
CROSSTALK: Speculative Data Leaks
Across Cores Are Real

Hany Ragab∗†, Alyssa Milburn∗†, Kaveh Razavi§, Herbert Bos∗, and Cristiano Giuffrida∗

∗Department of Computer Science
Vrije Universiteit Amsterdam, The Netherlands

{hany.ragab, a.a.milburn}@vu.nl
{herbertb, giuffrida}@cs.vu.nl

§D-ITET
ETH Zurich, Switzerland

kaveh@ethz.ch

†Equal contribution joint first authors

Abstract—Recent transient execution attacks have demon-
strated that attackers may leak sensitive information across
security boundaries on a shared CPU core. Up until now, it
seemed possible to prevent this by isolating potential victims and
attackers on separate cores. In this paper, we show that the
situation is more serious, as transient execution attacks can leak
data across different cores on many modern Intel CPUs.

We do so by investigating the behavior of x86 instructions,
and in particular, we focus on complex microcoded instructions
which perform offcore requests. Combined with transient execu-
tion vulnerabilities such as Micro-architectural Data Sampling
(MDS), these operations can reveal internal CPU state. Using
performance counters, we build a profiler, CROSSTALK, to
examine the number and nature of such operations for many
x86 instructions, and find that some instructions read data from
a staging buffer which is shared between all CPU cores.

To demonstrate the security impact of this behavior, we present
the first cross-core attack using transient execution, showing that
even the seemingly-innocuous CPUID instruction can be used by
attackers to sample the entire staging buffer containing sensitive
data – most importantly, output from the hardware random
number generator (RNG) – across cores. We show that this
can be exploited in practice to attack SGX enclaves running
on a completely different core, where an attacker can control
leakage using practical performance degradation attacks, and
demonstrate that we can successfully determine enclave private
keys. Since existing mitigations which rely on spatial or temporal
partitioning are largely ineffective to prevent our proposed
attack, we also discuss potential new mitigation techniques.

Index Terms—transient execution attacks, side channels

I. INTRODUCTION

Recent research into transient execution vulnerabilities1

has shown that more attention should be paid to the in-
ternal details of CPU pipelines. Meltdown [1], Spectre [2],
Foreshadow [3], ZombieLoad [4] and RIDL [5] collectively
demonstrated direct information leakage across any and all
security domains supported by modern CPU cores. This is
due to the transient execution performed by modern CPU
pipelines, which allows an attacker to observe side-effects
of transiently executed code. Mitigations include hardware
updates, microcode updates, operating system updates, and
user-level defenses but they have been costly [6], [7] and

1also known as speculative execution vulnerabilities

incomplete [2], [5]. So far these attacks have required the
attacker and victim to share the same core, fueling the belief
that isolating different security domains on their own cores
would prevent these transient execution attacks – leaving us
only with well-understood timing attacks on shared resources
such as caches. Various scheduling mechanisms in operating
systems and hypervisors follow this belief and isolate different
security contexts on their own cores [8]–[10]. In this paper,
we challenge this belief and show that sensitive information
leaks across cores in modern Intel CPUs, via a staging buffer
that is shared across cores.

To investigate the leakage surface of transient execution
across cores, we build CROSSTALK, a framework for identify-
ing and profiling x86 instructions in different contexts. Unlike
previous work [11] which characterizes the performance of
instructions, CROSSTALK executes instructions in a variety of
different contexts (most importantly, with different operands),
which allows us to investigate a wider range of instruction
behavior, and collects data from a wider range of performance
counters. This led us to a number of interesting observations:
most importantly, the existence of a global (cross-core) shared
staging buffer in a variety of Intel processors that retains
information from previously executed instructions. We explore
this using the second phase of CROSSTALK, which uses the re-
cently discovered MDS transient execution vulnerabilities [4],
[5] to further investigate the nature of these instructions by
observing which instructions modify the buffer, and leaking
the data they leave behind in this buffer.

In more detail, the CROSSTALK analysis focuses on x86
instructions with non-trivial behavior, which we found to be
decoded to multiple micro-ops. Micro-ops for Intel processors
are undocumented and have, as of yet, received relatively
little scrutiny from the security community. The number and
nature of these micro-ops depend on the context of the
instruction (such as the operands provided), and in some of
these situations, they perform offcore reads and writes using
internal CPU interconnects. Two examples are the RDMSR
and WRMSR instructions, which allow privileged code to read
from and write to model-specific registers. We also found this
behavior in instructions typically available to userspace —

1852

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Hany Ragab. Under license to IEEE.
DOI 10.1109/SP40001.2021.00020

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
20

such as CPUID, RDRAND and RDSEED. Most crucially, we
observed that Intel CPUs perform reads from certain CPU-
internal sources using a shared ‘staging’ buffer. The contents
of this buffer are visible to any core on the system that can
execute these instructions—including non-privileged userspace
applications within a virtual machine.

The security implications of this behavior are serious, as it
allows attackers to mount transient execution attacks across
CPU cores, which implies that mitigations separating security
domains at the granularity of cores are insufficient. Although
our attacks do not expose the contents of memory or registers,
we exemplify the threat posed by this shared staging buffer by
implementing a cross-core attack for leaking random numbers
generated via the RDRAND and RDSEED instructions. We show
that we can exploit this in practice against SGX enclaves,
which are amenable to practical performance degradation
attacks. The leak allows attackers to observe the output of the
hardware random number generator (RNG) in other virtual
machines or even SGX enclaves on the same machine, even
when hyperthreading (SMT) has been disabled and all other
standard mitigations have been applied. Furthermore, given
that RDRAND and RDSEED are the only local sources of
randomness inside SGX, the attack compromises currently-
deployed SGX enclaves which rely on randomness for their
cryptographic operations. Finally, we show that even recent
Intel CPUs – including those used by public cloud providers
to support SGX enclaves – are vulnerable to these attacks.

To summarize, our contributions are:

• We present the design and implementation of
CROSSTALK, a profiler for analyzing the behavior
of instructions on Intel CPUs in different contexts. We
use CROSSTALK to perform an analysis of the behavior
of instructions on Intel CPUs, with a focus on complex
instructions and those performing undocumented
“offcore” accesses on internal CPU buses.

• We show that some of these offcore reads can leak
information across cores on modern Intel CPUs, due to
their use of a globally shared buffer (which we refer to
as the staging buffer). Using CROSSTALK, we analyze
the way in which instructions use this buffer, show that
it can contain sensitive information, and demonstrate that
this mechanism can be (ab)used as a stealthy cross-core
covert channel.

• To demonstrate the security impact of our findings,
we present the first cross-core attack using transient
execution. By leaking RDRAND output, we obtain an
ECDSA private key from an SGX enclave running on
a separate physical core after just a single signature
operation. More details about CROSSTALK and our at-
tack, including proof-of-concepts (PoCs) are available at
https://www.vusec.net/projects/crosstalk.

• We discuss existing mitigations and argue that they are
largely ineffective against our attack, and present results
for Intel’s new in-microcode mitigation.

II. BACKGROUND

Ever since the public disclosure of Meltdown [1] and Spec-
tre [2], transient/speculative and out-of-order execution attacks
have stormed onto the security stage with new and often
devastating vulnerabilities appearing constantly [1]–[5], [12],
[13]. They leak information from a wide variety of sources,
including data caches and CPU buffers such as (line) fill
buffers, load ports and store buffers. What these vulnerabilities
have in common is that fixing them is typically expensive [6],
[7], [5], or even impossible for existing hardware [14]. In
this paper, we make use of the MDS vulnerabilities [4], [5],
[13] as a vehicle for finding information leakage beyond what
happens inside a single core.

A. Microarchitectural Data Sampling (MDS)

The vulnerability which Intel calls Microarchitectural Data
Sampling (MDS), also referred to as RIDL [5], Zom-
bieLoad [4] and Fallout [13], allows attackers to leak sen-
sitive data across arbitrary security boundaries on Intel CPUs.
Specifically, they can obtain arbitrary in-flight data from inter-
nal buffers (Line Fill Buffers, Load Ports, and Store Buffers)—
including data that was never stored in CPU caches. We briefly
discuss these three buffers.

Line Fill Buffers (LFBs) are internal buffers that the CPU
uses to keep track of outstanding memory requests. For
instance, if a load misses the cache, rather than blocking
further use of the cache, the load is placed in the LFB and
handled asynchronously. This allows the cache to serve other
requests in the meantime. As an optimization, when a load
is executed and the data happens to be already available in
the LFB, the CPU may supply this data directly. Intel CPUs
also transiently supply this data when a load is aborted, due
to an exception or microcode assist (e.g., setting dirty bits
in a page table). An attacker who can observe side-effects
from transiently executed code can take advantage of this to
obtain data in LFB entries containing memory belonging to a
different security domain, such as another thread on the same
CPU core, or a kernel/hypervisor. This vulnerability is known
as Microarchitectural Fill Buffer Data Sampling (MFBDS).

Store Buffers (SBs) track pending stores. In addition, they
play a role in optimizations such as store-to-load forwarding
where the CPU optimistically provides data in the store buffer
to a load operation if it accesses the same memory as a prior
store. Again, this transiently forwarded data may belong to
another security domain, allowing an attacker to leak it.

Finally, load ports are used by the CPU pipeline when
loading data from memory or I/O. When a load micro-op
is executed, data from memory or I/O is first stored in the
load ports before it gets transferred to the register file and or
younger operations that depend on it. When load instructions
are aborted during execution, they may transiently forward the
stale data from previous loads, which attackers can leak using
transient execution.

As an example, we consider a ‘RIDL-style’ MDS attack
– using LFBs – performed with four steps. First, the attacker
creates a FLUSH + RELOAD array, with one cache line for each

1853

TABLE I: Examples of relevant CPU (Skylake) performance counters.

Name Mask Description

UOPS EXECUTED CORE Number of micro-ops executed on a given CPU core.
UOPS DISPATCHED PORT 0–7 Number of cycles where micro-ops were dispatched on a specific port.
IDQ MS UOPS Number of micro-ops provided from microcode.
OTHER ASSISTS ANY Number of (non-FP) microcode assists invoked.
MEM INST RETIRED ALL LOADS/ STORES Number of load/store instructions which reached retirement.
OFFCORE REQUESTS ALL REQUESTS Number of requests which “reached the Super Queue” (not in cache).
OFF CORE RESPONSE STRM ST Number of streaming store requests.
OFF CORE RESPONSE OTHER Number of miscellaneous requests.

possible value for the data (typically a byte) to be leaked, and
flushes it to ensure that none of these lines are in the cache.
Then, the attacker ensures that the processor uses some secret
data, for instance by prompting the victim program to read or
write such data, or by ensuring that such data is evicted from
the cache. Either way, the processor moves the in-flight data
into these Line Fill Buffers (LFBs). Next, the attacker performs
a load causing an exception or assist, for instance from an
address that causes a benign page fault. The load can forward
to dependent instructions despite not completing, using the
secret data from the LFB. The attacker’s transiently executed
code then uses the data as an index into the FLUSH + RELOAD
array. The corresponding cache line will be optimistically
loaded into the cache by the pipeline when it executes the
transiently executed code. Finally, by loading every element
of the array and timing the load, the attacker can determine
which one was in the cache. The index of the cached entry is
the secret value which was obtained from the LFB.

In November 2019, Intel announced several new MDS
vulnerabilities, among which TSX Asynchronous Abort (TAA)
with CVE-2019-11135 is perhaps the most prominent [4],
[5]. In a TAA attack, an aborted TSX transaction causes
the instructions currently under execution to continue until
retirement in a manner that is akin to transient execution—
allowing the attacker to leak information from the internal
buffers as described above.

B. Intel Micro-Ops/Microcode

While Intel microcode is undocumented and its behavior is
largely unknown, it is no secret that all x86 instructions are
translated to one or more micro-ops which have a RISC-like
format. Generally, the decoder performs a direct translation to
a small number of micro-ops (at most 4). In rare cases, larger
numbers of micro-ops are required, such as for microcode
assists (handling corner cases such as marking dirty bits in
page tables, or after a faulting memory load) and complex
instructions (where more than 4 micro-ops are needed, or
control flow is necessary). In those cases, the micro-ops
are instead fetched from the microcode ROM. To allow for
post-production bug fixes, Intel processors support in-field
microcode updates since the mid-1990s [15].

C. Intel Performance Counters

Many performance counters are available on Intel CPUs,
giving developers information about potential bottlenecks in

their code. More generally, they can be used to gain insight
into CPU behavior. Some examples can be seen in Table I.
The first two examples provide information about the decoding
and issuing of instructions, including the number of micro-
ops issued, and the number of micro-ops executed on each
execution port. Since micro-ops can only be executed on
specific (sets of) ports, the latter gives coarse information
about the types of micro-ops being executed. For example,
on Skylake, we observe [11] that the AESDEC instruction uses
port 0 (used for AES operations), and that it also uses ports
2/3 (used for loads) when the input is a memory operand.

There are other counters which can provide insight into the
micro-ops being executed. For example, one counter counts
the number of micro-ops decoded from the microcode ROM,
and another provides the number of invoked microcode assists.
Finally, we can observe information about loads and stores by
checking how many load/store instructions were retired, the
number of hits/misses at each level of the processor cache, as
well as by using the counters which provide the number and
type of ‘offcore’ requests (such as DRAM accesses).

D. Intel Software Guard Extensions (SGX)

Intel’s Software Guard Extensions (SGX) instructions create
so-called ‘enclaves’ to be executed using encrypted memory.
This protects sensitive data (such as encryption keys) from
potentially-hostile operating systems and/or hypervisors.

There have been a number of transient execution vul-
nerabilities allowing the contents of SGX enclaves to be
exposed to a hostile attacker [3], [5]. Mitigations against these
attacks have been implemented in microcode and on recent
CPUs; microcode now clears the L1 cache and internal CPU
buffers when leaving an enclave, and TSX transactions are
automatically aborted if an SGX enclave is running on a
sibling core. Enclaves can confirm that they are being run
in a secure environment using attestation [16], which allows
a remote party to ensure that SGX enclaves are running on
machines with up-to-date microcode, and that SMT is disabled
when running on hardware vulnerable to L1TF/MDS.

E. RDRAND

The RDRAND x86 instruction was first introduced in Intel’s
Ivy Bridge CPUs. It returns random numbers derived from a
digital random number generator (DRNG), and is available at
all privilege levels (including userspace and SGX enclaves).
Intel’s DRNG [17] outputs random seeds (processed using

1854

AES-CBC-MAC) and feeds them to a deterministic random-
bit generator (DRBG), which fills the global RNG queue
using AES in counter mode. More recently, the RDSEED
instruction was added in Intel’s Broadwell CPUs, allowing
access to higher-entropy randomness (intended for seeding
software PRNGs). AMD CPUs also support RDRAND and
RDSEED, although with a higher performance cost (around
2500 cycles for 64-bit RDRAND output on Ryzen).

Cryptographic applications often rely heavily on the con-
fidentiality of random numbers; an attacker who can predict
or obtain these random numbers can often break and even
obtain private keys. RDRAND provides a convenient mecha-
nism for generating cryptographically-secure random numbers,
to prevent such attacks. In environments such as SGX, the
only available source of randomness provided by the CPU is
through RDRAND and RDSEED instructions.

III. THREAT MODEL

We assume an attacker who aims to abuse transient ex-
ecution to disclose sensitive information from a victim that
is running on the same system. We further assume that all
standard hardware and software mitigations (available at the
time of writing) against transient execution are in effect.
Although co-location on the same physical system is required,
we assume that the operating system employs conservative
scheduling policies that avoid executing processes from dif-
ferent security domains on the same core [8]–[10]. Even
under these strong assumptions, we show that on many Intel
processors, an attacker can abuse transient execution to leak
sensitive information such as CPU-generated random numbers
from the victim regardless of the placement of the attacker and
the victim on different cores in the system.

Fig. 1: Overview of the two stages of CROSSTALK.

IV. CROSSTALK

Figure 1 shows the components of CROSSTALK. In the first
stage, CROSSTALK profiles all the x86 instructions that make

Fig. 2: Flow via shared staging buffer to fill buffers of specific
cores.

offcore memory requests. We use the output of this first stage
in combination with MDS to understand the interaction of
on-core LFBs with a globally-shared offcore buffer as shown
in Figure 2. With this knowledge, CROSSTALK’s second
stage automatically discovers how information leaks from one
instruction to another as they write to different offsets within
the offcore buffer. The output of CROSSTALK’s second stage is
a number of instructions, each capable of leaking information
from other instructions that are executed on different cores in
the system.

A. Instruction Generation

To understand which instructions on Intel’s CPU use non-
obvious micro-ops and how these instructions are implemented
in practice, CROSSTALK attempts to execute many variants
of x86 instructions, in different contexts. Previous research
(uops.info [11]) provides a dataset containing performance
counter information for many x86 instructions, in particular
port usage information and the number of executed micro-ops.
We needed to track a wider variety of performance counters,
which can be done using the information in this dataset
together with the tool used to generate it (nanoBench [18]).

However, although this existing dataset is sufficient for
simple instructions which are translated directly to micro-
ops by the hardware decoder unit, it fails to provide in-
formation about many microcoded sequences, which may
contain control flow based on their context. For example,
the value of the operands to some instructions drastically
modifies their behavior; for example, the leaf2 number passed
to CPUID. As noted in [11], performance differences due to
different register or intermediate values are not considered by
their tool. Error paths may only be exercised when incorrect
data is provided, and instructions behave differently in some
execution environments (such as inside virtual machines, in
different rings, or in SGX enclaves). Microcode assists [13]
are only executed in situations where they are necessary.

As such, CROSSTALK is designed to allow execution of
instructions in different situations and with different operands,
and allows us to profile their behavior in multiple different

2a CPUID leaf refers to the category of data being requested

1855

ways. This allows CROSSTALK to obtain a more compre-
hensive view of the behavior of the CPU, by increasing our
coverage of Intel’s microcode.

CROSSTALK’s first stage uses the uops.info dataset dis-
cussed above as a starting point to automatically generate both
user and kernel mode instructions of interest. CROSSTALK
then executes the resulting code in different contexts to collect
performance counter information, recording the values of
all supported performance counters before and after running
several iterations of the generated instructions. After each
run, we manually examined the results, and added code to
improve coverage in some cases. For example, after finding
all CPUID leaves by testing all values of EAX and observing
the differences as reflected in performance counters, we then
updated our code to ensure we had full coverage of potential
CPUID subleaves (specified by ECX) for each of these leaves.
Privileged instructions will often crash machines if executed
with arbitrary operands; we extended the coverage to include
some of these by adding manual annotations/code, such as
providing valid values for WRMSR.

Table II summarizes some representative examples of the
output of this phase of our tool for some instructions on an
Intel i7-7700K desktop CPU running Ubuntu 18.04.3 LTS with
kernel version 5.3.0-40-generic and microcode version 0xca3.
CPUID is a normal, userspace instruction, and is present in
the uops.info dataset, which claims it executes 169 micro-ops
on Skylake. As we can see in the table, the behavior of this
instruction depends heavily on the value of EAX (the leaf),
and only some of these variants make cross-core requests.
Similarly, RDMSR is a privileged instruction which depends on
the value of ECX, which specifies the MSR to read. We found
hundreds of different valid MSRs (470 on the i7-7700K), and
again we can see from the performance counters that many
of them execute different flows in the microcode, many of
which make cross-core requests (205 MSRs on the i7-7700K).
The uops.info dataset only presents results for a single MSR.
These examples demonstrate the importance of the context
when analyzing these instructions, as the number and nature
of the micro-ops executed changes significantly, depending on
the instruction’s operands.

B. Offcore Requests

We do not observe unexpected performance counter values
when executing non-microcoded instructions, where a small
number of micro-ops are generated directly by the decoder.
However, complex microcode flows with larger numbers of
micro-ops are more interesting. In particular, some instruc-
tions unexpectedly perform offcore requests, according to the
relevant performance counters. Specifically, we monitor the
total number of these memory accesses performed by each in-
struction using the OFFCORE_REQUESTS.ALL_REQUESTS
counter. We found that the responses to these offcore
requests can be broken down into categories using the

3Unless specified otherwise, we will use this system for our examples
throughout the paper.

1 for (int offset = start; offset < end;
2 offset++)
3 {
4 // Execute a leak primitive
5 cpuid(0x1);
6

7 // Perform invalid read to
8 // leak from an LFB at "offset"
9 char value =

10 *(invalid_ptr + offset);
11

12 // Expose result for flush+reload
13 (void)reload_buf[value];
14 }

Listing 1: Simplified example of leaking offcore requests.

OFF_CORE_RESPONSE event, which Intel provides to ob-
serve requests that miss in the L2 cache.

In particular, two counters allow us to categorize the re-
quests made by these instructions: STRM_ST (which counts
streaming store requests) and OTHER (which counts miscel-
laneous accesses, including port I/O, MMIO and uncacheable
memory accesses), which we find sufficient to distinguish our
cases of interest. For example, instructions responsible for
flushing caches appear to make one offcore store request for
every cache line flushed; CLFLUSH and CLFLUSHOPT make a
single request. However, the OFFCORE_RESPONSE counter
remains zero for these cases.

We encounter some unexpected behavior even when restrict-
ing our analysis to this limited subset of performance counters.
For example, the VERW instruction makes as many as 28
store requests, despite the fact that VERR makes none. While
this discrepancy may appear puzzling at first, the explanation
is simply that VERW has recently been repurposed to flush
internal CPU buffers (such as the line fill buffers), as a
mitigation for the MDS vulnerabilities [19].

However, our attention was drawn to the unexpected mem-
ory accesses performed by other instructions, which appear
to have no obvious reason to access memory at all. The
majority of other requests (corresponding to reads) seem to be
in the OFFCORE_RESPONSE.OTHER group, although there
are exceptions. For example, the SGX information CPUID
leaf increases the store counter by 28—the same number
of accesses as incurred by VERW, which implies that the
microcode for this leaf also performs CPU buffer clears.

C. Leaking Offcore Memory Requests

To investigate these memory reads further, we make use
of MDS [4], [5] which allows us to examine the contents of
internal CPU buffers. The hope is that doing so will reveal
the nature of these memory accesses. MDS allows attackers
to observe (normal) memory reads and writes performed by
microcode. An example is the contents of page table entries
fetched by the PMH. CROSSTALK uses the same vulnerability
to leak information about the memory accesses performed
by microcoded instructions that perform offcore memory re-
quests, as shown in Listing 1.

1856

TABLE II: Example results from the instruction profiling stage of CROSSTALK.

Instruction Description Executed
µOps

µOps from
Microcode
ROM

µOps
Dispatched
on Ports 2/3

Offcore
Requests

Offcore
Store
Responses

Other
Offcore
Responses

Retired
Insts.
Loads/-
Stores

CPUID Brand String 1 (0x80000002) 104 134 5 / 6 4 0 4 1 / 0
CPUID Thermal/Power Mgmt (0x6) 120 163 2 / 3 3 0 3 1 / 0
CPUID SGX Enumeration (0x12) (Subleaf 0) 3677 2939 297 / 304 30 28 2 1 / 0
CPUID SGX Enumeration (0x12) (Subleaf 1) 3694 2938 303 / 311 30 28 2 1 / 0
CPUID SGX Enumeration (0x12) (Subleaf 2) 3694 2942 302 / 309 30 28 2 1 / 0
CPUID Processor Info (0x1) 83 89 1 / 1 0 0 0 1 / 0
RDRAND DRBG Output 16 16 1 / 1 1 0 1 1 / 0
RDSEED ENRNG Output 16 16 1 / 1 1 0 1 1 / 0
CLFLUSH Address Not Cached 4 4 1 / 0 1 0 0 0 / 1
RDMSR Platform ID (0x17) 104 127 1 / 2 3 0 2 1 / 0
RDMSR Platform Info (0xCE) 122 155 1 / 2 3 0 2 1 / 0

[RDRAND and RDSEED return random numbers from an Intel on-chip hardware random number generator, CPUID allows software to discover details of the
processor, while RDMSR is used to read the content of model-specific registers.]

Consider the CPUID instruction being used to read the CPU
brand string – remember, the behavior of this instruction
depends on the requested (sub)leaf. Specifically, we read the
first brand string leaf on our i7-7700K, which is ‘Intel(R)
Core(TM’. First, we use MDS to leak load port contents from
a sibling thread, by performing a single vector load which
span a page boundary, where one or both of the pages are
invalid, and using FLUSH + RELOAD to obtain the value read
during transient execution. If both pages are invalid, we leak
the values ‘Inte’ and ‘ Cor’; if only the first page is invalid,
then we leak the values ‘l(R)’ and ‘e(TM’. These appear to
correspond to the values on the first and second load ports,
based on other experiments; in any case, it seems that the
four offcore requests correspond to these four read values.

Alternatively, we can use MDS to leak the contents of
the fill buffer. We saw the same results using both MFBDS
and TAA variants; example code using TAA can be found
in Appendix A. Here, we consistently leak the entire value,
as opposed to the individual components. This implies that
not only do these loads go via the fill buffer, but also that a
single fill buffer is used for the entire offcore request. Since
the fill buffer is 64 bytes, we can also leak data beyond the
first 16 bytes of the buffer. This produces inconsistent results;
sometimes the next bytes of the buffer contain the remainder
of the brand string, but it can also contain other values.

To explore this, we run the following experiment: on one
core, we execute CPUID with the leaf that reads the first part of
the brand string. As we saw already, this uses the first 16 bytes
of the fill buffer. On another core, we use CPUID to read the
second part of the brand string, which turns out to write to the
next 16 bytes of the fill buffer. Interestingly, using MDS we
observed the result of the instruction executed on the other
core in the line fill buffer of the current core. Specifically,
we saw the first 32 bytes of the CPUID brand string when
leaking the contents of the fill buffer – but not the remaining
bytes (since we did not request the third brand string leaf).
Therefore, we are not just leaking the entire brand string.

This experiment implies that that we are leaking contents
from an offcore global staging buffer; our thoughts about the

nature of this buffer can be found in Appendix VIII. After
reporting our findings to Intel, they confirmed that a global
staging buffer is responsible for our results.

We used the insight that we can leak the contents of this
staging buffer using CPUID as a starting point for building the
second stage of CROSSTALK, which automatically discovers
which code sequences (instructions together with the necessary
context, such as register initialization) write to which offsets
within this buffer.

Fig. 3: Microcode reads cause data to be read from the DRNG
using per-core fill buffers, via a shared staging buffer.

D. Profiling The Staging Buffer

In the second stage of CROSSTALK, we aim to automatically
analyze how the previously-discovered code sequences that
send offcore memory requests interact with the globally-
shared staging buffer. For each sequence, we want to know
which values the CPU stores in the staging buffer, which
offsets they use, and to find any additional staging buffers if
present. Figure 4 shows the design of CROSSTALK’s second
stage. On one physical core, we run the target instructions
that potentially interact with the staging buffer. In the other
physical core, we try to observe whether the contents of the
staging buffer changes due to the execution of the target
instructions. To make sure that we observe the contents of

1857

Fig. 4: Staging buffer analysis process of the second stage of CROSSTALK.

the staging buffer, we need to ensure that we continuously
pull the data from the staging buffer. We use what we call
masking primitives for this purpose.

The masking primitives overwrite a portion of the staging
buffer while bringing in the data from the rest of the buffer.
We refer to the region of the staging buffer overwritten by
each masking primitive as its “mask”. To obtain the entire
contents of the staging buffer, we need at least two masking
primitives with different (non-overlapping) masks. The first
primitive allows us to obtain the data which is not overwritten
by the mask, and the second primitive allows us to obtain the
remaining data. The obvious candidates for masking primitives
are the various leaves of the CPUID instructions, which provide
primitives meeting these requirements.

To perform our profiling, we need masking primitives which
cover all offsets in the buffer, and which write a constant
(or predictable) value to these offsets. Once we have such
primitives, we can profile code sequences by comparing the
contents of the staging buffer to the ‘expected’ data at each
offset. If we see a significant number of unexpected values
at any given offset, we record that the code sequence being
profiled modifies that offset of the staging buffer.

Since this is only possible if we are sure that each sequence
is not overwriting the contents of the buffer with the same
value written by our masking primitives, we need two masking
primitives for each byte, with different values. While profiling
the buffer, we search for suitable additional masking primitives
which write known values to the staging buffer, gaining access
to additional primitives as we profile.

An example of this process can be seen in Figure 5. Here,

the masking primitives are three calls to CPUID, reading the
three leaves corresponding to the brand string. These calls
overwrite the first 48 bytes of the staging buffer with known
data. After running a target instruction sequence containing
RDRAND, some of the offsets in the staging buffer are over-
written with new data; our staging buffer analysis records that
RDRAND modifies these offsets. We call these sequences ‘leak
primitives’, since when executed, they potentially leak the data
to an attacker who can run code on another core.

Some leak primitives will write constant values, allowing us
to also record the data written by that code; for example, the
CPUID brand string leaves always write the brand string itself.
Other instructions, such as RDRAND, do not write predictable
data, so we mark the values as unknown. If necessary, we can
also use these as masking primitives, by leaking the value they
write to the staging buffer before every attempt to profile a
sequence. We can also build our own masks by using WRMSR
to modify the value of MSRs and then reading them back;
for example, RDMSR 0x395 can be used as a mask with an
arbitrary 48-bit value.

Representative results obtained from CROSSTALK’s second
stage can be found in Table III. We found various leak
primitives including instructions that interact with Machine-
Specific Registers (MSRs), and instructions that are used for
hardware random number generation. Although disclosure of
the majority of this information does not seem to present
a security threat, the RDRAND and RDSEED instructions are
more of a concern. In Section V, we discuss how we can
build practical real-world exploits attacking these instructions.

1858

Fig. 5: Profiling a target instruction. Step 1: Prime the staging buffer by executing leak primitives which write known data to
known offsets within the buffer. Step 2: Execute the target instruction (here, RDRAND). Step 3: Observe any overwritten bytes
(by comparing to step 1).

TABLE III: Examples of primitives we found to be using the staging buffer.

Instruction Operand(s) Description Offcore
Responses

Staging Buffer
Offsets

Leaked Data from Staging Buffer

RDRAND — DRBG Output 1 32–39 Random Number
RDSEED — ENRNG Output 1 0–7 Random Number
CPUID 0x80000002 Brand string 1 4 0–15 Brand String part 1
CPUID 0x80000003 Brand string 2 4 16–31 Brand String part 2
CPUID 0x80000004 Brand string 3 4 32–47 Brand String part 3
CPUID 0x6 Thermal/Power Management 3 0–7, 17–28, 48–55 Unknown (includes raw MSR value)
CPUID 0x12 (Subleaf 0) Intel SGX Enumeration 30‡ 0–7, 56–63 Unknown
CPUID 0x12 (Subleaf 1) Intel SGX Enumeration 30‡ 0–7, 56–63 Unknown
CPUID 0x12 (Subleaf 2) Intel SGX Enumeration 30‡ 0–7, 56–63 Unknown
RDMSR 0x20 Bootguard Hash 1 1 0–7 Unknown
RDMSR 0x13A Bootguard Status 3 16–23, 48–55 Unknown
RDMSR 0xCE Platform Information 2 24–31 Raw MSR value
RDMSR 0x17 Platform ID 2 16–23 Raw MSR value

Offcore responses are ‘other’ except: ‡28 are strm st

V. EXPLOITATION

The disclosure capabilities we identified can be used to
observe the contents of the globally-shared staging buffer in
combination with MDS attacks, allowing code running on one
core to read buffer data belonging to a different core. These
attacks can be performed on any core of a system and hence
any mitigation isolating security domains on a per-core basis
is ineffective. Given their non-trivial security impact, we focus
our exploitation on the RDRAND and RDSEED instructions.

First, we discuss details and challenges involved in per-
forming attacks based on the relevant instructions. Then, we
demonstrate such attacks are realistic with an exploit that can
obtain private keys by observing the staging buffer while an
SGX enclave performs cryptographic operations.

A. Available Primitives

Since we can sample the staging buffer contents at an
arbitrary time, we can craft a probing primitive to detect when
instructions touching the buffer have been used. We do this by
sampling the buffer at regular intervals with a leak primitive,
and then comparing the data at a specific offset to the
previously-seen values. For instance, we can determine when
the Linux CRNG is being used (such as filling AT RANDOM
when processes are created), since the _extract_crng
function always mixes new RDRAND output into the state
before outputting data.

We can also craft an information disclosure primitive which
leaks the contents of the staging buffer, and discloses security-
sensitive data such as the actual RDRAND output. As we
shall see, this example in particular has serious consequences
for code performing cryptographic operations. To do so, we
can use any of the leak primitives we have identified that
transiently sample data from the staging buffer, with some
environment-specific constraints.

B. Constraints

In practice, not all of the leak primitives are available to
attackers; we consider some typical limitations in different
environments, and how they can be avoided. Our attacks can
be mitigated in some environments due to such restrictions;
we discuss this in Section VII.

Userspace: The CPUID, RDRAND and RDSEED instructions
can all be executed from userspace.

Virtual machines: If attackers are only able to run code
inside a virtual machine, their ability to run disclosure primi-
tives to access the staging buffer will be limited. For example,
RDMSR is likely to be restricted or prohibited entirely, and
typically VMs also trap on CPUID, to allow the hypervisor to
restrict the information and capabilities which will be reported
to the guest. However, two disclosure primitives can still be
executed from userspace in the default configurations of many

1859

virtual machines: RDRAND and RDSEED. An attacker can use
one of these primitives to leak the output of the other.

When SMT is enabled, an attacker can make hypervisor
requests that involve disclosure primitives (a form of ‘confused
deputy’ attack), and then read the staging buffer from the fill
buffer. For example, Xen will call RDMSR with 0x17 (platform
ID) when a guest attempts to read MSR 0x17. Even if MDS
mitigations (such as scheduling-based isolating strategies [20])
are in place, this allows an attacker to leak the contents of the
staging buffer from the sibling thread—disclosing data of a
victim running on a different core.

SGX: Although most relevant instructions are not available
within SGX, a theoretical attacker inside an SGX enclave
could (much as in the VM case) mount a cross-core attack
using RDRAND and RDSEED.

C. Synchronization

A probing primitive allows an attacker to detect accesses to
the staging buffer and synchronize with the victim. Since we
only need to check whether the byte we leak is the byte we
expect, this can be done with a single flush and a single reload,
and the performance overhead is dominated by the execution
time of our leak primitive. However, to preserve synchro-
nization, an attacker armed with our information disclosure
primitive needs to leak data from the buffer at a sufficiently
high sampling rate to keep up with the consumption of random
numbers by the victim.

Each RDSEED or RDRAND instruction provides a maximum
of 8 random bytes (one 64-bit register). Many applications
require a larger amount of entropy, so these instructions can
potentially be called in a loop. Both instructions take approxi-
mately 370 cycles on Skylake, so generally, an attacker will not
have enough time (assuming a relatively fast victim loop) for
an attacker to complete leaking from FLUSH + RELOAD before
it is overwritten with the next value. Since up to two bytes
can be efficiently obtained in a single ‘round’ on Skylake,
and an attacker can use multiple cores at once, an attacker
with access to sufficient CPUs/threads may be able to leak all
8 bytes at once. Even so, it appears impractical to leak the
full entropy from a victim which executes several (or many)
RDRAND instructions in quick succession.

In practice, a single byte (or less) is sufficient for many
attacks [21]. However, where it is convenient or even necessary
to leak more bytes, we can use a performance degradation
attack to slow down the victim [22]. In the following, we first
analyze how we will actually perform these leaks efficiently.
Then, we show how an attacker can induce performance
degradation on a realistic victim (an SGX enclave) to mount
practical and reliable exploits.

D. Optimizing Leakage

We found that an attacker can obtain better results where
SMT is available; they can run the FLUSH + RELOAD loop
on one logical thread, and a tight loop using a leak primitive
to fetch the staging buffer (here, we used RDRAND) on the
sibling thread. Both of these threads are controlled by the

attacker and in the same security domain; the victim is running
on a different physical core. We found this to be the best
way to almost guarantee that the leaked fill buffer would
contain staging buffer content. Where SMT is not available,
we need to ensure that we leak the LFB which contains the
staging buffer. On our i7-7700K, we determined that this
occurs when we use CLFLUSH to flush 15 cache lines after
running the leak primitive; note that this can be done as part
of FLUSH + RELOAD. We made use of the TAA variant of
the MDS vulnerabilities to actually leak the fill buffers, since
it is fast and works even on CPUs with mitigations against
other MDS attacks. Again, see Appendix A for an example
code listing. Where TSX is unavailable, an attacker can instead
obtain fill buffers using MFBDS [5].

E. Performance Degradation

There are different ways to slow down a victim performing
a target security-sensitive computation. For instance, we can
use microarchitectural profiling to determine the resources
the victim is bottlenecked on and flush such resources (e.g.,
last-level cache lines) from another core to slow down the
victim [22], [23]. If we are specifically targeting RDSEED
instructions, we can attempt a more targeted performance
degradation attack.

Since the amount of global entropy available is limited,
calls to RDSEED are unsuccessful (returning zero) when no
entropy is currently available. An unsuccessful call does not
overwrite the previous contents of the staging buffer. Hence,
an attacker can make their own calls to RDRAND or RDSEED,
consuming entropy and increasing the time period between
successful RDSEED calls by the victim. A successful call to
RDRAND or RDSEED will overwrite the previous data in the
buffer, which means that old data cannot be leaked after this
point. However, by then, an attacker may have already read
the bytes; FLUSH + RELOAD can complete after this point.

A practical avenue to mount generic performance degrada-
tion attacks is SGX, where an attacker can slow down the
execution of a victim enclave at will by inducing frequent
exceptions [24]. As such, and given that SGX enclaves rely
on RDRAND as a source of entropy (amplifying the impact
of the attack), we do not attempt to use other performance
degradation techniques but instead specifically target code
running in an SGX enclave in our exploit.

F. Leaking RNG Output From SGX

Since an attacker is assumed to control the entire envi-
ronment, enclave code running in Intel’s SGX is unable to
trust local sources of random data, other than RDRAND. Even
typical forms of ‘additional entropy’, such as the timestamp
counter, are unavailable in most implementations of SGX.
Intel state that CPUs which support SGX2 allow it to be
used inside enclaves, but even then, attackers can determine
and/or control (at least within a narrow range) the value of
this counter. Although a coarse “trusted clock” source is also
available (sgx_get_trusted_time), this does not appear
to be widely used and is primarily intended against replay

1860

attacks. This trusted clock is provided by CSME, which has
itself been the subject of several recent vulnerabilities [25],
[26], and Intel acknowledge that CSME secure time remains
vulnerable to physical attackers on some platforms [27].

Many enclaves and SGX-based defenses explicitly use
RDRAND [28], [29]. Other enclaves use the SGX SDK’s
sgx_read_rand function, which generates entropy in a
loop using RDRAND to generate 32-bit random numbers, and
copies the results directly into the output buffer.

Hence, by dumping RDRAND data, we can leak all
the random entropy used by arbitrary security-sensitive
code running inside an SGX enclave, allowing recovery of
cryptographically-critical data such as random nonces. As
mentioned, one option is to induce controlled exceptions on
the victim SGX enclave and single step its execution using
SGX-Step [24]. We could then sample the buffer after every
RDRAND from the very same core. However, this exploitation
strategy can be easily mitigated in software or microcode (as
we propose in Section VII-E). As such, we instead opt for an
asynchronous exploitation strategy that is significantly harder
to mitigate. In particular, we first induce exceptions on the
SGX enclave only to mount a performance degradation attack
and slow down the execution of the victim. Then, we use
our leak primitives from a different core to mount a hard-to-
mitigate (asynchronous) but reliable (since the victim is much
slower than the attacker) cross-core attack.

As mentioned earlier, the primary challenge for an attacker
is to leak the RDRAND results fast enough to keep up with
the victim, since the reload step (after the buffer has already
been transiently accessed) is our primary bottleneck. If we can
use exceptions to prevent an enclave from executing RDRAND
faster than we can leak it, then we can reliably leak all of the
entropy used by the enclave.

In fact, this means that we only need to degrade the perfor-
mance of an enclave when it is actively calling RDRAND–
and we found that sgx_read_rand actually makes use
of another function, do_rdrand, to actually perform the
RDRAND calls. Due to the convenient placement of these
functions in different pages in all the enclaves we inspected,
we can simply use page faults on the pages containing the
two different functions to enforce one RDRAND call at a time.
If enclave authors attempt to mitigate our attacks by using
multiple calls to RDRAND in quick succession in a single page,
we can simply resort to a “standard” SGX-Step approach.

G. Attacking Crypto In SGX

To exemplify the exploitation capabilities of our primitives,
we present a cross-core exploit leaking random nonces used
by an (EC)DSA implementation running in an SGX enclave.
Previous research [21] shows that leaking a small number of
bits of a random nonce is sufficient to recover private keys,
using a small number of ECDSA signatures. We show our
exploit exceeds such expectations by recovering all of the bits,
with just a single signature.

1 void get_SignedReport(char *p_report,
2 sgx_ec256_signature_t *p_sig) {
3

4 sgx_ecc256_open_context(&handle);
5

6 // sign g_rpt with g_priv_key
7 sgx_ecdsa_sign(g_rpt, g_rpt_size,
8 &g_priv_key, p_sig,
9 handle);

10

11 // return the signature contents
12 memcpy(p_report, g_rpt, g_rpt_size);
13 }

Listing 2: SGX enclave function

An ECDSA signature consists of a pair (r, s), where r
depends only on k, and s = k−1(z+rp)†, where z is based on
the hash of the input, and p is the private key. By rewriting this
as p = (sk − z)/r, an attacker who can generate a signature
(r, s) with a known nonce k can simply solve for p.

The SGX SDK provides an sgx ecdsa sign function for per-
forming ECDSA signatures with a private key. For example, it
is used by the certify enclave function of Intel’s Provisioning
Certificate Enclave.

The default configuration for Intel’s SGX SDK per-
forms cryptographic operations using the Intel IPP crypto
library. When generating ECDSA signatures, it uses a nonce
(ephemeral key) k based on the output of sgx ipp DRNGen,
which in turn calls the sgx read rand function discussed
above. This means that k can be calculated by an attacker
who can observe the output of RDRAND.

To demonstrate this is feasible, we attack a simple victim
SGX enclave that uses sgx ecdsa sign to sign a message,
and then returns both the message and the signature (r, s).
A simplified listing of the function can be seen in Listing 2.

To perform the attack, we start executing the victim enclave,
while our exploit running on another core collects random data
from the staging buffer as described above. Specifically, we
simply use SGX-Step to cause a page fault when execution
enters the page containing do rdrand, single-step for several
instructions (to ensure RDRAND has been executed), and then
wait for 1ms to ensure that our exploit code has collected
the staging buffer. In practice, 1ms is enough time to collect
thousands of results from the staging buffer, which allowed us
to exclude noise, and differentiate the enclave-collected en-
tropy from normal system entropy. If needed, synchronization
between stepping core and the leaking core could be used to
obtain better results.

Afterwards, we possess the signature (r, s), and can im-
mediately calculate z by hashing the message. We can then
attempt to recover the private key p by trying all likely values
for k – in our case, to find candidates for k, we simply
identified all entropy which appeared in the staging buffer at

†For simplicity, we omit details such as the requirement that all calculations
are done modulo n.

1861

1 msgHash, r, s = call_enclave()
2 recovered_entropy = get_leaked_entropy()
3 z = int(msgHash, 16)
4

5 for k in recovered_entropy:
6 p = ((s*k - z) * inverse_mod(r, n)) % n
7

8 if attemptSign(msgHash, p, k) ==
msgHash:↪→

9 print "key is: " + hex(p)

Listing 3: ECDSA key recovery

a regular interval (slightly longer than our 1ms wait period),
and made a list containing all candidates.

We implemented the key recovery step in Python, using
the ecdsa library. An overview of our attack can be seen in
Listing 3. When the SGX enclave calls Intel’s IPP crypto
library, it computes k by making 8 calls to RDRAND, using 32
bits each time. We take every possible linear sequence of 8
values in the entropy observed in the staging buffer during our
attack, compute the relevant value of k, and check whether it is
the private key (by performing the signature again ourselves).

We performed this attack on an i7-7700K CPU with up-to-
date microcode as of January 2020, and with SMT disabled.
When encountering a page fault, we attempt 10 steps (the
do rdrand function executes at least 7 instructions), wait 1ms
and then re-protect the page. Each execution of the enclave
code causes exactly 29 page faults; by running the enclave
in debug mode, we can determine that only 10 of these were
calls to do rdrand, and the remainder were other enclave code
which happened to be located on the same page (in our case,
the top-level enter enclave function). Since our attack relies
only on degrading the performance of code calling RDRAND,
and does not rely on any synchronization, the presence of these
other page faults makes no difference.

Our leak code collected between 200 and 250 identical
values from the staging buffer for every confirmed RDRAND
leak (one which successfully produced the private key), when
performing 3 iterations of FLUSH + RELOAD for each byte.
After making 100 unique attempts, we successfully recovered
the private key (and reproduced the signature) after just this
single enclave run in 92 of the attempts, a success rate of
>90%. This success rate is without any synchronization on
our entropy collection, and so without filtering out entropy
which was generated by code other than the target enclave.
We also do not attempt to brute-force any incorrect bytes,
since we have ample time to collect the exact contents of the
staging buffer.

Note that if a private key is generated by the SGX enclave
itself, an even simpler attack is possible; an attacker can
instead observe the random values used during creation of the
key, and directly obtain the private key. This differs only from
the above-described attack in that we compute candidates for p
directly, rather than k, and a different approach must be taken
to verify the key (e.g., computing the public key or checking a
signature). We confirmed this by successfully performing such

an attack against an example enclave using Intel’s IPP library.
Although many cryptographic libraries perform ECDSA sig-

natures or compute keys in this way, some (such as OpenSSL)
compute the nonce k using both random entropy and the
contents of the private key, which prevents this attack from
succeeding; see Section VII.

H. Affected Processors

We ran CROSSTALK on many recent Intel CPUs to check
whether they are vulnerable to our attacks by checking whether
RDRAND output could be leaked across cores. As shown in
Table IV, these attacks can be performed on many Intel CPUs,
even with up-to-date microcode at the time of our research.

We could not reproduce our results on our Xeon Scalable
CPU, which does not appear to leak a ‘staging buffer’ when
microcode is reading from internal resources. Intel informs us
that these ‘server’ class CPUs, which include Xeon E5 and
E7 CPUs, are not vulnerable to our attacks.

However, our results show that a variety of desktop, laptop
and workstation CPUs are vulnerable to our attacks, including
Xeon E3 and E CPUs. These ‘client’ class CPUs are used
by some cloud providers to provide support for SGX, which
is not yet supported on Intel’s ‘server’ CPUs. Both Alibaba
and IBM offer Xeon E3 v6 CPUs (like the Xeon E3-1220
v6 we tested) with SGX support, although they only offer
them as bare-metal dedicated machines. Other cloud providers
appear to use vulnerable CPUs in shared configurations; for
example, Azure’s preview SGX support appears to use the
Xeon E-2288G, which we have shown to be vulnerable. After
disclosure Intel released a complete list of the processors
affected by this vulnerability [30].

VI. COVERT CHANNEL

As a proof-of-concept, we implemented a covert channel
using CPUID and RDRAND, which are available to userspace
applications and could be used by applications which are
sandboxed or running inside a container. It implements com-
munication between two different physical cores.

To send a character, we call RDRAND repeatedly until the
least significant 8 bits are the character we want to transmit,
and then call CPUID to signal that we are ready. The receiver
waits until they see CPUID output in the staging buffer, leaks
the first byte of RDRAND, and then acknowledges reception
by overwriting the ready signal with another CPUID leaf at
the same offset. We again use the code in Appendix A.

Even without using SMT, our naive implementation man-
ages to transmit data between physical cores at 3KB/s, with
an error rate of <5%. We only perform full (256-entry)
FLUSH + RELOAD rounds until we observe a leaked character;
we then perform a second FLUSH + RELOAD round for a
single cache line, to verify our read was correct.

Although we need a few entries in the L1 cache to per-
form FLUSH + RELOAD to observe the results of transient
execution, this covert channel has a minimal impact on the
cache. Some calls to CPUID and short loops of RDRAND are
not unusual in real-world code, but it would also be possible

1862

TABLE IV: List of the tested microarchitectures.

CPU Year Microcode Staging
Buffer
Present

Supports
SMT

Vulnerable to
Cross-Core

Attacks

Intel Xeon Scalable 4214 (Cascade Lake) 2019 0x500002c ? 3 7
Intel Core i7-0850H (Coffee Lake) 2019 0xca 3 3 3
Intel Core i7-8665U (Whiskey Lake) 2019 0xca 3 3 3
Intel Xeon E-2288G (Coffee Lake) 2019 ? 3 3 3
Intel Core i9-9900K (Coffee Lake R) 2018 0xca 3 3 3
Intel Core i7-7700K (Kaby Lake) 2017 0xca 3 3 3
Intel Xeon E3-1220V6 (Kaby Lake) 2017 0xca 3 7 3
Intel Core i7-6700K (Skylake) 2015 0xc2 3 3 3
Intel Core i7-5775C (Broadwell) 2015 0x20 3 3 3
Intel Xeon E3-1240V5 (Skylake) 2015 0xd6 3 3 3

to use a mix of RDSEED (to pick a value to leak) and RDRAND
(to leak the value), with a different synchronization method.

Short bursts of noise cannot be avoided due to other
applications executing instructions (such as RDRAND) which
overwrite the staging buffer themselves, but we did not en-
counter a significant increase in errors while running typical
applications (e.g., Chrome and apache2). The covert channel
can be easily disrupted by running leak primitives (which
themselves overwrite the staging buffer) on another core; if
only some offsets in the staging buffer are used, a one-bit
covert channel could still be constructed using a leak primitive
that writes to the remaining offsets.

VII. MITIGATIONS

A. Software Changes

Since our demonstrated attacks are only relevant where
RDRAND and RDSEED are used and where the resulting
entropy must be kept confidential (e.g., in cryptographic algo-
rithms), software changes may be sufficient to largely mitigate
our attacks. Some software which relies on cryptographically
secure random number generation has already stopped trusting
hardware-based random number generators such as RDRAND.
For example, the Linux kernel default is only to use them
to initialize entropy stores, and OpenSSL has disabled the
RDRAND ‘engine’ by default since 2014 (version 1.0.1f [31]).

As discussed, for SGX enclaves, RDRAND and RDSEED
instructions are the only local source of trusted entropy.
Nonetheless, it is often still possible to limit the impact of
our attacks. For example, an algorithm such as EdDSA can be
used in place of ECDSA to eliminate the need for entropy to
generate signatures. And if ECDSA is required, private data
can be mixed into k when generating ECDSA signatures (as
seen in OpenSSL). It may also be possible to obtain random
entropy by opening a secure channel to a trusted remote server.

Countermeasures preventing performance degradation at-
tacks against SGX enclaves exist but may be inappropriate or
difficult to apply against our attack. For example, T-SGX [32]
runs enclave code inside TSX transactions, which prevents
single-stepping code; however, RDRAND and RDSEED always
abort TSX transactions on recent CPUs, so these instructions
must be run outside transactions and can be trapped. Other
defenses attempt to detect high levels of interruptions (aborted

transactions or enclave exits), which prevents single-stepping
through SGX enclave code. One example is Déjà Vu [33],
which again only protects instructions which can be run
inside transactions. However, an adaptation of a non-TSX-
based defense such as Varys [34] (which requires SMT)
could help prevent an attack from making use of performance
degradation, if tuned to an appropriately high level of paranoia.

B. Disabling Hardware Features
Some hardware features such as SMT and TSX (for TAA)

improve the performance of our attacks. Hence, disabling
SMT and TSX can frustrate (but not eliminate) exploitation
attempts. These features are still in widespread use in real-
world production systems, and we found both to be enabled
by default in public cloud environments. Intel specifically do
not recommend disabling SMT [35], but this is necessary to
mitigate L1TF/MDS attacks against SGX on older CPUs.

Cloud environments, and hypervisors in general, instead
attempt to mitigate SMT-based attacks by isolating code from
different security domains on different physical cores [20],
and flushing CPU buffers when switching between domains.
However, since our attacks works across different physical
cores, these mitigations are ineffective against them.

Similarly, TSX is still enabled in many environments to
accelerate concurrent applications, and Intel suggest that TAA
can be mitigated by using MDS mitigations to clear buffers
when switching between security domains, along with mi-
crocode changes which attempt to mitigate attacks against
SGX by aborting TSX transactions when a sibling thread is
running an SGX enclave [8]. Intel has also updated the remote
attestation mechanism to ensure the new microcode has been
applied. However, since TSX transactions are still allowed on
other physical cores, these mitigations are ineffective against
our attacks on CPUs vulnerable to TAA.

C. MDS Mitigations
Since our work depends on MDS-class vulnerabilities,

CPUs with in-silicon mitigations against MDS-class vulnera-
bilities are no longer vulnerable to our attacks. Unfortunately,
even these recent CPUs are still vulnerable to TAA. This can
be mitigated by disabling TSX, but again, this does not apply
to SGX, in the absence of a microcode update that disables it
entirely (rather than leaving it under operating system control).

1863

TABLE V: CROSSTALK results after applying the microcode update containing Intel’s mitigation.

Pre Microcode Update Post Microcode Update

Instruction Operands Number
of Cycles

Executed
µOps

Offcore
Requests

Number
of Cycles

Executed
µOps

Offcore
Requests

RDRAND — 433 16 1 5212 7565 6
RDSEED — 441 16 1 5120 7564 6

D. Trapping Instructions

Trapping and emulating (or forbidding) the specific in-
structions our exploits need is another avenue for mitigation.
Instructions that read/write MSRs are privileged and are al-
ready trapped by the operating system kernel when used by
userspace. However, CPUID, RDRAND and RDSEED cannot be
trapped by an operating system without use of a hypervisor.

In virtualised environments, it is possible to trap all of these
instructions. First, MSR bitmaps can be used to disable access
to specific MSRs from a VM, causing RDMSR and WRMSR
instructions to trap. Second, hardware virtualisation extensions
can be configured to cause a VM exit on a wide variety of
other instructions, including RDRAND, RDSEED, and CPUID.
This strategy can prevent code running in virtual machines
from mounting attacks using these instructions, but may result
in lower performance due to a larger number of VM exits and
the need to emulate such instructions on the host.

Hypothetically, if all other relevant existing and future
microcoded instructions can be disabled in VMs, and RDSEED
is also disabled on the host system, then it may be possi-
ble to enable RDRAND for VMs (removing the performance
penalty) without exposing RNG results. This is because run-
ning RDRAND will overwrite the relevant portion of the staging
buffer and the same instruction cannot be used to leak the
RDRAND results. However, the offending instructions can still
be used from native execution to leak information from a VM.

Finally, trapping instructions is not a suitable mitigation
strategy for SGX enclaves, where an attacker is assumed to
have control of privileged code underpinning enclaves. In fact,
when SGX enclaves are run inside a VM configured to cause
a VM exit on RDRAND and RDSEED, attacks are even easier.
Such targeted traps allow an attacker to determine exactly
when an enclave runs one of these instructions.

E. Staging Buffer Clearing

Similar in spirit to the VERW MDS mitigation, it is possible
for microcode to clear out the staging buffer before an attacker
gets a chance to leak it. However, in contrast to buffers used
by existing MDS attacks, the staging buffer has cross-core
visibility and an attacker can always leak RDRAND results at
the same time as they are being read by another CPU. As such,
existing mitigation strategies that clear out buffer content at
well-defined security domain switching points are ineffective.

Nonetheless, having microcode clear out the staging buffer
immediately after reading data from it would significantly
reduce the time window available to an attacker, reducing
the attack surface. This strategy can also work for SGX
enclaves. In absence of a microcode update, software can use

instructions to overwrite the sensitive regions of the staging
buffer with non-confidential information after using RDRAND
or RDSEED, again reducing the time window for an attacker.
However, this software-only strategy is again not a suitable
mitigation for SGX enclaves, where an attacker can single-
step code and leak values before they are overwritten.

F. Intel’s Fix

Clearing the staging buffer can mitigate this vulnerability
if it were possible to ensure that the staging buffer cannot be
read while it may contain sensitive contents. Intel’s proposed
mitigation for these issues does just this, locking the entire
memory bus before updating the staging buffer, and only
unlocking it after clearing the contents. Due to the potential
whole-system performance penalty of locking the entire bus,
this is only implemented for a small number of security-critical
instructions – specifically, RDRAND, RDSEED and EGETKEY
(a leaf of the ENCLU instruction).

An MSR is provided which allows the mitigation to be
disabled [36]; on CPUs which are not vulnerable to MDS, it
allows an OS to instead choose to mitigate TAA (by disabling
TSX). The mitigation is always applied when SGX enclaves
are running, regardless of the MSR setting.

We re-ran both stages of CROSSTALK on the i7-7700K
with a microcode update containing this fix. Our coverage
did not include EGETKEY (in an SGX enclave), but RDRAND
and RDSEED are still detected by our profiling (since the buffer
contents still change). However, we no longer leak RNG output
from the staging buffer after running these instructions.

We observe significant differences in performance counters
as shown in Table V; both instructions execute far more micro-
ops (around 7560, perhaps due to a busy loop), and make 6
offcore requests (rather than 1). We also observed differences
with leaf 1 of CPUID, which may indicate other changes
are present in the update. Post-disclosure benchmarks have
shown that the deployed mitigation may reduce RDRAND’s
performance [37] by as much as 97% on some processors.

VIII. DISCUSSION

We have shown that, on many Intel CPUs, reads are
performed via a shared staging buffer. Microcode sometimes
needs to communicate with offcore IP blocks. For example,
implementing the MSRs related to power management (as
discovered by CROSSTALK) require communication with so-
called ‘PCode’ running on the ‘P-Unit’ or PCU (Power
Control Unit). Some hints can be found in Intel’s patents;
one patent [38] describes a fast mailbox interface, using a
‘mailbox-to-PCU’ interface as an example.

1864

Intel’s DRNG – the source of RDRAND and RDSEED entropy
– is a global CPU resource, connected to individual cores using
different buses (interconnects), depending on the platform;
specifics for several platforms were described as part of an
Intel presentation [39]. Originally, on the Ivy Bridge platform,
the DRNG uses the so-called message channel. We can see
evidence for this in the performance counters for Skylake-era
Xeons, where the counters for RDRAND and RDSEED are in a
category documented as register requests within the message
channel. More recent CPUs directly use the sideband interface
of Intel’s On-Chip System Fabric (IOSF-SB) for connecting
to the DRNG, which implies we may be leaking from the
sideband (or some form of mailbox).

IX. RELATED WORK

Speculative and transient execution vulnerabilities in Intel
CPUs were originally reported by researchers as Spectre [2],
Meltdown [1], and Foreshadow [3]. Later, MDS-class vul-
nerabilities (which we used in our research) were studied in
RIDL [5], ZombieLoad [4], Fallout [13] and CacheOut [40].
All these papers make use of microarchitectural covert chan-
nels to disclose information. Attempts have been made to
create a systematization of these vulnerabilities [41], and they
have been used for other attacks, most recently LVI [42], as
well as for other investigations of CPU behavior [43].

There is extensive existing research on microarchitectural
covert/side channels, with most focusing on timing. Some
such attacks are only relevant in SMT situations, such as port
contention [44], [45] and TLB [46] attacks, but others are more
generally applicable. For example, Yarom and Falkner demon-
strated cross-core cache attacks using FLUSH + RELOAD [47].
We refer the reader to [48] for an extensive survey on
microarchitectural timing side-channel attacks.

Many attacks against ECDSA using nonce leakage have
been proposed [49], [50]. A systematic survey of nonce
leakage in ECDSA implementations [21] discussed (among
many other things) the methods used by OpenSSL, LibreSSL,
and BoringSSL to generate nonces and demonstrated attacks
based on partial nonce leakage. Our SGX exploit obtains the
full nonce, making such attacks even more practical.

There have been other papers attacking cryptographic algo-
rithms running in SGX which have not been hardened against
cache or other timing-based side-channels, or memory access
channels which can be observed by an attacker [51]. Recent
efforts in the area include interrupt latency [52], [53], port
contention [45]. and CopyCat [54] attacks. Finally, Evtyushkin
and Ponomarev [55] showed that RDSEED can be used as
a (one-bit) covert channel, by observing the success rate of
RDSEED on a core. Since RDSEED will fail if entropy is not
available, this success rate drops significantly if another core
is also calling RDSEED, providing a covert channel.

In contrast to transient execution vulnerabilities, Intel and
other chip vendors delegate mitigations of traditional covert/-
side channels entirely to software [56], recommending the
use of constant-time code manually or automatically gener-
ated [57] in security-sensitive applications.

X. CONCLUSION

We have shown that transient execution attacks can reach
beyond individual CPU cores. With CROSSTALK, we used
performance counters to investigate the behavior of microcode
and study the potential attack surface behind complex instruc-
tions whose execution may rely heavily on the operands with
and context in which they are executed. We further investigated
the data these instructions leave behind in microarchitectural
buffers using MDS attacks and uncovered a global ‘staging
buffer’ which can be used to leak data between CPU cores.

The cryptographically-secure RDRAND and RDSEED in-
structions turn out to leak their output to attackers via this
buffer on many Intel CPUs, and we have demonstrated that
this is a realistic attack. We have also seen that, yet again, it
is almost trivial to apply these attacks to break code running
in Intel’s secure SGX enclaves.

Worse, mitigations against existing transient execution at-
tacks are largely ineffective. The majority of current miti-
gations rely on spatial isolation on boundaries which are no
longer applicable due to the cross-core nature of these attacks.
New microcode updates which lock the entire memory bus for
these instructions can mitigate these attacks – but only if there
are no similar problems which have yet to be found.

ACKNOWLEDGMENTS

We thank our shepherd, Frank Piessens, and the anonymous
reviewers for their valuable feedback. We would also like to
thank Marius Muench for his help with the paper and Stephan
van Schaik for his work on RIDL. This work was supported by
the European Union’s Horizon 2020 research and innovation
programme under grant agreements No. 786669 (ReAct) and
No. 825377 (UNICORE), by Intel Corporation through the
Side Channel Vulnerability ISRA, by the United States Office
of Naval Research (ONR) under contract N00014-17-1-2782,
and by the Netherlands Organisation for Scientific Research
through grants NWO 639.021.753 VENI ”PantaRhei”, and
NWO 016.Veni.192.262. This paper reflects only the authors’
view. The funding agencies are not responsible for any use
that may be made of the information it contains.

DISCLOSURE

We disclosed an initial PoC of staging buffer leaks to Intel
in September 2018, followed by cross-core RDRAND/RDSEED
leakage in July 2019. Following our reports, Intel rewarded
CROSSTALK with the Intel Bug Bounty (Side Channel) Pro-
gram, and attributed the disclosure to our team with no other
independent finders. Intel requested an embargo until May
2020 (later extended), due to the difficulty of implementing
a fix for the vulnerabilities identified in this paper.

Intel describes our attack as “Special Register Buffer Data
Sampling” or SRBDS (CVE-2020-0543), classifying it as a
domain-bypass transient execution attack [36]. After disclo-
sure, Intel informed us that the issue had also been found
internally, by Rodrigo Branco, Kekai Hu, Gabriel Negreira
Barbosa and Ke Sun.

1865

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX
Security’18.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P’19.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in USENIX Security’18.

[4] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in CCS’19.

[5] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[6] B. Gregg, “KPTI/KAISER Meltdown Initial Performance
Regressions,” 2018. [Online]. Available: https://www.linux.com/news/
kptikaiser-meltdown-initial-performance-regressions/

[7] M. Larabel, “Looking At The Linux Performance Two Years After
Spectre / Meltdown Mitigations,” 2020. [Online]. Available: https:
//www.phoronix.com/scan.php?page=article&item=spectre-meltdown-2

[8] Intel, “Deep Dive: Intel Transactional Synchronization Extensions (Intel
TSX) Asynchronous Abort,” 2019.

[9] Microsoft, “Managing Hyper-V hypervisor scheduler types,” 2019.
[Online]. Available: https://docs.microsoft.com/en-us/windows-server/
virtualization/hyper-v/manage/manage-hyper-v-scheduler-types

[10] J. Corbet, “Many uses for Core scheduling,” 2019. [Online]. Available:
https://lwn.net/Articles/799454/

[11] A. Abel and J. Reineke, “uops.info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures,” in ASPLOS,
2019.

[12] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in USENIX WOOT’18.

[13] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking Data on Meltdown-resistant CPUs,” in
CCS’19.

[14] R. Mcilroy, J. Sevcik, T. Tebbi, B. Titzer, and T. Verwaest, “Spectre is
here to stay: An analysis of side-channels and speculative execution,”
arXiv preprint arXiv:1902.05178, 2019.

[15] L. Gwennap, “P6 microcode can be patched,” Microprocessor Report,
1997.

[16] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology
ePrint Archive, 2016.

[17] J. Mechalas, “Intel®Digital Random Number Generator (DRNG),” 2018.
[18] A. Abel and J. Reineke, “nanoBench: A Low-Overhead Tool for Running

Microbenchmarks on x86 Systems,” arXiv preprint arXiv:1911.03282,
2019.

[19] Intel, “Microarchitectural Data Sampling / CVE-2018-12126,CVE-2018-
12127,CVE-2018-12130,CVE-2019-11091 / INTEL-SA-00233,” 2019.

[20] D. Faggioli, “Core-Scheduling for Virtualization: Where are We? (If We
Want It!),” in KVM Forum, 2019.

[21] S. Weiser, D. Schrammel, L. Bodner, and R. Spreitzer, “Big Numbers–
Big Troubles: Systematically Analyzing Nonce Leakage in (EC) DSA
Implementations,” in USENIX Security’20.

[22] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom, “Am-
plifying side channels through performance degradation,” in ACSAC,
2016.

[23] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” 2016.
[24] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-step: A Practical Attack

Framework for Precise Enclave Execution Control,” in SysTEX’17.
[25] M. Ermolov and M. Goryachy, “How to hack a turned-off computer, or

running unsigned code in intel management engine,” Black Hat Europe,
2017.

[26] Intel, “INTEL-SA-00307: Intel CSME Advisory,” 2020.
[27] ——, “The Intel Converged Security and Management Engine IOMMU

Hardware Issue – CVE-2019-0090,” 2019.

[28] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: practical smart contracts on
bitcoin,” in USENIX Security’19.

[29] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “OBFUS-
CURO: A Commodity Obfuscation Engine on Intel SGX.” in NDSS’19.

[30] Intel, “Processors Affected: Special Register
Buffer Data Sampling,” 2020. [Online]. Available:
https://software.intel.com/security-software-guidance/insights/
processors-affected-special-register-buffer-data-sampling

[31] ——, “Changes to rdrand integration in openssl,” 2014.
[32] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating

Controlled-Channel Attacks Against Enclave Programs,” in NDSS, 2017.
[33] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged

side-channel attacks in shielded execution with Déjá Vu,” in AsiaCCS
’17, 2017.

[34] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX enclaves from practical side-channel attacks,”
in USENIX ATC 18, 2018.

[35] Intel, “Side Channel Vulnerabilities: Microarchitectural Data Sampling
and Transactional Asynchronous Abort,” 2019.

[36] ——, “Deep Dive: Special Register Buffer Data Sampling,” 2020. [On-
line]. Available: https://software.intel.com/security-software-guidance/
insights/deep-dive-special-register-buffer-data-sampling

[37] M. Larabel, “Benchmarking The Updated Intel CPU Microcode For
SRBDS / CrossTalk Mitigation,” 2020. [Online]. Available: https://www.
phoronix.com/scan.php?page=article&item=srbds-crosstalk-benchmark

[38] A. Gendler, L. Novakovsky, and A. Szapiro, “Communicating via a
mailbox interface of a processor,” Jan 2015, US Patent Appl. 14/609,835.

[39] G. Cox, “Delivering New Platform Technologies,” in SBSeg’12.
[40] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,

“Cacheout: Leaking data on intel cpus via cache evictions.”
[41] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security’19, 2019.

[42] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection,” in S&P,
2020.

[43] B. Falk, “CPU Introspection: Intel Load Port Snooping,” 2019.
[44] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,

B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting
speculative execution through port contention,” in CCS’19.

[45] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port contention for fun and profit,” in S&P’19.

[46] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security’18.

[47] Y. Yarom and K. Falkner, “FLUSH + RELOAD: a high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security’14.

[48] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, 2018.

[49] E. De Mulder, M. Hutter, M. E. Marson, and P. Pearson, “Using
Bleichenbacher’s solution to the hidden number problem to attack nonce
leaks in 384-bit ECDSA,” in International Workshop on Cryptographic
Hardware and Embedded Systems, 2013.

[50] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA Nonces Using
the FLUSH+RELOAD Cache Side-channel Attack.” IACR Cryptology
ePrint Archive, 2014.

[51] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in S&P’15.

[52] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microar-
chitectural timing leaks in rudimentary CPU interrupt logic,” in CCS’18.

[53] W. He, W. Zhang, S. Das, and Y. Liu, “Sgxlinger: A new side-channel
attack vector based on interrupt latency against enclave execution,” in
International Conference on Computer Design (ICCD). IEEE, 2018.

[54] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar,
“Copycat: Controlled instruction-level attacks on enclaves for maximal
key extraction,” arXiv preprint arXiv:2002.08437, 2020.

[55] D. Evtyushkin and D. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,”
in CCS’16.

[56] Intel, “Guidelines for mitigating timing side channels against crypto-
graphic implementations,” 2019.

1866

[57] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in USENIX Security’15.

APPENDIX A
EXAMPLE CODE

The code in Listing 4 leaks a byte from the staging buffer
using TAA, without SMT. If SMT is available to the attacker,
the leaking primitive (here, CPUID) can instead be run in a
tight loop on a sibling thread, and the code marked “flush
some cache lines” is no longer required (see Section V).

See https://www.vusec.net/projects/crosstalk for complete
ready-to-run PoCs (proof-of-concepts).

1 /* reloadbuf, flushbuf and leak are just
2 * mmap()ed buffers */
3

4 // Flush the Flush+Reload buffer entries.
5 for (size_t k = 0; k < 256; ++k) {
6 size_t x = ((k * 167) + 13) & (0xff);
7 volatile void *p = reloadbuf + x * 1024;
8 asm volatile("clflush (%0)\n"::"r"(p));
9 }

10

11 /* Leak primitive; as an example,
12 * here we use a CPUID leaf. */
13 asm volatile(
14 "movabs $0x80000002, %%rax\n"
15 "cpuid\n"
16 :::"rax","rbx","rcx","rdx"
17);
18

19 /* Flush some cache lines
20 * (until we get the right LFB).*/
21 for (size_t n = 0; n < 15; ++n)
22 asm volatile("clflush (%0)\n"
23 ::"r"(reloadbuf + (n + 256)*0x40));
24

25 /* Perform a TAA-based leak */
26 asm volatile(
27 // prepare an abort through cache

conflict↪→

28 "clflush (%0)\n"
29 "sfence\n"
30 "clflush (%2)\n"
31 // leak inside transaction
32 "xbegin 1f\n"
33 "movzbq 0x0(%0), %%rax\n"
34 "shl $0xa, %%rax\n"
35 "movzbq (%%rax, %1), %%rax\n"
36 "xend\n"
37 "1:\n"
38 "mfence\n"
39 :
40 :"r"(leak+off),
41 "r"(reloadbuf),
42 "r"(flushbuf)
43 :"rax"
44);
45

46 /* Reload from the flush+reload buffer
47 * to find the leaked value. */
48 for (size_t k = 0; k < 256; ++k) {
49 size_t x = ((k * 167) + 13) & (0xff);
50

51 unsigned char *p =
52 reloadbuf + (1024 * x);
53

54 uint64_t t0 = rdtscp();
55 *(volatile unsigned char *)p;
56 uint64_t dt = rdtscp() - t0;
57

58 if (dt < 160) results[x]++;
59 }

Listing 4: Leaking a value from the staging buffer.

1867

		2022-08-24T19:39:14-0400
	Preflight Ticket Signature

