∑
s∈Wt

Xs1{ϕs = k}, nk (t ) =
∑
s∈Wt

1{ϕs = k}.

In SW-MOSS, the UCB for each arm k ∈ K is define as

gk
t = μ̂k

nk (t ) + cnk (k), cnk (t ) =

√√√√
η

max
(

ln
(

τ
Knk (t )

)
, 0
)

nk (t )
,

where η > 1/2 is a tunable parameter. With these notations,
SW-MOSS is defined in Algorithm 2.

At time t , for each arm k ∈ K, we define

Mk
t := 1

nk (t )

∑
s∈Wt

μk
s 1{ϕs = k}.

The following lemma presents concentration bounds for
the sliding window empirical mean μ̂k

nk (t ), a crucial property
employed in the regret analysis of SW-MOSS.

Lemma 3: For any arm k ∈ K and any time t ∈ T , if
η > 1/2, for any x > 0 and l ≥ 1, the probability of either
event A ={μ̂k

nk (t ) + cnk (t ) ≤ Mk
t − x, nk (t ) ≥ l} or event B=

{μ̂k
nk (t )− cnk (t ) ≥ Mk

t + x, nk (t ) ≥ l} is no greater than

(2η)
3
2

ln(2η)

K

τx2
exp

(−x2 l/η
)
.

We defer the proof to Appendix A. Leveraging Lemma 3,
we provide an upper bound on the worst-case regret for SW-
MOSS in the following Theorem 2, showing SW-MOSS also
enjoys order-optimal worst-case regret.

Theorem 2: For the nonstationary MAB problem with
K arms, horizon T , and variation budget VT > 0, if
Assumption 1 is true, the worst-case regret of SW-MOSS
satisfies

sup
FK

T ∈E (VT ,T,K )

RSW-MOSS
T = O

(
(KVT )

1
3 T

2
3

)
.

Proof: The proof consists of the following five steps.
Step 1: Recall that vi defined in (5) is the variation within Ti

and μκi
τi = maxt∈Ti μ

∗
t . Here, we trivially assign T0 = ∅ and

v0 = 0. Then, for each i ∈ {1, . . . ,N}, let

�k
i := μκi

τi
− μk

τi
− 2vi−1 − 2vi, ∀k ∈ K.

Define the set of bad arms for SW-MOSS in Ti as

BSW
i :=

{
k ∈ K | �k

i ≥ ε
}
,

where we assign ε = 4
√

eηK/τ .
Step 2: We decouple the regret in this step. For any t ∈ Ti,

since |μk
t − μk

τi
| ≤ vi for any k ∈ K, it satisfies that

μ∗
t − μ

ϕt
t ≤ μκi

τi
− μ

ϕt
t ≤ μκi

τi
− μϕt

τi
+ vi

≤ 1
{
ϕt ∈ BSW

i

}
(�ϕt

i − ε) + 2vi−1 + 3vi + ε.

Then we get the following inequalities,∑
t∈T

μ∗
t − μ

ϕt
t

≤
N∑

i=1

∑
t∈Ti

1
{
ϕt ∈ BSW

i

}
(�ϕt

i − ε) + 2vi−1 + 3vi + ε

≤ 5τVT + T ε +
N∑

i=1

∑
t∈Ti

1
{
ϕt ∈ BSW

i

}
(�ϕt

i − ε). (9)

To bound the regret E[
∑

t∈T μ∗
t − μ

ϕt
t ], we only need to

provide an upper bound on E[(9)]. To continue, we take a
decomposition inspired by the analysis of MOSS in [39],∑

t∈Ti

1
{
ϕt ∈ BSW

i

} (
�
ϕt
i − ε

)

≤
∑
t∈Ti

1
{
ϕt ∈ BSW

i , gκi
t > Mκi

t − �
ϕt
i

4

}
�
ϕt
i (10)

+
∑
t∈Ti

1
{
ϕt ∈ BSW

i , gκi
t ≤ Mκi

t − �
ϕt
i

4

} (
�
ϕt
i − ε

)
, (11)

where summands (10) describes the regret generated when
arm κi is fairly estimated and summand (11) quantifies the
regret incurred by underestimating arm κi.

Step 3: In this step, we bound E[(10)]. Since gϕt
t ≥ gκi

t , we
upper bound (10) as

(10) ≤
∑
t∈Ti

1
{
ϕt ∈ BSW

i , gϕt
t > Mκi

t − �
ϕt
i

4

}
�
ϕt
i

=
∑

k∈BSW
i

∑
t∈Ti

1

{
ϕt = k, gk

t > Mκi
t − �k

i

4

}
�k

i . (12)

Notice that for any t ∈ Ti−1 ∪ Ti,∣∣∣μk
t − μk

τi

∣∣∣ ≤ vi−1 + vi, ∀k ∈ K.
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It indicates that an arm k ∈ BSW
i is at least �k

i worse in mean
reward than arm κi at any time slot t ∈ Ti−1 ∪ Ti. Since Wt ⊂
Ti−1 ∪ Ti, for any t ∈ Ti,

Mκi
t − Mk

t ≥ �k
i ≥ ε, ∀k ∈ BSW

i .

It follows that

(12) ≤
∑

k∈BSW
i

∑
t∈Ti

1

{
ϕt = k, gk

t > Mk
t + 3�k

i

4

}
�k

i . (13)

The summation of indicator functions in (13) can be further
bounded as below.

Let t ik
s be the s-th time slot when arm k is selected within

Ti. Then, for any k ∈ BSW
i ,

∑
t∈Ti

1

{
ϕt = k, gk

t > Mk
t + 3�k

i

4

}

=
∑
s≥1

1

{
gk

t ik
s
> Mk

tik
s

+ 3�k
i

4

}

≤ lk
i +

∑
s≥lk

i +1

1

{
gk

t ik
s
> Mk

tik
s

+ 3�k
i

4

}
, (14)

where we set lk
i =

⌈
η( 4
�k

i
)2 ln( τ

ηK (
�k

i
4 )2)

⌉
. Since �k

i ≥ ε, for

k ∈ BSW
i , we have

lk
i ≥

⌈
η
(

4/�k
i

)2
ln

(
τ

ηK
(ε/4)2

)⌉
≥ η

(
4/�k

i

)2
,

where the second inequality follows by substituting ε =
4
√

eηK/τ . Additionally, since t ik
1 , . . . , t

ik
s−1 ∈ Wt ik

s
, we get

nk (t ik
s ) ≥ s − 1. Furthermore, since cm is monotonically de-

creasing with m,

cnk (t k
s ) ≤ clk

i
≤

√√√√√ η

lk
i

ln

⎛
⎝ τ

ηK

(
�k

i

4

)2
⎞
⎠ ≤ �k

i

4
,

for s ≥ lk
i + 1. Therefore,

(14) ≤ lk
i +

∑
s≥lk

i +1

1

{
gk

t ik
s

− 2cnk (t ik
s ) > Mk

tik
s

+ �k
i

4

}
. (15)

By applying Lemma 3, considering nk (t ik
s ) ≥ s − 1, the ex-

pected value of the second term in (15) satisfies

∑
s≥lk

i +1

P

{
gk

t ik
s

− 2cnk (t ik
s ) > Mk

tik
s

+ �k
i

4

}

≤
∑
s≥lk

i

(2η)
3
2

ln(2η)

K

τ

(
4

�k
i

)2

exp

⎛
⎝− s

η

(
�k

i

4

)2
⎞
⎠

≤
∫ +∞

lk
i −1

(2η)
3
2

ln(2η)

K

τ

(
4

�k
i

)2

exp

⎛
⎝− y

η

(
�k

i

4

)2
⎞
⎠ dy

≤ (2η)
3
2

ln(2η)

ηK

τ

(
4

�k
i

)4

. (16)

Let h(x) = 16η/x ln(τx2/16ηK ) which achieves maximum at
4e

√
ηK/τ . Combining (16), (15), (14), (13), and (12), we

obtain

E[(10)] ≤
∑
k∈Bi

(2η)
3
2

ln(2η)

ηK

τ

256(
�k

i

)3 + lk
i �

k
i

≤
∑
k∈Bi

(2η)
3
2

ln(2η)

ηK

τ

256(
�k

i

)3 + h(�k
i ) +�k

i

≤
∑
k∈Bi

(2η)
3
2

ln(2η)

ηK

τ

256

ε3
+ h

(
4e
√
ηK/τ

)
+ b

≤
(

2.6η

ln(2η)
+ 3

√
η

)√
Kτ + Kb.

Step 4: In this step, we establish a bound on E[(11)]. When
event {ϕt ∈ BSW

i , gκi
t ≤ Mκi

t −�
ϕt
i /4} happens, we know

�
ϕt
i ≤ 4Mκi

t − 4gκi
t and gκi

t ≤ Mκi
t − ε

4
.

Thus, we have

1
{
ϕt ∈ BSW

i , gκi
t ≤ Mκi

t − �
ϕt
i

4

} (
�
ϕt
i − ε

)
≤ 1

{
gκi

t ≤ Mκi
t − ε

4

}
× (

4Mκi
t − 4gκi

t − ε
)

:= Y

Since Y is a nonnegative random variable, its expectation
can be computed involving only its cumulative density func-
tion:

E [Y ] =
∫ +∞

0
P (Y > x) dx

≤
∫ +∞

0
P
(
4Mκi

t − 4gκi
t − ε ≥ x

)
dx

=
∫ +∞

ε

P
(
4Mκi

t − 4gκi
t > x

)
dx

≤
∫ +∞

ε

16(2η)
3
2

ln(2η)

K

τx2
dx = 16(2η)

3
2

ln(2η)

K

τε
.

Hence, E[(11)] ≤ 16(2η)
3
2 K|Ti|/(ln(2η)τε).

Step 5: For any nonstationary environment subject variation
budget VT , RSW-MOSS

T ≤ E[(9)]. Furthermore, with bounds on
E[(10)] and E[(11)] from previous steps,

E[(9)] ≤ 5τVT + T ε + N

(
2.6η

ln(2η)
+ 3

√
η

)√
Kτ
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+ NKb + 16(2η)
3
2

ln(2η)

KT

τε
≤ C(KVT )

1
3 T

2
3

for some constant C, which concludes the proof. �
One limitation of the sliding window method is the ne-

cessity to store the entire sampling history within the ob-
servation window. Since window size is selected to be τ =⌈

K
1
3 (T/VT )

2
3
⌉

, large memory is needed for large horizon
length T . The next policy resolves this problem.

C. DISCOUNTED UCB ALGORITHM
The discount factor method normally requires less memory,
and it is widely used in estimators to forget old information
and pay more attention to recent information. In [20], such an
estimation is used together with UCB1 to solve the piecewise
stationary MAB problem, and the policy designed is called
Discounted UCB (D-UCB). Here, we tune D-UCB to work
in the nonstationary environment with variation budget VT .3

Specifically, the mean estimator used is the discounted empir-
ical average given by

μ̂k
γ ,t = 1

nk
γ ,t

t−1∑
s=1

γ t−s1{ϕs = k}Xs,

nk
γ ,t =

t−1∑
s=1

γ t−s1{ϕs = k},

where γ = 1 − K− 1
3 (T/VT )−

2
3 is the discount factor. Be-

sides, the UCB is designed as gk
t = μ̂k

t + 2ck
t , where ck

γ ,t =√
ξ ln(τ )/nk

γ ,t for some constant ξ > 1/2. The pseudo-code

for D-UCB is reproduced in Algorithm 3. It can be noticed
that the memory size is only related to the number of arms, so
D-UCB requires a smaller memory.

3D-UCB has been extended to D-LinUCB [45] to deal with nonstationary
linear bandit problem. However, the notion of variation budget used in [45] is
slightly different from this work.

To analyze D-UCB, we recall an exisiting concentration
inequality for the discounted empirical average. Let

Mk
γ ,t := 1

nk
γ ,t

t−1∑
s=1

γ t−s1{ϕs = k}μk
s .

The following fact is a corollary of [20, Th. 18].
Fact 1 (A Hoeffding-type inequality4): For any t ∈ T and

for any k ∈ K, the probability of event A = {μ̂k
γ ,t − Mk

γ ,t ≥
δ/

√
nk
γ ,t } is no greater than

⌈
log1+λ(τ )

⌉
exp

(−2δ2 (1 − λ2/16
))

(17)

for any δ > 0 and λ > 0. The probability of event B =
{μ̂k
γ ,t − Mk

γ ,t ≤ −δ/
√

nk
γ ,t } is also upper bounded by (17).

In the following, we provide an upper bound on the worst-
case regret for D-UCB. In comparison with the regret lower
bound in Lemma 1, there exists an extra factor ln(T ).

Theorem 3: For the nonstationary MAB problem with K
arms, horizon T , and variation budget VT > 0, if Assump-
tion 1 is true, then by setting γ = 1 − K− 1

3 (T/VT )−
2
3 , the

worst-case regret of D-UCB satisfies

sup
FK

T ∈E (VT ,T,K )

RD-UCB
T = O

(
ln(T )(KVT )

1
3 T

2
3

)
.

Proof: We establish the theorem in four steps.

Step 1: Let τ =
⌈

K
1
3 (T/VT )

2
3

⌉
and recall Ti defined

in (4). Also recall that the maximum mean reward
within Ti is achieved at time τi by arm κi. Let τ ′ =
logγ ((1 − γ )ξ ln(τ )/b2) and take t − τ ′ as a dividing point,
then for any t ∈ Ti,

∣∣∣μk
τi

− Mk
γ ,t

∣∣∣≤ 1

nk
γ ,t

t−1∑
s=1

γ t−s1{ϕs = k}
∣∣∣μk
τi

− μk
s

∣∣∣
≤ 1

nk
γ ,t

∑
s≤t−τ ′

γ t−s1{ϕs = k}
∣∣∣μk
τi

− μk
s

∣∣∣ (18)

+ 1

nk
γ ,t

t−1∑
s≥t−τ ′

γ t−s1{ϕs = k}
∣∣∣μk
τi

− μk
s

∣∣∣ .
(19)

Since μk
t ∈ [a, a + b] for all t ∈ T , we have (18) ≤ b. Also,

(18) ≤ 1

nk
γ ,t

∑
s≤t−τ ′

bγ t−s ≤ bγ τ
′

(1 − γ )nk
γ ,t

= ξ ln(τ )

bnk
γ ,t

.

Accordingly, we get

(18) ≤ min

(
b,
ξ ln(τ )

bnk
γ ,t

)
≤
√
ξ ln(τ )

nk
γ ,t

= ck
γ ,t .

4The proof is the same as [20, Th. 18]. The only change required is the
MGF for bounded variables is replaced by that of sub-Gaussian variables.
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Furthermore, for any t ∈ Ti,

(19) ≤ max
s∈[t−τ ′,t−1]

∣∣∣μk
τi

− μk
s

∣∣∣ ≤
i∑

j=i−n′
v j,

where n′ = �τ ′/τ	 and v j is the variation within T j . So we
conclude that for any t ∈ Ti,

∣∣∣μk
τi

− Mk
γ ,t

∣∣∣ ≤ ck
γ ,t +

i∑
j=i−n′

v j, ∀k ∈ K. (20)

This intermediate result will be used in Step 3 of the proof.
Step 2: Within partition Ti, let

�̂k
i = μκi

τi
− μk

τi
− 2

i∑
j=i−n′

v j,

and define a subset of bad arms as BD
i = {k ∈ K | �̂k

i ≥ ε′},
where we set ε′ = 4

√
ξγ 1−τK ln(τ )/τ . Since |μk

t − μk
τi
| ≤ vi

for any t ∈ Ti and for any k ∈ K

∑
t∈T

μ∗
t − μ

ϕt
t ≤

N∑
i=1

∑
t∈Ti

μκi
τi

− μϕt
τi

+ vi

≤ τVT +
N∑

i=1

∑
t∈Ti

⎡
⎣1

{
ϕt ∈ BD

i

}
�̂
ϕt
i + 2

i∑
j=i−n′

v j + ε′
⎤
⎦

≤ (2n′ + 3)τVT + Nε′τ+
N∑

i=1

∑
k∈BD

i

�̂k
i

∑
t∈Ti

1 {ϕt = k} .

(21)

We will upper bound regret E[
∑

t∈T μ∗
t − μ

ϕt
t ] by upper

bounding E[(21)] in the following steps.
Step 3: In this step, we follow from (21) to provide a upper

bound on E[�̂k
i

∑
t∈Ti

1{ϕt = k}] for an arm k ∈ BD
i . Let t k

i (l )
be the l-th time slot arm k is selected within Ti. From arm
selection policy, we get gϕt

t ≥ gκi
t , which result in∑

t∈Ti

1 {ϕt = k} ≤ lk
i +

∑
t∈Ti

1
{

gk
t ≥ gκi

t , t > t k
i (lk

i )
}
, (22)

where we pick lk
i = ⌈

16ξγ 1−τ ln(τ )/(�̂k
i )2
⌉

. Note that gk
t ≥

gκi
t is true means at least one of the following inequalities

holds,

μ̂k
γ ,t ≥ Mk

γ ,t + ck
γ ,t , (23)

μ̂
κi
γ ,t ≤ Mκi

γ ,t − cκi
γ ,t , (24)

Mκi
γ ,t + cκi

γ ,t < Mk
γ ,t + 3ck

γ ,t . (25)

For any t ∈ Ti, since every sample before t within Ti has a
weight greater than γ τ−1, if t > t k

i (lk
i ),

ck
γ ,t =

√
ξ ln(τ )

nk
γ ,t

≤
√
ξ ln(τ )

γ τ−1lk
i

≤ �̂k
i

4
.

Combining it with (20) yields

Mκi
γ ,t − Mk

γ ,t ≥ μκi
τi

− μk
τi

− cκi
γ ,t − ck

γ ,t − 2
i∑

j=i−n′
v j

≥ �̂k
i − cκi

γ ,t − ck
γ ,t ≥ 3ck

γ ,t − cκi
γ ,t ,

which indicates (25) is false. As ξ > 1/2, we select λ =
4
√

1 − 1/(2ξ ) and apply Fact 1 to get

P((23) is true) ≤ ⌈
log1+λ(τ )

⌉
τ−2ξ (1− λ2

16 ) ≤
⌈

log1+λ(τ )
⌉

τ
.

The probability of (24) to be true shares the same bound as
above. Then, it follows from (22) that

E

⎡
⎣�̂k

i

∑
t∈Ti

1 {ϕt = k}
⎤
⎦

≤ �̂k
i lk

i + �̂k
i

∑
t∈Ti

P ((23) or (24) is true)

≤ 16ξγ 1−τ ln(τ )

�̂k
i

+ �̂k
i + 2�̂k

i

⌈
log1+λ (τ )

⌉

≤ 16ξγ 1−τ ln(τ )

ε′ + b + 2b
⌈

log1+λ (τ )
⌉
, (26)

where we use ε′ ≤ �̂k
i ≤ b in the last step.

Step 4: For any nonstationary environment subject variation
budget VT , RD-UCB

T ≤ E[(21)]. With (21) and (26), plugging in
the value of ε′, a straightforward calculation leads to

E[(21)] ≤ (2n′ + 3)τVT + 8 N
√
ξγ 1−τKτ ln(τ )

+ 2Nb + 2 Nb log1+λ (τ ) ,

where the dominating term is (2n′ + 3)τVT . Considering

τ ′ = ln
(
(1 − γ )ξ ln(τ )/b2

)
ln γ

≤ − ln
(
(1 − γ )ξ ln(τ )/b2

)
1 − γ

,

there exists some constant C′ such that n′ ≤ C′ ln(T ). Accord-
ingly, we get RD-UCB

T = O(ln(T )(KVT )
1
3 T

2
3 ). �

Remark 1: Although D-UCB requires less memory, it is
suboptimal with an extra factor ln(T ) in the worst-case regret
upper bound as shown in Theorem 3. This is because the
discount factor method does not entirely cut off the outdated
sampling history like periodic resetting or sliding window
techniques, resulting in a bias term (18) that needs to be
addressed in the UCB index design.

V. UCB POLICIES FOR HEAVY-TAILED NONSTATIONARY
STOCHASTIC MAB PROBLEMS
In this section, we relax the sub-Gaussain assumption to study
the nonstationary stochastic MAB problem with heavy-tailed
rewards defined in Assumption 2. We first recall a minimax
policy for the stationary heavy-tailed MAB problem called
Robust MOSS [46]. We then extend it to the nonstationary set-
ting and design two robust UCB algorithms. The worst-case
regret upper bounds are also presented.
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A. BACKGROUND ON ROBUST MOSS FOR THE
STATIONARY HEAVY-TAILED MAB PROBLEM
In [46], Robust MOSS is designed to address stationary
heavy-tailed MAB problems, in which for a reward X from an
arbitrary arm, E[|X |1+ε] is bounded for some ε ∈ (0, 1]. Such
stochastic observations with finite moments are common in
many applications including social networks [37] and finan-
cial markets [38]. For simplicity, as stated in Assumption 2,
we restrict our discussion to ε = 1.

Instead of the empirical mean, Robust MOSS uses the
saturated empirical mean, which truncates outliers in re-
ward values, ensuring robustness in a heavy-tailed envi-
ronment. Let nk (t ) be the number of times that the arm
k has been selected until time t − 1. Pick a > 1 and let
h(m) = a�loga(m)�+1. Let the saturation limit at time t be de-

fined by Bnk (t ) :=
√

h(nk (t ))/ln+( T
Kh(nk (t )) ), where ln+(x) :=

max(ln x, 1). Then, the saturated empirical mean estimator is
defined by

μ̄nk (t ) := 1

nk (t )

t−1∑
s=1

1{ϕs = k} sat(Xs,Bnk (t ) ), (27)

where sat(Xs,Bm) := sign(Xs) min{|Xs|,Bm}. The Robust
MOSS algorithm initializes by selecting each arm once and
subsequently, at each time t , selects the arm that maximizes
the following upper confidence bound

gk
nk (t ) = μ̄k

nk (t ) + (1 + ζ )cnk (t ),

where cnk (t ) =
√

ln+( T
Knk (t ) )/nk (t ), ζ is an positive constant

such that ψ (2ζ/a) ≥ 2a/ζ and ψ (x) = (1 + 1/x) ln(1 +
x) − 1. Note that for x ∈ (0,∞), function ψ (x) is monotoni-
cally increasing in x.

B. RESETTING ROBUST MOSS ALGORITHM
Similarly to R-MOSS, Resetting Robust MOSS (R-RMOSS)
restarts Robust MOSS after every τ time slots. For a sta-
tionary heavy-tailed MAB problem, the worst-case regret of
Robust MOSS belongs to O(

√
KT ) [46]. This result, coupled

with an analysis similar to the one for R-MOSS in Theo-
rem 1, leads to the following Theorem 4. Putting it together
with Lemma 1, we show the worst-case regret for R-RMOSS
in the heavy-tailed nonstationary stochastic MAB problems is
order-optimal. For brevity, we skip the proof.

Theorem 4: For the nonstationary MAB problem with K
arms, horizon T , and variation budget VT > 0, ifAssumption 2
is true, the worst-case regret of R-RMOSS satisfies

sup
FK

T ∈E (VT ,T,K )

RR-RMOSS
T = O

(
(KVT )

1
3 T

2
3

)
.

C. SLIDING WINDOW ROBUST MOSS ALGORITHM
In Sliding Window Robust MOSS (SW-RMOSS), nk (t ) and
μ̄nk (t ) are computed from the sampling history within Wt ,

and cnk (t ) =
√

ln+( τ
Knk (t ) )/nk (t ). To analyze SW-RMOSS, we

need a similar property as Lemma 3 to bound the probability

of an arm being under or over-estimated, and it is presented in
the following Lemma 4.

Lemma 4: For any arm k ∈ {1, . . . ,K} and any t ∈ {K +
1, . . . ,T }, if ψ (2ζ/a) ≥ 2a/ζ , the probability of either event
A = {gk

t ≤ Mk
t − x, nk (t ) ≥ l} or event B = {gk

t − 2cnk (t ) ≥
Mk

t + x, nk (t ) ≥ l}, for any x > 0 and any l ≥ 1, is no greater
than

2a

β2 ln(a)

K

τx2
(βx

√
h(l )/a + 1) exp

(
−βx

√
h(l )/a

)
,

where β = ψ (2ζ/a)/(2a).
The proof is deferred to the Appendix B. In the follow-

ing Theorem 5, we utilize Lemma 4 to show SW-MOSS
also enjoys order-optimal worst-case regret in the heavy-
tailed nonstationary reward setup. Since the analysis is similar
to Theorem 2, we provide a proof sketch.

Theorem 5: For the nonstationary MAB problem with K
arms, horizon T , and variation budget VT > 0, if Assump-
tion 2 is true, the worst-case regret of SW-RMOSS satisfies

sup
FK

T ∈E (VT ,T,K )

RSW-RMOSS
T = O

(
(KVT )

1
3 T

2
3

)
.

Sketch of the proof: The procedure is similar to the proof
of Theorem 2. The key difference is due to the nuance
between the concentration properties on the mean estima-
tors. Neglecting the leading constants, the probability upper
bound in Lemma 3 has a factor exp(−x2 l/η) comparing with
(βx

√
h(l )/a + 1) exp(−βx

√
h(l )/a) in Lemma 4. Since both

factors are no greater than 1, by simply replacing η with
(1 + ζ )2 and taking similar calculations in every step except
inequality (16), comparable bounds that only differ in leading
constants can be obtained. Applying Lemma 4, we revise the
computation of (16) as the following,

∑
s≥lk

i +1

P

(
gk

ts − 2cnk (ts ) > Mk
ts + �k

i

4

)

≤
∑
s≥lk

i

C′
(
β�k

i

4

√
h(l )

a
+ 1

)
exp

(
−β�

k
i

4

√
h(l )

a

)

≤
∫ +∞

lk
i −1

C′
(
β�k

i

4

√
y

a
+ 1

)
exp

(
−β�

k
i

4

√
y

a

)
dy

≤ 6a

β2

2a

β2 ln(a)

K

τ

(
4

�k
i

)4

. (28)

where C′ = 2aK (4/�k
i )2/(β2 ln(a)τ ).The second inequality

is due to the fact that (x + 1) exp(−x) is monotonically
decreasing in x for x ∈ [0,∞) and h(l ) > l . In the last in-
equality, we change the lower limits of the integration from
lk
i − 1 to 0 since lk

i ≥ 1 and plug in the value of C′. Compared
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FIGURE 1. Comparison of different policies.

with (16), this upper bound only varies in constant multiplier.
So the worst-case regret for SW-RMOSS is O((KVT )

1
3 T

2
3 ).�

Remark 2: The benefit of the discount factor method is that
it is memory-friendly. This advantage is lost if a truncated em-
pirical mean is used. As nk

γ ,t could both increase and decrease
with time, the truncated point could both grow and decline,
so all sampling history needs to be recorded. It remains an
open problem how to effectively use the discount factor in a
nonstationary heavy-tailed MAB problem.

VI. NUMERICAL EXPERIMENTS
We complement the theoretical results in the previous section
with two Monte Carlo experiments simulated in SMPyBan-
dits [47], which is a bandit simulation framework. For the
light-tailed setting, we compare R-MOSS, SW-MOSS, and
D-UCB in this paper with other state-of-art policies. For
the heavy-tailed setting, we test the robustness of R-RMOSS
and SW-RMOSS against heavy-tailed nonstationary rewards.
Each result in this section is derived by running designated
policies 500 times. Parameter selections for compared policies
are strictly coherent with the referred literature.

A. BERNOULLI NONSTATIONARY EXPERIMENT
To evaluate the performance of different policies, we consider
two nonstationary environments as shown in Fig. 1(a) and (b),
which both have 3 arms with nonstationary Bernoulli reward.
The success probability sequence at each arm is a Brownian
motion in Environment 1 and a sinusoidal function of time t
in Environment 2. The variation budgets VT are 8.09 and 3,
respectively.

The growths of regret in Fig. 1(c) and (d) show that UCB-
based policies (R-MOSS, SW-MOSS, and D-UCB) maintain
their superior performance against adversarial bandit-based
policies (Rexp3 [31] and Exp3.S [32]) for stochastic bandits
even in nonstationary settings, especially for R-MOSS and

FIGURE 2. Performances with heavy-tailed rewards.

SW-MOSS. Besides, DTS [33] outperforms other policies
when the best arm does not switch. In contrast, each switch
of the best arm seems to incur a larger regret accumulation
for DTS, which results in a larger regret compared with SW-
MOSS and R-MOSS.

B. HEAVY-TAILED NONSTATIONARY EXPERIMENT
Again we consider the 3-armed bandit problem with sinu-
soidal mean rewards. In particular, for each arm k ∈ {1,
2, 3}, μk

t = 0.3 sin(5πt/T + 2kπ/3)∀t ∈ {1, . . . ,T }. Thus,
the variation budget is 3 for any horizon length T . Besides,
the mean reward is contaminated by additive sampling noise
ν, where |ν| is a generalized Pareto random variable and the
sign of ν has an equal probability to be “+” and “−”. So the
probability distribution for X k

t is

f k
t (x) = 1

2σ

(
1 + ξ

∣∣x − μk
t

∣∣
σ

)− 1
ξ −1

for x ∈ (−∞,+∞).

We select ξ = 0.4 and σ = 0.23 such that Assumption 2 is
satisfied. We select a = 1.1 and ζ = 2.2 for both R-RMOSS
and SW-RMOSS such that condition ψ (2ζ/a) ≥ 2a/ζ in
Theorems 4, and 5 is met.

Fig. 2(a) shows that RMOSS-based policies achieve sub-
linear mean regret with respect to different horizon T , and
they slightly outperform MOSS-based policies in heavy-tailed
settings. By comparing the histogram of cumulative regret∑

t∈T μ∗
t − μ

ϕt
t for different policies in Fig. 2(b), both R-

RMOSS and SW-RMOSS have better consistency and less
probability of a particular realization of the regret deviating
significantly from the mean value.

VII. CONCLUSION
We studied the general nonstationary stochastic MAB prob-
lem with a variation budget and proposed three UCB-based
policies. When the reward distributions are sub-Gaussian, our
analysis showed that the proposed R-MOSS and SW-MOSS
achieved the worst-case regret within a constant factor of
the minimax regret lower bound. Additionally, D-UCB af-
ter tuning could achieve near-optimal worst-case regret with
an additional ln(T ) factor. Furthermore, we relaxed the sub-
Gaussian assumption to study the heavy-tailed nonstationary
MAB problem. We showed that the order-optimal worst-case
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regret can be maintained by extending R-MOSS and SW-
MOSS to their robust versions.

There are several possible avenues for future research.
In this paper, we relied on passive methods to balance the
remembering-versus-forgetting tradeoff. The general idea is
to keep taking in new information and removing outdated
information. Parameter-free active approaches that adaptively
detect and react to environmental changes are promising al-
ternatives and may result in better experimental performance.
Also, extensions from the single decision-maker to distributed
multiple decision-makers are of interest.

APPENDIX
The proofs in this section are developed upon two im-
portant concentration inequalities that have been introduced
and utilized in [46], [48], [49], [50]. To make the paper
self-contained, both are presented here with detailed proofs.
We first introduce some measure-theoretic probability con-
cepts that are necessary for rigorous analysis. Let {Xi}n

i=1
be a sequence of random variables adapted to the filtration
F = {Fi}n

i=1, i.e., X1, . . . ,Xi is Fi-measurable. The sequence
{Xi}n

i=1 is an F-adapted submartingale if E[Xi | Fi−1] ≥ Xi−1

for all i. The subsequent result, stemming from Doob’s op-
tional stopping theorem [49], will serve as a key result to
derive the concentration inequalities.

Lemma 5 (Maximal inequality [49, Th. 3.10]): Let {Mi}n
i=1

be a submartingale with Mi ≥ 0 almost surely for all i ∈
{1, . . . , n}. Then for any δ > 0,

P

(
max

i∈{1,...,n}
Mi ≥ δ

)
≤ E[Mn]

δ
.

Let di =Xi − E[Xi |Fi−1] and let Mm = exp(λ
∑m

i=1 di ).
Then by Jensen’s inequality and the convexity of exp(λx),

E[Mm | Fm−1] = Mm−1E[exp(λdm) | Fm−1]

≥ Mm−1 exp(λE[dm] | Fm−1) = Mm−1,

which means {Mi}n
i=1 is an F-adapted submartingale. Besides,

with Mi ≥ 0, we can apply Lemma 5 to get the following
result, which is the Azuma-Hoeffding inequality [51] gener-
alized to sub-Gaussian random variables.

Lemma 6: Let {Xi}n
i=1 be a sequence of random variables

adapted to the filtration F = {Fi}n
i=1. Define di := Xi − E[Xi |

Fi−1]. If P(Xi | Fi−1) is σ sub-Gaussian for all i, then for any
δ > 0,

P

(
∃m ∈ {1, . . . , n} :

m∑
i=1

di ≥ δ

)
≤ exp

(
− δ2

2nσ 2

)

and P

(
∃m ∈ {1, . . . , n} :

m∑
i=1

di ≤ −δ
)

≤ exp

(
− δ2

2nσ 2

)
.

Proof: Since P(Xi | Fi−1) is σ sub-Gaussian for all i,

E[Mm] = E[Mm−1]E[exp(λdm) | Fm−1]

= E[Mm−1] exp

(
1

2
λ2σ 2

)
.

Applying the above equality iteratively from n to 1,

E[Mn] = exp
(n

2
λ2σ 2

)
.

Then, using Lemma 5, we have that for any λ > 0,

P

(
∃m ∈ {1, . . . , n} :

m∑
i=1

di ≥ δ

)

= P

(
max

m∈{1,...,n}
Mm ≥ exp(λδ)

)

≤ E[Mn]

exp(λδ)
= exp

(n

2
λ2σ 2 − λδ

)
.

Taking λ = δ/(nσ 2) to minimize the last term, the prob-
ability is no greater than exp(δ2/(2nσ 2)). The lower tail
probability bound regarding

∑m
i=1 di ≤ −δ can be proved

similarly by reversing the sign of di. �
The following is the martingale version of Bennett’s in-

equality [52], whose proof procedure is similar to Lemma 6.
Lemma 7: Let {Xi}n

i=1 be a sequence of bounded random
variables in [−B,B] for some B ≥ 0 adapted to the filtra-
tion F = {Fi}n

i=1. Let di = Xi − E[Xi | Fi−1] and let Sm =∑m
i=1 di for all m. Suppose that Var[Xi|Fi−1] ≤ v. Then, for

any δ ≥ 0

P (∃m ∈ {1, . . . , n} : Sm ≥ δ) ≤ exp

(
− δ

B
ψ

(
Bδ

nv

))
,

P (∃m ∈ {1, . . . , n} : Sm ≤ −δ) ≤ exp

(
− δ

B
ψ

(
Bδ

nv

))
,

where ψ (x) = (1 + 1/x) ln(1 + x) − 1.
Proof: Let Mm = exp(λSm/B) for each m ∈ {1, . . . , n}.

Since (ex − x − 1)/x2 is a non-decreasing function of x ∈ R,
for any random variable X ∈ [−1, 1], by comparing the func-
tion value at x = X and x = 1, we have

exp(λX ) − λX − 1 ≤ X 2(eλ − λ− 1).

If E[X ] = 0, we take expectations on both sides of the in-
equality and rearrange the equation to get

E[exp(λX )] ≤ 1 + λE[X ] + EX 2(eλ − λ− 1)

= 1 + Var[X ](eλ − λ− 1).

Since dm/B ∈ [−1, 1], we substitute dm/B into X to get

E[Mm|Fm−1] = Mm−1E[exp(λdm/B) | Fm−1]

≤ Mm−1

(
1 + v(eλ − λ− 1)

B2

)
,

where the second inequality is due to Var[dm/B | Fm−1] ≤
v/B2 and E[dm | Fm−1] = 0. Thus, we have

E[Mm] ≤ E[Mm−1]

(
1 + v(eλ − λ− 1)

B2

)
.

Applying the above inequality iteratively from n to 1, we have

lnE[Mn] ≤ n ln

(
1 + v(eλ − λ− 1)

B2

)
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≤ nv(eλ − λ− 1)/B2,

where the second inequality is due to the fact ln(1 + x) ≤ x.
Then, using Lemma 5, we have that for any λ > 0,

P (∃m ∈ {1, . . . , n} : Sm ≥ δ)

= P

(
max

m∈{1,...,n}
Mm ≥ exp(λδ/B)

)

≤ E[Mn]

exp(λδ/B)
≤ exp

(
nv(eλ − λ− 1)

B2
− λδ

B

)
.

Taking λ = ln(1 + Bδ
nv

) to minimize the last term, the prob-
ability is no greater than exp(− δ

Bψ ( Bδ
nv

)). The lower tail bound
corresponding to Sm ≤ −δ can be proved similarly by revers-
ing the sign of di. �

A PROOF OF LEMMA 3
For any t ∈ T , let ukt

i be the i-th time slot the arm k is selected
within Wt and let dkt

i = X k
ukt

i
− μk

ukt
i

. We have

P(A) ≤ P

(
∃m ∈ {l, . . . , τ } :

1

m

m∑
i=1

dkt
i ≤ −x − cm

)
,

Let a = √
2η such that a > 1. We now apply a peeling argu-

ment [53, Sec 2.2] with geometric grid asl < m ≤ as+1l over
{l, . . . , τ }. Since cm is monotonically decreasing in m,

P

(
∃m ∈ {l, . . . , τ } :

1

m

m∑
i=1

dkt
i ≤ −x − cm

)

≤
∑
s≥0

P

(
∃m ∈ [asl, as+1l ) :

m∑
i=1

dkt
i ≤ −asl

(
x + cas+1l

))
.

According to Lemma 6, the above summand is no greater than

∑
s≥0

P

(
∃m ∈ [1, as+1l ) :

m∑
i=1

dkt
i ≤ −asl

(
x + cas+1l

))

≤
∑
s≥0

exp

(
−2

a2 sl2

�as+1l�
(
x2 + c2

as+1l

))

≤
∑
s≥0

exp

(
−2as−1lx2 − 2η

a2
ln
( τ

Kas+1l

))

=
∑
s≥1

Klas

τ
exp

(−2as−2lx2) .
Let b = 2x2 l/a2. It follows that

∑
s≥1

Klas

τ
exp

(−bas) ≤ Kl

τ

∫ +∞

0
ay+1 exp

(−bay) dy

= Kla

τ ln(a)

∫ +∞

1
exp(−bz)dz = Klae−b

τb ln(a)
,

where we apply change of variable z = ay. We conclude the
bound for the probability of event A. By using the upper tail
bound, a similar result exists for event B.

B PROOF OF LEMMA 4
The saturated empirical mean is a key component of the UCB
index of SW-RMOSS. Thus, the following properties for trun-
cated random variables are used in the proof.

Lemma 8: Let X be a random variable with expected value
μ and E[X 2] ≤ 1. Let d := sat(X,B) − E[sat(X,B)]. Then
for any B > 0, it satisfies (i) |d| ≤ 2B (ii) E[d2] ≤ 1 (iii)
|E[sat(X,B)] − μ| ≤ 1/B.

Proof: Property i) follows immediately from the definition
of d and property ii) follows from

E[d2] ≤ E
[
sat2(X,B)

] ≤ E
[
X 2] .

For iii), since μ = E[X (1{|X | ≤ B} + 1{|X | > B})],

|E[sat(X,B)] − μ| ≤ E [(|X | − B) 1{|X | > B}]
≤ E [|X | 1{|X | > B}] ≤ E

[
X 2/B

]
.

�
Proof of Lemma 4: Recall that ukt

i is the i-th time slot when
arm k is selected within Wt . Since cm is a monotonically
decreasing in m, 1/Bm = ch(m) ≤ cm due to h(m) ≥ m. Then,
it follows from property iii) in Lemma 8 that

P(A)≤ P

⎛
⎝∃m∈{l, . . . , τ } : μ̄k

m ≤
m∑

i=1

μk
ukt

i

m
− (1 + ζ )cm− x

⎞
⎠

≤ P

(
∃m∈{l, . . . , τ } :

m∑
i=1

d̄kt
im

m
≤ 1

Bm
− (1 + ζ )cm− x

)

≤ P

(
∃m∈{l, . . . , τ } :

1

m

m∑
i=1

d̄kt
im ≤−x − ζcm

)
, (29)

where d̄kt
im = sat(X k

ukt
i
,Bm) − E[sat(X k

ukt
i
,Bm)]. Recall we se-

lect a > 1. Again, we apply a peeling argument with geo-
metric grid as ≤ m < as+1 over time interval {l, . . . , τ }. Let
s0 = �loga(l )�. Since cm is monotonically decreasing with m,
we have

(29)≤
∑
s≥s0

P

(
∃m ∈ [as, as+1) :

m∑
i=1

d̄kt
im ≤−as (x + ζcas+1

))
.

For all m ∈ [as, as+1), since Bm = Bas , from Lemma 8 we
know |d̄kt

im| ≤ 2Bas and Var[d̄kt
im] ≤ 1. Continuing from the

previous step, we apply Lemma 7 to get

(29) ≤
∑
s≥s0

exp

(
−as

(
x + ζcas+1

)
2Bas

ψ

(
2Bas

a

(
x + ζcas+1

)))

(
since ψ (x) is monotonically increasing

)
≤
∑
s≥s0

exp

(
−as

(
x + ζcas+1

)
2Bas

ψ

(
2ζ

a
Bas cas+1

))
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(
substitutingcas+1 ,Bas and usingh(as) = as+1)

=
∑

s≥s0+1

exp

(
−as

(
x

Bas−1
+ ζc2

as

)
ψ (2ζ/a)

2a

)

(since ζψ (2ζ/a) ≥ 2a)

≤ K

τ

∑
s≥s0+1

as exp

(
−as x

Bas−1

ψ (2ζ/a)

2a

)
. (30)

Let b = xψ (2ζ/a)/(2a). Since ln+(x) ≥ 1 for all x > 0,

(30) ≤ K

τ

∑
s≥s0+1

as exp
(
−b

√
as
)

≤ K

τ

∫ +∞

s0+1
ay exp

(
−b

√
ay−1

)
dy

= K

τ
a
∫ +∞

s0

ay exp
(
−b

√
ay
)

dy

= K

τ

2a

ln(a)b2

∫ +∞

b
√

as0
z exp (−z) dz (where z = b

√
ay)

≤ K

τ

2a

ln(a)b2

(
b
√

as0 + 1
)

exp
(
−b

√
as0

)
,

which concludes the proof.
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