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Abstract—Due to its sound theoretical basis and practical effi-
ciency, masking has become the most prominent countermeasure
to protect cryptographic implementations against physical side-
channel attacks (SCAs). The core idea of masking is to randomly
split every sensitive intermediate variable during computation
into at least t+1 shares, where t denotes the maximum number
of shares that are allowed to be observed by an adversary without
learning any sensitive information. In other words, it is assumed
that the adversary is bounded either by the possessed number
of probes (e.g., microprobe needles) or by the order of statistical
analyses while conducting higher-order SCA attacks (e.g., differ-
ential power analysis). Such bounded models are employed to
prove the SCA security of the corresponding implementations.
Consequently, it is believed that given a sufficiently large number
of shares, the vast majority of known SCA attacks are mitigated.

In this work, we present a novel laser-assisted SCA technique,
called Laser Logic State Imaging (LLSI), which offers an
unlimited number of contactless probes, and therefore, violates
the probing security model assumption. This technique enables
us to take snapshots of hardware implementations, i.e., extract
the logical state of all registers at any arbitrary clock cycle
with a single measurement. To validate this, we mount our
attack on masked AES hardware implementations and practically
demonstrate the extraction of the full-length key in two different
scenarios. First, we assume that the location of the registers (key
and/or state) is known, and hence, their content can be directly
read by a single snapshot. Second, we consider an implementation
with unknown register locations, where we make use of multiple
snapshots and a SAT solver to reveal the secrets.

Index Terms—EOFM, Hardware Security, LLSI, Masking,
Optical Probing, Probing Model, Side-Channel Analysis

I. INTRODUCTION

Electronic embedded devices are an indispensable part of
our today’s connected systems. To ensure the confidential-
ity and integrity of processed data in these systems, strong
cryptography is needed. But even in the presence of such
cryptographic primitives, the security of deployed devices still
can be compromised by attackers, who can gain access to
these devices and thus launch physical attacks. Side-Channel
Analysis (SCA) attacks are examples of such physical threats,
which are hard to detect and mitigate due to their most often
passive nature. SCA attacks exploit the inevitable influence of
computation and storage on different measurable quantities on
a device, such as timing [1], power consumption [2], Electro-
Magnetic (EM) emanation [3], and photon emission [4].

§These authors contributed to this work when they were with Technische
Universität Berlin.

Several countermeasures have been proposed to defeat SCA
attacks. Among them, masking has been shown to be the
most effective one that can be applied to most cryptographic
schemes. Masking schemes are based on the principle of split-
ting the computation over several randomized and independent
shares. To prove the security of the masked implementations,
the t-probing model was first introduced in the seminal work
of Ishai et al. [5]. In this model, the adversary is assumed to
be limited by the number of t probes available for observing
the computation on wires. In such a scenario, we require
to employ at least t + 1 shares to assure that the adversary
cannot learn any sensitive information from t observations. In
practice, assuming such a limit is quite plausible.

For instance, due to the lack of spatial distance in case of
invasive micro/nano-probing attacks or EM analysis, we expect
the number of possible probes to be very limited. Moreover,
the higher number of probes leads to a more expensive probe
station, and hence, the cost of multi-probe stations is another
limiting factor for the adversary. Currently, the most advanced
commercially-available nano-probe station consists of at most
eight needles [6]. Similarly for EM stations, the largest setup,
which has been reported so far only in [7], makes use of three
simultaneous probes. In the case of classical power analysis,
typically only one physical probe is available. However, it
captures the entire circuit’s power consumption, including that
of all shares of all sensitive variables at once (univariate) or at
multiple time instances (multivariate). Therefore, higher-order
statistical analyses dealing with such power measurements to
some extent reflect the number of probes, for example, see [8].
Such higher-order analyses are, however, strongly affected by
the noise level [9]. Consequently, it is believed that employing
a sufficiently large number of shares can – in the presence of
noise – avert classical SCA attacks.

On the other hand, more advanced photonic SCA attacks
from the chip backside [10] enable the adversary to capture
side-channel information of several transistors simultaneously,
and hence, can provide a large number of probes. However,
these attacks can only extract data during transitions. More-
over, due to the typically low Signal-to-Noise Ratio (SNR),
the integration of leakages associated to many executions of
the cryptographic algorithm with attacker-controlled inputs is
necessary. Yet, the existing randomization in masking schemes
makes measurement repetition and integration over the same
data infeasible. While randomization has been mainly consid-
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ered as a countermeasure against power/EM SCA attacks in
the literature, optical attacks become ineffective as well due
to their need for integration.

In response, an intriguing research direction dealing with
single-trace SCA attacks has been formed, which mainly target
the implementation of public-key algorithms requiring a large
number of clock cycles [11]–[13]. Besides, there have been ef-
forts to mount SCA with a minimum possible number of traces
by profiling the target in advance, also known as template
attacks [7], [14]. Unfortunately, these techniques are relevant
only for specific cryptographic schemes and cannot be applied
in general to all masked implementations. Furthermore, the
profiling phase, in the case of template attacks, might be
infeasible in real-world scenarios, where only one sample is
available. Besides, it should be noted that profiling still does
not guarantee the success of the SCA attack by a single-trace
measurement and cannot easily scale with an increase in the
number of shares. Driven by the limitations mentioned above,
the following question arises: Does a practical single-trace
SCA technique exist that offers an unlimited number of probes
while not being limited to specific cryptographic algorithms?
Our Contributions. In this work, we indeed positively answer
the above question. We present a novel laser-assisted SCA
attack from the chip backside using a known Failure Analy-
sis (FA) technique, called Laser Logic State Imaging (LLSI)1.
By modulating the voltage supplying the transistors on the
chip, the corresponding light reflection (originating from a
laser scanning irradiation on these transistors) also becomes
modulated. The resulting modulation is highly data dependent
because only transistors in the on-state affect the reflection
of the laser. We demonstrate how an adversary can deploy
LLSI in a particular clock cycle to take a snapshot from the
entire circuit and recover the state of all transistors, which
form the gates and registers. Hence, it enables the adversary to
have an unlimited number of contactless probes during a time
period, which invalidates the central underlying assumption of
the probing security model for masking schemes. Moreover,
in contrast to other optical attacks or conventional SCA
techniques, LLSI does not require any repeated measurements
with the same data. Therefore, the existing randomness in
masking schemes does not have any protective effect.

To validate our claims, we consider two attack scenarios.
First, we assume that the location of the registers is known
to the adversary; hence their content can be directly read
out using a single snapshot. If this includes key and/or state
registers of the underlying cipher, extracting the secret key is
straightforward. In this case, the effort for the attacker grows
linearly with the number of shares. Second, we demonstrate
that even without knowing the location of the registers, the
attacker can still recover the secret key by capturing a couple
of snapshots at consecutive clock cycles, and making use of

1It should be noted that conducting LLSI from the IC backside has been
previously reported in the failure analysis community. We claim neither this
technique nor our experimental setup as the contribution of this work. Our
primary intention is to draw attention to the potential threat of this known but
not well-researched technique as an attack tool.

a SAT solver. Apart from several simulation-based investiga-
tions, to practically show the effectiveness of LLSI we mount
snapshot attacks on masked AES designs implemented on a
Field Programmable Gate Array (FPGA) manufactured with
a 60 nm technology. As a result, we successfully break the
security of the targeted masked implementations by extracting
their full-length keys.

II. BACKGROUND

A. Masking Countermeasures and t-Probing Model

While several customized countermeasures (e.g., shielded
hardware, current filtering, and dual-rail logic) have been
designed to protect specific cryptographic implementations
against SCA attacks, masking is known as the most widely
studied one with sound theoretical and mathematical founda-
tions. The main idea behind masking schemes is to make use
of a couple of parties (order of the masking), and split the
intermediate computations dealing with the secrets, i.e., multi-
party computation and secret sharing. The input of the circuit
(key and plaintext) should be represented in a shared form, and
the final result (ciphertext) should be obtained by recombining
the output shares while the entire computations are performed
only on shares. The primary advantage of masking is that it can
be assessed in formal security models. In Boolean masking, as
the most common scheme, every random bit x is represented
by (x0, . . . , xd) in such a way that x = x0 ⊕ . . . ⊕ xd.
Based on formal analyses given in [15], a secret sharing with
d + 1 shares can at most defeat an adversary who is limited
to the dth order SCA. Further, it has been demonstrated that
measurements of each share xi are affected by Gaussian noise,
and hence, the number of noisy traces required to recover x
grows exponentially with the number of shares [9]. Therefore,
as a general knowledge, a higher number of shares would
potentially diminish the feasibility of attacks.

On the other hand, the security of masking has been
analyzed by the t-probing model, which was first introduced
in [5]. In this model, it is assumed that the adversary has
access to at most t physical probes to observe the compu-
tation on wires of the circuit at each time period (e.g., one
clock cycle). In such a scenario, at least t + 1 shares are
required to ensure that the adversary cannot learn any sensitive
information from t observations. Although we would like to
consider an adversary with an unlimited number of probes,
this task is generally impractical according to the impossibility
of obfuscation [5], [16]. To unify the leakage models, and
therefore, simplify the analysis of SCA countermeasures, it has
been shown that the two aforementioned leakage models are
related by reducing the security in one model to the security of
the other one [8], [17]. In other words, a dth-order noisy SCA is
equivalent to placing t = d physical probes on the wires of the
target circuit. Based on such models and assumptions, several
constructions have been introduced [18]–[23], and a couple
of security proofs have been given [24]–[27]. Moroever, some
(security) verification tools have been developed [28]–[32],
and multiple implementations have been reported [33]–[39].
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Fig. 1. Comparison of classical EOFM with LLSI. Classical EOFM can be applied to localize transistors switching with a known data-dependent frequency
(here: 1MHz), however, transistors carrying a static signal do not appear in the image. In contrast, for LLSI, the power supply is modulated with a known
frequency (here: 2MHz), thus transistors in the on-state can be localized.

In order to highlight the deployment of masking schemes in
real-world products, we would like to mention that protection
against side-channel attacks is among the criteria defined by
certification bodies in several countries. Masking schemes are
among the countermeasures which have been employed in,
e.g., banking cards since more than a decade ago by smartcard
vendors.

B. Optical Backside Failure Analysis Techniques

Due to the increasing number of metal layers on the
frontside of integrated circuits (ICs), optical FA techniques
have been developed to access on-chip signals through the
backside [40]. The main techniques are photon emission
analysis, laser stimulation, and optical probing, which take
advantage of the high infrared transmission of silicon for
wavelengths above 1 µm. Although initially developed for FA
purposes, these techniques are nowadays also used in the
security domain [41]. FA labs are equipped with machines
that incorporate all of the previously mentioned techniques in
one device, which is typically a laser scanning microscope
(LSM) equipped with a camera for photon emission analysis,
a detector for measuring the reflected laser light, and laser
sources of different wavelengths.2

Due to their high spatial resolution, optical FA techniques
seem to be promising for conducting single-trace measure-
ments. For instance, the analysis of Photon Emission (PE) with
temporal resolution allows to detect the time of switching ac-
tivities of single transistors. Related techniques are Picosecond
Imaging Circuit Analysis (PICA) [42], and the more low-cost
approach of Simple Photonic Emission Analysis (SPEA) [43],
which has been used to attack unprotected implementations of,
e.g., AES [43] and RSA [10]. However, the circuit has to be
repeatedly stimulated for these techniques, since the emission
probability is very low for a single switching event. This
disqualifies time-resolved PE analysis from being a single-
trace technique. Optical techniques that in principle can probe
static signals are Thermal Laser Stimulation (TLS) [44] and
spatial PE analysis of off-state leakage current [45], [46].

2For a discussion on cost and availability of such FA machines, see
Section VII-A3.

However, due to the requirements of low noise on the power
line for TLS, and high static current for PE analysis, these
techniques are restricted to specific applications and targets.
In contrast, optical probing seems to be a more promising
technique, and thus, it is discussed in more detail below.

1) Optical Probing - EOP and EOFM: For optical probing,
a laser beam is focused by a microscope-based setup on the
backside of the IC, and the reflected light is analyzed to find
data dependencies. Since the refractive index and absorption
coefficient within the silicon depend on the electrical proper-
ties present in the device [47], the laser light irradiating the
IC is modulated and partially reflected. A detector processes
the returning light and converts it to an electrical signal. Due
to the transparency of the silicon to the wavelengths above
1.1 µm, optical probing can be carried out in a non-invasive
manner on some devices [48] (see also Section VII-A5).

The laser can either be parked at a specific location, or
scanned over a larger area of the chip. When the laser remains
at a particular location, the waveform of the signal of interest
can be extracted. This technique is called Electro-Optical
Probing (EOP)3. To achieve a sufficiently-high SNR, many
repetitions of the same waveform must be integrated. On the
other hand, when the laser scans an area, the detected signal
can be fed into a spectrum analyzer set to a narrowband filter
for finding areas on the chip that operate with a specific fre-
quency. This technique is known as Electro-Optical Frequency
Mapping (EOFM)3. The result of an EOFM measurement is
a 2-D image showing a signature at areas switching with the
frequency of interest, see Fig. 1a.

Two crucial steps are involved in an attack scenario where
the adversary tries to localize and probe a set of registers/me-
mories using optical probing [48], [49]. First, the attacker
induces a known frequency into the device (e.g., by supplying
the clock or rebooting the chip at a specific frequency) to
activate the target registers or memories, see Fig. 1a. Second,
the device is operated in a loop, and EOP can be used to
read out the values of each individual register. Note that if
the sensitive data are processed in parallel, the content of the

3When using a coherent light source, EOP is typically called Laser Voltage
Probing (LVP), and EOFM is called Laser Voltage Imaging (LVI).
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Fig. 2. Schematic of a CMOS memory cell and the expected 2-D LLSI image
for the cell. For simplicity we omit the input transistors. Only the transistors
in the on-state are expected to give a strong LLSI signal, therefore, the logic
state of the memory cell can be deduced. Figure based on [50].

registers can be directly obtained from the EOFM image [49].
As a result, EOFM can be deployed to localize and probe the
secret simultaneously on a cryptographic device. However, the
downside of this approach is that only dynamic signals which
are available for an arbitrary number of repetitions can be
extracted. Therefore, classical EOP/EOFM cannot be used to
extract static data, i.e., the state of memory elements that are
only available once and at a certain point in time.

2) LLSI: Laser Logic State Imaging (LLSI) makes the read-
out of static signals possible. The technique was introduced as
an extension to EOFM to the failure analysis community [50].
For LLSI the supply voltage is modulated with a known
frequency. Due to the modulation of the transistor channel’s
electric field caused by the supply voltage modulation, tran-
sistors in the on-state give clear signatures on the LLSI image,
while this is not the case for transistors in the off-state, see
Fig. 1b. This observation can be used to deduce the logical
state of, for instance, a memory cell.

Fig. 2 shows a CMOS memory cell consisting of two cross-
coupled inverters. Each inverter consists of one PMOS and
one NMOS transistor, connected between VCC and GND. The
input to the CMOS inverter directly dictates whether its NMOS
is in the on-state and the PMOS transistor in the off-state, or
vice-versa. In both cases, only one transistor per inverter is
in the on-state. Consequently, when knowing the transistors’
states, the value of the inverters’ input can be derived. By
modulating the power supply of the device, the channel’s
electric field of all transistors in the on-state modulates with
the induced frequency and, as explained above, that can be
detected using LLSI. In the example given in Fig. 2, the top
right and bottom left transistors are in the on-state, and the
expected simplified LLSI image shows a clear signature at
those two locations. With the inverted input values, the other
two transistors would be in the on-state, resulting in clear
signatures on the top left and bottom right of the image. Hence,
it can be concluded that all logic states can be extracted using
one LLSI measurement.

III. THREAT MODEL

With our attack, we target hardware implementations of
a block cipher protected by some masking countermeasure.
While assuming here that the input (plaintext/ciphertext) and
the key are shared by Boolean masking, we do not presume
any specific masking scheme. Note that the key has to be
stored in a masked format on the chip, and it has to be re-
masked with fresh masks every time it is used. Otherwise,
template attacks [51] or classical optical probing [49] on
key or key schedule might be possible. The cipher might be
implemented on an FPGA or realized as an ASIC. Following
the common serialized or round-based design architecture, or
as being enforced by the glitch-resilient masking schemes,
the implementation should make use of registers to store the
cipher’s intermediate values.

We stress that in our technique, we are not making use of
any specific construction or feature of any certain masking
scheme. We just suppose that the state register (and key
register) are masked, which is a general statement and does not
deal with any particular technique to realize masking schemes
in hardware, like TI [34], DOM [52], GLM [23], CMS [20],
UMA [22], etc. Note that these different masking schemes
define various techniques to realize non-linear functions (like
the ciphers’ Sboxes), but they all have in common that the state
and key registers are masked. In short, even if the underlying
Boolean masking scheme of the target device does not follow
any of the known hardware masking schemes, our approach
is still a valid attack vector.

Under the above assumptions, we consider a potential
attacker, who can take snapshots of the hardware state using
LLSI and extract the values stored in the registers. To read out
the content of registers at a specific clock cycle, the attacker
should either halt the clock or the content should remain
in the registers and not get cleared after the algorithm has
terminated (see Section VII-A1 for a detailed discussion on
clock control). For the purpose of extracting the secret, the
attacker could either directly target the (masked) key registers
or some registers containing intermediate values of the cipher,
from which the secret can be deduced. Which registers the
attacker chooses to target, depends on her knowledge about
the netlist and layout of the implementation. Regarding this,
two scenarios can be discussed (see Fig. 3). Scenario 1: If the
attacker knows where the key registers are located on the chip,
possibly learned by reverse engineering, she could directly
target them. Still, due to the underlying masking scheme, she
has to target all shares of the key registers. We consider this as
the most straightforward scenario and cover it in Section IV-A.
Scenario 2: If the attacker does not know which registers
on the chip contain the secret, some knowledge about the
algorithm can help with the key extraction, as explained in
Section IV-B. Related to this, we also propose a method to
differentiate registers from other combinatorial gates on a chip,
if the attacker does not even know the areas on which the
registers of the design are placed.
Real-World Targets. To demonstrate how an adversary might
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Fig. 3. Two approaches with different assumptions: known key register locations (Section IV-A) and unknown key register locations (Section IV-B).

benefit from such an attack in the real world, we provide some
examples for the target devices. One example would be payTV
smartcards, which are all programmed with the same key to de-
crypt the scrambled satellite signal in the receivers using some
block cipher. By extracting the encryption key, the adversary
can counterfeit the payTV cards and sell them in the black
market. Consequently, extracting the secret from one device
breaks the security of all devices in the field. Another example
would be every microcontroller/microprocessor or FPGA that
supports firmware or bitstream encryption, respectively. If the
adversary can break this protection mechanism by extracting
the key, she can decrypt the firmware/bitstream and clone,
reverse-engineer, or tamper with the IP. Note that the adversary
is not interested in the hardware itself, and hence, even if the
chip gets unusable during the key extraction, the main assets,
e.g., key or firmware, are still valuable for the adversary.

IV. APPROACH

This section describes methods employed to launch our
attack in Scenario 1 and Scenario 2 explained in Section III.

A. Scenario 1: Known Register Locations

Here we assume that the location of the key registers (i.e.,
registers used to store key shares) on the chip is known to the
adversary. In this case, at some point in time, a given secret
key (in a shared form) is loaded in these key registers. Once
the attacker knows the corresponding clock cycle, she can take
snapshots of the chip using LLSI. The attacker, in principle,
can learn the location of these registers by reverse-engineering
the layout and netlist of the chip. In the case of an ASIC, this
can be done by de-layering the chip and applying some tools to
extract the netlist (e.g., ChipJuice [53]). Interestingly enough,
the whole procedure is also available as a service, e.g., [54]. If
the implementation platform is an FPGA, reverse-engineering
the netlist from the bitstream is essential [55]–[57]. When the
bitstream is available solely in an encrypted form, the attacker
first needs to decrypt it. This is possible, as most cryptographic
ASIC cores on mainstream SRAM-based FPGAs, responsible
for decrypting the bitstream, are either not protected against
SCA or contain other implementation vulnerabilities [44],
[48], [58]–[61]. Moreover, it is worth mentioning that an
attacker, who is involved in the development and fabrication
process of the IC or has enough influence on those entities,

might possess parts or entire information necessary to localize
the (key) registers on the chip.
Automatically extracting bit values from snapshots. To ex-
tract the values from the register snapshots, the attacker first
has to discover the data dependency in the LLSI measure-
ments. To this end, if she has control over the data written
in the registers, she can take two snapshots of a register
cell containing once the value 0 and another time 1. By
subtracting these LLSI images from each other, the attacker
can clearly localize the data dependency. Upon knowing how
to distinguish between 0 and 1, she can extract the values in
an automated fashion.

For this purpose, we propose an approach based on clas-
sical image processing techniques, namely image registration
through cross-correlation, cf. [62]. For this, the corners of each
register cell (containing one bit of data) should be known with
sufficient precision so that the attacker can cut the snapshot
of a single register cell from a potentially larger image. For
selecting the cell boundaries on an FPGA, domain knowledge
can help as the registers are expected to be arranged in regular
structures. In the lack of such knowledge, boundaries can
be determined by conducting image segmentation methods,
e.g., the watershed transformation [63]. Besides, to reduce the
impact of the noise, the two-dimensional (2-D) Wiener filter
can be applied [64], which can remove the noise by applying a
pixel-wise adaptive low-pass Wiener filter to grayscale images.

After these steps, the attacker can choose two snapshots
of cells as reference samples (i.e., templates): one containing
0, and the other one 1 (such two different images can
be easily found). Afterward, the attacker applies the cross-
correlation over all the snapshots of register cells. Note that,
since the positions of the individual register cells are given
to the algorithm, the cross-correlation function (instead of
the normalized one) can be employed to conduct the image
registration. The reference sample that fits best to the targeted
register cell determines the bit value contained in the snapshot.
Remark 1. If giving labels to register cells on a training device
is not feasible, the adversary still ends up with two groups of
cells labeled as (0, 1) or (1, 0). Consequently, she obtains two
candidates for the secret key (verified by a single plaintext-
ciphertext pair). Therefore, having access to a training device
is not an essential fact.
Remark 2. The adversary should not necessarily look for the
key registers. Recovering the state of the cipher – either at
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initial cipher rounds when the input is known or at final
cipher rounds when the output is known – would suffice
to reveal the key completely or partially, depending on the
underlying cipher. For example, having the state of AES-128
encryption at the first round (after AddRoundKey, SubBytes,
or MixColumns) is enough to recover the entire 128-bit key,
but for AES-256, two consecutive rounds should be covered.

B. Scenario 2: Unknown Register Locations

If the location of the registers in the underlying design is
not known to the adversary, the attack seems to be nontrivial.
Our proposal in such a case is to follow a two-step approach:
i) distinguishing the registers from combinatorial cells, and ii)
making use of a SAT solver to reveal the location of registers
of interest, and finally, extracting the secret.

1) Identifying register cells: To localize all register cells
of the design on a chip, we propose an approach that takes
advantage of the difference between sequential and combina-
torial logic. In synchronous designs – as the most common
design architecture – every register is driven by the system
clock4. Consequently, all register cells have a clock input
transistor. In contrast, combinatorial logic is data driven, and
thus has no clock input. By conducting a traditional EOFM
measurement at the clock frequency, the adversary can localize
those clock input transistors. The identified areas are the
candidates for the location of register cells. Furthermore, in
those areas, conducting LLSI experiments with different data
might give hints on the existence of a register. In doing so,
if the attacker finds at least one register cell, she can attempt
to find similarities between its corresponding area and other
candidate regions identified by an optical image or the LLSI
image. Clearly after this step, the procedure of the automatic
extraction of bit values from the snapshots, as explained in
Section IV-A, can be followed.

2) Using SAT solver: Here, we suppose that the regis-
ters are distinguished from the other cells (e.g., through the
technique given above), and their values can be recovered
at multiple clock cycles, following the above instructions.
We also suppose that the design architecture is known to
the adversary, i.e., what is processed and stored at every
clock cycle. However, it is not known to the adversary which
recovered value belongs to which register cell. Having the
above assumptions in mind, we propose to use a SAT solver
to conduct the attack. It is noteworthy that SAT solvers have
also been used to construct algebraic side-channel attacks [65],
[66], where a SAT is written based on, e.g., the Hamming
weight of the intermediate values recovered by a Template at-
tack. We made use of CryptoMiniSat 5 [67], which, compared
to other alternatives, can more easily deal with XOR clauses.

We first focus on a single snapshot at a certain
clock cycle leading to binary observations denoted by
{ω0, . . . , ωn−1∈ F2} corresponding to n registers of the de-
sign. Some registers belong to the control logic (finite-state

4In case of clock gating, it should be made sure that the clock is propagated
at the target cycle. A detailed discussion is given in Section VII-A2.

machine), which are out of our interest. Therefore, we target
m ≤ n registers according to the architecture of the underlying
design. For example, m = 256 for an unprotected implemen-
tation of AES (128 bits for the state register and 128 bits for
the key register). If we define variables vi∈{0,...,m−1} for the
value of targeted register cells at the selected clock cycle, we
can write

vi = ci0ω0 + ...+ cin−1ωn−1, (1)

where with cij we denote binary coefficients. Since only one of
the observations is associated to the i-th register cell, only one
of the coefficients cij∈{0,...,n−1} is 1, and the rest are 0. In other
words, ∀i,

∑
∀j
cij = 1. These are the first formulations that we

require to include in the Boolean satisfiability problem (SAT),
which are generated individually for each targeted register cell
vi∈{0,...,m−1}, and are independent of the observations ω and
the architecture of the circuit under attack.

We should also add the formulations for (1) for each vi.
Those observations ωj that are 0 cancel out the corresponding
coefficient cj . Therefore, we can write

vi ⊕
( ∑
∀j,ωj=1

cj

)
= 0. (2)

Having more snapshots at different clock cycles, the clauses
for (2) should be repeated for m distinct register variables
vi based on the corresponding observations ωj . However, the
coefficients cij stay the same, i.e., they are defined only once
for the entire circuit independent of the number of snapshots.

The remaining task is to link the variables vi (of targeted
register cells) at different clock cycles. This is done based on
the underlying design architecture of the circuit under attack
and the functions it realizes. For example, in a round-based
architecture, the state register cells store the output of the
cipher round function, and the key register cells the round
keys. In a serialized architecture, the content of the registers
is shifted (e.g., in a byte-wise fashion), and certain operations
(e.g., Sbox) are applied on particular registers at determined
clock cycles. We will elaborate an example in Section VI-D.

For a masked implementation with d+1 shares, the number
of targeted registers at each clock cycle is m(d + 1) (e.g.,
512×2 for a first-order masked implementation of AES using
the state and key registers with 2 shares). Therefore, the entire
formulations given in (2) should be repeated d + 1 times. In

the next step, we define m virtual variables νi =
d+1⊕
l=1

vi,l (for

each clock cycle), where (vi,1, . . . , vi,d+1) represent variable
νi with d+ 1 shares. The corresponding formulations should
be also added to the SAT. The rest is similar to an unmasked
implementation, i.e., the (unmasked) variables νi at different
clock cycles are linked based on the design architecture of the
circuit under attack. We give a detailed explanation how to
write the clauses in Appendix B.

V. EXPERIMENTAL SETUP

To evaluate our proposed attack, we need a target device that
can run masked AES implementations of different protection
orders. In order to conduct LLSI, the power supply of the
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(a) DUT under the PHEMOS-1000 FA
microscope

(b) Laser scan image of the DUT backside (5x lens) (c) Zoom-in of the framed area con-
taining the LABs (50x lens)

Fig. 4. Device under test (DUT): Intel Cyclone IV FPGA with part number EP4CE6E22C8N.

device must be modulated, and the backside of the chip must
be optically accessible. Since snapshots of a large number
of registers in multiple clock cycles have to be acquired, the
automation of LLSI measurements would be beneficial.

A. Device Under Test (DUT)

Our target device was an Intel Cyclone IV FPGA [68] (see
Fig. 4). It is manufactured in a 60 nm technology and contains
392 logic array blocks (LABs), each consisting of 16 logic
elements (LEs). The LEs mainly consist of a four-input look-
up table (LUT) and a programmable register. Furthermore,
in every LE, there is logic for loading and clearing data,
routing, and clocking. To access the backside of the chip,
we opened the package and thinned the bulk silicon to a
remaining depth of around 25 µm.We soldered the prepared
sample upside down to a custom Printed Circuit Board (PCB)
to expose connections to input/output and power supply pins.
To keep the power supply modulation for LLSI as unaffected
as possible, we did not place capacitors on the PCB.

B. Electrical and Optical Setup

As the setup (Fig. 5), we used a Hamamatsu PHEMOS-1000
FA microscope with optical probing capabilities. It is equipped
with a 1.3 µm high-power incoherent light source (HIL) and
5x/0.14NA, 20x/0.4NA, and 50x/0.71NA objectives. An ad-
ditional scanner-zoom of 2x, 4x and 8x is available. For
EOFM/LLSI, the laser is scanned over the device using
galvanometric mirrors, and the reflected light is separated by
semi-transparent mirrors and fed into a detector. Its output is
then fed into a bandpass filter set to the frequency of interest.
The resulting amplitude at every scanning location is mapped
to its position and displayed as a grayscale encoded 2-D image.

For LLSI, the supply voltage has to be modulated. There-
fore, the internal core voltage (VCCINT) of the DUT is sup-
plied with 1.2V by a Texas Instruments voltage regulator
(TPS7A7001), whose feedback path is used to modulate the
output voltage. The sine wave signal used for this purpose
is generated by a Keithley 3390 function generator, and a

Hamamatsu PHEMOS

x, y

2-D LLSI
Image

Bandpass FilterDetector

Laser Scanner
(x/y)

VCCINT

VCCA, CCIO

Modulated
Power Supply

Power Supply

Clock Generator
CLK, RST

1.3 µm HIL

Cyclone IV
DUT

Amplitude-to-
Position Mapping

Fig. 5. Electrical and optical setup for conducting LLSI experiments.

Toellner laboratory power supply (TOE8732) provides the
DC voltage. An LLSI peak-to-peak modulation amplitude up
to 700mVpp at 90 kHz is possible without disturbing the
functionality of the device. The auxiliary voltage pin (VCCA)
and I/O voltage pin (VCCIO) are supplied by the second channel
of the TOE8732, which is set to 2.5V. The clock for the DUT
is externally supplied via a Rigol DG4162 function generator,
which allows single-stepping and stopping the clock.

C. Automation of LLSI Acquisition

To create snapshots of the registers in multiple clock cy-
cles in an automated fashion, we use the CadNavi interface
provided by the PHEMOS-1000 and the USB interface of
the clock generator. The CadNavi interface gives access to
functionalities of the PHEMOS, e.g., moving the microscope
stage, adjusting the focus, and starting and stopping the
measurements. Using the clock generator, the DUT can be
reset, and clock cycles can be advanced in single steps. In
the LabView programming environment, we implemented a
scanning routine as follows. First, the device is stopped at the
clock cycle of interest. The stage is then moved to a location
of interest, where the focus is adjusted, and drift of the optical
setup in x- and y-direction is corrected. For drift correction, we
apply an elastic image registration on the current optical image
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Fig. 6. Experiment for identifying the register cells. EOFM image at the clock
frequency (magenta) and LLSI signature (green), overlaid onto an optical
image and gathered in parallel while the device was running. LE boundaries
indicated by dashed lines and potential clock transistors of registers by arrows.

and an image recorded before the first measurement. Finally,
an optical image is taken and the LLSI snapshot is gathered.
After the program has gathered snapshots of all locations of
interest, the same procedure begins for the next clock cycle.

VI. RESULTS

A. Data Dependency of LLSI Measurements

To find the approximate register locations on the FPGA,
we first conducted an EOFM measurement at the clock fre-
quency [69], while the device was operating normally. In
the result shown in Fig. 6, we could identify several spots
switching at the clock frequency. We presume that some of
the spots are the actual clock buffers for the registers, and
others are part of the clock routing buffers between the LEs.
By comparing the chip layout from the FPGA design software
with the optical image, we identified the horizontal boundaries
between the LEs, as indicated with the dashed lines in Fig. 6.
Note that every second LE seems to be flipped horizontally. We
then identified clock activity spots that are at the same relative
position for every LE, see marked spots in Fig. 6. Because
every LE contains only a single-bit register, we expected the
registers to reside in the vicinity of these spots.

To find a data dependency in the LLSI measurements and
confirm the register location hypothesis, we targeted a single
register cell. For this, we set all surrounding registers to 0 and
took two LLSI snapshots, one with the targeted bit set to 1,
and one with 0, see Fig. 7. We set the modulation of VCCINT
to 530mVpp at 90 kHz and scanned using the 50x lens with
2x zoom and a pixel dwell time of 10ms/px. Note that we
could see a signature on the LLSI measurements already with
a lower modulation amplitude, but we chose these settings to
increase the SNR, and hence, decrease the scanning time.

By subtracting the captured LLSI measurements, the areas
with differences become visible. It can be observed that there
is only one LE with differences, indicated by the yellow
window in Fig. 7. The size of this area is about 7 µm× 9 µm,
and located directly to the right of the potential clock buffer.
Due to the number of different spots, we assume that the
window contains more than just the register. Presumably, the
in- and output transistors, as well as other logic, also contribute
to the LLSI signature; however, this is irrelevant to our attack

as its goal is to extract the bit values stored in the register cells.
To demonstrate how arbitrary data from the LLSI images can
be read out, we took a snapshot of 24 registers containing
randomly chosen data. For an easier manual extraction, we
have subtracted a reference snapshot with all registers set to
0, see Fig. 10 in Appendix A. Consequently, if there is a clear
difference for a cell, it contains the value 1; otherwise 0.

This leads us to the conclusion that the register inside the
LAB and LE can be localized, and also the bit values 0 and
1 can be distinguished using a single LLSI measurement.

B. Implementation Under Attack

We chose the AES-DOM implementation [52], which is
available on GitHub [70]. It is a serialized AES encryption
engine that is given the shares of 128-bit plaintext and key,
shifted in byte-by-byte during the first 16 clock cycles. The
code is written so that it allows the user to arbitrarily adjust
the protection order (i.e., the number of shares), meaning
that for a d + 1 sharing scheme, it is expected to provide
security against attacks up to d-th order by means of d + 1
shares. It requires a high number of random masks refreshed
at every clock cycle, i.e., (d + 1)(9d + 10) bits for d + 1
shares. Due to its serialized architecture, only one instance
of the (masked) Sbox is instantiated. Since the Sbox has 4
stages of pipeline intermediate registers (essential for almost
any hardware masked implementation), a complete SubBytes
operation takes 16+4 clock cycles. MixColumns is also per-
formed column-wise, requiring 4 clock cycles. However, due
to an interleaved fashion (ShiftRows and MixColumns being
applied in parallel to SubBytes), the entire encryption can be
terminated after 200 clock cycles [52].

For the implementation on the FPGA, we restricted the
AES-DOM core to be placed in a dedicated area on the FPGA
using the logic fencing feature of the FPGA design software.
Our wrapper module, which is responsible for providing all
inputs to the AES core, can thus be excluded from the
hardware snapshots. The highest protection, which we could
fit on the FPGA (with our co-existing wrapper module), was
of 4th order, resulting in 5 shares.

C. Key Extraction with Known Register Locations

In the first scenario, we target a d + 1 = 3-share5 and a
d + 1 = 5-share implementation of AES-DOM (as given in
Section VI-B), resulting in 3× 128 = 384 and 5× 128 = 640
bits of key registers, respectively. We placed all key registers
to known locations. To minimize the LLSI scanning time,
we considered 3 and 5-share implementations occupying in
total 24 and 40 LABs (each LAB with 16 register cells),
respectively. As the input key shares are provided byte-by-byte
to the AES-DOM core, after 16 clock cycles all key shares are
stored inside the key registers; hence it is sufficient to extract
the key register content only in the 16th clock cycle.

We could achieve a reasonable SNR for the LLSI measure-
ments with the 50x lens, 2x zoom, and a pixel dwell time of

5In the AES-DOM code [70], the protection order d is shown by parameter
N = d.
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Bit = 1 Bit = 0

=

Difference
Fig. 7. LLSI measurement of 3 LEs (separated by dashed lines) with only the register of the centered LE (yellow window) set first to 1 and then to 0, while
keeping the other registers set to 0. When subtracting images from each other, the result indicates the differences. Only the register at the centered LE shows
a clear difference, indicating that the bit value has changed.

3.3ms/px with a VCCINT modulation of 640mVpp at 90 kHz.
Our scanning routine – including autofocus and drift correction
– needs 2.7 minutes to scan one LAB (containing 16 register
cells). Note that we scanned only the part of the LABs holding
the register cells. Scanning all 3 and 5-share key registers took
around 65 and 108 minutes, respectively.

We could easily read out the bit values from the LLSI mea-
surements (even manually possible, for example, see Fig. 8).
Subtracting a reference measurement when zero stored in the
registers (recorded, e.g., directly after resetting the device)
could potentially facilitate manual readout, as also already
observed in Section VI-A. However, we used an automated
correlation-based extraction scheme which does not require to
take snapshots of all registers while they contain zeroes.
Extracting bit values from snapshots. To extract the bit
values from the LLSI images as described in Section IV,
we applied off-the-shelf image processing algorithms provided
in the Matlab software package [71]. First, we registered all
the optical images that had been captured along with the
snapshots using an elastic transformation. Note that here the
process of registration refers to the transformation of the sets
of data into one coordinate system, which should not be
confused with the technique that we apply to identify the
register values. The alignment enables us to cut every register
cell according to the boundaries observed in Section VI-A
from the snapshot images in an automated fashion. From the
resulting cells, we chose two template snapshots of a single
register cell for different bit values and subtracted them from
each other to remove the signatures not representing the bit
value. Then, as explained in Section IV-A, we applied noise
reduction through adaptive filtering, and finally converted the
templates to a binary mask, see Fig. 8. To extract the bit
values, we calculated the 2-D cross-correlation between the
snapshot and each template. For determining the value of the
register cells, the template for which the maximum correlation
is achieved is taken into account. In our experiment, we
extracted the value of all registers from the snapshots with
100% accuracy. It is worth mentioning that for our approach,
solely a pair of reference cells is required, which can be
prepared straightforwardly. The efficiency of our technique
should be evident when comparing it with machine learning
methods that require a relatively large set of labeled cells.

Due to the underlying 2nd- and 4th-order Boolean masking
scheme, by bit-wise XOR’ing all shares, the entire 128 bits
of the AES key are trivially revealed (for the first key byte
of the 3-share implementation, see Fig 9). The raw LLSI
measurements and extraction scripts for all experiments are

LLSI image Snapshots Correlation

b1 0.39 −0.07

b2 −0.13 0.40

b3 −0.14 0.48

b4 0.65 −0.18

b5 0.49 −0.05

b6 −0.24 0.51

b7 0.52 −0.2

b8 −0.17 0.49

r(bi, t0) r(bi, t1)

Templates

Bit = 0

t0

Bit = 1

t1

Fig. 8. Correlation-based data extraction mechanism from snapshots of half
a LAB (8 bits). Due to the FPGA layout, every second cell has to be flipped
horizontally. The correlation coefficient r(a, b) between each cell and the
templates for value 0 and 1 is calculated. The extracted bit value is determined
by the template matching best.

available online as open-access research data6.

D. Key Extraction with Unknown Register Locations

In the second scenario, we selected a d + 1 = 2-share
implementation of AES-DOM as the target. We adjusted the
size of logic blocks so that nearly all 16 registers in each
LAB are used, occupying in total 45 LABs. Note that these
LABs cover the entire registers of the AES-DOM design,
including the shared key registers, shared state registers, the
intermediate masked Sbox registers, and those of finite-state
machines. However, we do not have any knowledge about
the exact location of each register cell and enforce no other
placement rule rather than what is explained above. Using the
scheme explained in Section IV-B1, we localized the physical
area on the chip where the register cells are placed, see Fig. 6.

To conduct the attack, we first investigated the design
architecture of the AES-DOM, being serialized with the state
and key registers shifted byte-wise, as stated before. Table I
represents the content of 32 registers (consisting of 8 bits each)
stored in consecutive clock cycles for the first 36 clock cycles,
whereas the order of rows in the table is not of our interest.

6http://dx.doi.org/10.14279/depositonce-10440
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TABLE I
STATE OF THE REGISTERS OF THE AES-DOM DESIGN IN THE FIRST 36 CLOCK CYCLES, EACH ROW REPRESENTS A REGISTER BYTE,

K: KEY BYTES, S: SUBBYTES OUTPUT, M: MIXCOLUMNS OUTPUT, K’: 2ND ROUND KEY BYTES, S’: 2ND-ROUND SUBBYTE OUTPUT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
− − − − − − − − − − − − − − −
− − − − − − − − − − − − − − K0
− − − − − − − − − − − − − K0 K1
− − − − − − − − − − − − K0 K1 K2
− − − − − − − − − − − K0 K1 K2 K3
− − − − − − − − − − K0 K1 K2 K3 S0
− − − − − − − − − K0 K1 K2 K3 S0 S1
− − − − − − − − K0 K1 K2 K3 S0 S1 S2
− − − − − − − K0 K1 K2 K3 S0 S1 S2 S3
− − − − − − K0 K1 K2 K3 S0 S1 S2 S3 S4
− − − − − K0 K1 K2 K3 S0 S1 S2 S3 S4 S5
− − − − K0 K1 K2 K3 S0 S1 S2 S3 S4 S5 S6
− − − K0 K1 K2 K3 S0 S1 S2 S3 S4 S5 S6 S7
− − K0 K1 K2 K3 S0 S1 S2 S3 S4 S5 S6 S7 S8
− K0 K1 K2 K3 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
K0 K1 K2 K3 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

− − − − − − − − − − − − − − −
− − − − − − − − − − − − − − K0
− − − − − − − − − − − − − K0 K1
− − − − − − − − − − − − K0 K1 K2
− − − − − − − − − − − K4 K5 K6 K7
− − − − − − − − − − K4 K5 K6 K7 K4
− − − − − − − − − K4 K5 K6 K7 K4 K5
− − − − − − − − K4 K5 K6 K7 K4 K5 K6
− − − − − − − K4 K5 K6 K7 K8 K9 K10 K11
− − − − − − K4 K5 K6 K7 K8 K9 K10 K11 K8
− − − − − K4 K5 K6 K7 K8 K9 K10 K11 K8 K9
− − − − K4 K5 K6 K7 K8 K9 K10 K11 K8 K9 K10
− − − − − − − − − − − − − − −
− − − − − − − − − − − − − − K12
− − − − − − − − − − − − − K12 K13
− − − − − − − − − − − − K12 K13 K14

16 17 18 19 20 21 22 23 24 25 26 27
K0 K1 K2 K3 S0 M1 M2 M3 S4 M5 M6 M7
K1 K2 K3 S0 S5 M2 M3 S4 S9 M6 M7 S8
K2 K3 S0 S1 S10 M3 S4 S9 S14 M7 S8 S13
K3 S0 S1 S2 S15 S4 S9 S14 S3 S8 S13 S2
S0 S1 S2 S3 S4 S9 S14 S3 S8 S13 S2 S7
S1 S2 S3 S4 S9 S14 S3 S8 S13 S2 S7 S12
S2 S3 S4 S5 S14 S3 S8 S13 S2 S7 S12 S1
S3 S4 S5 S6 S3 S8 S13 S2 S7 S12 S1 S6
S4 S5 S6 S7 S8 S13 S2 S7 S12 S1 S6 S11
S5 S6 S7 S8 S13 S2 S7 S12 S1 S6 S11 K’0
S6 S7 S8 S9 S2 S7 S12 S1 S6 S11 K’0 K’1
S7 S8 S9 S10 S7 S12 S1 S6 S11 K’0 K’1 K’2
S8 S9 S10 S11 S12 S1 S6 S11 K’0 K’1 K’2 K’3
S9 S10 S11 S12 S1 S6 S11 K’0 K’1 K’2 K’3 S ’0
S10 S11 S12 S13 S6 S11 K’0 K’1 K’2 K’3 S ’0 S ’1
S11 S12 S13 S14 S11 K’0 K’1 K’2 K’3 S ’0 S ’1 S ’2

K0 K1 K2 K3 K0 K1 K2 K3 K4 K5 K6 K7
K1 K2 K3 K0 K1 K2 K3 K4 K5 K6 K7 K8
K2 K3 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9
K3 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
K4 K5 K6 K7 K4 K5 K6 K7 K8 K9 K10 K11
K5 K6 K7 K4 K5 K6 K7 K8 K9 K10 K11 K12
K6 K7 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13
K7 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14
K8 K9 K10 K11 K8 K9 K10 K11 K12 K13 K14 K15
K9 K10 K11 K8 K9 K10 K11 K12 K13 K14 K15 K’4
K10 K11 K8 K9 K10 K11 K12 K13 K14 K15 K’4 K’5
K11 K8 K9 K10 K11 K12 K13 K14 K15 K’4 K’5 K’6
K12 K13 K14 K15 K12 K13 K14 K15 K’0 K’1 K’2 K’3
K13 K14 K15 K12 K13 K14 K15 K’0 K’1 K’2 K’3 K’4
K14 K15 K12 K13 K14 K15 K’0 K’1 K’2 K’3 K’4 K’5
K15 K12 K13 K14 K15 K’0 K’1 K’2 K’3 K’4 K’5 K’6

28 29 30 31 32 33 34 35 36
S8 M9 M10 M11 S12 M13 M14 M15 K’0
S13 M10 M11 S12 S1 M14 M15 K’0 K’1
S2 M11 S12 S1 S6 M15 K’0 K’1 K’2
S7 S12 S1 S6 S11 K’0 K’1 K’2 K’3
S12 S1 S6 S11 K’0 K’1 K’2 K’3 S ’0
S1 S6 S11 K’0 K’1 K’2 K’3 S ’0 S ’1
S6 S11 K’0 K’1 K’2 K’3 S ’0 S ’1 S ’2
S11 K’0 K’1 K’2 K’3 S ’0 S ’1 S ’2 S ’3
K’0 K’1 K’2 K’3 S ’0 S ’1 S ’2 S ’3 S ’4
K’1 K’2 K’3 S ’0 S ’1 S ’2 S ’3 S ’4 S ’5
K’2 K’3 S ’0 S ’1 S ’2 S ’3 S ’4 S ’5 S ’6
K’3 S ’0 S ’1 S ’2 S ’3 S ’4 S ’5 S ’6 S ’7
S ’0 S ’1 S ’2 S ’3 S ’4 S ’5 S ’6 S ’7 S ’8
S ’1 S ’2 S ’3 S ’4 S ’5 S ’6 S ’7 S ’8 S ’9
S ’2 S ’3 S ’4 S ’5 S ’6 S ’7 S ’8 S ’9 S ’10
S ’3 S ’4 S ’5 S ’6 S ’7 S ’8 S ’9 S ’10 S ’11

K8 K9 K10 K11 K12 K13 K14 K15 K’0
K9 K10 K11 K12 K13 K14 K15 K’0 K’1
K10 K11 K12 K13 K14 K15 K’0 K’1 K’2
K11 K12 K13 K14 K15 K’0 K’1 K’2 K’3
K12 K13 K14 K15 K’4 K’5 K’6 K’7 K’4
K13 K14 K15 K’4 K’5 K’6 K’7 K’4 K’5
K14 K15 K’4 K’5 K’6 K’7 K’4 K’5 K’6
K15 K’4 K’5 K’6 K’7 K’4 K’5 K’6 K’7
K’4 K’5 K’6 K’7 K’8 K’9 K’10 K’11 K’8
K’5 K’6 K’7 K’8 K’9 K’10 K’11 K’8 K’9
K’6 K’7 K’8 K’9 K’10 K’11 K’8 K’9 K’10
K’7 K’8 K’9 K’10 K’11 K’8 K’9 K’10 K’11
K’4 K’5 K’6 K’7 K’8 K’9 K’10 K’11 K’12
K’5 K’6 K’7 K’8 K’9 K’10 K’11 K’12 K’13
K’6 K’7 K’8 K’9 K’10 K’11 K’12 K’13 K’14
K’7 K’8 K’9 K’10 K’11 K’12 K’13 K’14 K’15

Share 1

1 0 1 0 0 1 1 00xA6 =

Share 2

0 0 1 0 1 0 0 00x28 =

Share 3

0 0 1 1 1 0 0 10x39 =

Fig. 9. Extracted values of the first byte of key register shares fo the 3-share
implementation. XOR’ing the results 0xA6⊕0x28⊕0x39=0xB7 reveals
the first byte of the unshared key beginning with 0xB7FCBFF83...

For example, the first row shows that the register that stored
K0 at clock cycle 16, will hold K1, K2, K3, S0, M1, M2, ...
in the next clock cycles. We would like to highlight that it
is a symbolic representation and independent of the masking
order, e.g., K0 represents all d+ 1 shares of the first byte of
the key.

It can be seen that in clock cycle 16, all registers are filled;
a part of the state registers with SubBytes’ output and the
first quarter with 4 bytes of the key. The key register is
also fully filled by the given key, which precisely justifies
why we targeted this clock cycle for the attack in the first
scenario, see Section VI-C. Here, we also started at clock
cycle 16 and collected LLSI measurements of the entire 45
LABs in 12 consecutive clock cycles. Each full snapshot in
a clock cycle took around 2 hours. Using the fully automated
setup developed for this purpose, which applies drift correction

mechanisms, we collected all snapshots in 24 hours without
any manual interaction. Using the correlation-based extraction
technique (see Section VI-C), we extracted the values stored
in all registers during the 12 clock cycles.

Using SAT solver. To extract the key, we made use of
CryptoMiniSat 5 [67] and followed the technique explained
in Section IV-B2. We developed a program in C++ which
receives i) the architecture of the underlying design as in
Table I, ii) the masking order d, iii) the number of covered
clock cycles n, and iv) the value of registers extracted by
snapshots at n clock cycles. The program generates a Boolean
satisfiability problem (SAT) to be solved by the SAT solver.
For the above case (i.e., d = 1 and n = 720 register bits in
12 clock cycles), the SAT led to 3 650 048 clauses on 717 728
variables. The SAT solver required 1 hour and 47 minutes to
solve the problem and successfully report the revealed key.
Note that the SAT solver does not find a unique solution, but
all of them lead to the same revealed key. This is due to the
underlying masking scheme, i.e., when representing a variable
x by 2 shares, the SAT solver makes a distinction between
(x1, x2) and (x2, x1), while both of them lead to the unique
unmasked value x. This holds for all masked variables in the
SAT. If there are λ of such mask variables, the SAT solver
can find ((d+ 1)!)

λ correct solutions.

Extension. To examine the efficiency of this approach for
different numbers of shares d + 1 and different numbers of
covered clock cycles η, we have conducted several investi-
gations. We simulated the AES-DOM for d ∈ {0, . . . , 6}
and extracted all register values at the first 36 clock cycles
(see Table I). Note that we supplied the implementation with
random masks (refreshed at every clock cycle), and did not
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TABLE II
THE REQUIRED TIME FOR THE SAT SOLVER TO REPORT A SOLUTION, SUCCESSFULLY RECOVERING THE KEY, FOR DIFFERENT MASKING ORDER d AND

VARIOUS NUMBER OF COVERED CLOCK CYCLES BY SNAPSHOTS.
Masking Number of covered clock cycles starting from 16
order d 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1.5 h 7 m 2 m 54 s 46 s 21 s 19 s 24 s 19 s 17 s 19 s 15 s 9 s
1 - - - 1.78 h 14 m 10 m 8 m 7 m 8 m 6 m 6 m 5 m 6 m
2 - - - - 1.76 h 56 m 47 m 38 m 39 m 30 m 28 m 26 m 21 m
3 - - - - - 5.4 h 4.5 h 2.5 h 2.83 h 2.15 h 1.93 h 1.8 h 1.2 h
4 - - - - - - 9.5 h 8.91 h 7.71 h 6.16 h 5.65 h 4.75 h 4.71 h
5 - - - - - - 1.1 d 20.61 h 17.96 h 16.08 h 18.5 h 21.55 h 19.11 h
6 - - - - - - - 1.8 d 1.9 d 1.75 d 1.8 d 1.49 d 1.35 d

consider the name/order of registers when extracting their
values. Starting from clock cycles 16, we ran the SAT solver
on SATs covering η ∈ {9, . . . , 21} clock cycles, i.e., from
clock cycle 16 to clock cycle 24 up to 36. We repeated this
experiment with 10 sets of different plaintext/key (and random
masks). We found out that the SAT solver usually needs less
time to find the solution when more clock cycles are covered
by the SAT (expected, as it contains more information). We
further recognized that there is a minimum number of required
covered clock cycles depending on the number of shares. The
averaged results obtained using a machine with a 2.6 GHz
CPU and 256 GB RAM are shown in Table II. Note that
multithreading is not beneficial here, as CryptoMiniSat 5 looks
for different solutions by each thread. Besides, starting before
the clock cycle 16 is not helpful since some registers do not
contain meaningful data (see Table I).

We have also investigated other design architectures. In
short, if the circuit does not allow the collection of enough
snapshots per encryption/decryption (e.g., at most 10 in a
round-based AES-128 encryption), snapshots for more inputs
(plaintexts) can be collected. Although it becomes out of the
single-trace feature of our attack, it still allows recovering
the secrets by a few snapshots (corresponding to different
inputs). As a general overview, a design which requires a
higher number of clock cycles for each encryption/decryption
would also exhibit more information in the snapshots. We
should stress that due to their high area overhead, usually just
one instance of some basic blocks (like Sbox) is instantiated
in masked implementations, leading to a high number of
clock cycles per encryption/decryption. This would potentially
decrease the number of required snapshots in our attack.

VII. DISCUSSION

A. Attack Feasibility

1) Clock control: For taking a snapshot of registers in a
region of interest, the registers’ contents should not be updated
by the clock signal. Therefore, the adversary either needs to
halt the clock signal for every snapshot or find a time window,
where the registers’ contents remain constant for several clock
cycles, sufficient for taking a snapshot. Depending on the
hardware designer, the state of the (masked) registers might not
be cleared after the termination of the encryption/decryption.
The same observation has been reported in [72]. In such cases,

there is no need to have any control over the clock. If the
locations of the registers are known to the adversary, a snap-
shot from all key registers after the encryption/decryption can
be taken to recover the key. However, as multiple snapshots
from successive clock cycles are required for the scenario with
unknown register locations, this method cannot be applied.
Thus, controlling the clock signal is inevitable. To stop the
clock, we have identified the two following possible scenarios.

External clock. In the most uncomplicated scenario, the clock
is supplied to the chip externally. Hence, the adversary can
easily tamper with the clock signal before it enters the chip
and keep it low/high at her desired periods to take a snapshot.
Naturally, she can repulse the clock again to move one or
several clock cycles further with encryption/decryption.

Internal clock. The attack becomes more challenging if the
clock is generated internally on the chip. Depending on the
target platform (i.e., FPGA or ASIC), the attacker needs
to apply more sophisticated techniques to tamper with the
clock. If the target is an SRAM-based FPGA, the attacker
can use laser fault injection to manipulate the clock source
configuration (e.g., based on ring-oscillators) or its routing
configuration to stop the clock signalling [73], [74]. To take a
snapshot of registers, the adversary first needs to inject a fault
into the clock circuitry at her desired cycle and then take a
snapshot. However, the challenge would be to reactivate the
clock for the next snapshots. Although rebooting the FPGA
leads to the correct reconfiguration and reactivation of the
clock circuitry, it will not be helpful for the next snapshots
due to newly generated random masks. Although successive
immediate fault injections are feasible in principle, it might
be impractical due to laser setup limitations. Moreover, laser
fault injection is not effective in case of an ASIC or a flash-
based FPGA since only transient faults can be injected, which
is usually not sufficient to halt the internal clock permanently.

A more realistic solution, applicable to all platforms, is
circuit editing using Focused Ion Beam (FIB). Using FIB, the
attacker can physically cut the metal lines responsible for clock
signal delivery or damage the transistors of clock buffers to
stop the clock. After disconnecting the internal clock from the
cipher, the attacker can provide her own controllable external
clock signal by injecting pulses into clock lines using active
nano-probe needles [6]. Even though FIB circuit editing is an
invasive technique, it is a practically feasible approach [75].
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Thus, we believe that an internal clock cannot stop the attacker
from mounting snapshot attacks, although it increases the
difficulties.

2) Clock Gating: In synchronous circuits, clock gating can
be deployed to reduce dynamic power consumption by cutting
the clock signal from flip-flops when they are not in use. In this
case, since the clock signal is not continuously delivered to a
specific group of registers, a question rises about the feasibility
of conducting EOFM on an unknown layout to localize the
registers. To ensure that all clock gated registers are receiving
the clock signal during an EOFM measurement, the dwell
time of the laser at each pixel has to be larger than full
encryption/decryption time. As a result, we can be confident
that the gated registers have been activated temporarily and
received the clock signal. Note that while the clock signals for
these gated registers might not be periodic anymore during the
dwell time of the laser, they still contain the clock frequency
component, however with a lower amplitude. Therefore, an
EOFM measurement with the clock frequency reveals clock
buffers of gated registers with different modulation intensities,
i.e., stronger modulation for always active registers and weaker
modulation for gated registers. For instance, assume that the
cryptographic core is running with a 100MHz clock, and the
dwell time of the laser is 1mspx−1. In this example, AES
DOM requires about 200 clock cycles or 2 µs to complete an
encryption. Hence, by keeping the cryptographic operation in
a loop during an EOFM measurement, the AES circuit finishes
the encryption 500 times while the laser beam is still at the
same position. Upon the laser’s movement to the next pixel,
the same number of operations in the loop occurs until the
entire die is scanned with the laser. Thus, by setting the correct
relation between the clock frequency and the dwell time for
the laser, all registers still can be localized while clock gating
is in use. Note that gates involved in the combinatorial logic
will not be falsely identified as clock buffers, because they are
updated only on either the rising or falling edge of the clock
signal while the clock buffers toggle on both edges. Therefore,
the combinatorial gates – except those belonging to the clock
tree – do not appear on the EOFM image.

3) Time expenditure and Attack Cost: One might argue that
the time-consuming task of taking the snapshots discourages
an adversary from mounting the attack, especially if all reg-
isters have to be covered in several clock cycles. For the 2-
share implementation, it took 24 hours to capture snapshots
of all registers in 12 clock cycles, see Section VI-D. The
time fraction for a single LAB (16 registers) is 2.67min. Note
that autofocus and drift correction significantly contribute to
that time. However, the LLSI scan, which creates the actual
snapshot of the registers, takes only around 65 s. Therefore,
using a more stable optical setup, the acquisition time could
potentially be reduced by up to 60%. Furthermore, the registers
on the used FPGA are spread over the device with much
space in between. On an ASIC implementation, the registers
are potentially placed closer together, and thus, a smaller area
needs to be imaged by LLSI. Nevertheless, we consider the
measurement time of our setup not as a hurdle for an attacker,

because the measurements are fully automated and hence
can run unsupervised without the presence of an operator.
Therefore, we think that – concerning measurement time –
our approach is practically feasible in a real scenario.

While laser scanning microscopes are not as cheap as typical
oscilloscopes for power/EM analysis, they are common FA
equipment. They can be rented for about $300/h including an
operator from different FA labs. Therefore, depending on the
attack scenario, one can estimate the cost of such attacks based
on the number of shares and the size of the die. For instance,
the estimated cost to perform LLSI for the known layout of
3-share and 5-share masked AES implementations would be
$325 (65 min.) and $540 (108 min.), respectively. Naturally,
the cost for an unknown layout would increase, since several
snapshots from the entire die have to be taken. However, the
cost would increase only linearly by the number of registers
on the chip. The estimated cost to mount LLSI attack against
an unknown layout with 2-share masked AES implementation
would be $7200 (24 hours).

4) Optical resolution and register size: In the FA com-
munity, optical probing has been shown to be applicable
even to the 10nm technology node by using a Solid Immer-
sion Lens (SIL), leading to an optical resolution of around
200nm [40], [76]. For smaller technology nodes, a higher
resolution can be achieved in the visible light regime [77],
[78]. For our experiments, we did not use an SIL; hence, the
resolution is ≈ 1 µm due to the wavelength of the laser. This
resolution might seem low for the DUT manufactured in a
60 nm technology. However, unlike IC failure analysis, the
security evaluation of ICs does not have to rely on targeting a
single transistor; therefore, optical resolution requirements can
be relaxed to a certain extent. The comparison of technology
size and optical resolution often misleads to the assumption
that optical probing is not possible for small technology sizes.
This has already been shown wrong in [48], where extracting
the bitstream from a 28nm FPGA was demonstrated.

The size of the area which we used to extract the logic state
of one register from, has a dimension of about 7 µm× 9 µm
for our DUT manufactured in a 60 nm technology. This area
contains multiple transistors. For traditional optical probing
techniques, like EOP, the distance between transistors is crit-
ical for being able to extract the waveform from exactly one
transistor and not a mixture of different signals. However,
for LLSI, it is not crucial whether the laser spot covers
multiple transistors at a time or not. As long as different
signatures for different logic states can be observed in the LLSI
measurements, the stored data can be extracted successfully.

5) Chip preparation and silicon access: For our attack, we
had to depackage the target chip and mount it upside-down on
a customized PCB to establish access to the silicon backside.
This makes the attack semi-invasive, and one might argue that
the effort for chip preparation puts a too high hurdle on the
attacker. However, note that modern chips are increasingly
manufactured in flip-chip packages, due to performance, size,
cost, and environmental compatibility reasons [79]. Here the
silicon backside is directly exposed to the attacker, and no
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chip preparation is necessary. Therefore, depending on the chip
packaging, our attack can also be non-invasive, cf. [48].

B. Theory vs. Practice

It is tempting to claim that our results rule out the ap-
plication of the t-probing model as presented in [5]. In this
regard, we highlight two main points. First, our attack falls
only partially within that framework as it requires that the
t probes should not move within a time period. Second, but
more interestingly, our results demonstrate that some of the
assumptions made in [5] do not always hold in reality. More
concretely, in [5] and its follow-up studies, the measure of the
cost of a probing attack is associated with the value t, which
is shown to be ineffective for our attack. For this purpose, for
a practically feasible, yet more powerful adversary mounting
our proposed attack, the spatial coverage and/or the resolution
of the probe play a much more vital role. Moreover, it is
claimed in [5] that, even in the presence of a fully adaptive
adversary moving the probes within a clock cycle, the security
is guaranteed as long as the total number of probes in each
clock cycle does not exceed t. Conversely, we present a
powerful new attacker, who is not limited by the number of
probes as long as she can manipulate the usual functionality
of the clock, which is very likely as explained above and also
practically demonstrated by us. To sum this up, the existence
of such powerful attackers suggests that the model presented
in [5] should be revisited. Of course, the cost for such powerful
attackers is higher than that for a classical SCA attack, and
there is certainly a trade-off between the cost and the gain
depending on the value of the secrets stored in the device.

C. Potential Countermeasures

Our attack consists of four main steps, namely i) accessing
the IC backside, ii) modulating the power supply, iii) scanning
with a thermal laser, and iv) localizing the key/state registers.
Possible countermeasures can be designed and integrated into
the chip to prevent each step.

1) Package-level countermeasures: The optical access to
the backside of the chip can be prevented after the fabrication
and during the packaging of the die. For instance, active back-
side coatings [80] can make the backside of the chip opaque
to the laser scanning microscopy. Since these coatings interact
with the transistors, they can detect any tampering attempt.
Unfortunately, passive coating layers are not effective since
they can be removed mechanically without any consequences.

2) Device-level countermeasures: To take a snapshot from
the hardware, the core voltage of the device needs to be mod-
ulated with a specific frequency during the laser irradiation on
the transistors. For preventing the modulation of the supply
voltage, internal voltage regulators can be integrated into the
circuit to isolate the supply voltage of secure cores from the
outside of the device and keep the core voltage constant. Such
regulators have already been proposed to defeat power and EM
SCAs [81]. As a side note, supplying a voltage regulator by a
low voltage (close to its predefined output level) can lead to an
unstable output or a transparency between input and output.

While the former case already might be sufficient for LLSI,
in the latter case, the adversary becomes able to modulate
the internal supply voltage at her will. Moreover, distributed
temperature sensors can be deployed on the die to detect local
temperature variations resulting from the laser beam. However,
it should be noted that such temperature sensors have to
operate independently from the main system clock; otherwise,
they will also be deactivated by halting the clock. Since the
wavelength of the thermal lasers is larger than the bandgap
of the silicon, no electron-hole pairs are generated upon the
incident of photons, and therefore, conventional silicon-based
light sensors do not trigger. Temperature sensors can be either
realized by timing-sensitive circuits (e.g., ring-oscillators [82])
or specific materials with longer bandgap wavelengths.

3) Circuit-level countermeasures: A possible way to defeat
our proposed attack is to change the location of registers
dynamically. It cannot be done physically, but it seems to be
possible logically. Suppose that every single bit is allowed
to be stored in a set of k registers. Having n bits, k × n
register cells are required. In addition to this overhead, a
mechanism is required to assign one of such k register cells to
a single-bit value, dynamically selected at every clock cycle,
and independent of other single-bit values. Indeed, we need
to randomize the location of registers, independent of any
masking scheme integrated to defeat classical SCA attacks.
Realizing this might be possible by a form of reconfigurability.
To the best of our knowledge, there is no such a scheme known
to the hardware security community, and therefore, it is among
our planned future works.

VIII. CONCLUSION

Masking is the most effective protection for cryptographic
implementations against (passive) SCA attacks. The mathe-
matical proof of the probing security models, however, as-
sumes a limited number of probes available to the attacker.
This assumption holds for virtually all practically feasible SCA
attacks reported so far. We introduced a new optical attack ap-
proach that can capture hardware snapshots of the IC’s entire
logic state. It is a single-trace technique offering a number
of probes that is only bounded by the number of transistors
on the chip. We showed that extracting the keys from 2-, 3-
and 5-share AES-128 implementations is practically feasible,
even when the exact register locations are not known to the
attacker. Due to the practically unlimited number of probes in
our attack, implementations with higher protection orders (i.e.,
with a high number of shares) are vulnerable as well. The com-
plexity of the attack depends on the design architecture, the
number of shares, and the knowledge of the adversary about
the underlying implementation. The results confirm (again)
that cryptography should not rely on complexity of physical
attacks. Moreover, assumptions made in theoretical models
can be invalidated through more advanced FA techniques, and
hence, one should not underestimate them. We believe that
the integration of countermeasures to defeat our attack is not a
trivial task. Nevertheless, we gave an overview of the potential
countermeasures at different levels of abstraction.
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APPENDIX A
ADDITIONAL FIGURE
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Fig. 10. Difference image of a snapshot covering three times eight registers,
once filled with random data, and once with zeroes. A significant difference
(black and white spots) for a register corresponds to bit value 1.

APPENDIX B
SAT CLAUSES

We suppose that the registers are distinguished from the
other cells (e.g., through the technique given in Section III),
and their values can be recovered at multiple clock cycles,
following the given instructions. We also suppose that the
design architecture is known to the adversary, i.e., what is
processed and stored at every clock cycle. However, the
relation between the recovered values (through snapshots) and
the register cells is unknown. In other words, it is not known to
the adversary which recovered value belongs to which register
cell.

Having the above assumptions in mind, we use CryptoMi-
niSat 5 [67] to conduct the attack, which, compared to other
similar SAT solvers, can more easily deal with XOR clauses.
We should highlight that in such SAT solvers, the problem
should be written in Conjunctive Normal Form (CNF), or let
say product of sums. Each clause is a sum (logical OR) of a
couple of variables (or their invert). The product (logical AND)
of all clauses should be True, hence every clause should be
True. CryptoMiniSat allows us to easily define XOR-based
clauses as well.

We first focus on a single snapshot at a certain
clock cycle leading to binary observations denoted by
{ω0, . . . , ωn−1∈ F2} corresponding to n registers of the de-
sign. Some registers belong to the control logic (finite-state
machine), which are out of our interest. Therefore, we target
m ≤ n registers according to the architecture of the underlying
design. For example, m = 256 for an unprotected implemen-
tation of AES (128 bits for the state register and 128 bits for
the key register). If we define variables vi∈{0,...,m−1} for the
value of targeted register cells at the selected clock cycle, we
can write

vi = ci0ω0 + ...+ cin−1ωn−1, (3)

where with cij we denote binary coefficients. Since only one of
the observations is associated to the i-th register cell, only one
of the coefficients cij∈{0,...,n−1} is 1, and the rest are 0. In other

words, ∀i,
∑
∀j
cij = 1. These are the first formulations that we

require to include in the Boolean satisfiability problem (SAT).
To this end, we break the addition into bit level by defining
intermediate variables tj∈{2,...,n−1} for each i individually.
Below, we drop the superscript i for both t and c for simplicity.
Adding c0 and c1 leads to result t2 = c0 ⊕ c1 and carry c0c1.
Since the carry must be zero, we can add the following clauses
to the SAT.

t2 ⊕ c0 ⊕ c1 = 1, c0 ∨ c1 = 1 (4)

The same procedure is repeated for adding c2 and the result of
former addition t2, i.e., t3 = c2 ⊕ t2 and c2t2 = 0. Generally,
we can write

∀j ∈ {2, . . . , n−2}, tj+1⊕cj⊕tj = 1, cj ∨ tj = 1 (5)

At the end, we add a clause tn−1 ⊕ cn−1 = 1 to the SAT,
defining that the final result of the addition should be 1.
These clauses (which are independent of the observations ω
and the architecture of the circuit under attack) are generated
individually for each targeted register cell i ∈ {0, . . . ,m−1}.

We should also add the CNF of (3) for each targeted
register cell. Those observations ωj that are 0 cancel out the
corresponding coefficient cj . Therefore, we can write

vi ⊕
( ∑
∀j,ωj=1

cj

)
= 0.

This translates to

vi ∨
(
∨

∀j,ωj=1
cj

)
= 1, vi ∨

(
∨

∀j,ωj=1
cj

)
= 1. (6)

The left equation can be easily added as a clause to the SAT
(as it is already in CNF), but the right one should be split into
multiple clauses as follows:

∀j, ωj = 1, vi ∨ cj = 1. (7)

Having more snapshots at different clock cycles, the clauses
in (6) and (7) should be repeated for m distinct register
variables vi based on the corresponding observations ωj .
However, the coefficients cij stay the same, i.e., they are
defined only once for the entire circuit independent of the
number of snapshots. Accordingly, the clauses in (4) and (5)
are also not repeated.

The remaining task is to link the variables vi (of targeted
register cells) at different clock cycles. This is done based on
the underlying design architecture of the circuit under attack
and the functions it realizes. For example, in a round-based
architecture, the state register cells store the output of the
cipher round function, and the key register cells the round
keys. In a serialized architecture, the content of the registers
is shifted (e.g., in a byte-wise fashion), and certain operations
(e.g., Sbox) are applied on particular registers at determined
clock cycles.

In case of a masked implementation with d + 1 shares,
the number of targeted registers at each clock cycle becomes
m(d + 1) (for example, 512 × 2 for a first-order masked
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implementation of AES making use of the state and key
registers with 2 shares). Therefore, the entire clauses given
in (6) to (7) should be repeated d+ 1 times. In the next step,

we define m virtual variables νi =
d+1⊕
l=1

vi,l (for each clock

cycle), where (vi,1, . . . , vi,d+1) represent variable νi with d+1
shares. The corresponding clauses can be written as

∀i ∈ {1, . . . ,m}, νi ⊕ vi,1 ⊕ . . .⊕ vi,d+1 = 1.

The rest is similar to an unmasked implementation, i.e., the
(unmasked) variables νi at different clock cycles are linked
based on the design architecture of the circuit under attack.
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