
DRAFT

Diogenes: Lightweight Scalable RSA Modulus
Generation with a Dishonest Majority

Megan Chen
Northeastern U.
& Ligero Inc.

Carmit Hazay
Bar-Ilan U.

& Ligero Inc.

Yuval Ishai
Technion

Yuriy Kashnikov
Ligero Inc.

Daniele Micciancio
UC San Diego

Tarik Riviere
Ligero Inc.

abhi shelat
Northeastern U.
& Ligero Inc.

Muthu Venkitasubramaniam
U. of Rochester
& Ligero Inc.

Ruihan Wang
Ligero Inc.

Abstract—In this work, we design and implement the
first protocol for distributed generation of an RSA modulus
that can support thousands of parties and offers security
against active corruption of an arbitrary number of parties.
In a nutshell, we first design a highly optimized protocol
for this scale that is secure against passive corruptions, and
then amplify its security to withstand active corruptions
using lightweight succinct zero-knowledge proofs. Our
protocol achieves security with “identifiable abort,” where a
corrupted party is identified whenever the protocol aborts,
and supports public verifiability.

Our protocol against passive corruptions extends the
recent work of Chen et al. (CRYPTO 2020) that, in turn, is
based on the blueprint introduced in the original work of
Boneh-Franklin protocol (CRYPTO 1997, J. ACM, 2001).
Specifically, we reduce the task of sampling a modulus to
secure distributed multiplication, which we implement via
an efficient threshold additively homomorphic encryption
scheme based on the Ring-LWE assumption. This results in
a protocol where the (amortized) per-party communication
cost grows logarithmically in the number of parties. In
order to minimize the work done by the parties, we employ
a “publicly verifiable” coordinator that is connected to all
parties and only performs computations on public data.

We implemented both the passive and the active variants
of our protocol and ran experiments using 2 to 4,000
parties. This is the first implementation of any MPC protocol
that can scale to more than 1,000 parties. For generating a
2048-bit modulus among 1,000 parties, our passive protocol
executed in under 6 minutes and the active variant ran in
under 25 minutes.

I. INTRODUCTION

We present a secure multiparty computation protocol
for sampling a 2048-bit RSA modulus (a product of two
secret 1024 bit primes) that can practically scale to thou-
sands of parties while tolerating a dishonest majority.
Our protocol has a basic variant that achieves security
against either a passive (i.e., semi-honest) adversary,
and an enhanced variant that achieves security against
an active (i.e., malicious) adversary. In both cases, the
adversary can corrupt all-but-one of the parties. We
implemented both variants and benchmarked them with a
thousand parties and more. As far as we know, this is the

first implementation of secure multiparty computation at
such a large scale; prior work reports at most 256 parties
in a protocol involving a signature task [32].

The motivation for our work comes from applications
of large-scale permissionless consensus. Cryptocurren-
cies and blockchains have re-invigorated the design of
threshold cryptosystems, where cryptographic operations
under a “secret key” are distributed across a set of nodes,
where corrupting up to a given threshold of nodes should
not compromise security. The problem of generating a
shared RSA modulus, introduced in the seminal work
of Boneh and Franklin [16], [17], has recently regained
attention owing to new and efficient constructions of
verifiable delay functions (VDFs) [59], [15], [64], [56],
[33] and zero-knowledge proof systems based on hidden-
order groups [19].

Beyond the application to VDFs, distributed RSA key
generation is a powerful primitive that is motivated by
many applications in threshold cryptography; see [58],
[31], [61], [27] for some earlier works in this area.
One class of applications is generating keys for the
public-key encryption scheme of Paillier [55], which is
widely used in secure computation protocols. Paillier’s
encryption is a useful building block because it is
additively homomorphic and has short ciphertexts. A
recent application that depends on Paillier public-key
setup is the reusable non-interactive secure computation
protocol from [21]. Another application of sampling
an RSA modulus arises in the context of generating
a common reference string (CRS) for concurrent (i.e.
UC-)secure computation [20]. This was demonstrated
for general functions in [49] and for concrete functions
such as the Fiat-Shamir authentication protocol [35],
[34], set-intersection [48], and oblivious pseudorandom
functions [48]. As noted above, more recent applica-
tions include setting up public parameters for VDFs.
VDFs have many applications in decentralized systems,
including leader election, generating public randomness
beacons, proofs of replication, and many more.

590

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Megan Chen. Under license to IEEE.
DOI 10.1109/SP40001.2021.00025

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
25

DRAFT

A. Our Contribution

This paper pushes the boundaries of deployable secure
computation protocols for useful tasks. We focus on
RSA modulus generation because of its simplicity and
relevance to a wide range of applications; however, the
techniques we use can be applied more broadly. We
were particularly motivated by the immediate application
of obtaining a concrete VDF implementation that is
useful in Ethereum’s next generation consensus protocol.
Here it is highly desirable to achieve (n − 1)-security,
namely security against any strict subset of the n parties.
This contrasts with the easier honest-majority setting, in
which simpler techniques based on linear secret sharing
can be used. Furthermore, it is desirable to accommodate
at least one thousand participating parties in order to
minimize the likelihood of corrupting all parties.
Contribution overview. Our contributions include im-
provements to the basic distributed RSA modulus gen-
eration algorithm, improvements to the design of secure
computation protocols for many parties, and an imple-
mentation that involves many system-level optimizations.
Specifically, we introduce a new protocol for distributed
RSA modulus generation with the following features:

1) Security with identifiable abort against an active ad-
versary who corrupts an arbitrary subset of parties.

2) The transcript of the protocol is publicly verifiable.
3) The protocol is concretely efficient and scalable up

to 4,000 parties (and beyond).
We now explain the above features in more detail,
starting with the efficiency features.
Performance. We implemented both the passive and ac-
tive variants of our protocol and ran experiments ranging
from 2 to 4,000 parties geographically distributed across
multiple AWS cloud centers. We used t3.medium in-
stances (4GB RAM, up to 2MBps uplink) for all parties
and r5dn.24xlarge instances for the coordinator.
For generating a 2048-bit modulus among 1,000 parties,
the passive protocol executed in under 6 minutes and
for 4,000 parties in 12 minutes (all measurements are
averaged over multiple executions). For active security,
the 1,000-party instance ran in roughly 24 minutes while
the 4,000-party instance ran in 76 minutes. For the
minimal 2-party setting, the protocol runs in 22 seconds
in the passive case and 594 seconds in the active case.
Security challenges. An inherent limitation in the case
of active security is that the adversary can always mount
a “denial-of-completion” attack, even by corrupting only
a single party [24]. Thus when the number of parties
n is large, poor network connections could repeatedly
cause the entire protocol to fail. The natural defense
against such attacks is to support identifiable abort.
That is, if the protocol fails to complete, the protocol
must (publicly) identify at least one malicious or crashed

party. Generally, identifying cheaters is challenging for
concretely efficient protocols [47], [62], [8], [9] since
parties must reach a consensus on the cheater’s identity.

Another desirable feature of actively secure protocols
is public verifiability, where an honest party can convince
an external third party (e.g., a judge) that another party
cheated in the computation but a dishonest party cannot
incorrectly accuse an honest party [6], [7], [8], [9].
This property is useful for deterring active attacks by
penalizing malicious parties.

Our protocol achieves both identifiable abort and
public verifiability. An external “auditor” can inspect the
protocol’s transcript and identify parties who deviated
from the protocol’s specification. In addition, this auditor
can be convinced of the correctness of the protocol’s out-
come in the sense that every party “knows” an additive
share such that the protocol’s output is the (valid) RSA
composite defined by these shares.

As we will further discuss in the related work section
below (Section A), a natural bottleneck in large-scale
secure computation is communication; most concretely
efficient protocols require O(|C| · n2) communication,
where |C| is the size of the circuit being computed and
n is the number of parties, due to pairwise interaction
for each gate. To circumvent this pairwise interaction
barrier, we rely on threshold additively homomorphic
encryption scheme that scales essentially linearly in the
number of parties [37], [27]. Here we demonstrate that
such protocols can achieve good concrete efficiency even
in the case of active corruptions. The amortized per-party
communication cost scales only logarithmically in the
number of parties.
The coordinator model. In order to minimize the
work performed by the n parties in the case of active
corruptions, we introduce a new model where we employ
a “publicly auditable” party, called a coordinator, who
performs an aggregate-and-broadcast functionality in
each round. This involves broadcasting the result of a
simple computation on ciphertexts received from the
n parties. What distinguishes the coordinator from all
other parties is that it holds no secrets; its only role
is to perform computations on public information. In
principle, the coordinator could prepare an efficiently
verifiable proof showing it performed its computation
correctly. A simpler alternative that we pursue is to store
the entire (signed) protocol transcript in a cloud service
and allow anyone to validate it, as a substitute for such
a work-saving proof.

In more detail, we first design a protocol that is secure
against adversaries who actively corrupt the parties but
only passively corrupt the coordinator. In order to have
the actions of the coordinator publicly auditable, we
apply a hash-and-sign paradigm where all parties and the
coordinator hash their partial view at each round, sign it

591

DRAFT

and attach their signature to the next message. Intuitively,
as long as one of the parties is honest, the coordinator
cannot alter or reorder messages in the transcript since
the honest party will detect this cheating.

An alternative viewpoint of our coordinator model is
that we reduce the task of distributing the computation
among the parties with active security to distributing the
task of verification. By employing a coordinator who
performs public operations, its actions that need to be
verified are highly parallelizable. This makes it easy
to distribute the verification task to a fleet of verifiers
(which can be the parties themselves). Moreover, a
cheating “verifier” cannot hurt security. In contrast, the
goal of secure computation against an active adversary is
far more challenging, since deviation from the protocol
can affect both correctness and privacy.

Communication model. We assume an authenticated
communication channel between each party and the
coordinator, resulting in a star topology network. In each
round, a single message is transmitted from each party to
the coordinator, followed by a “broadcast” message from
the coordinator to all parties. In our implementation, we
realize the authenticated channel via digital signatures
and assume the coordinator and parties have in store the
public keys of all parties they communicate with.

B. Overview of Techniques

The main bottleneck in scaling secure computation
to a large number of parties is the cost of securely
multiplying secret values. Recent works [50], [5], [43]
rely on efficient realizations of the oblivious transfer and
oblivious linear evaluation primitives to achieve secure
multiplication in the two-party setting. However, in the
multi-party setting, the communication complexity of
these techniques scales quadratically with the number of
parties. This quadratic overhead is prohibitive in practice
when the number of parties is large. Indeed, current
implementations for general purpose secure computa-
tion [63], [51] have not been deployed beyond 128
parties with fast communication links.

Our first design choice is to avoid the quadratic
overhead by employing a threshold additively homo-
morphic encryption scheme ((T)AHE): parties encrypt
their shares of each secret and send them to the co-
ordinator, who then aggregates the ciphertexts. At first
glance, this seems to lead to circularity, since threshold
cryptosystems themselves require an MPC protocol for
setup. For example, prior work utilizing the Paillier AHE
scheme [27] runs into this issue. To circumvent this
problem, we rely on a lattice-based AHE, which has
much simpler setup. A distributed coin-tossing protocol
suffices to set up the public and private parameters. This
leads to total communication and computation scaling
almost linearly with the number of parties.

Originating from [37], [27], recent works utilize AHE
to realize secure computation for which online cost
scales well with the number of parties. However in these
protocols, the cost of distributing the setup is much
higher than ours, making their setup prohibitively expen-
sive for our motivating application. This also applies to
protocols in the SPDZ line of work. They either assume
a trusted setup [30], are limited to covert security [29],
or scale quadratically with the number of parties [50],
[51], [60].

Our protocol design involves two stages: we start
by building a passively secure version then amplify its
security using zero-knowledge proofs. A major differ-
ence from previous works is that we use recent gen-
eral techniques for lightweight sublinear zero-knowledge
proofs and compose different proof types to enjoy their
respective advantages. Another optimization includes
proving correctness only for a single successful protocol
iteration and carefully analyzing security in case the
adversary cheats in the remaining iterations. As a final
practical optimization, we decouple the verification of
computations involving public values from computations
involving secret values. We use the untrusted coordinator
to aggregate the publicly verifiable part of the compu-
tation and post it on a bulletin board for any (internal
or external) party to verify. This effectively allows us to
settle for security against an adversary who can actively
corrupt up to n − 1 parties and passively corrupt the
coordinator.

We now give a more technical overview of the two
parts of our protocol design.

The passively secure protocol. The main building block
of our passively secure protocol is a threshold AHE
scheme that performs secure arithmetic operations. At
a high level, the protocol is structured as follows. The
parties sample additive shares p1, . . . , pn for the first
prime p and send their encryptions to the coordinator.
The coordinator then combines these encryptions to get
a ciphertext c encrypting p =

∑
i pi. Upon receiving c,

each party Pi, who holds an (additive) share qi of the
second prime q, computes the encryption of qi · p and
sends it to the coordinator. The coordinator aggregates
these encryptions, resulting in a ciphertext encrypting p·q
that the parties decrypt jointly. In fact, this protocol is
“semi-maliciously” secure, namely it is secure against
an adversary who follows the protocol’s instructions
honestly except for using arbitrary and adaptively chosen
random tapes.

Before computing the RSA product with the above
protocol, the parties perform a pre-sieving phase that
disqualifies candidates that are divisible by the first 150
small primes. Our protocol uses the technique from [22]
based on the Chinese Remainder Theorem (CRT), which
samples non-zero residues modulo small primes to en-

592

DRAFT

sure that the reconstruction is not divisible by these small
primes. This approach increases the probability of hitting
a valid prime to ≥ 1/60. Upon computing the product,
the parties complete the biprimality test as in the Boneh-
Franklin test [16], [17].

Upgrading to active security. Our actively secure
protocol follows the above blueprint with a few key
differences. First, we modify the passive distributed
multiplication procedure to consume random instances
of Beaver’s multiplication triples, given by functionality
FR−Triples [10]. This modification reduces the overall
round complexity and makes it easier to batch zero-
knowledge proofs. We obtain active security via an
optimized version of the “GMW paradigm” [41]. First,
the parties commit to their secret randomness used
throughout the protocol. Then, they use efficient zero-
knowledge proofs to show that their outgoing messages
are consistent with the committed randomness and in-
coming messages.

We rely on special features of our passive protocol
to further optimize the costs of zero-knowledge proofs.
In particular, we exploit the fact that RSA modulus
generation is a “sampling” functionality that does not
involve secret inputs. This allows us to prove correctness
of transcripts leading to a surviving candidate. If a proof
verification fails, the entire execution is aborted, and
the prover is identified as being a cheater. Due to our
concrete choices of AHE and proof system, our zero-
knowledge proofs are considerably more efficient than
those employed in previous related works [45], [38],
[22].

Instantiating the building blocks. We instantiate our
AHE scheme with a packed variant of an encryp-
tion scheme based on Ring Learning With Errors
(RLWE) [52], [53]. This batched variant performs homo-
morphic operations on a vector of plaintexts in parallel.
We exploit this feature by packing a vector of CRT
shares, which are later reconstructed into a single share.
Similarly to [22], we leverage the fact that the CRT
reconstruction algorithm is a linear procedure that each
party can run locally. Our main technical contribution is
a precise analysis of the parameters needed to achieve
the desired level of security. Our RLWE based threshold
AHE is significantly more efficient than previous LWE-
based threshold AHE from [13] and threshold fully
homomorphic encryption from [18].

Our actively secure protocol relies on the Ligero
zero-knowledge proof system [4], which has proof size
square-root in the verification circuit size. While other
proof systems can offer better asymptotic proof size [39],
[42], [12], [11], [65], they have higher prover computa-
tion or memory costs. Here we devise optimized NP
statements for ensuring the correctness of the opera-

tions related to the underlying AHE (e.g., encryptions,
decryptions and randomness sampling), as well as the
correctness of the Boneh-Franklin RSA generation pro-
tocol. For the biprimality test, we employ a special-
purpose Σ-protocol based on [61] for proving correctness
of exponentiations in a hidden-order group. We compose
these different proof types by checking the overlapping
portions their witnesses.

Importantly, excluding the setup phase, the parties
only need to use these proofs with respect to the
surviving candidates. The prime factor shares of any
eliminated candidate and all associated random coins are
revealed for anyone to verify correctness. Overall, our
zero-knowledge proofs are roughly 40MB per party; in
particular, the theorem statements are in fact much larger
(see Table IV).

Modular analysis via certified triples. To facilitate a
modular description and composable security analysis of
our main protocol, we introduce and efficiently realize
a “certified triples” functionality FTctriple. This function-
ality naturally extends the “certified OT” functionality
from [46], [44] to the arithmetic setting and allows
parties to obtain multiplication triples that are guaranteed
to satisfy some global relation. (See Figure 1 for a more
precise specification.) We present an efficient UC-secure
implementation of FTctriple using any threshold AHE with
security against semi-malicious adversaries, and then
modularly analyze the security of our main protocol in
the FTctriple-hybrid model.

Relevant prior work. We briefly compare against two
recent works in this area. Frederiksen et al. [38] present
a 2-party protocol for RSA generation using OT-based
multipliers. Their protocol has a weaker ideal function-
ality in that it leaks much more information about the
prime factors and becomes inefficient when supporting
the standard security with abort notion; this is due to
their sieving techniques and the inability to distinguish
between cheating and sampling failures. They report on
a passive implementation for 2 parties that takes 35
seconds. Chen et al. [22] present an improved approach
which does not suffer the security leakage, extends the
protocol from 2 parties to n parties, and has a mod-
ular security analysis based only on OT (thus suffering
quadratic communication complexity in n). Our protocol
relies on their CRT techniques but improves by (a)
developing a different, more efficient multiplier with
linear communication complexity in n, (b) introduces the
coordinator model, (c) achieves malicious security using
a purely zero-knowledge technique, and (d) reports both
a passive and actively secure implementations for up to
4000 parties, as opposed to [22] that does not report an
implementation.

593

DRAFT

II. PRELIMINARIES

A. Chinese Remainder Theorem (CRT)

Theorem 1 (Chinese Remainder Theorem (CRT)).
Let p1, p2, . . . , pm be pairwise relatively prime, i.e.
GCD(pi, pj) = 1 for all i 6= j. Let N = Πm

i=1pj . Then,

ZN ' Zp1 × . . .× Zpm and Z∗N ' Z∗p1 × . . .× Z∗pm .

Moreover, let f be the function mapping elements
x ∈ {0, . . . , N − 1} to tuples (xp1 , . . . , xpm) with
xpj ∈ {0, . . . , pj − 1} defined by

f(x) = ([x mod p1], . . . , [x mod pm]).

Then f is an isomorphism from ZN to Zp1 × . . .×Zpm
as well as an isomorphism from Z∗N to Z∗p1 × . . .×Z∗pm
(where the inputs of f are restricted to Z∗N).

The linear CRT algorithm which computes f−1 is
standard and omitted here for space.

B. Threshold Homomorphic Encryption (THE)

All definitions are parameterized by a security pa-
rameter κ and an integer number of players n. All
algorithms take κ and n as input, possibly together
with some additional common parameters, which may
be a function of κ, n. For notational simplicity, we leave
these parameters implicit and provide definitions for the
case of n-out-of-n secret sharing. Definitions are easily
generalized to arbitrary thresholds t (or arbitrary access
structures) by including t as an additional parameter.

Definition 1 (THE). We say that
(Gen,Pub,Eval,Dec,Rec) is a Threshold Homomorphic
Encryption scheme if Pub,Gen,Eval,Dec,Rec are
polynomial time algorithms specified as follows:

• Gen is a randomized algorithm that on input an in-
teger i ∈ {1, . . . , n}, outputs a pair (PKi, SKi)
Gen(i) of public/secret key shares. Without loss
of generality, one may assume that the secret key
share SKi is the randomness ri used by the key
generation algorithm (PKi, r) = Gen(i; r), and it
is often convenient to think of key generation as
consisting of a probabilistic algorithm to sample
the secret key share SKi ← Sec(i), together with
a deterministic algorithm to derive the public key
share PKi = Gen(SKi).

• Pub is a deterministic algorithm that on input pub-
lic key shares PKi, produces1 a public key PK =
Pub(PK1, . . . , PKn). More generally, one may con-
sider multi-round key generation algorithms, where,

1As far as security is concerned, the public key may be just the con-
catenation of the shares Pub(PK1, . . . , PKn) = (PK1, . . . , PKn).
But it is usually possible to combine these shares into a more compact
public key.

for i = 1, . . . , n and r = 1, 2, . . ., one computes a
sequence of public shares

PKi[r] = Gen(SKi, [PK[1], . . . , PK[r − 1]])

(starting with PKi[1] = Gen(SKi, [])) and round
keys PK[r] = Pub(PK1[r], . . . , PKn[r]). Then, the
public key PK is set to (a deterministic function of)
the concatenation (PK[1], . . . , PK[r]) of the keys
produced in each round.

• Eval is a randomized algorithm that on input the
public key PK, an integer k ≥ 0, the description
of a function f : Mk → M (possibly from a
restricted set of possible functions) and a list of
k ciphertexts c1, . . . , ck, outputs a new ciphertext
c← Eval(PK, k, f, [c1, . . . , ck])

• As a special case, encryption of a message m is
modeled by the evaluation

Enc(PK,m) = Eval(PK, 0, f(), [])

of a 0-ary function f : M0 → M , that on input
an empty list of messages, outputs a fixed value
f() = m.

• Dec is a randomized algorithm that on input a se-
cret share SKi and ciphertext c, outputs a message
share mi = Dec(SKi, c)

• Rec is a deterministic algorithm that on input
all message shares m1, . . . ,mn, reconstructs the
output message m = Rec(PK,m1, . . . ,mn).

We write Eval(PK, k, f, c; r) when we want to empha-
size the randomness used by the encryption or evaluation
algorithm. This randomness r may be chosen uniformly
at random, or according to some other efficiently sam-
pleable distribution. Non-uniform distributions are useful
in the semimalicious settings, where the adversary may
choose the value of the sample r, rather than the random-
ness used by the sampling algorithm. For simplicity, we
leave these sampling algorithms implicit in the definition.
In lattice based schemes r is often chosen as a vector
with (truncated) discrete gaussian distribution.

Functions f provided to the evaluation algorithm may
take any number of arguments k ≥ 0, but different
schemes may support different, restricted sets of func-
tions f . The distribution of the randomness r used by the
evaluation algorithm may depend on the function f . The
evaluation of some functions f may be deterministic, in
which case the randomness r is ignored by Eval.

A Threshold Homomorphic Encryption scheme is
usually employed as follows:

1) A client C communicates with n independent
servers S[i], a fraction of which may be corrupted
in a honest-but-curious or semimalicious manner.

2) Each server S[i] locally generates a secret key SKi

and sends PKi = Gen(SKi) to the client C

594

DRAFT

3) The client C reconstructs the public key PK =
Pub(PK1, . . . , PKn) from the public shares using
Pub. In the case of a multiround key generation
algorithm, the clients keep computing the values
PKi[r] = Gen(SKi, [PK[1], . . . , PK[r − 1]]) and
sending them to the server which replies with
PK[r] = Pub(PK1[r], . . . , PKn[r]).

4) The client may encrypt message m using
Enc(PK,m) = Eval(PK, 0, f() = m, [])

5) The client may homomorphically compute on mes-
sages using Eval(PK, k, f, [c1, . . . , ck]) for any
function f supported by the scheme and previously
computed (or freshly encrypted) ciphertexts.

6) The client may ask the server to decrypt a pre-
viously computed ciphertext c. In response, each
server locally computes Dec(i, SKi, c) and sends
the output to C. The output of decryption is pro-
duced by combining the partial decryptions with
Rec.

Correctness of a THE scheme is defined in the obvious
way via a game where a client issues a sequence of
evaluation queries, including queries with 0-ary func-
tions to encrypt new messages. The security definition
is presented in Appendix A.

III. CERTIFIED TRIPLES FUNCTIONALITY

A core building block in our protocol is a functionality
that generates multiplication triples (or Beaver triples
[10]). In this section, we introduce an extension of
this functionality which generates triples and allows the
parties to prove at a later point a global relation over
their individual triples (Figure 1).

The certified triples functionality helps abstract the
public key cryptographic primitive that we rely on,
namely a threshold additively homomorphic encryption
with security against semi-malicious adversaries. Fur-
thermore, it allows us to modularly analyze the security
of the main protocol assuming ideal access to the Fctriple

functionality. In more detail, this functionality allows for
the parties to first obtain multiplication triples and later
certify their actions w.r.t. some global relation on the
triples. This is similar to the certified oblivious transfer
functionality that allows the sender in an oblivious trans-
fer (OT) protocol [46] to certify its inputs to the OT w.r.t.
some global NP relation. Our abstraction also supports
identifiable abort, where the functionality identifies the
party that failed the execution. In our protocol, if a
party deviates, its identity is revealed to all parties.
The complete description is shown in Figure 1. Next,
we realize our functionality via a threshold (additively)
homomorphic encryption (THE) scheme. We give the
security definition for THE in Section II-B. We discuss
implementing these functionalities using Ring-LWE in
Section V-A. The protocol can be found in Appendix D.

Theorem 2. Protocol Πctriple UC-realizes Fctriple in the
FCP-hybrid model, in the presence of active adversaries.

Functionality FT
ctriple

Functionality Fctriple communicates with parties
P1, . . . , Pn, coordinator C and an adversary S who
corrupts the subset of parties in U ⊂ [n]. Fctriple is
parameterized by an NP relation REXT, an integer T ,
and domains B1, . . . , BT . The functionality generates
T triples where the ith triple is over the finite field FBi .

Triples generation phase. Upon receiving a message
(generate, sid, ssid, Pj), record the tuple (ssid, Pj)
and send the message (receipt, sid, ssid, Pj)
to Pj and S. Upon receiving a message
(generate, sid, ssid,S, {aj , bj , cj}j∈U) from S record
(ssid, {aj , bj , cj}j∈U). Once a tuple (ssid, Pj) has
been received from all parties, sample {aj , bj , cj}j /∈U
at random from FBi conditioned on the following
equation

n∑
j=1

cij =

(n∑
j=1

aij

)
·
(n∑

j=1

bij

)
for all i ∈ [T] where xj = (x1j , . . . , x

T
j) for x ∈

{a, b, c}.

Abort. If the functionality receives (abort, sid, ssid, Pj)
for j ∈ U before any generate message was re-
ceived, it ignores all messages in the Triples generation

phase. If after receiving an abort message it receives
(assign, sid, ssid,S, {aj , bj , cj}j /∈U) from the adver-
sary, it records (sid, ssid, {aj , bj , cj}j /∈U).

Output phase. If a triple is recorded for every party, send
(triple, sid, ssid,aj , bj , cj) to party Pj for j 6∈ U .

Certification phase. Upon receiving a message
(certify, sid, ssid, Pj , (xj , ωj)), record the tuple
(ssid, Pj , (xj , ωj)). If no abort message was
recorded for Pj , send the message (verify, sid, ssid,
Pj ,REXT(xj , ωj ,aj , bj , cj)) to all parties and S. If
an abort message was received on behalf of Pj , send
(abort, sid, ssid, Pj) to C.

Fig. 1. The certified triples functionality.

IV. THE ACTIVELY SECURE PROTOCOL

This section describes our actively-secure protocol for
distributed RSA modulus generation.

At a high-level, our protocol has four phases: (1) pre-
sieve to sample primes, (2) compute biprimes, (3) sieve
the easy non-biprimes and (4) sieve all non-biprimes.
Most of these phases can be reduced to multiple invoca-
tions of secure multiplication. Towards this, we use the
certified Beaver triples ideal functionality Fctriple (Figure
1), which provides the following guarantees: (1) suffi-
ciently many Beaver multiplication triples are generated
in parallel (2) at a later time, the parties must prove an
arbitrary predicate over the sampled triples. With these

595

DRAFT

guarantees, we can modularly analyze our protocol in the
Fctriple-hybrid model. The triples generated in the first
phase are consumed during the distributed sampling of
the RSA modulus (presieving and candidate generation
phases) and the GCD test.

To achieve active security, we take inspiration from the
classic GMW paradigm [41], which provides a generic
compiler from a passively-secure protocol to an actively-
secure one via commitments and zero-knowledge proofs.
The protocol ΠRSA−ML gives our actively-secure compi-
lation from a passively-secure protocol (Section I-B). For
GMW, parties commit to their input and randomness at
the beginning of the computation, then zero-knowledge
proofs are employed in each round of the protocol
to enforce honest behavior in that round. We follow
this paradigm with one important modification. Since
parties do not provide inputs, they can simply commit
to randomness at the beginning and provide ZK proofs
at the end of the protocol, instead of in each round.

Our protocol begins with Triples generation via in-

voking Fctriple, which in turn begins with a commitment
to randomness. Then, the zero-knowledge proofs occur
in Certification and Σ-protocol and involves invok-

ing Fctriple’s Inputs for certification and Generating

proofs phases. The parties’ NP statement for the zero-
knowledge proofs is given in Section V-B. We will argue
that this suffices to provide full security in our protocol.

Theorem 3. Protocol ΠRSA−ML UC-realizes FRSA−ML in
the {Fctriple,FCOIN}-hybrid model, in the presence of up
to n− 1 active adversaries.

Security proof. We prove security by describing a
simulator and arguing indistinguishability of simulation
in the UC-model. Recall that our protocol on a high-
level follows the classic GMW paradigm with one mod-
ification. Namely, we employ zero-knowledge proofs to
certify the actions of a party only once and at the end
of the protocol. The main subtlety that arises in the
simulation is simulating messages from the honest party
in an indistinguishable way up until the certification if
the adversary deviates ahead of the certification. Recall
that, the goal of the simulator is to receive a biprime
from the FRSA−ML-functionality and embed it within the
simulation. In our design, the protocol up until the certi-
fication remains secure as long as the adversary remains
honest. However, if a biprime has been embedded and
the adversary deviates, this no longer holds and the
simulator still needs to be able to continue simulating
honest party messages until the certification (where the
protocol will abort as the adversary cannot provide a
valid witness for certification).

Our strategy to tackle this is to ensure that the sim-
ulator can identify exactly when the adversary deviates.
This can be achieved by having the adversary commit to
its randomness ahead of the protocol and attest later in
the certification that is follows the honest code with the
committed randomness.

PROTOCOL ΠRSA−ML

Notation. Let s be the statistical security parameter,
P1, . . . , Pn be the set of parties and C be a coordinator.
Let T1, T2 be natural numbers such that the product∏T1

k=1 dk is ` − 2 bits and the product
∏T2

k=1 dk is
greater than 2` − 2 bits where d1, . . . , dT1 , . . . , dT2

denote the first T2 primes excluding 2. We bucket the
primes d1, . . . , dT1 into T buckets of at most m bits and
denote by τ1, . . . , τT the products of the primes in the
corresponding buckets, i.e.

∏T
i=1 τi =

∏T1
k=1 dk. Finally,

let N be the number of share instances that are sampled
and N ′ be the number of candidates.

Triples generation. Every party Pj sends
(generate, sid, ssid, Pj) to Fctriple and receives
the receipt message for NT + d`/meN ′ +
d(5` + 2 logn + s)/meJsurv multiplication
triples [a], [b], [c], where Jsurv is the number of
candidates surviving the Jacobi test and assuming that
` = log2

(∏T2
j=T1+1 dj

)
− log2

(∏T1
j=1 dj

)
.

Pre-sieving. The parties consume the first NT multipli-
cation triples. In detail, for every i ∈ N and t ∈ [T],

- Pj samples rji,t ← [0, τt−1] and r̃ji,t ← [0, τt−1].
- Now, parties consume a multiplication triple. Ob-

serve that rji,t, r̃
j
i,t are additive shares of x =∑

j r
j
i,t and y =

∑
j r̃

j
i,t. So each party locally

computes [e] = [x − a] mod τt and [d] = [y −
b] mod τt and sends these values to the coordinator
C. The coordinator computes e =

∑
j [e] mod τt

and d =
∑

j [d] mod τt and sends e, d to all
parties. Next, the parties locally multiply ed and
do a (trivial) secret sharing [ed] via P1 getting ed
and all other parties getting 0. Finally, each party
locally computes and sends to the coordinator its
share

[xy] = [c] + e[y] + d[x]− [ed] mod τt

= [ab] + (x− a)[y] + (y − b)[x]

− (x− a)(y − b) mod τt.

Upon receiving from all parties’ [xy], the coordina-
tor computes multi,t = xy mod τt and sends back
the value to all parties.

- The parties record multi,t and conclude with the
GCD check: If GCD(multi,t, τt) = 1, Pj adds the
pair (rji,t, r̃

j
i,t) to a list Lj

t .
For all lists Lt, the parties re-index the elements (i.e., the
first element has i = 1, etc). Furthermore, all lists are
trimmed to match the size of the smallest list, namely
N ′ = mint |Lt|.

Fig. 2. Actively secure generation of an RSA composite. (1/2)

596

DRAFT

PROTOCOL ΠRSA−ML

CRT reconstruction. Each party Pj locally computes
its shares of the prime candidates by invoking the
CRT reconstruction algorithm. For the ith share of the
primes, Pj first collects the ith pairs from each of the
lists (rji,1, r̃

j
i,1), . . . , (rji,T , r̃

j
i,T) and sets pi,j and qi,j

by respectively applying the CRT construction on the
tuples (rj0, r

j
i,1, . . . , r

j
i,T) and (r̃j0, r̃

j
i,1, . . . , r̃

j
i,T) w.r.t.

the moduli (4, τ1, . . . , τT) where P1 sets r10 = r̃10 = 3
and the rest of the parties set rj0 = r̃j0 = 0.

Candidate generation. Next, for i ∈ [0,N ′] the
parties compute the candidate RSA modulus Ni =
(
∑n

j=1 pi,j)(
∑n

j=1 qi,j). We rely on CRT to perform
this multiplication. More precisely, the parties bucket
primes such that the product in each bucket is at most
m-bits as before, but up to T2 primes. The parties
will then deconstruct pi,j and qi,j w.r.t. the products
in each bucket. Finally, using the multiplication triples
consumption technique from Pre-sieving, compute the
products w.r.t. to corresponding modulus and then apply
CRT reconstruction.

Jacobi test. The parties execute the following steps s
times:

- Using a coin-tossing oracle FCOIN, the parties
sample a random γi ∈ Z∗Ni

for each i ∈ N ′.
- Each party sends γ

(−pi,j−qi,j)/4

i mod Ni to C.
Then, C computes γ(Ni+1−pi−qi)/4

i mod Ni and
eliminates candidate Ni if the value is not {1,−1}.

GCD test. For candidates Ni that pass the Jacobi test,
let V = 23`+logn+s and choose a number QGCD >
V ·Ni ·n such that it is a product of m-bit numbers, say
(B1, . . . , BdlogQGCD/me). Parties sample random num-
bers aj ∈ ZNi and vj ∈ [−V, V]. Then Pj maps aj and
pi,j +qi,j into the CRT domain using modular reduction.
In each bucket Bk, the parties consume a multiplication
triple (as described in Pre-sieving) to receive the share
[zk] of zk = a · (pi + qi − 1) mod Bk. Then, each
party computes [αk]j = [zk] + vj · Ni mod Bk. Once
this is done for all buckets, each Pj locally applies CRT
reconstruction to their [αk]j and get αj . Parties send αj

to C, who computes α =
∑

j αj mod QGCD and sends
α to the parties. Parties locally compute z = α mod Ni.
The parties eliminate Ni if GCD(Ni, z) 6= 1.

Certification and Σ-protocol. If no i survives, parties
restart the protocol at Triples generation. Otherwise, for
the minimum i that survives the biprimality test, every
party Pj invokes the Certification phase of Fctriple with
its input (certify, sid, ssid, Pj , (xj , ωj)) to certify that
they behaved honestly. The parties proceed based on the
response from Fctriple. Conditioned on not aborting, the
parties further run the Σ-protocol ΠDL for proving the
knowledge of a discrete log in groups with unknown
order [61].

Output phase. If the certification and Σ-protocol pass
for all parties, output (Ni, pi,j , qi,j) to Pj . Otherwise,
the protocol outputs Pj for parties who fail the above
test.

Fig. 3. Actively secure generation of an RSA composite. (2/2)

Next, we carefully simulate the honest party messages
in such a way that when the adversary deviates, either
(1) the simulator will refrain from embedding the target
biprime (received from FRSA−ML) and produce a view
identically distributed to the real world, or (2) the
simulator embeds the biprime and when a deviation
occurs, the simulator can complete the simulation with
the knowledge of the factors of the target biprime. We
remark that in the second case, the target biprime is not
secure. We therefore extend the FRSA−ML functionality
to additionally accommodate a special request from the
adversary upon which it will provide the factors of the
biprime.

In slight more detail, the two cases will depend on
exactly where the first deviation by some corrupted party
occurs. If it occurs before the end of the triples gener-
ation phase, then we will be in case (1) and otherwise
case (2).

V. INSTANTIATING OUR PRIMITIVES

A. Instantiating Our AHE Based on Ring-LWE

This section describes the Ring-LWE scheme used to
implement multiplication in our protocol.

Polynomial rings. Our encryption scheme’s plaintext
and ciphertext spaces are polynomial rings of the form
RP = ZP [X]/Φm(X), where Φm(X) ∈ Z[X] is the
mth cyclotomic polynomial with degree n = φ(m)
(the totient function of m). For our scheme, we set
Φm(x) = xn+1 where m is a power of 2, so n = m/2.
Recall that the ring RP represents all polynomials up to
degree n−1 with coefficients in [0, P−1]. We choose the
modulus P to be a product of primes p1, . . . , ph such that
2n = 2k+1 divides pi−1 for all i. Then, for every i, there
is a 2n-th root of unity ζi ∈ Z∗pi . Let ζ = (ζ1, . . . , ζh)
be the corresponding element in ZP = ΠiZpi .

The plaintext and ciphertext spaces are RP and RQ,
respectively. We choose P and Q as follows. First,
choose Q = Πh

i=1pi, where p1, . . . , ph is a set of h
distinct primes. Next, we specify that P is the product
of a subset of the primes in Q. That is, we choose a
subset i ⊂ [h], then set P = Πi⊂[h]pi.

For our implementation, we parameterize using values
listed in Table I.

Message packing. A message in our scheme is in ZP .
We encode messages bigger than P via vectorizing the
messages as m ∈ ZnP . For simplicity, we call ZnP our
message space. Recall that the plaintext space of our
encryption scheme is RP .

To keep our communication lightweight, we pack
an n-length message into a single polynomial in RP .
Intuitively, to map from m ∈ ZnP to a polynomial
m(X) ∈ RP , we want the components of m to be
the roots of unity for the polynomial m(X) ∈ RP , i.e.

597

DRAFT

mi = m(ζ2i+1) for all i ∈ [0, n−1]. We compute m(X)
using the inverse of the discrete fast Fourier transform
(FFT). Note that recovering m simply involves applying
FFT to m(X).

We observe that the FFT is a ring isomorphism
that maps polynomial addition and multiplication (in
RP) to vector addition and pointwise multiplication in
ZnP . Hence, doing homomorphic operations is easy to
understand and implement. Note that to multiply by a
scalar c, one must first map c to RP using an inverse
FFT, then multiply.
Threshold homomorphic encryption from Ring-LWE.
We describe a threshold additively homomoprhic encryp-
tion scheme supporting the computation of sums and
affine functions based on the Ring-LWE problem. Using
the notation from Definition 1, the protocol works as
follows:

1) Secret key shares and randomness consists of triples
SKi = (ai, si, ei) where ai ∈ RQ is chosen
uniformly at random, and si, ei ← χ are sampled
from the LWE truncated discrete Gaussian error
distribution.

2) The public key reconstruction function takes as
input n ring elements xi ∈ RQ and outputs their
sum, namely Pub(x1, . . . , xn) =

∑
i xi ∈ RQ.

3) Two round key generation, defined by the function

Gen((ai, si, ei), []) = ai ∈ RQ
Gen((ai, si, ei), [a]) = si · a+ ei ∈ RQ.

In the first round, each party sends a random ring
element ai and receives the sum a =

∑
i ai =

Pub(a1, . . . , an). In the second round, each party
uses a (and its secret key) to compute the public
share bi = si · a+ ei, and receives

b =
∑
i

bi = Pub(b1, . . . , bn) = s · a+ e

where s =
∑
i si and e =

∑
i ei. The public

key is PK = (a, b) ∈ R2
Q. Once the public key

is computed, the values ai and ei are no longer
needed, and the secret key can be simply set to
SKi = si.

4) The (randomized) distributed decryption algorithm
Dec(SKi, (c, d); r), on input a secret key share si ∈
RQ and ciphertext (c, d) ∈ R2

Q, outputs mi = δi,1 ·
d− si · c+ r, where r ∈ RQ is chosen uniformly at
random from a sufficiently large interval [−U,+U]
described below, and δi,1 equals 1 if i = 1 and 0
otherwise.

5) The message space is RP for some P dividing Q.
The output reconstruction algorithm

Rec(m1, . . . ,mn) =

⌊
(P/Q)

∑
i

mi

⌉
(mod P)

sums the message shares and rounds the (coeffi-
cients of the) sum to the closest multiple of Q/P .

Next, we describe the (randomized) encryption and
homomorphic evaluation function Eval. The scheme sup-
ports the following functions:

1) Constant functions f() ∈ RP , used to compute
the encryption of a message x ∈ RP . These are
evaluated as a standard Ring-LWE encryption:

Eval(PK, 0, f()) = Enc((a, b), x;u, v, w)

= (a · u+ v, b · u+ w + (Q/P)x)

where u, v, w χ.
2) Sums fΣ(x1, . . . , xn) =

∑
i xi ∈ RP . These

are evaluated deterministically as the sum of the
corresponding ciphertexts:

Eval(PK, n, fΣ, [c1, . . . , cn]) =
∑
i

ci

3) Affine functions fy,z(x) = yx+z, where y, z ∈ RP
are ring elements, possibly from a restricted subset
of RP . The evaluation is randomized, and outputs

Eval(PK, 1, fy,z, [c];u, v, w)

= yc + (au+ v, bu+ w + (Q/P) · z)

where u, v, w χ as in the encryption queries
For any Ring-LWE ciphertext (c, d) encrypting a

message m under key s, define the error

Errs((c, d),m) = d− sc− (Q/P)m.

At any point during the evaluation of a sequence of
queries one can define an upper bound on the error of the
ciphertexts |Errs(cq,mq)| ≤ βq . These bounds depend
on the sequence of operations in the scheme.
• For security, we require the size U of the error

added by decryption queries q to be bigger than βq
by a factor 2κ exponentially large in the security
parameter κ.

• For correctness, the modulus Q should be larger
than 2PUβq , so that rounding eliminates the error,
and recovers the correct message.

We emphasize that the amount of noise U added
in distributed decryption operations should be tuned
to the error bounds βq specific to the sequence of
operations performed by the protocol. Once the bounds
βq have been determined, the correctness and security
of our threshold homomorphic encryption scheme can
be proved in a rather generic way, as shown in the next
two theorems; the proofs can be found at [23].

Theorem 4. Assume Q > 2P (nU + βq) for all decryp-
tion queries q. Then, the Ring-LWE threshold homomor-
phic encryption scheme is correct.

598

DRAFT

Parameter Notation Value

Security parameter κ 128

Number of parties N 1024

Gaussian parameter σ 8

Degree/Packing Factor n 216

Ciphertext Modulus Size |Q| 1302 bits
Plaintext Modulus Size |P | 558 bits
Maximum number of bits for τ max bits(τ) 175 bits

TABLE I
RING-LWE CHOICE OF PARAMETERS.

Theorem 5. Assume U > 2κβq for all decryption
queries q. Then, the Ring-LWE threshold homomorphic
encryption scheme is secure under the standard hardness
of Decisional Ring-LWE.

Implementation parameters. Our code implements
Ring-LWE operations using the open source library
NFLlib [1], with parameters given in Table I.

Our implementation sets pi to be 62 bits for better
soundness with respect to the zero-knowledge proofs.
In detail, the statistical soundness is the inverse of the
smallest prime factor’s field size, so we get soundness
2−62. NFLlib provides the mechanisms to easily force
each factor of P and Q to be 62 bits: one simply specifies
the desired number factors for P and Q. We set P = 9
and Q = 21.

B. Implementing FCP (Commit-and-Prove)

We will implement the commit-and-prove functional-
ity using the Ligero zero-knowledge argument system
[4] and Shoup’s Σ-protocol [61]. We first describe our
NP statement and then discuss the implementation. We
list the components of the NP statement:

1) Key generation: Recall that the parties commit to
ai, si, ei ∈ RQ at the beginning of the protocol,
where si and ei are elements of ZnQ. Then, party
Pj needs to prove that:

a) The revealed ai is consistent with the commit-
ment.

b) Each element of the vectors sj and ej is in
the range [−10σ, 10σ] except with very small
probability. 10σ = 80 for our parameters.

c) Second, the bj value transmitted by party Pj in
the second round of the key generation protocol
satisfies bj = a× sj + ej ∈ RQ.

2) Triples generation: Parties choose the ith elements
of aj , bj , cj from prime bucket Bi. We use a
greedy strategy to identify B1, . . . , Bn and the
number of triples allocated for each category. In
this segment, the party proves that there exists
aj , bj , cj ∈ B1 . . . Bn and randomness such that:

a) The ith elements of aj , bj , cj are in
{0, 1, . . . , Bi − 1} and ith element of zj
is in [−nBi2κ, nBi2κ].

b) Each element of u1, u2 is in [−80, 80].
c) Each element of v1, w1, v2, w2 is in [−80, 80].
d) Party Pj transmits αj = (a ·u1 +v1, b ·u1 +w1 +

(Q/P)m1) ∈ R2
Q to the coordinator in Step 1 of

triples generation.
e) m1 is a polynomial over RP such that m1(ζki) =

aj [k] mod pi for i ∈ {1, . . . , 9} and 1 ≤ k ≤
65536.

f) Redefining notation so that
∑
j αj =

α = (α1, α2), check that βj =
Eval(PK, 1, flin(bj , c

′
j , ·), α) = (m2 · α1 + a ·

u2 +v2,m2 ·α2 +b ·u2 +w2 +(Q/P)m3), where
m2(ζki) = bj [k], m3(ζki) = zj [k]−cj [k] mod pi
for i ∈ {1, . . . , 9} and 1 ≤ k ≤ 65536.

g) Redefining notation so that
∑
j βj = β =

(β1, β2), check that dj = Dec(j, SKj , β) =
δj,1 · β2 − β1 · sj + r, where r ∈ RQ.

h) Every entry in r is in [−U,U].
3) Pre-sieving: The parties sample random shares

and multiply using the triples generated in the
previous phase. Each party Pj proves that there
exists rji,t, r̃

j
i,t such that the triples were used cor-

rectly in the multiplication protocol using triples
to compute (

∑
i r
j
i,t) × (

∑
i r̃
j
i,t) mod Bt and that

0 < rji,t, r̃
j
i,t < Bt.

4) Candidate generation: The parties prune their
lists based on the result of the pre-sieving. Party
Pj identifies prime shares pi,j and qi,j . Next, it
consumes triples to compute Ni = (

∑
j pi,j) ×

(
∑
j qi,j). Recall that the parties already know

Ni mod Bt for all t ∈ [T] from pre-sieving. In this
step, we compute Ni mod BT+1 . . . BT ′ such that
blog2(

∏T ′

i=1Bi)c > 2048. Parties prove that the
prime shares pi,j , qi,j are the reconstructed value
from pre-sieving and that the triples were consumed
correctly.

5) Jacobi test: The parties raise γ to the exponent
(−pi,j−qi,j)/4. The parties employ the Σ-protocol
proof of knowledge for an exponent of an unknown
order group w.r.t. γ [61].

6) GCD test: The parties prove that the triples were
consumed correctly w.r.t. pi,j , qi,j in a similar way
to candidate generation.

Proving consistency between the three proof systems.
We incorporated our NP statement using three proof
systems that have overlapping witnesses. Then, in order
to compose the proofs, we argue that the three proof
systems have identical values for the shared portions of
their witnesses. We identify the overlapping parts of the
witnesses.

599

DRAFT

(1) Range proof and main proof: The values
si, ei, u1, u2 are part of the witness in the range proof
and main proof. Hence, we need to show that the same
values for each of the variables have been incorporated
in the witnesses of both proofs. First we remark that
we use the first of the 21 moduli to perform the range
proof. On the other hand, the main proof factors each
of the equations into the 21 moduli by taking all equa-
tions/variables modulo the corresponding prime. Hence,
the first modulus incorporates part of the main proof as
well as the whole of the range proof. In order to show
that the main proof and the range proof incorporate the
same values for the overlapping variables, we prove two
things: (1) First, we prove that each element of the vector
si (and similarly for all the other values) that si mod p1

is between -80 and 80 using bit decomposition. Observe
that since 80 << p1 we have that si mod pi must be
si (for an honest party). (2) We prove that si mod p1

is equal to si mod p2 · · · p21. For this, we first choose
rblind uniformly at random from [p1], which we incor-
porate in the witness for the first modulus p1 and in
the rest of the moduli via CRT decomposition. Then,
we introduce a linear function that computes an inner
product over Fp1 with inputs (a) the vector obtained
by combining all of the elements from si, ei, u1, u2 and
rblind and (b) another random vector of the same length
where each element is chosen uniformly at random from
[p1]. After computing the output of this linear function
modulo p1, we compute the output modulo p2 · · · p21,
then compare the values. To compute this function over
p2 · · · p21, we include a large multiple of p1 to the
inner product so that only the value mod p1 is revealed.
Finally, we remark that the random vector in (b) above
is obtained via Fiat-Shamir.

(2) Σ-protocol and main proof: The overlapping parts
of the two witnesses are the shares of the primes
pi,j , qi,j . To show that the sigma protocol used the right
values, we will prove that the pi,j , qi,j values in the main
proof satisfies the linear constraint z = r + ex, which
is revealed in the third step of the sigma protocol. For
soundness, the witness must be committed in advance.
This holds since we commit to aj , bj , cj at the begin-
ning.

VI. IMPLEMENTATION AND EXPERIMENTS

We developed a robust and optimized implementation
of our protocol in approximately 14500 lines of C++
code (excluding external libraries) with an additional
3300 lines of unit, integration, and end-to-end testing
code. Table II lists the external libraries required. Our
implementation’s networking layer defines primitives for
sending messages and awaiting replies and a separate
encryption protocol performs the computation and tests
the data. A substantial effort was made to properly select

Purpose Purpose

Networking ZeroMQ [2]
Ring-LWE data structures NFLlib [1]
Serialization Boost

TABLE II
EXTERNAL CODE LIBRARIES

Ring-LWE, commitment, ZK and hashing parameters in
order to achieve roughly 128-bits of security.

Software engineering. We use ZeroMQ [2], a fast
request-reply concurrency framework for all networking
operations. We manually tuned parameters for the par-
ties and the coordinator to increase the high watermark
for our coordinator to 15,000 messages. We configure a
Keep-Alive strategy to lower network load.

Throughput test. The total amount of time the coordi-
nator spends on sending or receiving messages depends
not only on the coordinator’s hardware or network,
but also on the parties’ network quality. At the very
beginning of our protocol, even before parties register
to participate, we perform a throughput test for each
party wanting to join. Using ZeroMQ primitives, this
throughput test measures the amount of time needed to
transfer a given amount of data to the party and to receive
an acknowledgement message from it. We implement the
test with ZeroMQ primitives.

On the coordinator side, we set the following time
bounds. The coordinator waits a wait_time of 2mins
for parties to join the throughput test. After the actual
throughput test, the coordinator must cleanup the queue
(of lagging packages). If no package arrives within an
interval of cleanup_time = 5secs, the cleanup is
done. Additionally, the coordinator times out after 1min.

Protocol restarts. Our protocol may restart if no RSA
biprime is sampled or if it identifies a cheating party.
While the protocol may restart arbitrarily-many times,
our implementation restarts at most 10 times. If no RSA
biprime is sampled, observe that no party is kicked out.
As soon as all candidates are eliminated, the protocol
restarts at triples generation (and skips running another
throughput test).

A. Experiments

1) Setup: We prepared a Docker image file that runs
on Ubuntu 18.04 LTS with kernel version 4.9.184 and
the set of libraries we use: Boost 1.69, GMP 6.1.2, etc.
For AWS, we created an AMI which matches our Docker
image and then provisioned this image to all of our party
nodes. Using our test orchestration harness, anyone can
easily reproduce our results. Our code has been made
available at github.com/ligeroinc/LigeroRSA.

To simulate the real-world scenario, we executed
our experiments on the AWS Cloud platform using

600

DRAFT

Parties Passive (µ± σ s) Active (µ± σ s) Registration (s) # Runs (passive/active)

2 20.5 ± 0.9 594.3 ± 1.1 0.3 20 / 10
5 52.4 ± 3.7 785.9 ± 5.5 0.8 20 / 10

10 53.3 ± 1.9 788.5 ± 3.3 0.8 20 / 10
20 56.6 ± 2.3 797.7 ± 6.6 0.8 20 / 11
50 67.9 ± 6.6 808.8 ± 8.6 1.0 20 / 16

100 91.4 ± 5.3 832.3 ± 5.5 3.9 20 / 9
200 133.5 ± 12.2 884.4 ± 14.2 1.0 15 / 9
500 219.8 ± 5.9 970.0 ± 6.1 0.9 9 / 6
700 279.7 ± 4.9 1069.8 ± 9.8 61.4 5 / 5

1000 352.0 ± 14.0 1429.2 ± 0.0 1.6 3 / 1
2000 817.8 ± 0.0 2966.8 ± 0.0 2.0 1 / 1
4046 684.2 ± 0.0 4580.7 ± 0.0 158.7 1 / 1

TABLE III
OVERALL RUNNING TIME OF PROTOCOL TO SAMPLE A 2048-BIT

MODULUS IN EXPECTATION WITH 128-BIT SECURITY. TIMINGS ARE
AVERAGES OVER THE NUMBER OF RUNS ALONG WITH STANDARD

DEVIATIONS WHEN APPLICABLE.

t3.small nodes for each party; these nodes run on
a shared 2.5 Ghz Intel Xeon with 2 virtual CPUs and
2GB of RAM. Our process is shared with other tasks
running on the AWS cloud hardware, and AWS provides
up to 5Gbps network performance for these nodes. Our
coordinator ran on r5dn.24xlarge nodes with 96
virtual CPUs, 768GB of RAM, and up to 100 Gbps
network. In all of our experiments, the coordinator
node is always in Oregon (us-west-2). For tests
with ≤ 1000 parties, party nodes were distributed in
N. Virginia (us-east-1) and Ohio (us-east-2)
AWS EC2 regions. For tests with > 1000 parties, party
nodes were distributed in N. Virginia (us-east-1),
Ohio (us-east-2), Oregon (us-west-2), and N.
California (us-west-1) regions.

2) Empirical Results: Table III, we present empirical
data on the runs of our protocol. For n ≤ 1000 parties,
we run our protocol at least 5 times and report averages
for all metrics; party-side metrics are averaged across
all n parties as well. For larger instances n > 1000,
we report the result of a single run and the party-side
metrics are computed as an average over a subset of 1000
randomly sampled parties. When reporting timings, we
measure the wall-clock time as measured from either
the coordinator, party, or distributed verifier depending
on the metric, to produce one modulus in expectation2.

We report the registration time for the protocol sepa-
rately. This is the time it takes for all n nodes to register
with the coordinator and perform a throughput test to
ensure that the node has enough bandwidth (uplink speed
≥ 1 Mbps) to complete the protocol. This phase is
orthogonal to the protocol.

Memory. We instrumented the client nodes to measure
their peak memory usage. As expected, this value does

2Note, since this functionality is inherently a sampling functionality,
there is a noticeable failure probability to produce a modulus. This
probability can be adjusted by setting parameters; we set the parameters
to produce one answer in expectation.

Message Type Size (b)

Public Key A 11,010,105
Public Key B 11,010,105
Encrypted X 22,020,166
Encrypted XY + Z 22,020,166
Sieving flags 175,720
AXBY Value 1,597,389
Modulus Candidate 1,908,015
AXBY Value 1,597,389
All others 1396

Total Semihonest 71,340,451

Gather Public Data 143,112,726
Gather Proofs (21) 229,568,412

Total Active 444,021,589
TABLE IV

PER PARTY COMMUNICATION COMPLEXITY OF THE PROTOCOL

not change substantially as n increases. We measured
usage from 1857.59–1861.91 MB of RAM usage as n
varied from 2 to 1000.

However, memory usage on the coordinator is indeed
a bottleneck in our scaling to larger parties. In our
current implementation of the active-secure protocol, the
coordinator in each round stores each message sent by
each of the parties because the NP statement that the
party gives is with respect to this message. Later, to
verify the proof, the coordinator will need to send this
message to the distributed verifier. This implementation
detail limits us to running 4000 parties because we hit
RAM limitations on our coordinator instance.
Protocol communication. In our coordinator model,
each participant’s communication complexity is inde-
pendent of n. Table IV summarizes the size of each
major message in the protocol. The “Gather Proofs” row
reports an average of the total of the 21 proofs that
are sent, and 17 other small messages are combined in
the “All Others” row. The most expensive message, as
predicted, is the gathering of public data which consists
of sending the NP statement to the distributed verifiers.
Protocol timing. Our protocol requires 12 rounds of
communication to complete the five basic steps of Key
generation, Beaver triple generation, Modulus construc-
tion, Pre-Sieving, and the biprimality testing. We instru-
mented the protocol to measure how long each step takes
as the number of parties increases. As expected, the triple
generation step requires the most amount of time.

Active security Our protocol uses zero-knowledge
proofs of honest behavior to achieve active security.
In particular, there are 21 statements for which each
node provides a ZK proof, the coordinator arranges these
proofs and sends them to distributed verifiers. As noted
in Table III, the active security portion of the protocol
dominates the running time. In this section, we further
analyze the components of this step.

601

DRAFT
0 200 400 600 800

2
5

10
20
50

100
200
500
700

1000
2000

Time (s)

Time by Phase for Passive Security

Keygen

Triples

Modulus

Sieving

Testing

Fig. 4. Cumulative timing per step of the protocol as the number of
parties increases

0 200 400 600 800 1,000 1,200 1,400

2
5

10
20
50

100
200
500
700

1000
2000

Time (s)

Proof generation steps

Total

Verifier

Fig. 5. Cumulative timing per step of the active protocol as the number
of parties increases.

Figure 5 presents the average amount of time required
by the party to produce each of the zero knowledge
proofs as 21 segments per bar, the total time of the active
protocol, and finally the verifier work. In particular, the
verifiers are often idle and waiting for messages—these
times are depicted as blank gaps between the bars in the
graph. Notice that the verifier work schedule remains
fairly constant as n increases. This is expected because
each verifier only considers one proof in our experiment.
Neither of these work profiles account for the overall
running time, which is dominated by the coordinator’s
task of shuttling messages. This graph suggests system-
level improvements to the running time.

VII. ACKNOWLEDGEMENTS

We thank the Ethereum Foundation, Protocol Labs and
the VDF Alliance for funding this project. We specifi-
cally thank Justin Drake, Dankrad Feist, Kelly Olson
and Simon Peffers for giving us feedback throughout
the development and relaying real-world concerns in
deployment. We thank Nick Thompson for developing
the initial transport architecture. We thank Matt DiBiase
and Scott Catlin for their encouragement and logistical
support. We thank the anonymous reviewers of IEEE
S&P for insightful comments.

Carmit Hazay is supported by the BIU Center for
Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office, and by ISF grant No.
1316/18. Yuval Ishai is supported by ERC Project NTSC
(742754), NSF-BSF grant 2015782, BSF grant 2018393,
and a joint Israel-India grant. Daniele Micciancio is
supported in part by NSF award 1936703. abhi shelat
is supported by NSF grant TWC-1646671.

REFERENCES

[1] NFLlib. https://github.com/quarkslab/NFLlib/.
[2] ZeroMQ. https://zeromq.org.
[3] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient

computation modulo a shared secret with application to the
generation of shared safe-prime products. In CRYPTO, pages
417–432, 2002.

[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In CCS, pages 2087–2104, 2017.

[5] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen,
and Lior Zichron. Secure arithmetic computation with constant
computational overhead. In CRYPTO, pages 223–254, 2017.

[6] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert
security with public verifiability. In ASIACRYPT, pages 681–698,
2012.

[7] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly
auditable secure multi-party computation. In SCN, pages 175–
196, 2014.

[8] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient
secure multiparty computation with identifiable abort. In TCC,
pages 461–490, 2016.

[9] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo
Soria-Vazquez. Efficient constant-round MPC with identifiable
abort and public verifiability.

[10] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, pages 420–432, 1991.

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable zero knowledge with no trusted setup. In
CRYPTO, pages 701–732, 2019.

[12] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In EUROCRYPT, pages
103–128, 2019.

[13] Rikke Bendlin and Ivan Damgård. Threshold decryption and
zero-knowledge proofs for lattice-based cryptosystems. In TCC,
pages 201–218, 2010.

[14] Simon R. Blackburn, Simon Blake-Wilson, Mike Burmester, and
Steven D. Galbraith. Weaknesses in shared RSA key generation
protocols. In Cryptography and Coding, 7th IMA International
Conference, Cirencester, UK, December 20-22, 1999, Proceed-
ings, pages 300–306, 1999.

602

DRAFT

[15] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable delay functions. In CRYPTO, pages 757–788, 2018.

[16] Dan Boneh and Matthew K. Franklin. Efficient generation of
shared RSA keys (extended abstract). In CRYPTO, pages 425–
439, 1997.

[17] Dan Boneh and Matthew K. Franklin. Efficient generation of
shared RSA keys. J. ACM, 48(4):702–722, 2001.

[18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain,
Sam Kim, Peter M. R. Rasmussen, and Amit Sahai. Threshold
cryptosystems from threshold fully homomorphic encryption. In
CRYPTO, pages 565–596, 2018.

[19] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent
snarks from DARK compilers. In EUROCRYPT, pages 677–706,
2020.

[20] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS, pages 136–145, 2001.

[21] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel
Kraschewski, Tianren Liu, Rafail Ostrovsky, and Vinod
Vaikuntanathan. Reusable non-interactive secure computation.
In CRYPTO, pages 462–488, 2019.

[22] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa
Lee, Schuyler Rosefield, and abhi shelat. Multiparty generation
of an RSA modulus. Manuscript, 2020.

[23] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov,
Daniele Micciancio, Tarik Riviere, Abhi Shelat, Muthuramakr-
ishnan Venkitasubramaniam, and Ruihan Wang. Diogenes:
Lightweight scalable RSA modulus generation with a dishonest
majority. IACR Cryptol. ePrint Arch., 2020:374, 2020.

[24] Richard Cleve. Limits on the security of coin flips when half
the processors are faulty (extended abstract). In STOC, pages
364–369, 1986.

[25] Clifford C. Cocks. Split knowledge generation of RSA parame-
ters. In Cryptography and Coding, 6th IMA International Con-
ference, Cirencester, UK, December 17-19, 1997, Proceedings,
pages 89–95, 1997.

[26] Don Coppersmith. Small solutions to polynomial equations, and
low exponent RSA vulnerabilities. J. Cryptology, 10(4):233–260,
1997.

[27] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In EUROCRYPT,
pages 280–299, 2001.

[28] I. Damgård and G. L. Mikkelsen. Efficient, robust and constant-
round distributed RSA key generation. In TCC, pages 183–200,
2010.

[29] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart. Practical covertly secure
MPC for dishonest majority - or: Breaking the SPDZ limits. In
ESORICS, pages 1–18, 2013.

[30] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643–662, 2012.

[31] Yvo Desmedt. Threshold cryptography. European Transactions
on Telecommunications, 5(4):449–458, 1994.

[32] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat.
Threshold ECDSA from ECDSA assumptions: The multiparty
case. In IEEE Symposium on Security and Privacy, SP, pages
1051–1066, 2019.

[33] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael
Pass. Continuous verifiable delay functions. IACR Cryptology
ePrint Archive, 2019:619, 2019.

[34] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of
identity. J. Cryptology, 1(2):77–94, 1988.

[35] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–
194, 1986.

[36] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust
efficient distributed rsa-key generation. In STOC, pages 663–
672, 1998.

[37] Matthew K. Franklin and Stuart Haber. Joint encryption and
message-efficient secure computation. J. Cryptology, 9(4):217–
232, 1996.

[38] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and
Benny Pinkas. Fast distributed RSA key generation for semi-
honest and malicious adversaries. In CRYPTO, pages 331–361,
2018.

[39] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct nizks without
pcps. In EUROCRYPT, pages 626–645, 2013.

[40] Niv Gilboa. Two party RSA key generation. In CRYPTO, pages
116–129, 1999.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In STOC, pages 218–229, 1987.

[42] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In EUROCRYPT, pages 305–326, 2016.

[43] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthura-
makrishnan Venkitasubramaniam. LevioSA: Lightweight secure
arithmetic computation. In To appear CCS, 2019.

[44] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Actively secure garbled circuits with constant
communication overhead in the plain model. In TCC, pages 3–39,
2017.

[45] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas
Toft. Efficient RSA key generation and threshold paillier in the
two-party setting. In CT-RSA, pages 313–331, 2012.

[46] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prab-
hakaran, and Amit Sahai. Efficient non-interactive secure com-
putation. In EUROCRYPT, pages 406–425, 2011.

[47] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-
party computation with identifiable abort. In CRYPTO, pages
369–386, 2014.

[48] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function
with applications to adaptive ot and secure computation of set
intersection. In TCC, pages 577–594, 2009.

[49] S. Jarecki and V. Shmatikov. Efficient two-party secure com-
putation on committed inputs. In EUROCRYPT, pages 97–114,
2007.

[50] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious
transfer. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 830–842, 2016.

[51] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In EUROCRYPT, pages 158–189,
2018.

[52] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. J. ACM, 60(6):43:1–
43:35, 2013.

[53] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit
for ring-LWE cryptography. In EUROCRYPT, pages 35–54,
2013.

[54] Takashi Nishide and Kouichi Sakurai. Distributed paillier cryp-
tosystem without trusted dealer. In WISA, pages 44–60, 2010.

[55] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, pages 223–238, 1999.

[56] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS,
pages 60:1–60:15, 2019.

[57] Guillaume Poupard and Jacques Stern. Generation of shared RSA
keys by two parties. In ASIACRYPT, pages 11–24, 1998.

[58] Tal Rabin. A simplified approach to threshold and proactive RSA.
In CRYPTO, pages 89–104, 1998.

[59] Ronald R. Rivest, Adi Shamir, and David A. Wagner. Time-lock
puzzles and timed-release crypto. 1996.

[60] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Ver-
cauteren, and Tim Wood. Actively secure setup for SPDZ. IACR
Cryptology ePrint Archive, 2019:1300, 2019.

[61] Victor Shoup. Practical threshold signatures. In EUROCRYPT,
pages 207–220, 2000.

[62] Gabriele Spini and Serge Fehr. Cheater detection in SPDZ
multiparty computation. In ICITS, pages 151–176, 2016.

[63] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale
secure multiparty computation. In CCS, pages 39–56, 2017.

603

DRAFT

[64] Benjamin Wesolowski. Efficient verifiable delay functions. In
EUROCRYPT, pages 379–407, 2019.

[65] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos
Papamanthou, and Dawn Song. Libra: Succinct zero-knowledge
proofs with optimal prover computation. In CRYPTO, pages 733–
764, 2019.

APPENDIX

We now define security of a THE scheme. We pro-
vide a simple indistinguishability based definition. We
focus on security against non-adaptive semi-malicious
adversaries, as these are the type needed to obtain full
(malicious) security using zero-knowledge proofs. The
definition is easily extended to adaptive attacks. We
remark that our THE construction and proof of security
(see Theorem 5) only uses non-adaptivity during key
generation, and this is necessary to achieve security. (If
the adversary can choose semimalicious secret shares
SKi after seeing the honest public share PKh, it can
easily bias the value of the public key, and easily break
the protocol. But once the public key has been chosen,
the proof of security of Theorem 5 works also for
adversaries that issue their queries adaptively.)

Definition 2. A THE scheme is secure against non-
adaptive semi-malicious attacks if any efficient (prob-
abilistic polynomial time) adversary A has only a neg-
ligible advantage in the following game. The game is
parameterized by a bit b ∈ {0, 1}, and consists of the
following steps:

1) The adversary A selects the index3 of an honest
party h ∈ {1, . . . , n}, secret key shares {SKi}i6=h
for all other parties, and a sequence of queries Q
described below.4

2) SKh ← Sec(h) is chosen at random, and PKh =
Gen(SKh) is given to A. The adversary can com-
pute the public key PK = Pub(PK1, . . . , PKn) on
its own. For multi-round key generation, the adver-
sary is given honest public key shares PKh[r] =
Gen(SKh, [PK[1], . . . , PK[r − 1]]) for every round
r, where PK[r] = Pub(PK1[r], . . . , PKn[r]).

3) The adversary’s queries Q are answered in se-
quence q = 1, 2, . . . as follows. There are three
types of queries. Challenge and semimalicious
queries define a pair of messages m0[q],m1[q]
and a ciphertext c[q]. Challenge and decryption
queries produce an output which is returned to
the adversary. Semi-malicious queries produce no

3More generally, for general threshold t, the adversary selects a
subset of honest parties.

4Specifying all queries at the outset is what makes the definition
non-adaptive. In a fully adaptive definition the adversary can choose
each query after receiving the answer to previous queries. The non-
adaptive security definition is enough for our purposes as the protocol
is ultimately made secure against active attacks by letting each party
commit to its randomness at the outset of the execution, and then
behaving deterministically, proving that it followed the protocol in ZK.

output, and are issued for the sole purpose of
defining m0[q],m1[q] and c[q].

Challenge queries consist of two functions
f0, f1 : Mk →M and a list of indexes [i1, . . . , ik].
These are used to compute

m0[q] = f0(m0[i1], . . . ,m0[ik])

m1[q] = f1(m1[i1], . . . ,m1[ik])

c[q] = Eval(PK, k, fb, c[i1], . . . , c[ik]).

The ciphertext c[q] is returned to the adversary.

Semimalicious queries consist of a single function
f : Mk → M , an index list [i1, . . . , ik], and ran-
domness r. These are used to compute

m0[q] = f(m0[i1], . . . ,m0[ik])

m1[q] = f(m1[i1], . . . ,m1[ik])

c[q] = Eval(PK, k, f, c[i1], . . . , c[ik]; r).

Notice that the adversary can compute c[q] on
its own, because it knows the randomness r and
the list of previous ciphertexts. These queries are
useful to generate ciphertexts c[q] which may be
referred to in subsequent honest evaluation and
decryption queries. Notice also that the two mes-
sages m0[q],m1[q] may be different even if they are
computed using the same function f .

Decryption queries consist of just an index q,
subject to the requirement that m0[q] = m1[q].
The query is answered with (a sample from)
Dec(h, SKh, c[q]).

After receiving the answers to all queries, A outputs
a bit b′ ∈ {0, 1}. The advantage of A is defined as
|Pr{1← A | b = 0} − Pr{1← A | b = 1}|.

In decryption queries, after receiving
Dec(h, SKh, c[q]), the adversary can compute
Dec(i, SKi, c[q]) for all other i 6= h on its own, and
recover the message mb[q] = Rec(PK, x1, . . . , xn) =
mb[q]. This provides no information about b
because decryption queries are allowed only when
m0[q] = m1[q]. However, the decryption share
Dec(h, SKh, c[q]) may provide additional information
about the secret SKh.

the security definition may be restricted to subsets
of valid query sequences, e.g., sequences of bounded
length, or sequences where the adversary is allowed a
single decryption query at the end of the execution.

A. Related Work
We recount the main prior works about distributed

RSA key generation. The seminal work by Boneh and
Franklin [16], [17] initiated the line of research on
concretely efficient protocols for this task. They intro-
duced the first non-trivial technique for choosing an

604

DRAFT

RSA composite and verifying that it is a biprime. Based
on this method, they proposed a protocol in the multi-
party honest-majority setting with security against pas-
sive adversaries. Two followup papers [36], [54], still in
the honest-majority setting, strengthened this result and
obtained security against active adversaries. Additional
solutions for testing primality in the multi-party setting
appear in [3], [28]. Unlike previous approaches that
relied on the biprimality testing procedure from [17],
these works showed how to securely implement the
Miller-Rabin test when the primes are additively shared.

Security in the presence of a dishonest majority in
the two-party case poses additional challenges even with
only passive corruptions. Cocks [25] initiated the study
of the shared generation of the RSA composite in the
two-party semi-honest model. Nevertheless, his proposed
protocol was later found to be insecure [26], [14]. The
problem was solved by Gilboa [40] who presented a
protocol in the passive two-party setting, adapting the
technique from [17]. This work also introduced the
technique for secure multiplication based on oblivious
transfer, which is now used extensively for secure arith-
metic multiplication.

Blackburn et al. [14] presented the first protocol
for the active two-party setting, but did not provide a
proof of security. Concurrently, Poupard and Stern [57]
proposed a provable protocol. However, its running
time scaled linearly (rather than logarithmically) with
the domain from which the primes are sampled, and
moreover there was some leakage about the primes
to the adversary. The first fully secure and concretely
efficient RSA key generation in the active two-party
setting was given by Hazay et al. [45]. This work further
provided the first implementation of such a protocol in
the passive two-party setting as well as an extension to
the multi-party setting. Finally, based on more recent
techniques such as fast, actively secure OT extension,
Frederiksen et al. [38] have improved the state-of-the-
art in the two-party setting with active security and
also provided an implementation. Their protocol takes
on average 35 seconds with 64GB RAM machines and
40Gbps network. Finally, a recent work of Chen et al.
[22] further improves this protocol and extends it to
more than two parties; however, no concrete analysis
is provided. Moreover, the communication complexity
of this protocol scales quadratically with the number of
parties.

B. Commit-and-Prove Functionality

Functionality FCP

Functionality FCP communicates with parties
P1, . . . , Pn, a coordinator C and an adversary S
who corrupts the subset of parties in U ⊂ [n]. FCP is
parameterized by an NP relation R and an integer t.
Commit phase: Upon receiving a message
(commit, sid, ssid, Pj , w) from Pj where w ∈ {0, 1}t,
record the value w and send the message
(recv-commit, sid, ssid, Pj) to C and S. (Initially, the
list w̄ is empty.)
Prove phase: Upon receiving a message
(CP-prover, sid, ssid, Pj , x) from Pj where
x ∈ {0, 1}poly(t), compute R(x, w̄): If R(x, w̄) = 1,
then send the message (CP-proof, sid, ssid, x) to C
and S. Otherwise, ignore.

Fig. 6. Functionality for commit-and-prove.

C. The RSA Composite Functionality

Functionality FRSA−ML, Figure 7, captures the dis-
tributed generation of n parties of the RSA composite
in the active (malicious) setting by allowing corrupted
parties to arbitrarily choose their shares and restart the
execution. This models a corrupted party that aborts
after seeing the composite. In case of an abort, the
functionality reveals the factorization of the discarded
composite and restarts.

Functionality FRSA−ML

Functionality FRSA−ML communicates with parties
P1, . . . , Pn, a coordinator C and an adversary S cor-
rupting a subset U ⊂ [n]. FRSA−ML is parameterized by
parameter `.
Adversary shares. Upon receiving a message
(shares, sid, ssid, Pj , pj , qj) for j ∈ U from the
adversary, record the tuple (sid, ssid, Pj , pj , qj) and
send message (receipt, sid, ssid, Pj) to Pj and S.
Shares generation. Upon receiving a messages
(sample, sid, ssid, Pj) from the honest Pj ,
record the tuple (sid, ssid, Pj) send message
(receipt, sid, ssid, Pj) to Pj and S.
Once tuple (sid, ssid, Pj) has been recorded from all
parties Pj , sample random `-bit values for the honest
parties’ shares {pj , qj}j /∈U satisfying
• p1 ≡ q1 ≡ 3 mod 4
• p2, . . . , pn ≡ q2 . . . , qn ≡ 0 mod 4
• p =

∑n
j=1 pj and q =

∑n
j=1 qj are primes

Output. Send (output, N = pq) to all Pj and S.
Identify Cheater. If the functionality receives
(corrupt, sid, ssid, Pj), it records (cheater, sid, Pj)
and sends (factors, sid, ssid, p, q) to S.
Certify. Upon receiving (certify, sid, ssid, Pj) from all
Pj , check if (cheater, sid, Pj) exists in memory. If so,
the functionality aborts the execution and restarts with
the same set of parties excluding Pj .

Fig. 7. The shared RSA functionality in the active setting.

605

DRAFT

D. Protocol for Certified Triples

PROTOCOL ΠT
ctriple CERTIFIED TRIPLES GENERATION

Notations. The protocol communicates with parties
P1, . . . , Pn and a coordinator C, and is parame-
terized by modulus M , and relies on a threshold
additively-homomorphic public key encryption scheme
(Gen,Pub,Eval,Dec,Rec) over the plaintext ring R with
packing factor T with an rEnc-round key-generation
protocol. Let B1, . . . , BT be the corresponding domains
from which each of the T vectors needs to be sampled.
Let Com(·, ·) be a non-interactive commitment scheme.
Let λ denote the security parameter.

Commit phase: Each party Pj commits to its randomness
Rj for the protocol by sending (commit, sid, ssid,Rj)
to FCP. FCP sends (receipt, sid, ssid) to C.

AHE setup phase.
1) Party Pj runs Gen(j; rj) to obtain PKj [1], SKj)

with security parameter λ and number of parties
n where rj is obtained from the random tape Rj .
Pj sends PKj [1] to the coordinator. C broadcasts
PK[1] = Pub(PK1[1], . . . , PKn[1]) to all parties.

2) For r = 2, . . . , rEnc, party Pj computes PKj [r] =
Gen(SKj , PK[1], . . . , PK[r − 1]) and sends it
to the coordinator. C broadcasts PK[r] =
Pub(PK1[r], . . . , PKn[r]) to all parties.

3) At the end of rEnc-round, the parties set PK =
PK[rEnc].

Input generation phase. Party Pj samples vectors
aj , bj , cj ∈ ZB1

× · · · × ZBT
. In addition, they

sample offsets zj [1], . . . , zj [T] where zj [i] is
sampled uniformly from [−nBi2λ, nBi2λ]. Let
zj = (zj [1]B1, . . . , zj [T]BT).

Triples generation phase.
1) Party Pj sends αj = EncPK(aj) to C.
2) Once C receives input from all

parties, it computes and broadcasts
α = Eval(PK, n,ADD(·), [α1, . . . , αn]) where
ADD(·) is the pointwise addition operation on
length T vectors.

3) Each party Pj sends βj =
Eval(PK, 1, flin(bj , c

′
j , ·), α) and sends βj to

C where c′j = zj − cj . flin is defined over
three inputs bj , c

′
j and a plaintext vector m (that

corresponds to decrypted ciphertexts α), and takes
the ith component of bj , cj and m, say b, c,m and
returns as the ith component of the output vector
as bm+ c.

4) C computes and broadcasts β =
Eval(PK, n,ADD(·), [β1, . . . , βn]).

5) Each party Pj computes dj = Dec(j, SKj , β) and
transmits it to C.

6) C computes w = Rec(PK, d1, . . . , dn) and sends
w to P1.

7) P1 outputs its triples as (a1, b1, c
′′
1) where the ith

element of c′′1 is set to ci1 + wi mod ZBi . The rest
of the parties output (aj , bj , cj) as their triples.

Inputs for certification. Party Pj receives a statement xj
and a witness ωj from the environment Z . (Recall that
this part of the NP statement is used to certify how the
triples are used in the larger protocol.)

Generating proofs. Let τj be the transcript of in-
teraction of Pj with the coordinator. Party Pj
sends (commit, sid, ωj) and (CP-prover, sid, (xj , τj))
to FCP. (We instantiate FCP with the NP-relation
RCP that takes as input the statement (xj , τj)
and witness (ωj , Rj ,aj , bj , cj) and outputs 1 if
(xj , (ωj ,aj , bj , cj)) ∈ REXT, (aj , bj , cj) is consistent
with Rj and τj is consistent with the honest party’s code
using randomness Rj). FCP delivers the result to C. If
for any party Pj the C does not receive a confirmation
from FCP, it identifies Pj as a faulty party and broadcasts
this to all parties.

E. Proof Sketch of Theorem 2

Let A be an active adversary; we construct a simulator
S for the ideal process Fctriple. Simulator S internally
invokes A and proceeds as follows:

– Simulating the communication with Z: The input
values received by S from Z are written on A’s input
tape, and the output values of A are copied to S’s own
output tape.

– Simulating the commit phase: S extracts all the ran-
domness used by the corrupted parties by intercepting
the message sent to the FCP.

– Simulating the AHE setup phase: The simulator S
simulates the messages from uncorrupted parties hon-
estly. If at the end of the phase, if the simulator ob-
serves that any corrupted party Pj sends a message
inconsistent with the randomness Rj , it samples ran-
dom inputs for the honest parties {aj , bj , cj}j 6∈U) and
completes the internal emulation till the end of the
Triples generation phase. Party P1’s c1 is altered in
Step 7 as per the protocol. Then, S sends (abort, Pj)
and (assign, sid, ssid,S, {aj , bj , cj}j 6∈U) to Fctriple.

– Simulating the triples generation phase: If an abort
message has not yet been sent, then the simulator
proceeds honestly with uncorrupted parties sampling
inputs {aj , bj , cj}j 6∈U . If all corrupted parties pro-
ceed consistently w.r.t. their randomness, the simulator
identifies the inputs of the corrupted parties from the
randomness extracted in the commit phase and sends
(generate, sid, ssid,S, {aj , bj , cj}j∈U) to Fctriple.

606

DRAFT

If at the end of the phase, if the simulator observes
that any corrupted party Pj sends a message inconsis-
tent with the randomness Rj , then as in the previous
step is completes the emulation till the end of the
Triples generation phase and sends (abort, Pj) and
(assign, sid, ssid,S, {aj , bj , cj}j 6∈U) to Fctriple.
– Simulating the proof generation phase: In this phase,
the simulator extracts the witness wj from the commit
command. Then, for every Pj (j ∈ U) it verifies that
aj , bj , cj is consistent with Rj and Rj is consistent
with τj . If they are, it sends (certify, sid, Pj , (xj , wj))
to Fctriple. Otherwise, it sends (abort, Pj). �

F. Proof of Theorem 5

Consider a security game as described in Definition 2
with challenge bit ḃ, and assume without loss of gen-
erality that the adversary picks the index h = 1. We
make a sequence of modifications to the security game
(formally, we define a sequence of hybrids) that alter
the adversary’s advantage only by a negligible amount.
The changes lead to a game where the adversary has
advantage 0. It follows that the advantage in the original
game from the definion must be negligible.

Let SKi = (ai, si, ei) be the secret key shares picked
at random for i = h = 1 or semi-maliciously by
the adversary for i ≥ 2, and define a =

∑
i ai,

ā =
∑
i≥2 ai = a − a1, and similarly for s, s̄, e, ē and

b, b̄.
Notice that since the adversary has to pick the ai’s

(and their sum ā) before seeing a1, and a1 is chosen
uniformly at random, the value a = a1 + ā is also
uniformly distributed. Since the ai values are not used
anywhere else, we can replace a ∈ RQ with a uniformly
random ring element, and ignore the ai’s.

Next we look at the decryption queries. Let (cq, dq) be
the qth (decryption) query, and mq the associated mes-
sage. Notice that in the security game this message does
not depend on the challenge bit because of the constraint
m0
q = m1

q . So, this message can be efficiently computed
by the adversary or by a simulator. The decryption query
is answered with the honest party partial decryption

dq − s1 · cq + rq = dq − (s− s̄) · cq + rq

= (Q/P)mq + r′q + s̄ · cq + rq

where r′q = Errs((cq, dq),mq), by definition, is bounded
by ‖r′q‖∞ < βq , and rq is chosen uniformly at random
from [−U,+U]. Since U ≥ 2κβq ≥ 2κ‖r′q‖∞, the dis-
tribution of rq + r′q is statistically close (within distance
2−κ) to that of rq , without the addition of r′q . So, we
can replace the decryption oracle answer with a value

(Q/P)mq + s̄ · cq + rq

which can be computed by the adversary on its own
because it knows both mq and s̄. In particular, the

decryption query is answered without using the honest
key share s1.

After repeating the above process for all decryption
queries, we see that the honest secret key share s1 is
not used anywhere, except for the initial computation of
the public b1 = a · s1 + e1, during the key generation
stage. Under the Ring-LWE assumption, this value is
computationally indistinguishable from a uniformly ran-
dom b1 ∈ Rq . So, we can replace b1 with a truly random
values. Moreover, similarly to a, since the adversary has
to choose all ei, si (and the resulting bi = asi + ei and
b̄) before receiving any information about b1, the sum
b = b1 + b̄ is also uniformly random.

At this point we can also replace b with a uniformly
random ring element, and ignore all other values com-
puted during the key generation stage. So, both a and b
are now uniformly random and independent.

To conclude, we consider the challenge queries, which
are the only queries that depend on the hidden bit ḃ
of the security game. Our cryptosystem supports three
types of evaluation queries: encryption, sums, and affine
functions. These queries are answered as follows:

[–] Sum queries are trivial because for every n there
is only one sum function fΣ(x1, . . . , xn) =

∑
i xi. So,

the adversary can compute f0 = f1 = fΣ on its own,
without knowing the challenge bit ḃ.

[–] Encryption queries (m0,m1) are answered with

Enc(PK,mḃ) = (au+ v, ḃu+ w) + (0,mḃ ·Q/P).

Since a, b are uniformly random, and u, v, w are chosen
from the LWE error distribution χ, the pair (a, au+ v)
and (b, bu+w) are LWE samples with secret u and noise
v, w respectively. So, under the Decisional Ring-LWE
assumption, au+v and bu+w are indistinguishable from
uniformly random values. So, we can answer the query
with Enc(PK,mḃ) = (x, y) + (0,mḃ ·Q/P) where x, y
are chosen uniformly at random and independently from
a, b. Adding (0,mḃ ·Q/P) maps the uniform distribution
to itself. So, we can also eliminate (0,mḃ · Q/P),
and answer the encryption query Enc(PK,mḃ) with a
pair of uniformly random ring elements (x, y) ∈ R2

Q,
independently of the bit ḃ.

[–] Affine queries (y0, z0), (y1, z1) are treated simi-
larly. Just as before, the answer to the query

Eval(PK, 1, fyḃ,zḃ , [c];u, v, w)

= (yḃc + (0, zḃQ/P)) + (au+ v, bu+ w)

is the sum of a fixed value (yḃc + (0, zḃQ/P)) and a
pair (au+ v, bu+w) which is indistinguishable from a
uniformly random element of R2

Q. So, we can answer the
query with a pair of random ring elements (x, y) ∈ RQ.

At this point all queries are answered without using
the challenge bit ḃ at all. So, the adversary advantage in
guessing the value of ḃ is 0.

607

		2022-08-24T13:56:54-0400
	Preflight Ticket Signature

