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models that include additional classes of the population to
suitably represent vaccinated individuals [3]. At the same
time, several countries around the world are struggling to
complete the vaccination campaigns in the shortest time
possible. However, the limited amount of vaccine doses is
making this task challenging and almost impossible in a short
period. As for other epidemics, intelligent decision making
strategies have been effectively used to plan the vaccination
in the absence of a sufficient number of doses [4].

As for COVID-19, several vaccine allocation strategies
have been proposed [5]. For instance, in [6] the authors
employ a mathematical model to compare five age-stratified
prioritization strategies in order to reduce existing inequities
in COVID-19 vaccine distribution. In [7] a model for the
optimal vaccine allocation is proposed and applied for the
Korean scenario. The strategic spatio-temporal distribution
of vaccines is investigated in [8], with the final aim of prior-
itizing the distribution in those areas where there are the most
new cases of infection during a fixed time period. Referring
to optimal control strategy, in [3] the authors propose an
optimal control strategy for vaccine administration in the
COVID-19 pandemic.

A viable option proposed by some researchers to overcome
the lack of vaccine for the COVID-19 pandemic lies in
delaying the injection of the second dose. To date, the UK
is the only country that is delaying the second dose to 12
weeks [9]. Clinical trials suggest that delaying the second
dose to 12 weeks may lower the efficacy of the vaccine until a
point where the effect of the second dose becomes negligible
and thus comparable with a single-dose vaccination. In fact,
clinical reports demonstrate 52,4% of efficacy after 22 days
for BNT162b2 Pfizer’s vaccine first dose [10]. Moreover, an
effectiveness of 50–60% in tackling the COVID-19 infections
has been reported in observational cohort studies in Israel
covering the same period [11]. Therefore, the high efficacy
with a single dose may be sufficient for the herd immunity in
absence of a sufficient number of vaccine; not surprisingly,
the World Health Organization defined as a minimum 50%
threshold for a vaccine to be effective, and thus a single dose
can still be useful to reduce the pandemic spread when no
other options are available [12].

In this paper we propose a SIRUCQHE epidemic model
and differently from our previous contribution [2], we divide
Infected individuals into Contagious and Infected yet not
contagious, and we assume that Threatened people must
observe a quarantine period when released from the hospital.
Moreover, we remove the time dependency of the recovery
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Abstract— The recent trends of the COVID-19 research are 
being devoted to disease transmission modeling in presence 
of vaccinated individuals, while the emerging needs are be-
ing focused on developing effective strategies for the optimal 
distribution of vaccine between population. In this context, we 
propose a novel non-linear time-varying model that effectively 
supports policy-makers in predicting and analyzing the dynam-
ics of COVID-19 when partially and fully immune individuals 
are included in the population. Differently from the related 
literature, where the common strategies typically rely on the 
prioritization of the different classes of individuals, we propose 
a novel Model Predictive Control approach to optimally control 
the multi-dose vaccine administration in the case the available 
number of doses is not sufficient to cover the whole population. 
Focusing on the minimization of the expected number of deaths, 
the approach discriminates between the number of first and 
second doses. We calibrate the model on the Israeli scenario 
using real data and we estimate the impact of the vaccine 
administration on the virus dynamics. Lastly, we assess the 
impact of the first d ose o f t he P fizer’s va ccine co nfirming the 
results of clinical tests.
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cine distribution, model predictive control.

I. INTRODUCTION

In order to properly analyze the spread of COVID-19 con-
tagions, predict its dynamics, and support decision makers
in defining effective mitigating actions, several mathematical
models have been developed.

One of the main problems in epidemiological modelling
relies in the proper estimation of the involved parameters,
requiring widespread data, which are however seldom avail-
able in the early stages of any pandemic.

In addition, since many countries worldwide are organized
into separate administrative areas with different shares of the
national healthcare system, another group of works deepens
the analysis at a regional level [1], [2].

The first C OVID-19 v accines h ave a lready b egun t o be
administered to population in all countries. Consequently,
most contributions on COVID-19 modeling are focusing on
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rate and we substitute the time dependency of the death
rate with a function dependent on the number of Threatened
people.

We deem it essential to remark that, while other literature
contributions dynamically identify the model parameters by
dividing the fitting period, in our work time-varying func-
tions are presented to model the time-varying parameters.
Furthermore, since the infection rate depends on people’s
mobility, differently from the related literature, in the fitting
phase we make use of the Google mobility reports [13] to
identify and predict the evolution of the infection rate.

In addition, with respect to our previous contribution
[2] where the control actions are focused on enforcing
restrictions on people mobility, in this work we also include
in the model vaccinations and an additional class to represent
partially immune individuals. Moreover, we apply the afore-
mentioned model in conjunction with a Model Predictive
Control (MPC) approach aiming at optimally planning the
vaccine distribution minimizing the number of fatalities.
Differently from the related literature, where the control
actions aim at optimally distributing the vaccine among
individuals, in the proposed approach, we assume that, in
absence of a sufficient number of vaccines, decision makers
can decide to employ a single vaccine dose.

To date, Israel has administered the most COVID-19 vac-
cine doses per capita in the world. Therefore, we apply the
proposed approach to the Israeli scenario firstly estimating
the effectiveness of a single vaccine dose to tackle the
COVID-19 among a population and secondly showing the
reliability of the proposed control model in selecting the best
strategy while minimizing the numbers of fatalities.

The rest of this work is structured as follows. Section II
presents the SIRUCQTHE model. Section III proposes the
MPC framework, describing the corresponding control vari-
ables, objectives, and constraints, and formulating the com-
prehensive optimal allocation problem. Section IV reports the
numerical outcomes achieved by the simulations based on the
real data of the Israeli scenario. Finally, Section V concludes
the paper highlighting possible future developments.

II. COVID-19 DYNAMICS WITH MULTI-DOSE
VACCINATION

In this paper, a novel time-varying discrete-time epi-
demiological model for the COVID-19 spread in presence
of partially and fully vaccinated individuals is proposed,
named SIRUCQHE, which classifies individuals into eight
compartments:
• Susceptible;
• Infected (infected by someone and not yet contagious);
• Removed (fully vaccinated or completely recovered);
• Unsusceptible (vaccinated and partially immune);
• Contagious (infected and undetected, contagious);
• Quarantined (infected and detected)
• Hospitalized (hospitalized);
• Extinct (detected and dead).
The SIRUCQHE model is thus composed of eight time-

varying difference equations, which represent the dynamics

Fig. 1. Scheme of the SIRUCQHE model.

of individuals’ flows between the various compartments.
We consider as state variables of the model the fraction of
the overall population related to the various compartments.
Denoting by a capital Latin letter each state variable, and
denoting the time step as k, the model can be written as
follows:

S(k+1)=S(k)− β(k)
C(k)S(k)

N
− v1(k − τ1) (1)

I(k+1)=I(k) + β(k)
C(k)S(k)

N
+ αβ(k)

C(k)U(k)

N
− ρI(k) (2)

R(k+1)=R(k) + γC(k) + δQ(k) + v2(k − τ2) (3)

U(k+1)=U(k)− αβ(k)
C(k)U(k)

N
+ v1(k − τ1)− v2(k − τ2) (4)

C(k+1)=C(k) + ρI(k)− (γ + θ(k) + λ)C(k) (5)
Q(k+1)=Q(k) + θ(k)C(k) + πH(k)− (δ + µ)Q(k) (6)
H(k+1)=H(k) + µQ(k) + λC(k)− (π +ε(k))H(k) (7)
E(k+1)=E(k) + ε(k)H(k) (8)

where N represents the whole population.
The eight classes are connected by directed arcs whose

weights correspond to the parameters that put in relation the
corresponding classes. The overall interconnections between
the above compartments are shown in Fig.1.

In particular, β(k) ∈ R+ is the time-varying infection
rate, whose value depends on the population behavior and
the adopted social distancing measures. The parameter α ∈
[0 − 1] describes how effective a single dose of the vac-
cine is, e.g. when α = 0 only the first injection is fully
effective to prevent an infection. Moreover, v1(k) ∈ Z+ and
v2(k) ∈ Z+ represent the number of first and second vaccine
doses made at time k, respectively. Parameters τ1 ∈ Z+

and τ2 ∈ Z+ define the average time required to develop
an immune response after the first and the second dose.
Parameter θ(k) ∈ R+ is the time-varying detection rate that
describes the rate of Contagious people that are recognized
and Quarantined; this must be modeled as a time-varying
parameter since it largely depends on the epidemiological
situation. As will be demonstrated in Section IV, parameter
β(k) can be correlated with people’s mobility through the
use of the Google Mobility Reports [13] and parameter θ(k)
with the ratio between new daily discovered cases and daily
swabs. Parameter ρ ∈ R+ is the so-called incubation rate.
Parameters γ ∈ R+ and δ ∈ R+ are the so-called healing
rates. However, the first describes the rate of healing of
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Contagious and unrecognized people (thus, not requiring
hospitalization) that are no longer infectious. In contrast, the
second is the healing rate of Quarantined people who can
leave this class when they are no longer infectious or legally
obliged to stay at home. Parameters λ ∈ R+ and µ ∈ R+ are
the hospitalization rates: λ is the rate of people recognized
and immediately hospitalized when a severe symptomatic
condition occurs, while µ is the rate of Quarantined people
that need for hospitalization. Parameter π ∈ R+ is the
healing rate of Threatened people. Note that we assume that,
after being released from the hospital, people must observe
a quarantine period. Lastly, ε(k) ∈ R+ is the time-varying
death rate that depends on the number of Threatened people.
This relation is discussed in Section IV.

Note that, based on the current level of knowledge, we rea-
sonably assume that the probability of becoming susceptible
after being healed is negligible since the relative dynamics is
much slower than the main time constant of the model [14].

The proposed model ensures a good accuracy, in represent-
ing the dynamics of the disease, also allowing to represent all
the facets of the pandemic diffusion. Its simplicity helps iden-
tifying the characteristic parameters starting from the avail-
able data. In fact, various papers aiming at representing the
dynamics of the COVID-19 pandemic present compartmental
models, but generally lack an accurate identification of the
model parameters. Therefore, with respect to the related
literature in the SIRUCQHE model we compress or eliminate
some classes, and we disregard some connections between
compartments. Despite these simplifying assumptions, as
shown in Section IV, the presented model is effective in
the identification phase by only requiring a minimal set of
epidemiological data.

III. OPTIMAL VACCINE MULTI-DOSE ADMINISTRATION

In this section we describe the proposed approach to opti-
mally plan the multi-dose vaccine administration in order to
reach the mass coverage and thus heard immunity; however,
we assume that the approach takes into account the limited
availability of vaccine.

We employ a receding horizon scheme and we assume
that the prediction and control horizon have the same length.
Specifically, at the generic sampling step h ∈ Z+ the horizon
- defined as K(h) = {h, . . . , h+K−1} - contains K equally
spaced time slots with length ∆k.

Moreover, for each time step h we define a vector of
control variables u(h) := (u1(h)>,u2(h)>)> ∈ Z2K

+ where
u1(k) := (u1(h), ..., u1(h + K − 1))> ∈ ZK+ and u2(k) :=
(u2(h), ..., u2(h+K − 1))> ∈ ZK+ collect the quantities of
first and second doses that are planned to be administered
over the given control horizon, respectively.

In order to avoid too frequent and impractical changes in
the strategies, the control actions are kept constant over a
given period equal to ∆l = ω∆k (i.e., for ω time slots).
For instance, if ∆k corresponds to one day, it could be
meaningful to set the periodicity of the control actions equal
to one week (i.e., ω = 7). Assuming that K = Lω, with L ∈

N, the following additional constraints are then introduced
to keep the control actions constant in each period l:

u1(ωl+1) = u1(ωl+2)= · · ·=u1(ωl+ω), ∀l = 0, ..., L− 1 (9)

u2(ωl+1) = u2(ωl+2)= · · ·=u2(ωl+ω), ∀l = 0, ..., L− 1. (10)

Furthermore, as we aim at planning the vaccine distribu-
tion in the case the number of doses are scarce, we include an
additional constraint on the total number of available doses.
Since in most countries the vaccine doses are not distributed
on a daily basis, we assume this constraint must be fulfilled
over the given period equal to ∆l. As a consequence, let us
define the aforementioned constraint as:
ω∑
i=1

u1(ωl+i)+u2(ωl+i) ≤ v(l+1), ∀l = 0, ..., L−1 (11)

where vector v(l + 1) is the maximum number of vaccine
doses for the period l.

As the number of people in a compartmental model cannot
be negative, we include the following constraints that should
be respected while planning the vaccine administration:

v1(k) ≤ S(k), v2(k) ≤ U(k). (12)

Lastly, we assume that the number of second doses cannot
be chosen independently from the previously made first
doses. In fact, clinical tests reported a maximum efficacy
for the second dose only if this is administered no later than
a given maximum time period from the administration of the
first dose. Therefore, here we assume that the second dose
can be made only between a characteristic time window after
the first injection. Moreover, we assume that if a person does
not receive the second injection in this time period then it
will not receive it anymore. The resulting constraint can be
written as:

v2(k) ≤
τmax
1∑

τ1=τmin
1

v1(k − τ1)− · · ·

· · · −min

0, v2(k − 1)−
τmax
1 +1∑

τ1=τmin
1 +2

v1(k − τ1)

 (13)

where τmin
1 is the minimum time that must elapse between

the first and the second dose (e.g, for the BNT162b2 Pfizer’s
vaccine this is 21 days) and τmax

1 is the maximum delay that
can be accepted for the second injection.

Having defined the constraints that the vaccine distribution
must follow, let us remark that the proposed MPC approach
aims at optimizing the distribution of the vaccine doses while
minimizing the number of deaths. Therefore, on the basis
of the above defined control variables and related constraint
set and the corresponding state model, the optimal control
problem is defined as follows:

minimize
u(h)

J(u(h)) = E(h+K − 1)− E(h)

subject to SIRUCQHE model (1)-(8), ∀k ∈ K(h)

constraints (9)-(13), ∀k ∈ K(h).

(14)
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For the sake of taking the variability and uncertainty of the
model parameters into account, we employ a rolling horizon
framework; hence, we solve the optimization problem (14)
at each ω time step in an iterative manner, based on the
most recent input data. The obtained control actions related
to the first time step are applied to the system to steer its
behavior to the desired one, while the horizon is shifted
forward. Then, a new optimization problem is solved over the
shifted prediction horizon, based on the updated information
on forecasts and system states.

It must be noticed that the presented closed-loop feedback
control technique may depend on quantities that are both
directly and not directly measurable. In effect, an identifica-
tion procedure should be performed at each time step for the
SIRUCQHE model, since the related classes cannot be not all
directly estimable. In particular, the identification procedure
consists in using, at each time step, the most recent data
related to the available classes to dynamically update the
remaining SIRUCQHE parameters. We discuss this aspect in
the case study section.

IV. CASE STUDY

This section is divided into two parts. In the first part,
we describe the main assumptions on the system parameters
and the fitting procedure, while in the second part we present
some numerical simulations based on the proposed control
framework.

A. Parameters Identification

Let us explain how we calibrate the SIRUCQHE model
with respect to the Israeli scenario based on real data
obtained from [15].

Hereafter, we detail the assumptions considered for each
of the model parameters.

1) β(k): The so-called infection rate β(k) for the
COVID-19 pandemic is usually assumed within 0.25 and
0.8 in the absence of any social distancing policies and
people awareness. Following [16], [17] and [18], we assume
that the infection rate is strongly influenced by people’s
mobility in different socio-economic categories denoted by
G = {1, . . . , G}. Hence, we assume that the infection rate
can be decomposed into different terms each of which is
mainly affected by a given category. We consider that a
reduction of the mobility associated with the different socio-
economic categories can be, with a good approximation,
represented with a linear decrease of the infection rate as
follows:

β(k) = β0 + β>m(k) (15)

where β0 is the infection rate not explicable with a variation
of the mobility (e.g., household infection), β = (β1, ..., βG)>

is the column vector collecting the term βg of the infection
rate corresponding to each socio-economic category g ∈ G,
and m(k) = (m1(k), ...,mG(k))> is the column vector
collecting the mobility level mg(k) at time step k for each
socio-economic category g ∈ G. We assume that mg(k) = 1
when the g-th category’s mobility level equals the nominal
value, i.e., the value in absence of mobility restrictions.

We estimated the evolution of people’s mobility in dif-
ferent categories through the Google Mobility Reports [13].
We select the Workplaces, Retail & recreation, and Pub-
lic transport categories as the most significant in terms
of socio-economic importance. Hence, we define m(k) =
(m1(k),m2(k),m3(k))> and β = (β1, β2, β3)>, indicating
respectively the mobility level of Workplaces, Retail and
recreation and Public transport.

2) ρ: The so-called incubation rate ρ is the rate of
infected people that become contagious and can consequently
infect other people. In the literature, the incubation time is
estimated between 2 and 7 days [19], [20].

3) γ: The healing rate of unrecognized Contagious people
γ can be approximated by a constant. In particular, literature
findings show that the healing time is approximately 14 days.
However, in our model, we do not remove people from the
Contagious compartment when they are completely healed,
but only when they are not contagious or have a really low
viral load. In the literature, this period is estimated between
3 and 10 days [21]–[24].

4) δ: The healing rate of Quarantined people who do
not need hospitalization δ can also be approximated by a
constant value and can be substituted with γ when a person
is removed from the Quarantined compartment immediately
after he/she becomes not contagious. However, in several
countries, someone may be forced to be in quarantine even
after being clinically healed because the procedure requires
two negative tests.

5) θ(k): Parameter θ(k) models the rate of Contagious
people recognized and Quarantined, the so-called detection
rate. Numerous research studies pointed out that the ratio
r(k) = p(k)/w(k) between new daily discovered cases p(k)
and the daily swabs w(k) is crucial to understand how the
tracking system is operating. When this ratio increases, it
means that the tracking system is not working well and that
the pandemic is out of control. Conversely, when this number
is low, it means that few cases have been recognized with
respect to the total amount of analyzed swabs: therefore,
the pandemic is under control. Note that the aforementioned
assumptions only hold when the tests are made in a stochastic
way. In fact, if a country has a well-organized tracking
system, it can perform only the necessary tests on people
surely infected. Therefore, to consider the variability of
parameter θ(k), we relate it with the aforementioned ratio
as:

θ(k) = θ0 (1− r(k)) . (16)

It should be noted that this parameter is the most critical
in COVID-19 modeling due to the high number of asymp-
tomatic individuals. Therefore, this relation is not accurate
but our experiments show that it helps the results of the
identification process.

6) λ and µ: These parameters are the hospitalization
rates, i.e., the rate of people recognized only when severe
symptomatic conditions occur and the rate of Quarantined
people to be hospitalized, respectively. We assume these two
parameters are constant.
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7) π: The recovery rate π during the first outbreak of
COVID-19 was far from being constant; in fact, the national
healthcare system was not prepared and did not have heal-
ing procedures. However, after the implementation of new
standardized clinical approaches, we can assume that this
parameter is constant.

8) ε(k): The death rate ε at the beginning of a new epi-
demic is not constant and hopefully decreases with time. This
is mainly due to the availability of new clinical treatments.
The death rate for each time step k can be formulated as:

ε(k) = (E(k)− E(k − 1)) /T (k). (17)

With the pandemic’s development, this parameter becomes
easily identifiable, and it only depends on how much the
healthcare system is under pressure.

9) τ1 and τ2: The delays τ1 and τ2 are the characteristic
average times required to develop an immune response after
the first and the second vaccine doses. These values vary
depending on the vaccine.

In order to estimate the above listed parameters of the
proposed SIRUCQHE model, a least-squares optimization
technique is adopted combined with constraints to enforce
the prior scientific knowledge of the COVID-19 pandemic.

We firstly estimate the death rate, that we assume to
follow a linear relation with the number of hospitalized
individuals with coefficients ε0 and ε1. The estimation of
such coefficients consists in minimizing the mean squared
error (MSE) of the linear approximation with respect to the
real data, which is defined as:

MSE(ε0, ε1) =
1

K

K∑
k=1

(
(ε0 + ε1T (k))− ε(k)

ε(k)

)2

(18)

Consequently, by defining Ξ1 as the vector collecting all the
unknown parameters and the initial conditions are the only
parameters to be estimated, we minimize the MSE of the
model with respect to real data as follows:

MSE(Ξ1) =
1

K

K∑
k=1

(
Q̂(Ξ2, k)−Q(k)

Q(k)

)2

+
1

K

K∑
k=1

(
Ĥ(Ξ2, k)−H(k)

H(k)

)2
(19)

For the sake of brevity we do not report here the results
of the comparison between simulation model and the actual
data of the considered case study. However, we report that
the maximum error for the considered scenario on the
Hospitalized class is approximately 20%.

In order to estimate the impact of the vaccination on
the model parameters, the identification is divided into two
different phases. In the first phase, we estimate the model
parameters in absence of vaccination, i.e., before the Israeli
vaccination campaign started on December 19, 2020. In
this way, we define reasonable and tight bounds for the
parameters. Consequently, in the second phase, we perform
the identification with the epidemiological data during the
vaccination campaign to estimate the parameter α to assess
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Fig. 2. Real data (red line) and results of the simulation (blue line) for
the SIRUCQHE model without the impact of the vaccination campaign:
Hospitalized (a) and Extinct (b).
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Fig. 3. Vaccine doses distribution over the simulation horizon: first doses
(blue) and second doses (red).

the effectiveness of a single vaccine dose. We highlight that,
in this phase, we use the previously defined bounds on the
remaining parameters to make an accurate estimation of the
vaccination impact. The results show that this parameter is
approximately halving the infection rate, i.e., α = 0.5851,
thus confirming the results of the clinical reports.

In Fig. 2, we show the results of the SIRUCQHE for
compartments H and E. In particular, we show the real
data (with the effect of the vaccination campaign) and the
forecasting of the model not considering the vaccinations.
From the figure, it is clear the impact that the vaccination
campaign had on preventing another outbreak of the virus.

B. Optimal Distribution of the Vaccine Doses

This subsection describes the numerical simulations based
on the proposed MPC approach aimed at optimally con-
trolling the doses’ distribution. We test the approach over
a simulation period of 20 weeks starting from March 5,
2021, using a prediction horizon of 10 weeks. The sam-
pling interval ∆k is set to one day. A daily change of
the vaccination measures would be unrealistic in a real-life
scenario, therefore, we assume weekly based control actions
(i.e., L = 6 and ∆l = ω∆k, with ω = 7). We consider the
availability of a variable quantity of the vaccine to simulate
shortage in the distribution. As for time parameters τmin

1

and τmax
1 , we select them based on the BNT162b2 Pfizer’s

vaccine clinical report and thus we set them equal to 21 and
35 days, respectively.

As a first result, in Fig. 3 we show the administration
of the first and the second dose. In particular, we show a
stacked bar chart that indicates in blue the administration of
the first doses of vaccine and in red the second one. The
proposed control strategy is able to dynamically modify the
vaccination plan even with a sudden change in the vaccine
administration while minimizing the number of fatalities.

Furthermore, we show the effectiveness of the proposed
procedure in Fig. 4, where we plot the results of the nu-
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Fig. 4. Results of the simulation for the SIRUCQHE model: Susceptible (a),
Removed (b), Contagious (c), Unsusceptible (d), Hospitalized (e), Extinct
(f). Results of the simulation (dashed line) and the 20% estimated bounds
(colored bands).

merical simulation for compartments S, R, C, U , H , and
E under the effects of the MPC control. First of all we
note that the dynamics of the Contagious and Hospitalized
compartments (Fig. 4 (c) and Fig. 4 (e), respectively) tends to
zero in about three months, conversely, after the same amount
of months the number of Unsusceptible and Extinct people
(Fig. 4 (d) and Fig. 4 (f), respectively) tend to steady state. In
the figure, we add also an estimation of the system dynamics
made by modifying the characterized parameters by 20%
indicated by the colored bands. The results show that the
proposed approach can effectively reduce the development
of the pandemic leading to pandemic extinction after few
months even in the presence of uncertainty. It is worth noting
that, at the end of the simulation, almost 1.3 million people
receive only a single injection. This confirms that, in order
to reach herd immunity in the shortest time, it is possible to
administrate a single dose of vaccine to the population.

V. CONCLUSIONS

Due to the limited amount of currently available vaccine
doses, to date, it is crucial to develop suitable methods to
support policy-makers in efficiently planning the vaccine
distribution between population. To answer this challeng-
ing need, this paper presents a novel epidemiological SIR-
based model aimed at representing the system dynamics and
predicting its evolution when partially and fully immune
individuals are included. Leveraging on this model, and
aiming at minimizing the expected number of deaths, we
present a novel Model Predictive Control approach to opti-
mally allocate the number of first and second doses between
population.

Future research will address enhancing the model by
introducing age-differentiated compartments to effectively
distribute the vaccine between different classes of popula-
tion.
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