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ABSTRACT Singularly perturbed systems are a class of mathematical systems that are not well approxi-
mated by their limits and can be used to model plants with multiple fast and slow states. Multiple-timescale
systems are very common in engineering applications, but adaptive control can be sensitive to timescale
effects. Recently a method called [K]control of Adaptive Multiple-timescale Systems (KAMS) has shown
improved performance and increased robustness for singularly perturbed systems, but it has only been studied
on systems using adaptive control for the slow states. This article extends KAMS to the general case when
adaptive control is used to stabilize both the slow and fast states simultaneously. This causes complex
interactions between the fast state reference model and the manifold to which the fast states converge. It is
proven that under certain conditions the system still converges to the reference model despite these complex
interactions. This method is demonstrated on a nonlinear, nonstandard, numerical example.

INDEX TERMS Adaptive control, nonlinear systems and control, perturbation techniques, timescales.

I. INTRODUCTION
Singularly perturbed differential equations can be used to
model systems with elements that evolve at different rates. For
example, singularly perturbed models have been published
for aircraft [1], spacecraft [1], electric motors [2], nuclear
reactors [2], factory logistics [3], and pandemics [4]. Whereas
adaptive controllers have sometimes been developed for the
systems listed above, these adaptive methods have largely
ignored the timescale separation (termed Full-Order Adaptive
Control (FOAC)) or used sequential loop closure (e.g. [5],
[6]). Singular perturbation theory is a more precise method of
dealing with timescale behavior, but adaptive control research
to date in the literature lacks a rigorous analytical method
to check for stability in the presence of singularly perturbed
plants.

Singular perturbation theory is a broad mathematical field
that has been used in adaptive control design [7], [8], [9],
but relatively little research addresses plants that are modeled
with singularly perturbed differential equations. Researchers
who have used adaptive control on singularly perturbed plants
have primarily applied their methods to only a subset of the
states and ignored the other dynamics [4], [10], [11]. This

method is called Reduced-Order Adaptive Control (ROAC)
and it fails when the ignored dynamics are unstable [12].

Multiple-timescale control is a branch of control theory
that specifically addresses singularly perturbed plants. How-
ever, adaptive control has yet to be considered by multiple-
timescale control researchers. Saha and Valasek designed
controllers for uncertain singularly perturbed plants [13], [14],
[15], [16], but their method derives the adaption laws using a
full-order Lyapunov analysis. This makes their method diffi-
cult to generalize.

This article extends the [K]control of Adaptive Multiple-
timescale Systems (KAMS) methodology which was first
introduced and developed in [12]. KAMS provides a flexible
framework that enables a wide class of modern adaptive meth-
ods to be applied to singularly perturbed systems. Compared
to FOAC, ROAC, and sequential loop closure KAMS is more
robust and rigorous. Compared to Saha and Valasek’s method,
KAMS is more general.

The singularly perturbed nature of the plant causes a sub-
set of the states to evolve significantly faster than the other
states. The general premise of KAMS is to use geometric
singular perturbation theory to fully decouple the fast and
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slow states [17]. Two different adaptive controllers can then be
designed in isolation for these two independent subsystems.
The independent control signals are fused using a wide class
of methods from the field of multiple-timescale control. These
multiple-timescale control fusion techniques have not been
studied in the presence of adaptive control. KAMS addresses
this gap in the literature.

Allowing adaptive control in both the fast and slow states
is a challenging problem because of complex interactions be-
tween the slow timescale trajectory of the fast states and the
fast state reference model. The present work builds upon the
author’s prior work [12] which discusses the much simpler
case of adaptive control for only the slow states. Unlike [12],
the present work makes no prior assumptions about the sta-
bility of the plant subsystems. The novel contribution of the
present work is formal proof that under certain conditions
the coupling present in the more accurate full-order model
is insufficient to destabilize these adaptive controllers even
though they are designed in isolation.

Section II details the KAMS control framework and asso-
ciated singular perturbation analysis that is used to decouple
the subsystems. In Section III, a set of conditions are derived
that are sufficient to show that the states converge to their
reference models. Finally, in Section IV an example of KAMS
on a nonlinear nonstandard system is given. This example
demonstrates how methods common in the literature - Se-
quential Control and Adaptive Nonlinear Dynamic Inversion
(ANDI) - can be used on singularly perturbed systems within
the framework of KAMS.

II. CONTROL SYNTHESIS
This section introduces KAMS, explains the assumptions,
and describes the notation. For more details, the reader is
referred to [18], [19], [20] for adaptive control, [17], [21]
for multiple-timescale control, [22] for singular perturbation
theory, and [23] for differential geometry in the context of
control theory.

A. SYSTEM DESCRIPTION
This work addresses singularly perturbed systems that model
multiple-timescale plants. A singularly perturbed system is
a system that is a function of a small scalar ε but not well
approximated by the limit as that scalar approaches zero.
This scalar is called the singular perturbation parameter. The
timescale of a system is a measure of how quickly a system’s
states evolve. The systems considered in this article have two
timescales. The slow states (x ∈ Dnx

x ⊆ Rnx ) evolve on the
slow timescale (ts) and the fast states (z ∈ Dnz

z ⊆ Rnz ) evolve
on the fast timescale (t f ). Conversion between fast time and
slow time is a change of units. Let the timescale separation
parameter be the ratio of the two timescales ε � ts/t f . It can
be shown that 0 < ε � 1. The derivative with respect to the
fast timescale is denoted d (·)/dt f � `(·) and the derivative
with respect to the slow timescale is denoted d (·)/dts � ´(·).
Using the above definitions it can be shown that `(·) = ε ´(·).

As a general rule ź � x́ and εź ≈ x́. Whereas these relation-
ships are not always true, they provide good intuition behind
the meaning of the timescale separation parameter. Multiple-
timescale plants can be modeled using singular perturbation
theory by making the timescale separation parameter a singu-
lar perturbation parameter.

This work is generalized to the class of systems which are
uncertain, nonlinear, multiple-input multiple-output (MIMO)
plants of the form

x́ = fx(x, z, u) (1a)

εź = fz(x, z, u, ε) (1b)

where u ∈ Rnu is the system input. This system is singularly
perturbed because because 0 < ε � 1 and the functions fx

and fz are defined such that O( fx ) = O( fz ) = O(1). The
order of a function (i.e. the output of the O operator) is a
measure of the rate of change of that function as ε → 0.
See [17, Appendix A.2] for a more formal definition.

Remark 1: Single-timescale systems can be written in
the format described by (1). However, applying a multiple-
timescale control technique to a single timescale system
comes with a performance penalty. The resulting closed-loop
responses will be slower. This effect was identified and ex-
plored in [24] and [25]. Oliveira et al. demonstrated this
effect on during a neuromuscular electrical stimulation exper-
iment [26].

B. SINGULAR PERTURBATION ANALYSIS
Geometric singular perturbation theory shows that the system
can be approximated by two different asymptotic solutions.
The first system is found by taking the limit as ε → 0

x́ = fx(x, zs, u) (2a)

0 = fz(x, zs, u, 0) (2b)

and is called the reduced slow subsystem. It is only a valid
approximation when t � 0. Note that the fast states are con-
strained to a subset of their domain zs ∈ Dnz

zs ⊆ Dnz
z where zs is

the root of (2b). In multiple-timescale control, zs is called the
manifold. If (2b) can be solved for zs then the system is called
standard. The second asymptotic solution for (1) is found by
performing a change of timescales (recall that `(·) = ε ´(·)) and
again taking the limit as ε → 0

x̀ = 0 (3a)

z̀ = fz(x, z, u, 0) (3b)

This is called the reduced fast subsystem and is only a valid
approximation when t is very close to 0.

C. ADAPTIVE CONTROL
The control objective of this work is to determine the input
as a function of the states that permits the full-order system
to track a reference model asymptotically. The first step in
this process is to design two different adaptive control al-
gorithms that stabilize the reduced subsystems individually.
Many adaptive control algorithms are available in the litera-
ture for this purpose. This article addresses a wide class of
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algorithms that fit the format described in this section. The in-
put to the slow subsystem is us ∈ Rnu and the input to the fast
subsystems is u f ∈ Rnu . The variables xm ∈ Dnx

x and zm ∈ Dnz
z

are reference model states. The parameters θ̂x ∈ P
nθx
θx

⊆ Rnθx

and θ̂z ∈ P
nθz
θz

⊆ Rnθz are adaptive estimates of the true param-
eters θx and θz respectively. The true parameters are allowed
to be time-varying. Let

θx = gθx (ts) (4a)

θz = gθz (t f ) (4b)

θ́x = fθx (ts) (4c)

θ̀z = fθz (t f ) (4d)

Define rx ∈ Rnrx to be the bounded input to the slow state
reference model and a function of time. This function and its
derivative are

rx = grx (ts) (5a)

ŕx = frx (ts) (5b)

The reference models and adaptation laws must be selected in
tandem with the control input so that the control objective is
achieved. The differential equations describing the evolution
of the reference models and parameter estimates are of the
form

x́m = fxm (x, xm, θ̂x, ts) (6a)

´̂θx = fθ̂x
(x, xm, θ̂x, ts) (6b)

z̀m = fzm (x, xm, θ̂x, z, zm, θ̂z, t f ) (6c)

`̂θz = fθ̂z
(x, xm, θ̂x, z, zm, θ̂z, t f ) (6d)

Remark 2: Note that rx is implicitly included as a possible
input to these functions because it is fully described by time.
A wide array of adaptive methods fit this format (e.g. [18],
[27]).

The role of the timescale separation parameter is important
in these equations. If the control input is incorrectly designed
then the timescale analysis in the previous section could be in-
validated. The following two assumptions are made to prevent
that.

Assumption 1: The manifold is an asymptoti-
cally stable equilibrium of the fast reference model
in the reduced fast subsystem.

Assumption 2: The timescale of the reference models, the
slow state reference model input, and the adaptation laws
all match the timescale of the subsystem to which they are
applied. Mathematically this means that O( fxm ) = O( fθ̂x

) =
O( fθx ) = O( fzm ) = O( fθ̂z

) = O( fθz ) = O( frx ) = O(1)
These assumptions are intuitive. For example, if the refer-

ence model for the slow states evolved on the fast timescale
then the slow states would not be able to keep up - or, more
precisely, their evolution could not be decoupled from the
fast states.

D. MULTIPLE-TIMESCALE FUSION
The inputs to the reduced-order subsystems have been defined
and will form the building blocks of the full-order system
input. Let the full-order input take the form

u = gu(x, xm, θ̂x, z, zm, θ̂z, ts) (7)

The stability analysis in the next section depends upon the
reduced-order models being stabilized by their inputs us and
u f . The control objective is to select u so that a singu-
lar perturbation analysis reduces u to us and u f . Thus the
reduced-order systems are simultaneously stabilized by a sin-
gle input u. Various multiple-timescale control techniques
accomplish this objective by fusing the control signals for
the two reduced subsystems. Three candidate methods are
summarized. See [17] for more information on each of these
methods.

1) COMPOSITE CONTROL
Composite Control [21, p. 94-102] selects the control input to
be u = us + u f where u f = 0 when z = zs. The engineer first
selects us so that the reduced slow model is stable. Then the
engineer selects u f so that us + u f drives the fast states to z =
zs. This requires prior knowledge of the system’s open-loop
manifold so the system must be of standard form. Composite
Control (non-adapting) has seen many industrial applications
including flexible robotics [28], electrical circuits [29], and
chemical reactions [30].

2) SEQUENTIAL CONTROL
In Sequential Control [17] the fast states are used as the input
to the slow subsystem. The manifold is selected such that
the slow states converge to their reference model by setting
zs = us Then the input u can be selected to drive the fast
states to the manifold. Thus Sequential Control uses u =
u f . Valasek, Narang-Siddarth, and Saha applied Sequential
Control (non-adapting) to two-core coupled nuclear reactor
stabilization [17, p. 122-127] and a nonlinear spring spring-
mass-damper [31], [32].

3) SIMULTANEOUS SLOW AND FAST TRACKING
Simultaneous Slow and Fast Tracking [2] uses the input u =
us = u f to stabilize both reduced-order systems simultane-
ously. As such this method is not suitable for underactuated
systems. The advantage of this method is that the slow states
and the fast states can both be commanded to any arbitrary tra-
jectory within the state space (constrained only by timescales
and smoothness). Unlike Composite Control and Sequential
Control, Simultaneous Slow and Fast Tracking allows an
arbitrary manifold. Narang-Siddarth and Valasek used Simul-
taneous Slow and Fast Tracking (non-adapting) to control an
F/A-18 A Hornet through an aggressive vertical climb and roll
maneuver [2].

A block diagram for the KAMS control framework de-
scribed in the previous section is given in Fig. 1. As defined in
the previous section the fast adaptive control is allowed to be
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FIGURE 1. A block diagram of KAMS.

a function of the slow states. This uncommon case is excluded
from the block diagram for readability.

III. STABILITY ANALYSIS
This section develops tools for stability analysis of the full-
order system. Whereas the adaptive controllers have been
designed so that the reduced-order systems are well-behaved,
these properties might not extend to the coupled full-order
system. The system of equations is rewritten as a single aug-
mented system in terms of the error coordinates for notational
simplicity. Examining the differential geometric nature of the
augmented system leads to the desired important insights into
the behavior of the full-order system.

A. AUGMENTED ERROR DYNAMICS
Adaptive control adds additional states (i.e. the reference
model and adapting parameters) to the closed-loop system.
These states evolve (see (6)) and effectively create a coupled
augmented closed-loop system with control states and system
states. The augmented closed-loop system is defined in this
section.

The variables which describe the state of the system are x,
xm, θ̂x , z, zm, and θ̂z. For notational simplicity, these states are
concatenated together. Define

ξ �
[
xT xT

m θ̂
T
x

]T ∈ D
nξ

ξ
(8a)

η �
[
zT zT

m θ̂
T
z

]T ∈ D
nη
η (8b)

φ �
[
ξT ηT

]T ∈ D
nφ

φ
(8c)

Note that the differential equations describing the evolution
of φ are found in (1) and (6) are dependent upon the system
state variables, the input, and time. However, the input is also
a function of the system state variables and time (see (7)) so
the system’s dynamics are entirely described by the system’s
state and time. Similarly, the manifold is a function of the slow

states and the input (see (2b)) so it too can be described by a
function of the system state and time. Let that function and its
time derivative be

zs = gzs (x, xm, θ̂x, θ̂z, ts) (9a)

źs = fzs (x, xm, θ̂x, z, zm, θ̂z, ts) (9b)

The following assumption is made:
Assumption 3: gzs is a diffeomorphism and the manifold

evolves in the slow timescale so O( fzs ) = O(1).
Section III-C discusses the manifold in more detail.
If the control objective for the full-order system is suc-

cessfully achieved then two things occur as t → ∞. First
z → zm → zs. This is followed by x → xm. These goals imply
a set of error variables. Define

ex � x − xm ∈ Bnx (reφ
) (10a)

x̃m � xm − rx ∈ Bnx (reφ
) (10b)

θ̃x � θ̂x − θx ∈ Bnθx (reφ
) (10c)

z̃ � z − zs ∈ Bnz (2reφ
) (10d)

z̃m � zm − zs ∈ Bnz (reφ
) (10e)

ez � z − zm ∈ Bnz (reφ
) (10f)

θ̃z � θ̂z − θz ∈ Bnθz (reφ
) (10g)

where reφ
∈ R+. Whereas xm, θ̂x, and θ̂z don’t necessarily

converge to rx, θx, and θz respectively their relationship is
nonetheless important. Note that

ez = z̃ − z̃m (11)

A change of variables is now performed to describe the
system in terms of the error variables. The new system state
variables are

eξ �
[
eT

x x̃T
m θ̃

T
x

]T ∈ Bnξ (reφ
) (12a)

eη �
[
eT

z z̃T
m θ̃

T
z

]T ∈ Bnη (reφ
) (12b)

eφ �
[
eT
ξ eT

η

]T ∈ Bnφ (reφ
) (12c)

Let the mapping h : Bnφ (reφ
) × R+ → D

nφ

φ
× R+ be the dif-

feomorphism between the two sets of state variables

(φ, ts) = h(eφ, ts) (13)

where φ is

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ex + x̃m + grx (ts)

x̃m + grx (ts)

θ̃x + gθx (ts)

ez + z̃m + gzs (·)
z̃m + gzs (·)

θ̃z + gθz (ts/ε)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

and

gzs (·) = gzs (ex + x̃m + grx (ts), x̃m + grx (ts),

θ̃x + gθx (ts), θ̃z + gθz (ts/ε), ts) (15)
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Equations (1) and (6) can be rewritten in terms of the new state
variables as

éx = fx ◦ h(eξ , eη, ts) − fxm ◦ h(eξ , ts) (16a)

´̃xm = fxm ◦ h(eξ , ts) − frx (ts) (16b)

´̃θx = fθ̂x
◦ h(eξ , ts) − fθx (ts) (16c)

εéz = fz ◦ h(eξ , eη, ts, ε) − fzm ◦ h(eξ , eη, ts) (16d)

ε ´̃zm = fzm ◦ h(eξ , eη, ts) − ε fzs ◦ h(eξ , eη, ts) (16e)

ε ´̃θz = fθ̂z
◦ h(eξ , eη, ts) − fθz (t f ) (16f)

This system can be written simply as

éξ = feξ
(eξ , eη, ts) (17a)

εéη = feη (eξ , eη, ts, ε) (17b)

or even simpler as

éφ = feφ
(eφ, ts, ε) (18)

where feξ
, feη , and feφ

are defined such that (17) and (18) are
identitically equal to the vector field in (16). This last repre-
sentation obscures the timescale behavior because O( feφ

) 
=
O(1). Equation (17) is recognizable as a singularly perturbed
system of the type typically studied by multiple-timescale
control researchers. In fact, traditional analysis tools are ap-
plicable. However, because the form of (16) is available
additional insights are available.

Let the subscript s be used to denote a variable or vector
field on the slow subsystem manifold, e.g. eη,s represents eη

when z = zm = zs. Similarly, let the subscript f represent a
variable or vector field on the fast subsystem manifold. The
augmented reduced slow subsystem in error coordinates can
be found by setting ε = 0 and z = zm = zs such that

éx = fx ◦ h(eξ , eη,s, ts) − fxm ◦ h(eξ , ts) (19a)

´̃xm = fxm ◦ h(eξ , ts) − frx (ts) (19b)

´̃θx = fθ̂x
◦ h(eξ , ts) − fθx (ts) (19c)

This reduced slow subsystem can be written simply as

éξ = feξ ,s(eξ , eη,s, ts) (20)

where feξ ,s is defined such that (20) is identitically equal to
the vector field in (19). Equation (20) looks very similar to
(17) and (18) but represents a fundamentally different vector
field which is only defined on a subset of the full-order do-
main (i.e. where z = zm = zs). The augmented reduced fast
subsystem in error coordinates is

èx = 0 (21a)

`̃xm = 0 (21b)

`̃θx = 0 (21c)

èz = fz ◦ h(eξ , eη, ts, 0) − fzm ◦ h(eξ , eη, ts) (21d)

`̃zm = fzm ◦ h(eξ , eη, ts) − 0 (21e)

`̃θz = fθ̂z
◦ h(eξ , eη, ts) − fθz (t f ) (21f)

This reduced fast subsystem can be written simply as

èξ = feξ , f (eξ , eη, t f ) (22a)

èη = feη, f (eξ , eη, t f ) (22b)

or even simpler as

éφ = feφ, f (eφ, t f ) (23)

where feξ , f , feη, f , and feφ, f are defined such that (22) and (23)
are identitically equal to the vector field in (21). Finally, in the
reduced fast subsystem

r̀x = 0 (24a)

θ̀x = 0 (24b)

z̀s = 0 (24c)

by Assumptions 2 and 3.

B. DIFFERENTIAL GEOMETRY
Differential geometry is a natural fit for the analysis of sin-
gularly perturbed systems because the differential equations
which describe these systems form nonautonomous vector
fields on a topological manifold. The term manifold has been
used somewhat informally and will continue to be used to
refer to zs. But it is worth noting that the reduced subsys-
tems form differential submanifolds embedded within the
full-order system manifold in the topological sense. Thus it
is clear that gs is a diffeomorphic chart between the full-order
manifold (M) and the reduced slow manifold (Ms). The chart
between the full-order manifold and the reduced fast manifold
(M f ) is the trivial automorphism. The stability analysis to
follow will involve the time derivative of Lyapunov functions
along a vector field that is a subset of the tangent bundle of one
of these topological manifolds. The notation L(·) is used to
represent the Lie derivative along the vector field given in the
parentheses (the traditional subscript notation is not used to
ensure the subscripts on the functions are readable). Let |(·)|p

be the lp norm of a vector or the induced lp norm of a matrix
and let ‖(·)‖p be the Lp norm over time where p ∈ [1,∞]. If
the Lp norm is applied to a vector then it means the Lp norm
of each component of the vector. Unless otherwise specified,
all sets are subsets of the Euclidean Hilbert space with the
dimension given in the superscript. An integer subscript (·)i

on a variable (not to be confused with the subscript on the
p-norms) represents the ith element of the vector.

C. MANIFOLD AND THE REFERENCE MODEL
The stability proofs in the next section are significantly com-
plicated by the relationship between the manifold and the
fast reference model. Traditional multiple-timescale control
and adaptive control both use a feedback loop to ensure
closed-loop stability. These feedback loops still exist in the
KAMS control architecture. Fig. 2 is the block diagram of
KAMS from Fig. 1 except that the traditional feedback loop
has been highlighted. All paths which contribute to this loop
are bolded but the primary loop is blue. However, KAMS
has another unconventional feedback loop because the fast
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FIGURE 2. The primary feedback loop of KAMS.

FIGURE 3. The unconventional feedback loop of KAMS.

reference model uses the manifold as an input (Fig. 1), the
manifold is a function of the slow states (see (9)), the slow
states are coupled with the fast states, and the control objective
is for the fast states to track the fast reference model which is
itself a function of the manifold. This creates a feedback loop
that is typically not seen in adaptive control. Fig. 3 highlights
this feedback loop. Again, all paths which contribute to this
loop are bolded but the primary unconventional loop is red.

The reference model adds a complication that is not en-
countered in traditional multiple-timescale control. If the fast
reference model is not asymptotically stable then the steady
state trajectory for the slow states may not be the manifold.
This calls into question the validity of the slow subsystem and
means that the multiple-timescale fusion stability proofs in
prior work are not applicable. These effects are unavoidable
because the full-order stability analysis works by extending

the stability of the reduced subsystems to the full-order sys-
tem. The slow subsystem assumes that the fast states have
reached their manifold, so if the stability of the reduced slow
subsystem is to have any bearing on the full-order system then
the fast reference model must converge to that manifold. This
is the purpose of Assumption 1. Reference models are not
usually asymptotically stable when their input is time-varying
since they are typically Type 1 linear systems. Thus they are
only capable of tracking a step input with zero steady-state
error. However, closer examination reveals that Assumption 1
is not as restrictive as it appears. Recall that the manifold
is assumed to evolve on the slow timescale. Equation (24c)
shows that in the fast timescale z̀s = 0. Thus the manifold is
stationary in the reduced fast subsystem, and even a type 1
reference model can be asymptotically stable. Assumption 1
is usually satisfied. However, the full-order system does not
benefit from this simplification. The steady-state value of z̃m

influences the form and function of the full-order stability
proofs in Section III-D. Three cases are studied:

Case 1: There exist no prior assumptions about the stabil-
ity of the fast reference model in relation to the
full-order manifold. This is the most general case
considered, but also has the most restrictive condi-
tions. This case often requires the control objective
to be downgraded to a regulation problem.

Case 2: The fast reference model is always on the mani-
fold. This case most commonly occurs when adap-
tive control is not necessary for the fast subsystem.
The fast control drives the fast states directly to
the manifold. This type of control can be modeled
by setting z̃m = 0 and ´̃θz = 0. Note that a parallel
simplification exists where there the slow control
is non-adaptive, x̃m = 0, and ´̃θx = 0 but this still
falls within Case 1 above.

Case 3: The manifold is an asymptotically stable equilib-
rium of the fast state reference model in the context
of the full-order system. This is possible but re-
quires an unusual reference model. This case is
a slightly stricter version of Assumption 1 which
only requires asymptotic stability in a subset of the
domain.

Remark 3: In the present work, stating that the slow sub-
system does not require adaptive control will be equivalent to
saying x̃m = 0 and ´̃θx = 0. Similarly, stating that the fast sub-
system does not require adaptive control will be equivalent to
saying z̃m = 0 and ´̃θz = 0. This terminology may be slightly
misleading because there exist model-free adaptive control
algorithms (e.g. [33]) and there exist non-adaptive control
methods which require reference models (e.g. Feedback Lin-
earization [34]). However, the intricacies of these methods are
not in the scope of this work.

D. FULL-ORDER SYSTEM STABILITY
In this section, the stability of KAMS is analyzed in the con-
text of the full-order system. The goal is to develop conditions
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that, if met, extend the stability of the reduced subsystems
to the full-order system. To that end, four related theorems
are proved. Each theorem belongs to one of the three cases
described in the previous section. All of the theorems in this
work will make use of the vector v ∈ R4

≥0 which is defined as

v �
[
|ex|2 |x̃m|2 |ez|2 |z̃m|2

]T
(25)

1) FOUNDATION OF REDUCED-ORDER STABILITY
The proofs in this section are similar to the proof proposed
by [29], [35]. However, they have been significantly altered to
account for adaptive control. The general process begins by
generating a composite Lyapunov function using Lyapunov
functions for the reduced-order subsystems. This compos-
ite Lyapunov function is then differentiated along the vector
field describing the evolution of the full-order subsystem.
Using the stability of the reduced subsystems it is shown
that the differences between reduced subsystems and the
full-order system are insufficient to violate the negative def-
initeness. This implies that ex, ez ∈ L∞ by Lyapunov’s direct
method [18, Theorem 3.4.1]. The following four Lyapunov
functions form the basis of this approach:

Vex (ex, θ̃x, ts) : Bnx (reφ
) × Bnθx (reφ

) × R+→R≥0 (26a)

Vx̃m (x̃m, ts) : Bnx (reφ
) × R+ → R≥0 (26b)

Vez (ez, θ̃z, t f ) : Bnz (reφ
) × Bnθz (reφ

) × R+→R≥0 (26c)

Vz̃m (z̃m, t f ) : Bnz (reφ
) × R+ → R≥0 (26d)

These Lyapunov functions are positive definite functions of
class C1 (i.e. the function and its derivative are continuous)
where Vex (0, 0, ts) = Vx̃m (0, ts) = Vez (0, 0, t f ) = Vz̃m (0, t f ) =
0. Let the adaptive control for the reduced subsystems be
defined such that

∂Vex

∂ts
+ L( feξ ,s)Vex ≤ −α1|ex|22 (27a)

∂Vez

∂t f
+ L( feη, f )Vez ≤ −α3|ez|22 (27b)

∂Vz̃m

∂t f
+ L( fzm, f )Vz̃m ≤ −α4|z̃m|22 (27c)

for some α1, α3, α4 ∈ R+. The following assumption is now
made:

Assumption 4: The Lyapunov functions Vex , Vez , and as
needed Vz̃m are known and exist such that (27) is satisfied.

Note that the existence of Vz̃m such that (27c) holds is
sufficient to guarantee that Assumption 1 is satisfied. After
the Lyapunov analysis, Barbalet’s Lemma is used to prove
convergence [18, Lemma 3.2.5] so the following assumption
is made to ensure that the conditions of Barbalet’s Lemma are
satisfied:

Assumption 5: The functions defined in the present work
are sufficiently smooth and bounded so that the function is
continuously differentiable as many times as necessary. Suf-
ficiently bounded means that, as necessary, the domain of a

function being in L∞ is sufficient to imply that the function’s
range is also in L∞.

The definitions above are a formal way of saying and indeed
imply that the adaptive control for the reduced subsystems is
well designed. This conclusion only applies to the reduced
subsystems.

2) CASE 1

There exist no prior assumptions about the stability of the fast
reference model in relation to the full-order manifold.

Theorem 1: Assume ∃α2 ∈ R+, ∃β ∈ R≥0, and ∃γ, δ ∈
R4

≥0 such that

∂Vx̃m

∂ts
+ L( fx̃m )Vx̃m ≤ −α2|x̃m|22 (28a)

L( fx − fx,s)Vex ≤ β|ex|2|z̃|2 (28b)

L( fz − fz, f )Vez ≤ εγT v|ez|2 (28c)

−L( fzs )Vz̃m ≤ δT v|z̃m|2 (28d)

Let the matrix K = KT be defined as

K �⎡
⎢⎢⎣

d∗α1 0 − 1
2 (d∗β + dγ1) − 1

2 (d∗β + dδ1)
d∗α2 − 1

2 dγ2 − 1
2 dδ2

d
ε
α3 − dγ3 − 1

2 (dδ3 + dγ4)
Symmetric d

ε
α4 − dδ4

⎤
⎥⎥⎦

(29)

If ∃d ∈ (0, 1) and d∗ � (1 − d ) such that K is positive defi-
nite, then ex, ez → 0 as t → ∞.

Proof: Define a composite Lyapunov function

V � d∗(Vex + Vx̃m ) + d (Vez + Vz̃m ) (30)

Differentiate along the full-order system

V́ = d∗
(

∂Vex

∂ts
+ ∂Vx̃m

∂ts

)
+ d

(
∂Vez

∂ts
+ ∂Vz̃m

∂ts

)
(31a)

+ d∗L( feφ
)(Vex + Vx̃m )dL( feφ

)(Vez + Vz̃m ) (31b)

Add and subtract d∗L( feφ,s)(Vex + Vx̃m ) + dL( feφ, f )(Vez +
Vz̃m )

V́ = d∗
(

∂Vex

∂ts
+ ∂Vx̃m

∂ts

)
+ d

(
∂Vez

∂ts
+ ∂Vz̃m

∂ts

)

+ d∗L( feφ,s)(Vex +Vx̃m )+d∗L( feφ
− feφ,s)(Vex +Vx̃m )

+ dL( feφ, f )(Vez +Vz̃m )+dL( feφ
− feφ, f )(Vez +Vz̃m )

(32)

Conceptually this is the derivative in the subsystems plus
some errors due to inaccuracies caused by the model reduc-
tion. Rearranging gives

V́ = d∗
(

∂Vex

∂ts
+ L( feφ,s)Vex + ∂Vx̃m

∂ts
+ L( feφ,s)Vx̃m

)

+ d∗L( feφ
− feφ,s)Vex + d∗L( feφ

− feφ,s)Vx̃m

+ d

(
∂Vez

∂ts
+ L( feφ, f )Vez + ∂Vz̃m

∂ts
+ L( feφ, f )Vz̃m

)
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+ dL( feφ
− feφ, f )Vez + dL( feφ

− feφ, f )Vz̃m (33)

Some of these terms can be simplified because each Lyapunov
function is not a function of all state variables (i.e. its partial
derivative is zero). In doing so, ε must be carefully accounted
for.

V́ = d∗
(

∂Vex

∂ts
+ L( feξ ,s)Vex + ∂Vx̃m

∂ts
+ L( fx̃m,s)Vx̃m

)

+ d∗L( feξ
− feξ ,s)Vex + d∗L( fx̃m − fx̃m,s)Vx̃m

+ d

ε

(
∂Vz̃m

∂t f
+ L( feη, f )Vez + ∂Vz̃m

∂t f
+ L( fz̃m, f )Vz̃m

)

+ d

ε
L( feη − feη, f )Vez + d

ε
L( fz̃m − fz̃m, f )Vz̃m (34)

Some of the vector fields are the same in the reduced sub-
system and the full-order subsystem, which allows further
simplification

V́ = d∗
(

∂Vex

∂ts
+ L( feξ ,s)Vex + ∂Vx̃m

∂ts
+ L( fx̃m )Vx̃m

)

+ d∗L( fx − fx,s)Vex

+ d

ε

(
∂Vz̃m

∂t f
+ L( feη, f )Vez + ∂Vz̃m

∂t f
+ L( fz̃m, f )Vz̃m

)

+ d

ε
L( fz − fz, f )Vez − dL( fzs )Vz̃m (35)

Substituting the conditions from (27) and (28) gives:

V́ ≤ − d∗α1|ex|22 − d∗α2|x̃m|22
+ d∗β|ex|2|z̃|2

− d

ε
α3|ez|22 − d

ε
α4|z̃m|22

+ d

ε
εγT v|ez|2 + dδT v|z̃m|2 (36)

The triangle inequality shows that |z̃|2 ≤ |ez|2 + |z̃m|2. Using
this and rearranging gives

V́ ≤ −vT Kv (37)

Thus, by Lyapunov’s direct method eφ ∈ L∞. The goal is now
to show that the conditions of Barbalat’s Lemma are satisfied.
This is done by showing that ex, ez, éx, éz ∈ L∞ and ex, ez ∈
L2. By the arguments in Table 1 it can be concluded that these
conditions are met. Note that the order of the lines in this table
is significant. Thus, via Barbalat’s Lemma, it is known that
ex, ez → 0 as t → ∞. �

Corollary 1: Let the plant exist such that the reduced slow
subsystem does not require adaptive control (i.e. x̃m = 0 and
´̃θx = 0). Assume that conditions (28b), (28c), and (28d) of
Theorem 1 are true. Let the matrix K = KT be defined as

K �

⎡
⎢⎣ d∗α1 − 1

2 (d∗β + dγ1) − 1
2 (d∗β + dδ1)

d
ε
α3 − dγ3 − 1

2 (dδ3 + dγ4)

Symmetric d
ε
α4 − dδ4

⎤
⎥⎦
(38)

TABLE 1. Proof that the conditions of Barbalat’s Lemma are met.

If ∃d ∈ (0, 1) and d∗ � (1 − d ) such that K is positive defi-
nite, then ex, ez → 0 as t → ∞.

Proof: The proof proceeds exactly as Theorem 1 except
that Vx̃m = 0. Also, because x̃m = 0 it follows that γ2 = 0 and
δ2 = 0. �

Each of the following proofs assumes that fz − fz, f = 0
which occurs when ε does not appear on the right side of equa-
tion (1b). This is very common and making this assumption
will aid in interpreting the results.

3) CASE 2

The fast reference model is always on the manifold.

Corollary 2: Let the plant exist such that the reduced fast
subsystem does not require adaptive control (z̃m = 0 and ´̃θz =
0) and ε does not appear on the right side of (1b). Assume that
condition (28b) of Theorem 1 is true. Then ∀ε it is true that
ex, ez → 0 as t → ∞.

Proof: The proof proceeds exactly as Theorem 1 except for
γ = 0 and z̃m = 0. This reduces the matrix K = KT to

K �
[

d∗α1 − 1
2 d∗β

− 1
2 d∗β d

ε
α3

]
(39)

where Vx̃m has been dropped because all of the cross terms of
x̃m have been removed. This is simple enough for additional
conclusions. By Sylvester’s Criterion K is positive definite
if and only if the leading principle minors (LPM) are pos-
itive [37]. This gives rise to the following two inequalities
which, if satisfied, imply that K is positive definite.

0 < d∗α1 (40a)

0 <
d (1 − d )α1α3

ε
− 1

4
(1 − d )2β2 (40b)

Inequality (40a) is satisfied by definition. Rearranging in-
equality (40b) gives

ε <
4dα1α3

(1 − d )β2
(41)

when β 
= 0. When β = 0 then inequality (40b) is satisfied
by definition. Recall that d is arbitrary so ∀ε ∃d such that
inequality (41) is satisfied. Continuing with Barbalet’s Lemma
as in Theorem 1 gives that ex, ez → 0 as t → ∞. �
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4) CASE 3

The manifold is an asymptotically stable equilibrium of the fast
state reference model in the context of the full-order system.

Corollary 3: Assume that ε does not appear on the right-
hand side of (1b). Assume that condition (28b) of Theorem 1
is true. If ∃α4 ∈ R+ such that

L( fz̃m )Vz̃m ≤ −α4|z̃m|22 (42)

then ∀ε it is true that ex, ez → 0 as t → ∞.
Proof: The proof largely follows Theorem 1 except

for Vx̃m is removed from the composite Lyapunov func-
tion. Before reaching (35), (34) can be rewritten us-
ing L( fz̃m − fz̃m, f )Vz̃m + L( fz̃m, f )Vz̃m = L( fz̃m )Vz̃m . Continu-
ing to follow the proof of Theorem 1 gives

K �

⎡
⎢⎣ d∗α1 − 1

2 d∗β − 1
2 d∗β

− 1
2 d∗β d

ε
α3 0

− 1
2 d∗β 0 d

ε
α4

⎤
⎥⎦ (43)

This is simple enough for additional conclusions. By
Sylvester’s Criterion K is positive definite if and only if the
LPMs are positive. This gives rise to the following three in-
equalities which, if satisfied, imply that K is positive definite.

0 < d∗α1 (44a)

0 <
d (1 − d )α1α3

ε
− 1

4
(1 − d )2β2 (44b)

0 <
d2(1 − d )

ε2
α1α3α4 − d (1 − d )2

4ε
(α3 + α4)β2 (44c)

Inequality (44a) is satisfied by definition. Rearranging the
other two inequalities gives

ε <
4dα1α3

(1 − d )β2
(45a)

ε <
4dα1α3α4

(1 − d )(α3 + α4)β2
(45b)

when β 
= 0. When β = 0 then inequalities (44b) and (44c)
are satisfied by definition. Recall that d is arbitrary and ∀ε ∃d
such that the inequalities in (45) are satisfied. Continuing with
Barbalet’s Lemma as in Theorem 1 gives that ex, ez → 0 as
t → ∞. �

Remark 4: Assumption 2 places bounds on the acceptable
range of the adaptation gains. Note that ε is not required to
implement the control. This is advantageous because ε can be
difficult to determine. However, a rough approximation of ε

allows the engineer to design the adaptive laws and reference
models so that they evolve on the correct timescale. Beyond
these conditions, ε is allowed to be uncertain.

Remark 5: The condition that K be positive definite limits
the range of acceptable timescale separation parameters (e.g.
see [29]). However, for Theorem 1 and Corollary 1 the analyt-
ical bounds would be complex.

Remark 6: Corollaries 1 and 2 study the case where only
one subsystem requires adaptive control. If neither subsystem

requires adaptive control then Theorem 1 reduces to [35, The-
orem 1].

Remark 7: Systems which use adaptive control are likely
to be nonstandard because adaptive control is specifically
designed for systems with model uncertainties. Thus it is
common for the open-loop manifold to be uncertain even
if the system is standard in the traditional sense. Let the
term uncertain nonstandard refer to this condition. Recent
multiple-timescale control research has addressed nonstan-
dard systems [17]. Both Sequential Control and Simultaneous
Slow and Fast Tracking are nonstandard methods because
the manifold is specified. By comparison, Composite Control
requires the open-loop manifold to be known apriori, so the
manifold must be measured or analytically available. Thus
Composite Control is well suited for systems that do not
require adaptive control in the fast subsystem.

5) SUMMARY OF THEOREMS
This section describes each of the theorems that are proven in
this article and provides criteria that can be used to determine
which of the theorems apply to a given system. Theorem 1 is
the most general but also has the most restrictive conditions on
stability. It requires that the slow reference model be asymp-
totically stable to the reference model input. In practice, this
can often limit the theorem to regulation. Three special cases
of Theorem 1 were studied that are less restrictive. Corollary 1
is applicable when adaptive control is only used for the fast
subsystem. Corollary 2 is applicable when adaptive control is
only used for the slow subsystem. Corollary 3 allows adap-
tive control in both subsystems, but the manifold must be an
asymptotically stable equilibrium of the fast reference model
in the context of the full-order system.

Theorem 1 and Corollary 1 both allow the timescale sepa-
ration parameter to appear on the right side of the fast states’
differential equations and require checking the positive def-
initeness of a matrix. Corollaries 2 and 3 do not. KAMS
typically requires differentiation of the manifold. In Theo-
rem 1 and Corollary 1 the derivative of the manifold is used
to ensure that condition (28d) is satisfied. The derivative of
the manifold is not explicitly required for Corollary 3, but it
is often required to ensure the manifold is an asymptotically
stable equilibrium of the fast reference model. It is therefore
significant that Corollary 2 does not require differentiating the
manifold.

IV. VALIDATION
An example demonstrates and validates this method. Consider
the following nonlinear, nonstandard, uncertain dynamical
system

x́ = −(x2 + 1)z (46a)

εź = θxz + u (46b)

where θ ∈ R+ is an uncertain parameter. The control objective
is for x to track the reference model

x́m = −ax (xm − rx ) (47)
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where ax ∈ R+.

A. CONTROL SYNTHESIS
The reduced slow subsystem is

x́ = −(x2 + 1)zs (48a)

and the reduced fast subsystem is

x̀ = 0 (49a)

z̀ = θxz + u (49b)

This system is uncertain and nonstandard. Sequential Control
is used to fuse the control signals [17]. The slow subsystem
is deterministic. Using zs as the input to the slow subsystem
the manifold is chosen using Nonlinear Dynamic Inversion
(NDI).

zs = −(x2 + 1)−1(x́m − kxex ) (50)

where kx ∈ R+ is a constant control gain. The closed-loop
dynamics of the reduced slow subsystem are

x́ = x́m − kxex (51)

or equivalently

éx = −kxex (52)

The input can now be chosen so that it drives the fast states to
this manifold. The fast subsystem is parametrically uncertain.
ANDI is chosen to stabilize the fast subsystem

u = z̀m − θ̂xz − kzez (53)

where kz ∈ R+ is a constant control gain. The adaptive law for
θ̂ is

`̂θ = γ Proj(θ̂ , xzez ) (54)

where γ ∈ R+ is an adaptation rate gain. For more informa-
tion on ANDI see [27, p. 6–12]. The fast state reference model
is chosen to be asymptotically stable about the manifold

`̃zm = −azz̃m (55)

or equivalently

z̀m = −azz̃m + z̀s (56)

where az ∈ R+. The time derivative of the manifold is

z̀s = 2xzε

x2 + 1
(axx̃m + kxex )

+ ε

x2 + 1
(−ax (axx̃m + ŕx )

+ kx (−(x2 + 1)z + axx̃m)) (57)

B. CONFIRMATION OF FULL-ORDER STABILITY
Consider the candidate Lyapunov functions

Vex = 1

2
e2

x (58a)

Vez = 1

2
e2

z + 1

2γ
θ̃2 (58b)

Vz̃m = 1

2
z̃2

m (58c)

FIGURE 4. Evolution of the slow state.

FIGURE 5. Evolution of the fast state.

Differentiating gives

L( feξ ,s)Vex = −kxe2
x ≤ −α1|ex|22 (59a)

L( feη, f )Vez ≤ −kze
2
z ≤ −α3|ez|22 (59b)

L( fz̃m )Vz̃m = −azz̃m ≤ −α4|z̃m|22 (59c)

L( fx − fx,s)Vex = −(x2 + 1)exz̃ ≤ β|ex|2|z̃|2 (59d)

where α1 = kx , α3 = kz, α4 = az, and β = 1. See [27, Equa-
tions 1.20 to 1.23] for a derivation of (59b). By Corollary 3,
ex, ez → 0 as t → ∞.

C. NUMERICAL RESULTS
A numerical simulation validates the control. The system pa-
rameters are

θ = 0.5 (60a)

ε = 0.1 (60b)

and the control parameters are

rx = sin(ts) (61a)

ax = kx = az = kz = γ = 1 (61b)

with initial conditions

x = z = 0.5 (62a)

xm = zm = 0 (62b)

θ̂ = 0.44 (62c)

The time evolution of the slow state is shown in Fig. 4 and the
fast state is shown in Fig. 5. The time evolution of the adapting
gain is shown in Fig. 6. The states and gain evolve on the
proper timescales and the system converges asymptotically
with zero steady-state error.

10 VOLUME 3, 2024



FIGURE 6. Evolution of the adapting gain.

D. ALTERNATIVE APPROACH
Corollary 1 is also applicable because adaptive control is only
required for the fast subsystem. To demonstrate this the prob-
lem is revised to a regulation problem and the fast reference
model is redefined so that it is no longer asymptotically stable
about the manifold

z̀m = −azz̃m (63)

Note that the manifold is still a stable equilibrium. It is even
asymptotically stable when the manifold is constant with re-
spect to time, but it is not asymptotically stable in the context
of the full-order system. Reference models such as this are
useful if ŕx is not known apriori or the manifold is difficult to
differentiate. From (57) it can be shown that

−L( fzs )Vz̃m =
(

− 2xz

x2 + 1
kxex + kxz

)
z̃m (64a)

≤ (2kx|ex|2 + kx|z|2) |z̃m|2 (64b)

≤
[
2kx + k2

x 0 kx kx

]
v|z̃m|2 (64c)

≤ δT v|z̃m|2 (64d)

where the domain has been restricted to x < 1 and z < 1. Note
that δ1 = 2kx + k2

x , δ2 = 0, δ3 = kx , and δ4 = kx . Substituting
the values from the previous numerical example gives

K �

⎡
⎢⎣ d∗ − 1

2 d∗ − 1
2 (d∗ + 3 d )

− 1
2 d∗ d

ε
− 1

2 d

− 1
2 (d∗ + 3 d ) − 1

2 d d
ε

− d

⎤
⎥⎦ (65)

From Corollary 1 it is known that if ∃d ∈ (0, 1) and d∗ �
(1 − d ) such that K is positive definite then ex, ez → 0 as
t → ∞. By Sylvester’s Criterion K is positive definite if and
only if the LPMs are positive. The first LPM is positive by
definition. The second and third LPMs depend upon ε and d .
Fig. 7 plots this relationship. If both LPMs are positive for
a given ε then the conditions of Corollary 1 are satisfied. In
Fig. 7 note that as ε increases there is a point after which
�d such that both LPMs are positive simultaneously. At this
point, the timescale separation is insufficient for Corollary 1
to guarantee convergence.

From Fig. 7 it can also be seen that when ε = 0.1 (as
in the previous example) ∃d such that all of the LPMs are

FIGURE 7. Effects of varying ε and d on the applicablility of Corollary 1.

FIGURE 8. Evolution of the slow state for the alternative approach.

FIGURE 9. Evolution of the fast state for the alternative approach.

FIGURE 10. Evolution of the adapting gain for the alternative approach.

positive. Thus by Corollary 1 ex, ez → 0 as t → ∞. The time
evolution of the slow state for this alternative approach is
shown in Fig. 8; the fast state is shown in Fig. 9; and the
time evolution of the adapting gain is shown in Fig. 10. This
example demonstrates how the manifold evolves on the slow
timescale per Assumption 3.

Remark 8: As mentioned previously a common approach
to these problems is to apply sequential loop closure to the
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subsystems. This example uses Sequential Control. To clarify
Sequential Control is an extension of sequential loop closure.
Applying sequential loop closure to this example would yield
numerically indistinguishable results. Sequential Control was
first published by Narang-Siddarth and Valasek in [17] where
they showed that singular perturbation techniques could be
used to rigorously show stability and obtain specific bounds
on the time scale separation parameter. By extension, this
same advantage is available to KAMS. The insights from
Fig. 7 are a unique contribution of KAMS that is not available
to traditional adaptive sequential loop closure implementa-
tions. Furthermore, unlike sequential loop closure, KAMS
allows the use of Composite Control and Simultaneous Slow
and Fast Tracking.

Remark 9: The MATLAB code used for both of the ex-
amples has been made open source and is available on Code
Ocean [38].

V. CONCLUSION
This article extended the [K]control of Adaptive Multiple-
timescale Systems (KAMS) methodology to singularly per-
turbed systems with adaptive control in both the fast and slow
subsystems; a wide class of adaptive control and multiple-
timescale control methods fit within this framework. Suf-
ficient conditions for asymptotic stability were proven and
coupling effects between the manifold and the fast reference
model were identified. The stability of the full-order system
was connected to the stability of the reduced-order systems
through Theorem 1 and its corollaries. A nonlinear nonstan-
dard system was used to demonstrate KAMS.

This article identified complex interactions between the
fast reference model and the manifold which occur when
adaptive control is used to stabilize the fast subsystem. This
makes traditional multiple-timescale control proofs insuffi-
cient when adaptive control is used in the fast subsystem.
The theorems proved in this article account for these com-
plex interactions by carefully formatting the augmented error
dynamics and by judiciously selecting sufficient conditions.
The primary limitation of KAMS is the requirement to verify
the conditions given in Theorem 1 and its corollaries. These
conditions restrict the set of systems to which the theorems
in this article can be applied. Lyapunov functions may not
be known for some systems and adaptive control methods.
Suitable Lyapunov functions are known for several popular
adaptive control methods (e.g. Model Reference Adaptive
Control and Adaptive Nonlinear Dynamic Inversion). Another
limitation is that many applications will require differentiation
of the manifold. This can be a complicated calculation, but
it can sometimes be avoided by judicious selection of control
objectives, careful system modeling, and the use of the correct
corollary. See the alternative approach example above for a
demonstration of this. Based upon the results presented in the
article KAMS is judged to be a feasible control approach for
uncertain nonstandard singularly perturbed systems regard-
less of which subsystem (fast, slow, or both) the uncertainty
appears in. Further, KAMS is more capable than traditional

sequential loop closure because it can be used to determine
the minimum allowable timescale separation and it allows for
the use of Composite Control and Simultaneous Slow and Fast
Tracking.

There are several potential avenues for future research.
First, future research could consider adapting laws that do not
adapt in the same timescale as the subsystem to which they
are applied. Second, future research could determine alternate
formats for the upper bounds in Theorem 1. Finally, exper-
imentally validating the performance of KAMS on physical
systems would be insightful.
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