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Abstract—In this paper we apply an inverse optimal controller
(IOC) based on a control Lyapunov function (CLF) to schedule
theoretical therapies for the novel coronavirus disease (COVID-
19). This controller can represent the viral dynamics of Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in
the host. The virus dynamics consider the antiviral effects and
immune responses as control inputs. The proposed controller is
based on a Recurrent High Order Neural Network (RHONN)
used as an identifier trained with Extended Kalman Filter
(EKF). Simulations show that applying treatment 2 days post
symptoms would not significantly alter the viral load. The
proposed controller to stimulate the immune response displays
a better effectiveness compared to the effectiveness displayed by
the antiviral effects.

Index Terms—Recurrent High-Order Neural Networks, Neu-
ral Networks, COVID-19, Inverse Optimal Control, Extended
Kalman Filter

I. INTRODUCTION

The Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) is the virus causing the novel coronavirus
disease (COVID-19) that has paralyzed the world, affecting
the economy of many countries and causing many losses of
human lives; having until today February 1st, 2021, more than
100 million people infected and more than 2 million confirmed
deaths [1]. Researchers have tried to contribute from different
areas of knowledge, new ways to study the virus, the disease
and provide solutions.

These contributions have been from a practical and theo-
retical point of view, with promising results. Several models
that have been proposed about the spread of the virus around
the globe [2] [3] and [4]. Although it is important to know
the behavior of the virus spread, it is also relevant to know
the virus dynamics in the host, in order to develop possible
medical strategies once antivirals are available against COVID-
19. For this reason we will synthesized a control law that will
allow us to develop these medical strategies.

In the model presented in [5], the effects of antivirals and the
stimulation of the immune response are included as possible
therapies to decrease the viral load, so these will be used as our
control inputs to synthesize the control law. Currently, control
techniques have been applied to mitigate the spread of SARS-
CoV-2 as in [4], [7] and [8]. Another control techniques have

also been used to develop therapeutic options for other viruses
such as Influenza [9] and HIV [10].

In this paper we propose the application of an optimal
control law for a nonlinear system. To obtain the algorithm for
this system, the solution of a Hamilton-Jacobi-Bellman (HJB)
partial differential equation is required. Even if the solution of
the HJB equation exists, it may be very difficult to find or may
not exist [11]. To solve this problem without the need to solve
the HJB equation, the inverse optimal control (IOC) technique
uses a control Lyapunov function (CLF), which guarantees
system stability. The CLF is used to define a cost functional,
witch then is minimized as shown in [12].

For a controller based on a plant model, the desired per-
formance may not be obtained due to disturbances, uncertain
parameters or unmodeled dynamics. For this reason, the use of
a discrete time recurrent high order neural network (RHONN)
as an identifier allows us to approximate a mathematical model
of the plant even in the presence of uncertainties and modeling
errors. A RHONN model is easy to implement and has a
relatively simple structure [13] and [14].

To train this neural network, the Extended Kalman Filter
(EKF) algorithm is used. EKF provides a recursive optimal
estimator for the neural weights as shown in [15], [16], [17],
[18], [19] and [20] . The EKF will allow us to perform online
training and minimize the identification error by finding the
optimal value of the RHONN weights. With this, a controller
based on a RHONN model will allow us to increase its
robustness. In recent years recurrent neural networks trained
with the EKF have shown to have many practical and reliable
applications [9], [11], [21] and [22].

The structure of this paper is organized as follows. In section
II the RHONN identifier and EKF algorithm are introduced.
Then in section III the inverse optimal control is described.
In section IV the mathematical model is presented, the neural
model identification is proposed and neural inverse optimal
control laws for viral dynamics are developed. Simulations
results are presented in section V. Finally the conclusions are
stated in section VI.
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II. FUNDAMENTALS

A. Recurrent High Order Neural Networks

Let us consider the following discrete time nonlinear sys-
tem:

xk+1 = f(xk) + g(xk)uk (1)

where x ∈ <n which is the state of the system at time
k ∈ N . u ∈ <m is the control input, f : <n → <n and
g : <n → <m are smooth mappings. The identifier model is
described as:

x̂i,k+1 = wTi φ(x̂k, uk), i = 1, . . . n (2)

where x̂i ∈ <L is the state of the i-th neuron which
identifies the i-th component of state vector, u ∈ <Li is the
input vector of the neural network, and φi is defined as:

φi(xk, uk) =


φi1
φi2

...
φiLi

 =


∏
j∈I1 ξ

dij(1)
ij∏

j∈I2 ξ
dij(2)
ij

...∏
j∈ILi

ξ
dij(Li)
ij

 (3)

where dij,k are nonnegative integers. Li is the respective
number of high orders connections. I1, I2, . . . , ILi

is a collec-
tion of nonordered subsets of 1, 2, . . . , n+m where n is the
state dimension, m is the number of external inputs, and ξi is
defined as:

ξi =



ξi1
ξi2
...
ξin
ξin+1

...
ξin+m


=



S(x1)
...

S(xn)
u1
...
um


(4)

where S(·) is an activation function defined as

S(ς) = µi tanh(βiς) (5)

with ς represents any real variable value, µ, and β are
positive constants.

The hyperbolic tangent function is used in this work since
the antisimetric functions allow the neural network to learn
the process dynamic faster than other activation functions.

B. Extended Kalman Filter Training algorithm

For RHONN training an EKF is used, which leads to
determine the optimal RHONN weights values for minimizing
the prediction error. The EKF based algorithm is given as

Ki,k = Pi,kHi,kMi,k

wi,k+1 = wi,k + ηiKi,kei,k

Pi,k+1 = Pi,k −Ki.kH
T
i,kPi,k +Qi,k

(6)

with:

Mi,k = [Ri,k +HT
i,kPi,kHi,k]−1 (7)

ei,k = xi,k − x̂i,k (8)

Hi,k =

[
∂x̂i,k
∂wij,k

]T
(9)

where i = 1, . . . , n and j = 1, . . . , Li. x̂i,k is the ith
neural network state. xi,k is the ith plant state. ei,k ∈ < is
the respective identification error. Ki ∈ <Li×m is the Kalman
gain matrix. Pi,k ∈ <Li×Li is the prediction error associated
covariance matrix at the step k. wi ∈ <Li is the weight vector
considered as state of the network. Qi ∈ <Li×Li is the state
noise associated covariance matrix. Hi ∈ <Li×m is a matrix
where each entry Hij is the derivate of one of the neural
network states x̂i, respect to one neural network weight wij .
Ri ∈ <m×m is the measurement noise associated covariance
matrix. ηi is a design parameter.

Commonly Pi and Qi are initialized as diagonal matrices.
The convergence analysis, for RHONN identifier trained with
EKF learning is studied in [22].

III. INVERSE OPTIMAL CONTROL

In this section optimal control methodology and its proper-
ties are briefly discusses. Let consider the following discrete-
time nonlinear system:

xk+1 = f(xk) + g(xk)uk, x0 = x(0) (10)

where x ∈ <n which is the state of the system at time
k ∈ N . u ∈ <m is the control input, f : <n → <n and
g : <n → <m are smooth mappings. The tracking error is
defined as follows

zk = xk − xδ,k (11)

with xδ,k as the desired trajectory and zk ∈ <n. The error
dynamics one step ahead is calculated as

zk+1 = xk+1 − xδ,k+1, z(0) = z0

zk+1 = f(xk) + g(xk)uk − xδ,k+1 (12)

For minimization of the error associated with trajectory
tracking of system (12), an optimal control law uk is already
proposed respecting the following cost functional

J(zk) =
∞∑
n=k

(
l(zn) + uTnR(zn)un

)
, J(0) = 0 (13)

with J(zk) : <n → <, l(zk) : <n → <+ is a positive
semidefinite function, and R(zk) : <n → <m×m, R(zk) =
RT (zk) > 0 is a matrix-valued function for all xk defined in
[23]. Then:

J(zk) = l(zk) + uTkR(zk)uk +
∞∑

n=k+1

(
l(zn) + uTnR(zn)un

)
J(zk) = l(zk) + uTkR(zk)uk + J(zk+1)

J?(zk) = min
uk

(
l(zk) + uTkR(zk)uk + J?(zk+1)

)
(14)



Assuming that the full state xk is available. Then, using
the optimal function J?(xk) in (14) as a Lyapunov function
V (xk), so (14) can be rewritten as

V (zk) = min
uk

(
l(zk) + uTkR(zk)uk + V (zk+1)

)
(15)

If the boundary condition V (0) = 0 is fulfilled hence,
V (zk) must be a Lyapunov function and its value one step
ahead depends on both zk and uk by means of zk+1. For
the finite horizon optimization case, in Bellman optimality
principle [24], [25], the function V (zk) satisfies the discrete-
time Bellman equation [25], [26] and [27].

In order to establish the conditions of the optimal control
law, a discrete-time Hamiltonian function is used as follows

H(zk, uk) = l(zk) + uTkR(zk)uk + V (zk+1)− V (zk) (16)

The optimal control law should satisfy the following con-
dition

∂H(zk, uk)

∂uk
= 0 (17)

then,

0 = 2R(zk)uk +
∂V (zk+1)

∂uk

0 = 2R(zk)uk +
∂zk+1

∂uk

∂V (zk+1)

∂zk+1

0 = 2R(zk)uk + gT (xk)
∂V (zk+1)

∂zk+1

Hence, trajectory tracking using optimal control law is
defined as

u?k = −1

2
R−1(zk)gT (xk)

∂V (zk+1)

∂zk+1
, V (0) = 0 (18)

In order to solve the HJB equation in (18) for reaching the
trajectory, an inverse optimal control approach is defined as
follows

Definition 1. Consider the tracking error as (11). The control
law is defined in (18) will be inverse optimal stabilizing along
the desired trajectory xδ,k if :

1) for system (10) achieves (global) asymptotic stability of
xk = 0, along reference xδ,k and;

2) V (zk) is (radially unbounded) positive definite function
such that the inequality

V̄ := V (zk+1)− V (zk) + u?TkR(zk)u?k ≤ 0,

is satisfied.

Selecting l(zk) := −V̄ , the cost functional (13) is mini-
mized, where, V is a solution for Hamiltonian function (16).

In order to satisfy the conditions (1) and (2) in Definition 1,
a quadratic candidate control Lyapunov function (CLF) V (zk)
takes the following form

V (zk) =
1

2
zTk Pzk (19)

with P = PT > 0, in order to ensure stability of the
tracking error (11). Substituting (19) in the optimal control
law (18), we obtain

u?k = −1

2
R−1(zk)gT (xk)

∂(zTk+1Pzk+1)

∂zk+1
(20)

Knowing that biological systems are usually positives, i. e.
states, inputs and outputs are always nonnegative. The optimal
control law for nonnegative systems is described as follows

u?k =

∣∣∣∣−1

2
(R(zk) + P2(xk))−1P1(xk, xδ,k)

∣∣∣∣ (21)

with

P1(xk, xδ,k) =


gT (xk)P (f(xk)− xδ,k+1)

for f(xk) ≥ xδ,k+1

gT (xk)P (xδ,k+1 − f(xk))
for f(xk) ≤ xδ,k+1

(22)

P2(xk) =
1

2
gT (xk)Pg(xk) (23)

and

R(zk) =
xTk rxk∥∥xδ,k+1

∥∥ (24)

where P1(xk, xδ,k), P2(xk) and r positive definite sym-
metric matrices, therefore (R(zk) + P2(xk)) > 0. With these
conditions the inverse matrix in (21) is ensured.

IV. MATHEMATICAL MODEL

According to [5] we consider a virus model that describes
the SARS-CoV-2 dynamics and T cell response against SARS-
CoV-2. In this model it is assumed that T cell proliferation (T )
is induced by viral load (V ) as follows

dV

dt
= pV

(
1− V

K

)
− cTV T − cV (25)

dT

dt
= sT + rT

(
V n

V n + knT

)
− δTT (26)

where, V is the SARS-CoV-2 viral load (log10 copies/mL),
T is the number of effector T cells, p is the replication rate
per day, K is the maximum carrying capacity, cT is the rate
of virus elimination, c is the viral clearance, sT is the T cell
homeostasis, r is the maximum activation rate, δT is the half
life of T cells. The activation of T cell proliferation by the
virus follows a log-sigmoidal form with kT as half saturation
constant and the coefficient n relates to the width of the
sigmoidal function.

This model was fitted as shown in [5] with patient data
presented in [6]. It is important to highlight that in this model
the maximum peak of T cells is achieved between 5 to 10
day post-symptoms onset. Due to the similarities between the
influenza virus and SARS-CoV-2, in this paper it will consider
the medical therapies that in [9] are used to decrease the viral
load. Antivirals, that inhibit one or more parts of the viral
cycle are shown in Fig. 1. Immune therapies can help the host



Fig. 1. Replication Cycle of SARS-CoV-2. The virus RNA is uncoated in
the cytoplasm after the binding to receptors of the host cell. Then, to generate
new viral RNA material and proteins, the transcription/translation processes
take place. The virus is released after the assembly occurs within vesicles.
After that, the virus can infect other cells, once is released. This cycle is
presented in [5].

to fight a disease or infection. This therapies promote T-cell
proliferation.

The therapies described above are included in the model
proposed in (25-26), so that the following model is proposed

dV

dt
= (1− ur)pV

(
1− V

K

)
− cTV T − cV (27)

dT

dt
= sT + umrT

(
V n

V n + knT

)
− δTT (28)

where, ur is the antiviral effects and um is the immune
modulation.

To establish a control law, the terms in (27-28) are simpli-
fying as follows

ẋ1 = a1x1 − a2x21 − a3x1x2 −
(
a4x1 − a2x21

)
ur (29)

ẋ2 = b1 − b2x2 + b3

(
x21x2
x21 + b24

)
um (30)

where, x1 = V , x2 = T , a1 = p − c, a2 =
p

K
, a3 = cT ,

a4 = p, b1 = sT , b2 = δT , b3 = r and b4 = kT .
From continues-time system described in (29-30) a discrete-

time system is calculated using Euler method as follows:

x1,k+1 = x1,k + Ts

[
a1x1,k − a2x21,k − a3x1,kx2,k

− (a4x1,k − a2x21,k)ur,k

]
(31)

x2,k+1 = x2,k + Ts

[
b1 − b2x2,k

+ b3

(
x21,kx2,k

x21,k + b24

)
um,k

]
(32)

The following parallel RHONN is proposed considering
discrete-time viral dynamics as in (31-32)

x̂1,k+1 = w11S(x̂2,k) + w12S(x̂1,k)S(x̂2,k)

+ [w13S(x̂1,k) + w14S(x̂2,k)]ur,k (33)
x̂2,k+1 = w21S(x̂2,k) + w22S(x̂1,k)um,k (34)

Now we analyze each control input separately to compare
their performance in the viral system (27-28).

A. Neural Inverse Optimal Control

To determine a control law that allows us to analyze antiviral
effects (ur), we set um = 1 in the proposed neural identifier
in (33) and (34) as follows:

x̂1,k+1 = w11S(x̂2,k) + w12S(x̂1,k)S(x̂2,k)

+ [w13S(x̂1,k) + w14S(x̂2,k)]ur,k (35)
x̂2,k+1 = w21S(x̂2,k) + w22S(x̂1,k) (36)

These equations can be described as a nonlinear system as
in (10) as follows

fr(x̂k) =

[
w11S(x̂2,k) + w12S(x̂1,k)S(x̂2,k)

w21S(x̂2,k) + w22S(x̂1,k)

]
(37)

and,

gr(x̂k) =

[
w13S(x̂1,k) + w14S(x̂2,k)

0

]
(38)

On the other hand a RHONN model for immune response
(um) is described as follows by setting ur = 0

x̂1,k+1 = w11S(x̂2,k) + w12S(x̂1,k)S(x̂2,k) (39)
x̂2,k+1 = w21S(x̂2,k) + w22S(x̂1,k)um,k (40)

Additionally, immune response RHONN model (39-40) can
be rewritten as follows

fm(x̂k) =

[
w11S(x̂2,k) + w12S(x̂1,k)S(x̂2,k)

w21S(x̂2,k)

]
(41)

and,

gm(x̂k) =

[
0

w22S(x̂1,k)

]
(42)

Now a control law for each input can be synthesized as
in (21). In both cases for control law we set the desired
trajectory xδ = 0. For ur the following parameters are

set as follows P =

[
2.16 0

0 0.0036

]
and R = 1. For um

P =

[
0.0001 0

0 0.000015

]
and R = 1 were selected.

V. SIMULATION RESULTS

This section presents results obtained via simulations. The
EKF initial values for antivirals are selected as diagonal
matrices with the following nonzero elements: P1,0 = 1×106,
P2,0 = 1×103, Q1 = 100, Q2 = 1000, R1 = 1, R2 = 10000,
η1 = 0.91 and η2 = 0.34.

TABLE I
VIRAL DYNAMIC PARAMETERS

Parameter Nominal Value Units
p 6.31 1/day
K 7.7451 ×107 log10 copies/mL
cT 1.58×10−6 (1/day)(1/cell)
c 2.4 1/day
sT 10×4 cells/day
r 0.251 1/day
kT 3.16×104 log10 copies/mL
δT 0.1 1/day



On the other hand, for immune response the initial values
of the EKF are set as follows: P1,0 = 1×106, P2,0 = 1×103,
Q1 = Q2 = 10000, R1 = 100, R2 = 480, η1 = 0.91 and
η2 = 0.5.

Table 1 presents the parameters taken from patient D
presented in [6] with n = 2. The initial values of the dynamic
system (27)-(28) are V0 = 0.31 copies/mL and T0 = 106 cells
are set as suggested in [5].

(a) Viral load

(b) T-cell response

(c) Control law

Fig. 2. Viral dynamics, T-cell response and control law for antivirals
effects. In figure 2a the blue line represent the continuous system, red dashed
line display the neural identifier and black dashed line represent the detectable
levels. On the other hand in figure 2b the blue line represent the T-cell response
of continuous system and the red dashed line is the neural identifier. Finally
in figure 2c the blue line is the neural inverse optimal control law.

(a) Viral load

(b) T-cell response

Fig. 3. RHONN weights of antivirals. w11, w12, w13 and w14 are the
weights of viral load dynamics, w21 and w22 are the weights that corresponds
to T cell proliferation dynamics.

For simulations the sampling time is established as Ts =
0.01. From [5] infection time is assumed at −3 days post
symptoms onset, for this reason initial simulation time is
setting as t0 = −3.

In antiviral and immune response the control input begins
at day 2 post-symptoms onset, as suggested in other viral
treatments as in [9]. It should be noted that viral load cannot
be measured below detectable levels about 100 copies/mL;
in [28] suggests using half of the detection levels about 50
copies/mL.

A. Antivirals Effects

Fig. 2a and 2b present the viral load and T-cell response
obtained by antiviral effects, represented in the continuous
system as in (27)-(28) with um = 1 and the neural model
presented in (35)-(36); previous systems are using ur synthe-
sized by the neural inverse optimal control law displayed in
Fig. 2c. It can be seen in fig. 2a that the viral load is no longer
detectable at day 3.6 post symptoms onset. Fig. 2b displays
T cell maximum peak is achieved on day 2.3 post-symptoms
onset.

For this controller it was suggested in [29] that it should
maintain an effectiveness above 80% to reduce the peak viral
load if treatment is applied after symptoms onset. Fig. 2c illus-
trates that the proposed controller maintains an effectiveness



of approximately 100% until day 19 post symptoms onset.
Fig. 3a - 3b presents RHONN weights for model presented in
(35)-(36).

B. Immune response effects

(a) Viral load

(b) T-cell response

(c) Control law

Fig. 4. Viral dynamics, T-cell response and control law for immune
response effects. In figure 4a the blue line represent the continuous system,
red dashed line display the neural identifier and black dashed line represent
the detectable levels . On the other hand in figure 4b the blue line represent
the T-cell response of continuous system and the red dashed line is the neural
identifier. Finally in figure 4c the blue line is therapy provided by the neural
inverse optimal control law.

Viral load and T-cell responses obtained by immune re-
sponse are presented in Fig. 4a and 4b. Dynamics are repre-
sented by continuous system as in (27)-(28) with ur = 0 and

the neural model presented in (39)-(40). um is synthesized by
the neural inverse optimal control law displayed in Fig. 4c.
The RHONN weights of (39)-(40) are displayed in Fig. 5.

On day 3.1 post symptoms onset the viral load is no longer
detected as shown in fig. 4a. Fig. 4b displays T cell maximum
peak is achieved on day 2.1 post-symptoms onset.

(a) Viral load

(b) T-cell response

Fig. 5. RHONN weights of immune response. w11 and w12 are the weights
of viral load dynamics, w21 and w22 are the weights that corresponds to T
cell proliferation dynamics.

In both cases, a better response time can be observed by
decreasing the viral load in a shorter time compared to not
having any of these therapies; without these therapies the viral
load was no longer detectable until day 12. On the other hand
it can also be determined from the results obtained above, that
there is a greater number of T cells with the immune response
compared to the antiviral effects.

In Fig. 6 it can be observed that there is a difference of
approximately half a day in which the viral load is no longer
detectable; for that reason the immune response um,k obtains
a better effectiveness compared to the antivirals ur,k. Thus,
even if there is a 100% effective drug against COVID-19, the
results obtained show that a better medical therapy would be
to stimulate the immune response.

VI. CONCLUSIONS

In this paper a discrete time neural inverse optimal controller
is applied for the treatment of patients with COVID-19. For
system identification a RHONN is proposed, which is online



Fig. 6. Viral load comparison. Red line displays viral load obtained with
only antiviral effects and blue line display the viral load by boosting the
immune response effect.

trained with an EKF algorithm. The optimal controller is
implemented with antiviral and immune responses. Simula-
tions present the performance of each one control inputs.
The immune response effects displays a better performance
compared with the one using antivirals. Real-time implemen-
tation of these therapies is difficult, as some details such as
sampling, measurements and of course the candidate drug that
is available for the treatment of this disease have to be solved.
Future work will analyze both control inputs in the same
system, as well as test other control techniques for this system.
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