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ABSTRACT We consider both leaderless and leader-follower, possibly nonlinear, networks affected by time-
varying communication delays. For such systems, we give a set of sufficient conditions that guarantee the
convergence of the network towards some desired behaviour while simultaneously ensuring the rejection of
polynomial disturbances and the non-amplification of other classes of disturbances across the network. To
fulfill these desired properties, and prove our main results, we propose the use of a control protocol that
implements a multiplex architecture. The use of our results for control protocol design is then illustrated in
the context of formation control. The protocols are validated both in-silico and via an experimental set-up
with real robots. All experiments confirm the effectiveness of our approach.

INDEX TERMS Disturbance propagation, large-scale systems, multiplex networks, nonlinear systems and

control, time delays.

I. INTRODUCTION

Driven by the introduction of low-cost, high performance
and connected devices, network systems have considerably
increased their size and complexity. In this context, a key
challenge is that of designing networks that not only fulfil
some desired behaviour, but also: (i) reject certain classes of
disturbances; (ii) do not amplify across the network distur-
bances that are not rejected. These properties can be captured
via a scalability property of the network (see Section III-B
for the rigorous definition) which denotes the preservation
of desired properties uniformly with respect to the number
of agents. We present a number of sufficient conditions that
guarantee these properties for nonlinear network systems with
delays. The conditions are based on multiplex architectures,
that we exploit for control design, and on tools from contrac-
tion theory.

A. RELATED WORKS

We briefly survey key related works on network scalability,
disturbance rejection in networks and contraction theory.

Network scalability and disturbance rejection: The study
of how disturbances propagate within a network system is a
central topic for the platooning of autonomous vehicles. In
particular, the key idea behind several definitions of string
stability in literature is that of giving upper bounds on the
deviations induced by disturbances that are uniform with
respect to platoon size, see e.g. [2], where the bounds are
found by leveraging contraction theory and [3] for a survey
that includes approaches based on passivity arguments. In
these works, no delays are considered and agents are arranged
along a string. For networks with more general topologies
and with delay-free interconnections, we recall results on
mesh stability [4] and on leader-to-formation stability, which
is considered in [5] and it characterizes network behaviour
with respect to inputs from leaders. For delay-free leader-
less networks with regular topology, a scalability property
has been recently investigated in [6], where Lyapunov-based
conditions are given; we also recall [7] that studies scalability
of delayed-free networks and [8] that investigates scalable
stability of consensus algorithm for delay-free networks under
a wide range of graphs. For networks with arbitrary topologies
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and with delays, sufficient conditions for scalability can be
found in [9], which leverages contraction theory arguments
for time-delayed systems. In this last work, non-amplification
of disturbances is guaranteed. However, results in [9] do not
guarantee disturbance rejection. Among different classes of
disturbances, of particular interest is to design controllers able
to reject polynomial disturbances. To this aim, disturbance
observers can be designed to estimate, and compensate, these
disturbances [10], [11]. However, these works do not guaran-
tee non-amplification as these disturbances are spread across
the network. A complementary approach to compensate poly-
nomial disturbances consists in leveraging distributed integral
actions. By pursuing this approach, the problem of constant
disturbances rejection is tackled in the context of string sta-
bility for delay-free platoons [12], [13]. Finally, in this work
we present a hardware validation of the protocol designed in
accordance with our results. In this context, we recall [14]
that studies platoon of vehicles with linear dynamics and de-
layed communications and the designed control is validated
experimentally on three vehicles. In [15], a platoon of third
order integrators without communication delays is considered
and validation is performed via hardware experiments with 4
cars. In [16], a distributed guiding vector-field algorithm is
designed for a group of robots modelled by single integrator
delay-free dynamics to achieve string stability and its effec-
tiveness is validated on hardware experiments with unmanned
surface vessels. In all these works, however, no disturbance
rejection is guaranteed.

Contraction theory: Contracting systems exhibit transient
and asymptotic behaviors [17] that are desirable when design-
ing network systems [18]; we refer to [19], [20] and references
therein for further details. We also recall [21] which shows,
using Euclidean metric, how contraction is preserved through
certain time-delayed communications and [22] where condi-
tions for the synthesis of distributed controls are given by
using separable metric structures. In this context, we also re-
call [23] where separable Lyapunov functions are constructed
for monotone systems that are also contractive. For delay-free
systems, based on the use of contraction, a sufficient condition
for stability of a feedback loop consisting of an exponentially
stable multi-input multi-output nonlinear plant and an inte-
gral controller (to compensate constant disturbances) has been
obtained in [24]. The problem of constant output regulation
for a class of input-affine multi-input multi-output nonlinear
systems with constant disturbances, has also been recently
tackled via contraction in [25]. Other works have also shown
that contraction using non-Euclidean metrics can be useful
to study a wide range of biological [26], neural [27], [28]
and engineered [2] networks. We also recall [29] the recent
extension of contraction to dynamical systems on time scales,
i.e. systems evolving on arbitrary (potentially non-uniform)
time domains.

Summary: The stream of works surveyed above highlights
that, currently, no results are available to design protocols that
simultaneously guarantee, for nonlinear networks with delays
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and, possibly, leaders providing time-varying references: (i)
the fulfilment of a desired behaviour for the network; (ii)
rejection of polynomial disturbances; (iii) non-amplification
of other classes of disturbances. Protocols guaranteeing these
key requirements for network systems can instead be designed
with our results.

B. STATEMENT OF CONTRIBUTIONS

We give sufficient conditions for the exponential convergence
of possibly nonlinear network systems with communication
delays towards some desired behaviour, while guaranteeing
rejection of polynomial disturbances and non-amplification of
other classes of disturbances. To the best of our knowledge,
these are the first conditions that allow to guarantee these
desired properties. Specifically, our contribution can be sum-
marised as follows:

i) we formalize these desired properties for the network
with the notions of £Z -Input-to-State Scalability and
LE -Input-Output Scalability;

i) we introduce a set of sufficient conditions for scala-
bility. The conditions, based on the use of a multiplex
architecture, leverage non-Euclidean contraction argu-
ments and certain structured norms. This allows to
consider both leaderless and leader-follower networks
of nonlinear, possibly heterogeneous agents with com-
munication delays. Moreover, this approach also allows
to consider arbitrary network topologies and time-
varying references. We are not aware of other results
that allow to design protocols guaranteeing these prop-
erties;

iii) we leverage our results to design control protocols for
formation control problems, allowing a formation to
track a time-varying reference provided by a leader,
reject polynomial disturbances and ensure the non-
amplification of other classes of disturbances. We also
show how the fulfilment of the sufficient conditions can
be recast as an optimization problem;

iv) finally, we validate our protocols both in-silico and via
a multi-robot formation control application with real
robots. All the experiments confirm the effectiveness
of our approach! with the protocols effectively guar-
anteeing that the robots achieve, and track, the desired
formation while simultaneously guaranteeing rejection
of polynomial disturbances and the non-amplification
of other classes of disturbances.

To the best of our knowledge, these are the first results that,
for nonlinear networks with delays, simultaneously guarantee
tracking of some desired behaviour, rejection of polynomial
disturbances and non-amplification of other disturbances. In
fact, our results directly extend [2], [13], which are focused on
string stability of platoon systems, and our prior work [1], [9].

'Documented code and data to replicate all our results are available at http:
/ltinyurl.com/46xvfy7f together with recordings of the experiments.
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Specifically: (i) in [2] string stability was considered for pla-
toons without delays and polynomial disturbances rejection
is not guaranteed; (ii) in [13] constant disturbances (i.e., zero
order polynomials) are rejected under the assumption that the
platoon is delay-free; (iii) in [9] delays are instead considered
but disturbance rejection is not guaranteed (indeed, as also
illustrated in Section IV-B, the protocols designed with the
results from this paper tackle situations that cannot be consid-
ered with [9]); (iv) in [1] only first order disturbance rejection
is considered and no proof is given. Moreover, while in [30]
polynomial disturbances are rejected for networks affected by
heterogeneous delays, the non-amplification of other distur-
bances across the network is not guaranteed.

The rest of the paper is organised as follows. In Section II,
we give mathematical preliminaries necessary for the develop-
ment of the main results of the paper. In Section III, we give
the set-up, introducing both the multiplex architecture and the
notion of scalability together with the control problem. The
main theoretical results are then given in Section IV and val-
idated on a robot formation application via both simulations
and hardware experiments in Section V. Concluding remarks
are given in Section VI.

Il. MATHEMATICAL PRELIMINARIES
Let A be a m x m real matrix, we denote by [|A]|,, the matrix

norm induced by p-vector norm | - |,. The matrix measure of

A induced by | - [, is pp(A) := limy,_ o+ %. We write

A > 0 when A is positive semi-definite and A < 0 when it is
negative semi-definite. The symmetric part of A is [A], :=
A+TAT. Given a piece-wise continuous signal w;(t), we let
||w,~(~)||£pOo := sup, |w;(t)|,. We denote by I, the n x n iden-
tity matrix and by 0,,x, the m x n zero matrix (if m = n we
simply write 0,). The Kronecker product is denoted by ®.
For a generic set A, its cardinality is denoted by |A|. Let f
be a smooth function, we denote by £ the n-th derivative
of f. The Dini derivative of a continuous function g is de-
noted as D g(x) := lim sup;,_, ¢, w Given a vector
n:i= [n{, R n]TV]T, n; € R", we denote the structured vector
norm | - |g as |nlg == [[Imlg,, .- Innleylls with | - |, be-
ing norms on R” and | - |g being norms on RY. The matrix
norm and matrix measure induced by | - |¢ (| - |g,) are denoted
by I - llg> 6C) (Il - Il 12G,(-)), respectively.

We recall that a continuous function « : [0, a) — [0, 00) is
said to belong to class /C if it is strictly increasing and «(0) =
0. It is said to belong to class Ko, if a = 0o and «(r) — o0 as
r — 00. A continuous function 8 : [0, a) x [0, co0) — [0, c0)
is said to belong to class L if, for each fixed s, the mapping
B(r, s) belongs to class I with respect to r and, for each
fixed r, the mapping B(r, s) is decreasing with respect to s
and B(r,s) —> 0ass — oo.

We let | - |s and pg(-) be, respectively, any p-vector norm
and its induced matrix measure on RY. In particular, the norm
| - |s is monotone, i.e. for any non-negative N-dimensional
vector x,y € ]RQ/O, x <y implies that |x|s < |y|s where the
inequality x <y is component-wise. Given a matrix A €
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R™N>1N e partition it into:

Ay Ap AN
Ay Axp Ay
A= . )
An1 ANz ANN
We define the following:

A = pg,(Ai), Aij = lAijllG,
where [|A;jllg, ; = SUP||; =1 |Aijx|G; and we also define
Aii = AiillG,,» Aij = 14ijliG,;-

Finally, we define

_1‘211 1‘?12 1§1N_
R Ay Axp Ay
A= . . .

L Anvi Ann Ay

and

_511 %12 1‘311\1_
_ Ay Ap Ay
A= . . .

| An1 An2 Ann |

Then we can state the following lemma which follows [31].
Lemma 1: For any structured vector norm | - |g on RV >V
and any p-vector norm | - |g on RY, we have:
() nG(A) < usA); (illAllg < lIA]ls.
The next lemma is adapted from [32, Theorem 2.4].
Lemma 2: Let u: [ty — Tmax, +00) = Rx0, 0 < Tmax <
+-00. If the following inequality

DT u(t) <au(t)+b sup

I —Tmax <S=t

u(s) +c, =1,

holds with:
D u@) =le@)l, Vi€ lto— Tmax o]
bounded in [fg — Tmax, f0];
2) a < 0,b>0andc > 0 and that there exists some o >
Osuchthata+ b < —0o < 0,Vt > 1.
Then:

where () is

u(s)e*}»(f*to) + E’
o

u(t) < sup

10— Tmax <S=1(
where A > 0 is the solution of A + a 4+ be* ™= = (.
1Il. THE SET-UP

We consider a network system of N > 1 agents with the dy-
namics of the i-th agent given by

Xi(t) = filxi, 1) +ui(t) +di(t), t >1>0,
yi(t) = gi(xi), (D

with initial conditions x;(tp), i = 1,...,N, and where: (i)
xi(t) € R" is the state of the i-th agent; (ii) u;(r) € R" is
the control input; (iii) d;(t) € R" is an external disturbance
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signal on the agent; (iv) f; : R” x R>¢o — R" is the intrinsic
dynamics of the agent, which is assumed to be smooth; (v)
gi : R" — R? is the output function for the i-th agent. We
consider disturbances of the form:

m—1
dit) = wi(t) + di(t) == wit) + Y _dig 15, ()
k=0

where w;(t) is a piece-wise continuous signal and d; ;’s are
constant vectors. Disturbances in (2) embeds polynomial dis-
turbance d;(r), of order m — 1, and w;(r) that captures the
residual terms in the disturbance that are not polynomial (we
consider a rather general class of signals for w;(¢) as we only
require that this is piece-wise continuous). Polynomial distur-
bances are widely used in literature and embed disturbances
that are typically used for control design, i.e., constant distur-
bances, ramp disturbances etc. The disturbances (2) include
several interesting special cases. For example, consider the
case where: (i) m = 1 in (2). Then, we have d;(t) = w;(t) +
d; 0. In the context of platooning, these types of disturbances
model situations when a platoon of vehicles encounters a
slope where d; o models constant disturbance on vehicle accel-
eration and w;(t) models disturbances caused by small bumps
along the slope [13]; (ii) m =2, di.p = 0, w;(t) =0 in (2)
we have d;(t) = d; | - t. In the context of power systems, this
ramp disturbance can model an attack to the system [33].

Remark 1: Polynomial disturbances are commonly consid-
ered in the literature. See e.g. [10] where observers for these
disturbances are devised and [11] where the problem of re-
jecting these disturbances is considered. The signal w;(¢) can
be physically interpreted as a (typically, small) discrepancy
between the polynomial disturbance model and the actual
disturbance signal. For platooning, rejection of constant dis-
turbances (i.e. the disturbance in (2) when m = 1) has been
considered in [12], [13].

A. MULTIPLEX ARCHITECTURE

As we shall see, with our main results, we give sufficient
conditions guaranteeing: (i) tracking of a desired reference;
(ii) rejection of the d;(¢)’s in (2); (iii) non-amplification of the
w;(t)’s, which do not need to be polynomials for our results
to hold. These properties are all captured by the notion of
scalability (see Section III-B for the rigorous definition). To
fulfill such a property, we propose the use of the multiplex
architecture schematically shown in Fig. 1. In such a figure,
the network system is in layer O and the multiplex layers (i.e.
layer 1, ..., m) concur to build up the control protocol. This
is of the form:

wi(t) = hi 0@, ()} jeni X0 1) + 1 (i X7} jen;- 0. 1)
+ i1 (1),

Fi1(t) = hi 1 (X, {xj} jen;s X1, 1) + h,(fl)(xi, {xj}jen; X1, 1)
+rip(),
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FIGURE 1. The multiplex architecture. One disturbance is highlighted and
the reference signal is omitted. Layers can have different topologies, which
can be both directed and undirected.

Fim () = him (i, X} jeni, X1, 1) + hl(fni(xi, {xj}jen;s X1, 1),

3)
where r; ;(¢) is the output generated by the multiplex layer
ke {l,...,m}. As illustrated in Fig. 1, the multiplex layer
k € {1, ..., m} receives information from the agents (on layer

0) and outputs a signal to the layer immediately below, i.e.
layer k — 1. In (3): (1) {x;}en; € R"Ni denotes the stack of
the states of the neighbours of agent i where A is the set
of neighbours of agent i and N; := |N| is the cardinality
of the set which is assumed to be bounded VN. That is,
VN, there exists some N < oo such that N; < N, Vi; (ii)
xi(t) ;== [)clTl ), ... ,xgw ()]7 is the reference signal, possibly
provided by a group of M leaders; (iii) Yk € {0, ..., m} we
have h;p : R" x R™i x R"™ x R-y — R" and h;fk) :R™ x
R™i x R™ x R-o — R" are smooth functions that model
the delay-free and delayed couplings from neighbours and
(possible) leaders with bounded time-varying delay t(¢), sat-
isfying 7(¢) < Tmax, respectively. In (3), 7(¢) is the same for
all agents. We use the term homogeneous delay for cases
where all delayed couplings are affected by the same de-
lay. This assumption is commonly seen in literature, see
Remark 2. Note that not all the agents necessarily receive
information from leaders (if any). Situations where there is an
overlap between delay-free and delayed communication natu-
rally occur in various applications. For instance, in the context
of platooning, certain states, such as radar-based separation
data from nearby vehicles, may be readily available to an
agent without any significant delay. On the other hand, the in-
formation of separation from more distant vehicles or control
actions of neighbouring vehicles may require communication
and be subject to delays caused by measurement or process-
ing. In a special case where the delay-free couplings are all 0,
i.e. h; i (xi, {xj} jen;» X1, 1) = 0, Yk, (3) can also model the sit-
uation when there are only delayed couplings. Without loss of
generality, in (3) we set, Vs € [f) — Tmax, 0], Vi=1,..., N,
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Vk=1,...,m, xi(s) = ¢i(s) and r; 1 (s) = @; (5), with @;(s)
and ¢; x(s) being continuous and bounded functions in [ty —
Tmax. f0].

Remark 2: The results rely on the fact that delays are
homogeneous. This setup naturally arises when some time-
stamping is available for state information exchanged between
nodes. Homogeneous delays in fact arise when the state
information is transmitted at a sequence of time points,
ie. {...,t%_1,%, ...}, the information available at time t €
(tr—1, t) is then x(ty_1) := x(t — t(t)) where t(t) =t — t;,_;
[34]. In a broader context, network systems affected by these
homogeneous delays naturally arise in the context of multi-
agent systems. For example, in [35] string stability of platoon
is studied when agents are affected by homogeneous constant
delays. Homogeneous delays are also considered in the con-
text of consensus [36] and synchronization [37].

Remark 3: The multiplex architecture implements a dis-
tributed integral action. As we shall see, if the architec-
ture is designed in accordance with our result, this can
be used to both reject high order polynomial disturbances
and to guarantee the non-amplification of the residual dis-
turbance. We derive such sufficient conditions later in
Section IV-A.

Remark 4: We do not require the delay 7(¢) to be known
explicitly. We only make the rather standard assumption, see
e.g. [36], [37] and references therein, that 7(¢) is bounded by
Tmax, Which as well does not need to be known.

Remark 5: We do not require that the multiplex layers have
the same topology. This degree of freedom in the design of the
layers can be leveraged, as noted in [38, Remark 12], to e.g.
reduce the control interventions across the network.

B. NETWORK SCALABILITY AND CONTROL GOAL

We let x(t) = [xlT(t), .. .,)CIT\,(I)]T be the stack of the agent
states, u(t) = [u{(t), e uL(z‘)]T be the stack of the control
inputs, d(t) =[d](t),...,d}(®)]" be the stack of the
disturbances, w(t) = [w}(t),...,wL(t)]T be the stack
of the residual disturbances, d(t) =I[d](t),...,dvO]
be the stack of the polynomial disturbances and
ri(t) = [rIl(t), ...,rIm(t)]T. In what follows, we say that
T @), riT (@), ... x5 (@), riT ()] is the desired solution for
a network system (1) controlled by (3) when d,(¢) = 0, Vi, if:
@) X7 (@) = fi(x} (1), 1) withx7 (s) = x7 (t0), s € [to — Tmax, fo];
(ii) rl?fk(t) =0, Vi, Yk and Vr. In what follows, we simply
say that x*(¢) = [x’lkT(t), e x}‘(,T(t)]T is the desired solution
of (1), leaving it implicit that r;fk(t) =0, Vi, Vk and Vr.
In the special case where the closed-loop system has: (i)
no multiplex layers, this notion of desired solution yields
the one used in [2], [6], [9] to formalize their control goal;
(i) one multiplex layer, such a notion yields the desired
solution used in [13] to characterize string stability. The
desired output of (1) is y*(t) := [yiT(t), ..., yiT (I, with
yi () = gi(x} (1)), Vi.

VOLUME 3, 2024

We are now ready to introduce the notion of scalabil-
ity. For the closed-loop network (1)-(3), scalability im-
plies the fulfilment of the following properties simulta-
neously: (i) tracking of x*(t); (ii) rejection of d(¢); (iii)
non-amplification of w(#) across the nodes. The following
definition extends the notion of Disturbance String Stability
(DSS) in [13] and L.-scalable-Input-to-State Stability/L .-
scalable-Input-Output Stability (Lso-SISS/Lo-sIOS) in our
previous work [9] by taking into account the effects of both
delays and polynomial disturbances in the upper bounds. In
fact, DSS does not consider delays and only takes into account
the effects of the constant disturbance while L£~o-SISS/L -
sIOS does not consider the effect of polynomial disturbances.

Definition 1: Consider the closed-loop system (1) - (3) with
disturbance d(t) = w(t) + d(t). The system is

o [P -Input-to-State Scalable with respect to w(z): if there

exists class KL functions «(-, -), B(-, ), a class K func-
tion y (+), such that for any initial condition and V¢ > ¢,

max [xi(t) = x} ()], < ¥ (mflx ||wi(')||cgo>

+ o <m_ax sup  |xi(s) — X7 ($)]p. t — to)

b fp—Tmax <s=<fp

m
+ B (max sup Z 7y k() + aT,-(k_l)(s)lp, t — t0>
L 10— Tmax <51 k=1
holds VN;
e L% -Input-Output Scalable with respect to w(t): if there
exists class KL functions «(-, -), B(-, +), a class K func-
tion y (-), such that for any initial condition and V¢ > f,

max [y;(1) = ¥} (0l < v (m;lx i)l gz, )

+a <mfdx sup  |xi(s) — X7 (8)]p, £ — to)

b tg—Tmax <s=<fo

m
+8 (max sup Z Iri k(s) + d_l.(k_l)(s)|p, t— t0>
L tp—Tmax <s=1o k=1
holds VN.

Definition 1 gives upper bounds for state/output deviation
composed of the norm of: (i) initial state deviation; (ii) time
derivatives of polynomial disturbance plus the output from
multiplex layers; and (iii) the residual disturbance. Note also
that the bounds in Definition 1 are uniform in the number
of agents, N. Hence, scalability is a stronger property than
stability, which does not require uniformity of the bounds
in N. It in turn guarantees that residual disturbances are not
amplified within the network system. In the special case when:
(i) d(t) = 0 and there are no multiplex layers, Definition 1
becomes the Lo-sISS in [9]; and (ii) d(¢) = [d} 0, . . ., d_N,O]T
and there is one multiplex layer, Definition 1 becomes DSS
in [13]. In what follows, whenever it is clear from the context
we simply say that the network is £, -Input-to-State Scalable
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(LZ,-Input-Output Scalable) if Definition 1 is fulfilled. In the
special case where p = 2 we simply say that the network is
L o-Input-to-State Scalable (L-Input-Output Scalable).

Given the set-up of this section, we can now formulate our
control objective. Specifically, given the network system (1),
our goal is to design control protocols of the form of (3) so
that the closed-loop system fulfils Definition 1.

C. RUNNING EXAMPLE: MULTI-ROBOT FORMATION
CONTROL

We consider formation control for a group of N unicycle
robots and we now introduce the set-up, illustrating the con-
cepts introduced so far. We consider the dynamics for the
robots hand position, which is described by (see e.g. [39], [40]
and references therein):

ni(t) = |:COS 0i(t) —L;sin6;(t)

L;cosb;(t)

sin 6;(t) ]Mi(l) +d;(t), 4)

where 7;(t) denotes the hand position of the i-th robot, L; €
R is the distance of the hand position to the wheel axis and
0;(t) is the heading angle. In the above equation, d;(¢) is the
disturbance on the i-th robot and u;() is the control input. For
concreteness, within this running example, we consider the
case where the disturbances affecting the robots, i.e. d;(t) =
[dX(t), d ()], are of the form

dX@t) == wi () +do+d -1,
Y (t) = w] () +dy+d} | 1.

These disturbances naturally arise in the context of e.g.
unicycle-like marine robots whose dynamics are also captured
by the above dynamics. For these robots, the constant terms in
d;(t) model the disturbances due to the ocean current [41] and
the piece-wise continuous residual disturbances w7 (¢), wl)f(t)
model e.g. transient variations of the current. The ramps in the
disturbance can model ramp attack signals [33]. The dynamics
in (4) can be feedback linearised by

cos;(t) —L;sin 91‘(0}1 Vi)

ui(t) = [sin 0:(1)

yielding the dynamics for the closed-loop network system

ni(t) = vi(t) +di(1), Vi. ®)

L;cos6;(t)

with
| cos (1)
vit) = |:sin 6,(1)

where v;(¢) is the control input to be designed for the feedback
linearised system (5). In what follows we make use of the
compact notation w; () := [w?(t), w (t)]" and

i) = [d’”o e 't} . ®)

—L; sin 0;(t)
L; cos 6;(t) } uit)

v
dig+dy-t

We consider the setting of e.g., [42] so that robots receive:
(1) broadcast signals from a delay-free virtual leader; (ii)
position information from their neighbours with a bounded
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FIGURE 2. Reference trajectory of the hand position provided by the
virtual leader together with an example of desired formation.

time-varying delay t(f) < tmax. We denote by n;(¢) and v; (t)
the hand position and reference velocity from the virtual
leader. We seek to design a control protocol for the network
so that the following requirements are satisfied:

R1 robots follow a reference trajectory and track v (t);

R2  desired offsets from the leader (§;;) and from neigh-

bours (8;) are kept;

R3 the polynomial disturbances d;(t) are rejected;

R4 the w;(¢)’s are not amplified.

These properties can be achieved if the closed-loop network
(5) is Loo-Input-to-State Scalable with the desired solution
defined as n*(t) == [ni7(1), ..., niT(OIT, with 77 (1) = v (1),
Viand n;(t) — nj(t) = 5, n;f(t) —nft)= 8;‘.‘1.. See Fig. 2 for
an example of desired robotic formation for a network with
robots in 3 concentric circles. In the next part of the example,
given the set-up illustrated so far, we show that the £..-Input-
to-State Scalability property of such robotic network can be
guaranteed if the protocol is designed in accordance with our
main results (introduced next).

IV. MAIN METHODOLOGICAL RESULTS

We now introduce our main results to assess the scalability
property given in Definition 1. Specifically, with Proposition
1 we give a set of sufficient conditions for £2,-Input-to-State
Scalability of the closed-loop system (1)—(3) affected by dis-
turbances of the form (2). With Corollary 1 we instead give
a sufficient condition for £Z -Input-Output Scalability of the
system. We also continue the running example, employing the
conditions for protocol design.

A. SUFFICIENT CONDITIONS FOR SCALABILITY

The results are stated in terms of the block diagonal matrix
T:=1Iy®T € RNt DxNntntl) wigh

In [04] -In
T:Z In c Rn-(m+l)xn~(m+]), (7)
apy -1y
I,
where o € R, Vk € {1, ..., m}, is independent on N.

Proposition 1: Consider the closed-loop network system
(1)—(3) with y;(¢) = x;(¢) affected by disturbances (2). If V¢ >
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t9, the following conditions are satisfied for some 0 < g <
0 < +400:

Cl ik O x5 jens 21, 1) = AR O 10 jen 30, 1) = 0,
Vi, Vk;

wp(TAOT ™) + 3, ITA;OT I < =5, Vi
and Vx € RV, Vx; € R™;

C3 Y, ITBij()T~ Y, <a,Vi,Vx e R"™N, vx; € R"™M,

where the matrices A;;(t), A;; (1), B;; j(t) are defined as in
(8) shown at the bottom of this page, with state dependence
omitted for brevity. Then, we have that the system is £5-
Input-to-State Scalable, with

C2

1p(T)
L max lwi()ll o1,
—o i

max |x;(t) — x; (1), <
13

+ip(Te ™0 max  sup  its) — 7 (9)]
L tg—Tmax <=1o
+ max sup Z |ri x(s)
L 1y~ Tmax <5<t k=1
— —1-b)! m—k—b
bz o= —py " Gim=1-6 5" [N O)
where «,(T) := | T||,IT~"|l, and A > 0, the convergence
rate, is the solution to
A—6& +aetm =0, (10)

The proof of the result is given in the Appendix A. While
the proof follows the spirit of that of Proposition 1 from our
previous work [9], the results in [9] cannot be directly applied
to the closed-loop network system (1)—-(3) due to its lack
of multiplex layers, which are crucial to reject polynomial
disturbances (see also Remark 6). Additionally, we note that
for the application of Proposition 1 given in this paper, we fix a
family of controllers and then tune the control gains so that the
conditions C1-C3 are satisfied. We now make the following
considerations on the conditions.

Remark 6: From design viewpoint, if one wants to guar-
antee rejection of polynomial disturbances of order up to

m — 1, then m multiplex layers need to be foreseen. That is,
the control protocol (3) for the i-th agent needs to foresee
dynamics for r;x(t)’s with k =1,...,m - see the second
term of the upper bound in (9). Also, the factorial term is
the sum of derivatives of polynomial disturbances. Essen-
tially, with this term, we capture the fact that the polynomial
disturbances vanish in time due to its multiplication with a
decreasing exponential. As such, these terms are crucial to
show that polynomial disturbances are rejected. In accordance
with Proposition 1, the protocol also guarantees that w;(¢)’s in
(2) are not amplified across network.

Remark 7: Condition C1 implies that u;(r) =0 at de-
sired solution. This rather common condition (see e.g. [2],
[9]) guarantees that x*(¢) is a solution of unperturbed dy-
namics. This assumption is satisfied in e.g. all consen-
sus/synchronization dynamics with diffusive-type couplings.
Condition C2, giving an upper bound (uniform in ¢ and x)
on the matrix measure of the Jacobian of delay-free part
of the closed-loop network dynamics, is a diagonal domi-
nance condition. That is, C2 is a contractivity condition on
the delay-free part of the dynamics (see e.g., [18], [26] and
references therein where contractivity is proved under a wide
range of technical conditions). Instead, condition C3 gives an
upper bound on the norm of Jacobian of dynamics containing
delays. Finally, as we shall see, we recast the problem of
fulfilling C2-C3 as an optimization problem. This problem,
in order to be numerically solved, requires that the matrix
measures/norms of the Jacobians in C2 and C3 are upper
bounded.

Remark 8: Conditions C2 and C3 can be leveraged to shape
the coupling functions between agents and to determine the
maximum number of neighbours for each agent in the net-
work. Note that Proposition 1 requires & to be larger than o.
Moreover, if C2 and C3 are satisfied for some o, &, then the
network is also connective stable in the sense of [43, Chapter
2.1]. Intuitively, a network is connective stable if the removal
of couplings preserves stability.

Remark 9: Proposition 1 generalises a number of results in
the literature. In the special case when the network topology
is a string, there are no delays and d;(t) is constant Vi, then
our conditions yield these from [13]. That is, we extend the

[0 fitxit) | Ohio(x,x;,1)
x; + ox; I
d]’l,’{ 1 (X,X] l)
Bx,- On
Aii(t) = : :
Oh m—1(x,x1,1)
. 0,
ahi,m()(vxl )
L 0x; On
— 3/1,'.0()6,)61,1)
s O o
Aij(t) = : : :
Ohj m (x,xp,1)
o O G
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results in [2], [13] by considering dynamic compensation of
polynomial disturbances, general network topologies and de-
lays. We also extend our prior work [9] in which scalability is
considered without rejection of polynomial disturbances.

The next result immediately follows from Proposition 1.

Corollary 1: Consider the closed-loop network system (1)—
(3) affected by disturbances (2). Assume that all the conditions
in Proposition 1 are satisfied and that, in addition, the output
functions g;(-) are Lipschitz. Then the system is £2-Input-
Output Scalable.

Proof: The proof, directly following from the Lipschitz
hypothesis on g;(-) and from (9), is omitted here for brevity.

B. RUNNING EXAMPLE: MULTI-ROBOT FORMATION
CONTROL (CONTINUE)

Following the previous part of the running example, in order
to guarantee that the robotic formation satisfies R1-R4, we
now design a control protocol that guarantees L-Input-to-
State Scalability for (5). In order to design the protocol, we
leverage Proposition 1 and show how conditions C1 - C3 can
be satisfied. We start with satisfying C1. Following [42], the
protocol we design is of the form

vi(t) = vi(r) + v (1), Y

where ¥;(¢) is a diffusive coupling. Following Remark 6, we
foresee two multiplex layers in the protocol (this allows to
reject the first order polynomial d;(¢) in (6)). Thus, we set:

Di(t) = i1 (1) + koG (1) — mi(0) — &)
kY Wi = T0)) = milt = T(0) = 83)
JEN;
Fia(t) = rip(t) + ki (n (1) — nit) — &5)
K7D Y — 1) = mit = T() = 85)
JEN;
Fint) = ka(ni(t) — ni(t) — 87
KT = T0) = i = T(@) = 8.
JeN;
(12)
In (12), ¥ (x) := tanh(kyx) is inspired from [2] and ko, ki,
ko, k(()t), k{r), kér), ky are non-negative control gains. Before
designing the gains we note that: (i) C1 is satisfied by the pro-

tocol; (ii) the desired solution is a solution for the closed-loop

dynamics
ni(t) = v (1) + v;(t) + di(1), Vi. (13)

Next, we design the control gains so that these fulfill C2 and
C3. As shown in the Appendix B, the problem of finding
control gains that fulfill these two conditions can be recast as
the following optimisation problem:

min J
3
sit. ko>0,k;y >0,k >0,80>0,81 >0, >0,
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ko+8 > 0,ki +8 >0,k + 5 >0,

5>0,0>0,6—0>0,[TA;T "y < —Gl,

(14)

In the above problem, we have & := [k, k1, k2, 20, &1, &2,
0,51 with o = kyk(", g1 = kyk\” and g = kyk{". The
matrices in the problem are defined in (15) and (7), where
ay, o € R are parameters of the coordinate transformation in

).

) [—koh b 0] |8k 02 02
Ai=|—-kib 0 L |,Bij=-N|ghL 0 02
_—k212 0, 0o g212 02 02
y (G0l 02 0> . L ol 0
Bij=|g81h 00 0|, T=|0 5L (15)
| 82 02 02 0, 0 b
In (14) we used the cost J := —go — &1 — &2, which was

chosen in accordance to [2] with the aim of maximizing the
upper bound of the inter-robot coupling functions (other cost
functions could be chosen as the steps described in the Ap-
pendix B are not dependent on 7).

Remark 10: For concreteness, we used Proposition 1 for
multiplex networks rejecting first order polynomials (in Sec-
tion V we benchmark this with other approaches). Proposition
1 can also be used to design networks rejecting higher order
polynomials. In the Appendix C, we show how the above
setting is still suitable in this case.

Remark 11: Following Proposition 1, one can tune control
parameters to tune both & and ¢. In turn, the difference & — o
directly affect system’s performance. In fact: (i) for a given
Tmax, following (10) the larger & — o is, the larger A will be.
That is, larger values of & — ¢ yield a larger convergence rate;
(i) from (9) we get that lim sup, , | o, max; |x;(¢) — x ()], <
%maxi ||wi(')||£§o’ VN. Hence, the larger & — o is, the
smaller the deviation induced by w;(¢) at steady state will be.

V. VALIDATION

We now validate the protocol designed in accordance with our
main theoretical results within the running example. Specif-
ically, we present both in-silico and experimental hardware
validations with real robots. We validate protocol (11) de-
signed in accordance with our conditions, showing that it
guarantees that requirements R1-R4 are effectively fulfilled.
In the experiments, the robots need to keep a formation con-
sisting of concentric circles (the k-th circle consists of 4k
robots) and their hand positions need to move following a
reference trajectory. Robots receive the velocity and position
signals from the virtual leader and have access to the posi-
tion information of a maximum of N = 3 neighbours (i.e. the
closest robots). Specifically, a given robot on the k-th circle
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schematically illustrated in Fig. 2 together with the reference
trajectory from the virtual leader. In the figure, for clarity, 3
concentric circles are shown. We used a delay of 7(r) = 0.1 +
0.1sint? s in both our simulations and hardware experiments.
We first illustrate the results from the simulations and then the
results obtained from the experiments on the Robotarium. The
code and data to replicate all the experiments of Section V can
be found at http://tinyurl.com/46xvfy7f.

IN-SILICO VALIDATION: We consider a formation of 30
circles, with two robots on circle 1 (say, robot 1 and robot 3)
affected by disturbances:

i) = 0.04 + 0.4 sin(0.5¢)e 01
= 10.04 + 0.45in(0.5¢)e= 01 |

_ ; —0.1t
0.05¢ 4+ 0.4 sin(0.5¢)e :| - (16)

d3(1) = [—0.0SI +0.45in(0.50)e ™!

We computed the control gains in (12) by solving the opti-
misation problem in (14) for a grid of parameters o and «5.
We then selected the gains as the ones returning the lowest
cost for each fixed pair of «’s. By doing so, we obtained the
gains ko = 1.4155, ky = 1.5103, ky = 0.4803, k") = 0.642,
K™ =0.872, k7 = 0.425, ky, = 0.1 (corresponding to oy =
—0.6, @y = —1.6). In Fig. 3 the maximum hand position devi-
ation is shown when the number of robots in the formation is
increased, starting with a formation of 1 circle only to a forma-
tion with 30 circles (i.e. 1860 robots). The figure was obtained
by starting with a formation of 1 circle and increasing at each
simulation the number of circles. We recorded at each sim-
ulation the maximum hand position deviation for each robot
on a given circle and finally plotted the largest deviation on
each circle across all the simulations. The figure clearly shows
that the polynomial components of the disturbances in (16)
are rejected by the multiplex control protocol and the residual
disturbances are not amplified through the formation. We also
report the behaviour of the full formation with 30 circles in
Fig. 4.

Both panels of the figure confirm that, in accordance with
our theoretical results, the protocol allows the robots to keep
the desired formation and track the reference trajectory, while
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FIGURE 4. Top panel: hand position deviations of all the robots (in
meters). Bottom panel: hand position deviations of the unperturbed robots
only (in meters). Robots on the same circle have the same color.
Disturbances are the ones in (16).

rejecting the polynomial components of the disturbances and
prohibiting the amplification of the residual disturbances.

Finally, before presenting the validation results on Robo-
tarium, we benchmark the performance of our protocol (11)
to control (5) with those obtained following [9] and [13]. We
pick [9] and [13] as these are the two works that are most
related to our results. Since the design conditions from [13]
are tailored towards networks with a (bi-directional) string
topology, we compared performance of the protocols using
such a topology. To this aim we again considered the for-
mation control problem for the formation of Fig. 2 with 30
circles this time with each robot bidirectionally coupled to
the robots before and after (that is, robot i in the formation
was coupled to robot i — 1 and i + 1, if any). The disturbance
considered in the simulation was again the one in (16) and
the network had no delays (the results from [13] apply to
delay-free networks). The time evolution of hand position
deviations for robots controlled by our control protocol is
shown in the bottom panel of Fig. 5. The simulation results,
consistently with our theoretical findings, show that the de-
sired scalability property is achieved. The middle panel of the
figure instead shows the time evolution of the hand position
deviations when a control protocol designed according to [13]
is used. In this case, as shown in the panel, the protocol is not
able to reject the polynomial disturbances. Finally, we also
benchmarked the performance of our protocol with a protocol
designed following [9]. To do so, we considered a situation
where the network is affected by time-varying delay 7(¢) =
0.1 + 0.1sint s. In the top panel of Fig. 5 the time evolution
of the deviation of the hand position is shown when a protocol
designed according to [9] is used. The panel clearly shows that
the first order polynomial disturbance is not rejected by this
protocol.
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FIGURE 5. Hand position deviation when the control protocol is designed
according to [9] (top), [13] (middle) and when the protocol in (11) is used
(bottom).

0.2

=
(0]
N
.5 0.1 [ . . . ..l . .
k3] buosop o opte ofue “sescgene o € 5 eppeutse §ore 248" 0%se Supe pogegere
D2 0.033 pempeepnepnepenee -
0 1 n n
0 20 40 60 80
t[s]

FIGURE 6. Measurement of the step size on the Robotarium hardware.
Solid markers represent the average step size from 10 sets of experiments
while the shaded area represents the confidence interval corresponding to
the standard deviation.

EXPERIMENTAL VALIDATION: We further validate our
results by carrying out experiments on Robotarium, which
provides both hardware infrastructure and a high-fidelity sim-
ulator of the hardware. In the experiments, a formation of 2
concentric circles (hence with 12 robots) is considered and,
for consistency with our previous set of simulations, 2 robots
on circle 1 are perturbed by the disturbances given in (16). The
Robotarium documentation® reports a nominal step size (for
both the simulator and the hardware infrastructure) of 0.033 s.
Since the step size is used to implement the multiplex layers
in (12) as a first step we measured the actual step size in the
hardware infrastructure. The result is given in Fig. 6.

Such a figure reports the average step size we measured
using built-in timing functions across 10 experiments>. In the
same figure, the shaded area represents the confidence interval
corresponding to the standard deviation. As illustrated in the
figure, while the average step size is indeed around 0.033 s
and consistent with the nominal value, it also introduces some
variability in the experiments. Such variability leads to the

2[Online]. Available: https:/tinyurl.com/3rajpnep
3See our code at http:/tinyurl.com/46xvfy7f for the details on these mea-
surements.
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FIGURE 7. Top panel: hand position deviations of the robots (in meters)
from Robotarium simulator. Bottom panel: hand position deviations (in
meters) from the hardware experiments. Solid lines represent the average
hand position deviations across 10 sets of experiments; the shaded area
represents the confidence interval corresponding to the standard deviation
(part of the plot, between 30 s and 40 s, has been magnified to enhance visi-
bility) . See http://tinyurl.com/46xvfy7f for the animated version of the plot.

observation of a gap between the results obtained from the
Robotarium simulator and the actual experimental results.
This phenomenon is essentially due to the fact that in the Rob-
otarium experiments we could only use the nominal step-size
of 0.033 s (and not the actual step size) for the implementation
of the dynamics of the multiplex layers in the protocol. We de-
cided to mitigate this simulation-to-reality gap by reducing the
gains for the couplings of the multiplex layers. Hence, in the
experimental results presented next, we impose that the con-
trol gains of the multiplex layers (i.e., layer 1 and layer 2) are
smaller than the gains of layer 0. This was done by solving the
optimisation problem in (14) this time with the following ad-
ditional constraints: ko > 2k, ko > 2k, 8o > 281, 80 > 28>.
As an outcome of this process, we obtained the following
gains: kg = 1.2674, k1 = 0.6312, ky = 0.133, k(()r) = 0.325,
kir) =0.162, kér) =0.06, ky, = 0.1 (which correspond to
a; = —1.1,0p = —2.6). We then validated the control pro-
tocol with this choice of parameters by first leveraging the
Robotarium simulator and the results, consistent with our
theoretical findings, are shown in the top panel of Fig. 7.
Next, we validated the control protocol on the Robotarium
hardware infrastructure and the outcome from these experi-
ments are shown in the bottom panel of Fig. 7. In the figure,
which was obtained from a set of 10 experiments, the solid
lines are the robots’ average hand position deviations and the
shaded area represents the confidence interval corresponding
to the standard deviation. The behaviour of the hardware
experiments is in agreement with the one obtained from the
simulator. Both panels show that, in accordance with Propo-
sition 1, our multiplex control protocol allowed the robots
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to keep the desired formation and track the reference tra-
jectory, while rejecting the polynomial components of the
disturbances and ensuring non-amplification of the residual
disturbances. A video recording of the experiment is available
at http://tinyurl.com/46xvfy7f.

VI. CONCLUSION AND FUTURE WORK

We considered nonlinear network systems affected by de-
lays and, for these systems, we presented a set of sufficient
conditions to guarantee a scalability property. This property
implies that the network achieves some desired behaviour,
while simultaneously guaranteeing rejection of polynomial
disturbances and the non-amplification of other piece-wise
continuous disturbances across the nodes. The conditions,
which yielded a multiplex network architecture, were then
used to design protocols for formation control. The effective-
ness of the protocols was then illustrated via both in-silico and
hardware validations. With our future work, we are interested
in investigating scalability of networks with heterogeneous
delays. In this setting, the error dynamics cannot be written
in the form used to prove Proposition 1 and the key chal-
lenge is then that of proving contractivity (using the structured
norm considered in this paper) for this different dynamics. We
also plan to study network systems evolving over arbitrary
time domains. These time scales dynamics [29] can be used
to model discrete-time systems with non-uniform sampling
times. Hence, the time scales formalism might be useful to
tackle situations, also observed in Section V, where the step
size is non-uniform and not known a-priori. On a related
note, we are also interested in extending our scalability results
to consider sampled-data controllers and stochastic distur-
bances [44], [45], [46]. Finally, also in view of improving the
numerical tools made available on our GitHub, we are also in-
terested in investigating, in general settings, the computational
complexity of the optimisation problems required to fulfil
C2-C3.

APPENDIX

A. PROOF OF PROPOSITION 1

We start with augmenting the state of the original dynamics
by defining z;(1) == [x] (), ¢, (), {1, (@), ... ¢, ()]" where

K m—1— by
— R A L m—k=b
Ga) =i+ Y gy G- 1"
b=0
k=1,...,m. In these new coordinates the dynamics of the
network system becomes
&) = fizi, ) + 0i(z, 1) + wi0), (17)
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where  fi(zi, ) = [fT(xi, 1), O1ny - -+, O1n]’s Wi(t) = [w]
(1), O1cns - - > Opsend T, Tilz, 1) = vi(z, 1) + v (2, 1) with

hio (i, (X5} jens X1 1) + &1 ()
hi1 (xiy X} jenss X1, 1) + i 2(1)

U[(Z,t) - : ]
Rim—1 (Xiy X} jenis X0, 1) + &im ()
him(Xis X} jens, X1, 1)
and
h,E,t();(xi, {xj}jen;, xi, 1)
h") (xi, {xj} jens X1, 1)
,1 b JIJEN» ’
Ulgr)(Z,l‘) _ i .

R (i (% jens X0 1)

Condition C1 implies that x*(r) is a solution of the
unperturbed dynamics, i.e. x*(¢) is a solution of (1) when
there are no disturbances. Moreover, when there are no
disturbances, in the augmented dynamics, the solution
() = [xXT(t), Orens - - -, O1xn]T satisfies 25(t) = fi(zf, 1)
with fi(zf, ) := [fT(x}, 1), Otxns - - -, O1xn]". Hence, the dy-
namics of state deviation (i.e. the error) ¢;(¢) = z;(t) — 27 (¢)
is given by &)= fi(zi, 1) = fiz}, 1) + Uiz, 1) + Bi0).
Following  [47], we let ni(p)=pzi+ (1 —p)},
n(p) = [n}(,o), e n]TV(p)]T and then rewrite the error
dynamics as e(t) = A(t)e(t) + B(t)e(t — t(t)) + w(t),
where  @(t) = [@](t),..., L] and A(f) has en-

tries: () Ai(t) = [y Ju(nj(p). 0)dp: (i) Au(r) =
fol(fﬁ(m(/o),l)+Jv,(77i(P)J))dp~ Similarly, B(z) has en-
tries: B;;(t) = fol J,@@j(p),1)dp. In the above expressions,

the Jacobian matrices are defined as Jz(n;, 1) := %Z’t),
dvi (.1 _
Jvi(niv t) = %i)’ JU(T)(nh t) = la;h NOW’ con-

sider the coordinate transformation Z(t):=Tz() and
é(t) := Te(t), we have

é(t) =TAMNT 'e(t) + TB(T ‘et — (1)) + Tw(@).
(18)

Let |x|g :=||x1lp, ..., [x*N]ploo- Then, by taking the Dini
derivative of |é(¢)| we may continue as follows

1
D*|é(t)|g = lim sup 5 (et + Ml —[emle)

h—07t

lim sup %(|E(r) + hTA)T ~'e@t)

h—07F

+hTBOT et — () +hTd(1)|g—18(1)lG)

IA

. 1 - ~
limsup - (I + hTAOT | — 1) 1e@)l6

h—07t
+ITBOT gl — t()lg + ITw()lg

< ug(TAMNTHe)lg
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+ITBOT g sup

t—Tmax <S=<t

le(s)lc
+ 1T llg max [[: ()l gz, -

Next, we find upper bounds for ug(TA(t)T_l) and
ITB(t)T 'l which allow us to apply Lemma 2. First,
we give the expression of the matrix A(¢) which have en-
tries: (i) A;i(t) = J7@in 1) + Ty (zi, 1); (i) Aij(t) = Jy, (2, 1),
and B(t) has entries: B,-j(t)szg,)(zj,t). Then, by sub-
additivity of matrix measures and matrix norms, we get
HG(TADT™) < [ na(TAOTdpand [TBOT g <
fol ITB(@)T~'||gdp (see also Lemma 3.4 in [29]). Moreover,
from Lemma 1 it follows that

o uo(MAMT ™) smax; |y TAOT ) + ¥, 1Ty

O},
o ITBOT o = max; { ¥ ITBy 0T ).

Note now that, since conditions C2 and C3 are satisfied by
hypotheses, we have that, for all i:

o« wpTAOT ™) + X, ITAGOT ), < —

« Y TByOT |, <o,

for some 0 < 0 < & < +o00. Hence, it follows that

o max; {sp(FAOT ) + X ITAOT 1} <=5,
o max | X, ITB; 0T, <.

This implies that

nG(TAOT Y+ ITBOT g < -6 + 0 := —0, (19)

and Lemma 2 then yields

—At=19)

le(le = sup [é(s)lge

10— Tmax =S=10

|| I

max [|;()ll 2z,

with A defined as in the statement of the proposition. Since
&(t) = Te(r) we get le(t)lg < |IT ' [glé)l¢ and |&(1)|¢ <
IT |le(t)|g. We also notice that the definition of ;(¢) im-
plies that ||ﬂ),~(-)||£gC = ||w,~(~)||£gc. Hence

le(t)lg < ||T‘1||G||T||G( sup  |e(s)|ge 1)
10— Tmax <S=<tp
1
+ ——— max [lw;()ll 2 ).
o—0 i 0
Lemma 1 yields
ITIGIT g < ITIpIT Iy == &p(T) (20)

and we note that |e;(t)|, = [[x] (1) — x;T(0). ¢ (). ... ],
Ol > 1] (O =x7T(@), O1ns - - -, O1xenllp = Ixi(1) =X ()],
and |ei(t0)|p = |[x] (t0) — x;T(20), &, (o), - .., &, (00l <
xi(fo) — xF(t0)|p + D_p—y 1£ik(to)| . We then finally obtain
the upper bound of the state deviation

max [x;(7) —x; (0l
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< 1p(T)e ™) | max  sup
Lt —Tmax <S<to

sup Z Irik(s)

fo— Tmax<5<t()k 1

Ixi(s) — x; ()l

+ max
1

m—k

(m—1-=-0)! - e

4P ey R e
b=0 ’

Kp( )

— max [lwi()ll gz, . VN. 21

B. FULFILLING C2 AND C3 VIA OPTIMISATION

We choose |x|g := [[|x1]2, .., |xn]2]lco- The optimisation
problem in (14) was obtained by noticing that C2 and
C3 can be fulfilled by solving the following optimisation
problem:

min J
§
st ko =0,k =0,k = 0,k5” =0,k = 0,k >0,
ky >0, ko +k(()r) >0,k ‘H‘Y) >0, k> +k§r> >0,

6§>0,0>0,6—0>0,u(TA;T™") < -5,

D ATByOT o+ ITB)T 2 <2, (22)
jeN;
where the decision variables are £ := [ko, k1, ko, kér), k}t),

kér),kv,,g,é,al,az] and the cost is defined as in Sec-
tion IV-B. The matrices Bj, B;; are given in (23)
and A; is given in (15), in accordance with Proposi-

tion 1 while the transformation matrix 7 is also given
in (15).

goh 02 02| §eanh(y; — 5 — 8%)
S . j— M
Biit) = |Nil | &1k 02 02 T
2h 0y 0 i
_ 8ol2 02 02\ g anh(n; — n; — 5%)
Bijt)= 8L 02 0 o (23)
&b 02 0 j

In order to find the control gains, we propose to
solve the optimisation problem for fixed o, ar. Further,
in order to obtain a suitable formulation for the op-
timisation, we recast the constraints in (22) as LMIs
as follows. First, by definition, uo(TA;T~') < —G is
equivalent to [TA;T ']y < —G6ls. Moreover, the con-
straint Y ze ITBij ()T 'l + 1T Bi()T |2 < o is satis-
o

fied if we impose that | TB;;()T |, < 5 and, simultane-

ously, |TB;;(")T !> < 2N’V] €N;. In turn since —1 <

d tanh i—8
M <0 and |N;| <N we have (by means of

the absolutely homogeneous property for matrix norms) that
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\TBi; ()T~ ||o < |\TB;;T~!||» with Bj; defined in (15). Anal-
ogously, we have that ||TB;;(1)T 'll2 < [ITB;;T "2, with
B; j defined in (15). Hence, the constraints on the norm in (22)
are satisfied if | 7B; 7', < 5 and |TB;;T |, < 2 Vi€
N; which, following [48, Example 4.6.3], can be written as

Now, by means of Schur complement, this pair of inequalities
is equivalent to

a R, 7—1\T
|:_ ~2_NI_671 (T gT ) ] > O,
TB;,T L1
a F R —1\T
Sl (TBTOT
TB,T I

Since the cost is linear and the constraints are LMIs, the
optimisation problem in (14) is convex for fixed «’s. This is
exploited in Section V.

C. REJECTING HIGHER ORDER POLYNOMIALS
The optimisation setting of Section IV-B is also applicable
to the design progress of multiplex control protocols able to

Y NTBiOT o+ ITBi)T 2 < o,
JeN;

(25)

where Aj;;, Bj;, B;j are given by (8) — the explicit expressions
for these matrices together with the expression of the transfor-
mation matrix 7 are given, for completeness, in (26) shown at
the bottom of this page, where g, := kv,k,(f), nef0,...,m}
The decision variables are & :=[ko,...,kn, k(()r), e
k,(,f), ky,0,0,a1,...,a,]. As in Appendix B, the cost
function can be chosen to maximize the upper bound of
the inter-robot coupling functions (see the discussion in
Appendix B). Then, following the same steps used to obtain
(22) the constraints in (25) can be recast using LMIs and this
yields the analogous of (14):

st. ky,>0,2,>0,ky+2,>0,ne{0,...,m},
g>0,6 —ag >0,

[TA; T, < =6 Lnt1yn,

. . . a4 (Tg Tl )T
reject polynomials of arbitrary (say, m — 1) order. We recall 2N “(m+1n P -0
that, to reject such a disturbance the protocol needs to have m TBiT™"  Slmiim |~
multiplex layers (Remark 6). Hence, we design the protocol o N
(3) but with m layers. The coupling functions for the n-th [?If’"‘fl)'l’ (Y;B il ™) :| = 0. 27)
layer, n € {0, ..., m}, are, in analogy to (12): TB;T™ Flon+1)n
hi’n(]’]", {nj}je./\/ﬂnl’t):kn(nl —)71—87;)7 Where%— = [k07"'7klnvg07-~~ng7gt 5] and
gol, 0, --- 0
W0 e Y jens ) = KO Y Gy —ni = 8%) (24) I "
’ e\ Bijj = —N : : ’ .
JEN; :
. () gmln On On
where v (x) := tanh(ky x) as in (12) and &, k, ’, ky, are the
control parameters to be designed. Now, C2 and C3 can be gl 0Oy On
fulfilled by solving the following problem: Bij = : :
m_in j gml On On
§
st ky >0,k >0k, + k) > 0,1 €{0,...,m),
_In ail, 0y T 0y ]
0, 1 L, --- 0 gol, 0, --- O
) n n  02ly n . atanh(nj g 5;) 801n n n
T=|: Co | Bit) = [N o ST
0, Oy 0y Ay l guln 0n -+ 0Oy
On O}’l On In
[ —kol, I, 0, 0,
ki, 0, I 0 gol, 0, --- O
. 14n n n n ) 801n n nlg tanh(nj — 87[)
Aji = : s LB = o (26)
- m—lln On On ce In gmln On v On ’
_kmln On On e On_
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